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The small ball inequality

Small Ball Conjecture

For dimensions d ≥ 2, we have

n
d−2
2

∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

d = 2: Talagrand, ’94; Temlyakov, ’95.

Sharpness: random signs/Gaussians.
d−1
2 follows from an L2 estimate.

Connected to probability, approximation, discrepancy.

Known: d−1
2 + η(d) for d ≥ 3

(DB, Lacey, Vagharshakyan, 2008)
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Small ball inequality: “signed” version

Small Ball Conjecture

For dimensions d ≥ 2, if all εR = ±1, we have∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

& n
d
2

Hd
n = {(r1, r2, . . . , rd) ∈ Zd+ : r1 + · · ·+ rd = n}

Vectors ~r define the shape of rectangles R: |Rj | = 2−rj .

#Hd
n ≈ nd−1

∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
2
≈
(

#Hd
n · 2n · 1 · 2−n

) 1
2

≈ n
d−1
2
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Two-dimensional proof (V. Temlyakov, ’95)

Hn =
∑

R: |R|=2−n

εRhR

Set fk =
∑

R: |R1|=2−k

εRhR, k = 0, 1, . . . , n

Construct a Riesz product:

Ψ
def
=

n∏
k=0

(1 + fk)

Ψ ≥ 0∫
Ψ = 1∥∥Ψ
∥∥
1

= 1

Thus ∥∥Hn∥∥∞ ≥ 〈Hn,Ψ〉 =
∑

R: |R|=2−n

2−n ≈ n
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Structure of the Riesz product

Ψ
def
=

n∏
k=0

(1 + fk) =

{
2n+1 if fk = +1 for all k,

0 otherwise.

Assume that εR = +1 for all R.

fk(x1, x2) = +1 iff
(k + 1)st binary digit of x1 = (n− k + 1)st digit of x2.

if this holds for all k = 0, 1, ..., n:
Van der Corput set with N = 2n+1 points, i.e. the set of all
points of the form(

0.x(1)x(2) . . . x(n)x(n+1), 0.x(n+1)x(n) . . . x(2)x(1)
)
.
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Riesz product

Small ball inequality (d=2)

For d = 2, we have∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

Riesz product: Ψ(x) =
∏n
k=0(1 + fk)

Sidon’s theorem

If a bounded 1-periodic function f has lacunary Fourier series
∞∑
k=1

ak sin (2πnkx), nk+1/nk > λ > 1, then∥∥f∥∥∞ &
∞∑
k=1

|ak|

Riesz product: PK(x) =
∏K
k=1(1 + εk cosnkx)
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Discrepancy function

Consider a set PN ⊂ [0, 1]d consisting of N points:

Define the discrepancy function of the set PN as

DN (x) = ]{PN ∩ [0, x)} −Nx1x2 . . . xd
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Lp estimates, 1 < p <∞

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all PN ⊂ [0, 1]d with
#PN = N :

‖DN‖p & (logN)
d−1
2

Main idea:

DN ≈
∑

R: |R|≈ 1
N

〈DN , hR〉
|R|

hR

Theorem (Davenport, 1956 (d = 2, p = 2); Roth, 1979 (d ≥ 3,
p = 2); Chen, 1983 (p > 2); Chen, Skriganov, 2000’s)

There exist sets PN ⊂ [0, 1]d with

‖DN‖p . (logN)
d−1
2
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L∞ estimates

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN
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Low discrepancy sets

The van der Corput set with N = 2n points (here n = 12)(
0.x1x2...xn, 0.xnxn−1...x2x1

)
, xk = 0 or 1.

Discrepancy ≈ logN
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Low discrepancy sets

The irrational (α =
√

2) lattice with N = 212 points(
n/N, {nα}

)
, n = 0, 1, ..., N − 1.

Discrepancy ≈ logN
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L∞ estimates

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN

d ≥ 3, Halton, Hammersley (1960):

There exist PN ⊂ [0, 1]d with ‖DN‖∞ . (logN)d−1
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Conjectures and results

Conjecture 1

‖DN‖∞ & (logN)d−1

Conjecture 2

‖DN‖∞ & (logN)
d
2

Theorem (J. Beck, 1989)

In dimension d = 3 for all N -point sets in [0, 1]3

‖DN‖∞ & logN · (log logN)
1
8
−ε.

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d ≥ 3 there exists η = η(d) > 0 such that

‖DN‖∞ & (logN)
d−1
2

+η .
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The small ball conjecture and discrepancy

Small Ball Conjecture

For dimensions d ≥ 2, we have for all choices of αR

n
1
2
(d−2)

∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

Conjecture 2

‖DN‖∞ & (logN)
d
2

In both conjectures one gains a square root over the L2

estimate.
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The small ball conjecture and discrepancy

Signed Small Ball Conjecture

For dimensions d ≥ 2, we have for all choices of αR = ±1∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& n
d
2

Conjecture 2

‖DN‖∞ & (logN)
d
2

In both conjectures one gains a square root over the L2

estimate.
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Discrepancy estimates Small Ball inequality (signed)

Dimension d = 2

‖DN‖∞ & logN

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n

(Schmidt, ’72; Halász, ’81) (Talagrand, ’94; Temlyakov, ’95)

Higher dimensions, L2 bounds

‖DN‖2 & (logN)(d−1)/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
2

& n(d−1)/2

Higher dimensions, conjecture

‖DN‖∞ & (logN)d/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& nd/2

Higher dimensions, known results

‖DN‖∞ & (logN)
d−1
2 +η

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n
d−1
2 +η

Table: Discrepancy estimates and the signed Small Ball inequality
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Discrepancy function Lacunary Fourier series

DN (x) = #{PN ∩ [0, x)} −Nx1x2 f(x) ∼
∑∞
k=1 ck sinnkx,

nk+1

nk
> λ > 1

‖DN‖2 &
√

logN ‖f‖2 ≡
√∑

|ck|2
(Roth, ’54)

‖DN‖∞ & logN ‖f‖∞ &
∑
|ck|

(Schmidt, ’72; Halász, ’81) (Sidon, ’27)

Riesz product:
∏(

1 + cfk
)

Riesz product:∏(
1 + cos(nkx+ φk)

)
‖DN‖1 &

√
logN ‖f‖1 & ‖f‖2

(Halász, ’81) (Sidon, ’30)

Riesz product:
∏(

1 + i · c√
logN

fk
)

Riesz product:∏(
1 + i · |ck|‖f‖2 cos(nkx+ θk)

)
Table: Discrepancy function and lacunary Fourier series
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Connections between problems
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A new proof in d = 2: signed case

DB, N. Feldheim 2015

-1

1

1

-1

-1 1

1 -1

-2 0

0 2
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A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}

For each k = n+1
2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =

n∑
k=n+1

2

Fk(x) =
n+ 1

2
· 2 = n+ 1.
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A new proof in d = 2: signed case
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A new proof in d = 2: signed case

At the initial step each rectangle contains exactly two
chosen squares.

They lie in the opposite quarters of the rectangle, since
εRhR(x) ≥ 0

At each following step every rectangle R will contain
exactly two previously chosen squares.

We further choose a sub square in each of those and they
have to lie in the opposite quarters of R.
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Connection to binary (t,m, d)-nets

Definition

A set P of N = bm points in [0, 1)d is called a (t,m, d)-net in
base b if every b-adic box of volume b−m+t contains exactly bt

points of P.

Since every dyadic R with |R| = 2−n contains exactly two
of the 2n+1 chosen squares, the extremal set is a
(1, n+ 1, 2)-net in base b = 2.

Since in every such R these points lie in opposite quarters,
it is actually a (0, n+ 1, 2)-net in base b = 2.
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Examples of two-dimensional nets

When εR = +1 for all R ∈ D2 with |R| = 2−n:
Van der Corput set with N = 2n+1 points.

If εR depends only on the geometry of R, i.e.
εR = ε(|R1|, |R2|):
digit-shifted Van der Corput set.

If the coefficients have product structure, i.e. for
R = R1 ×R2 we have εR1 · εR2 :
so-called Owen’s scrambling of Van der Corput set.

Each dyadic (0,m, 2)-net P may be obtained this way

The total number of different binary (0,m, 2)-nets is

2m2m−1

(Xiao, 1996)
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A new proof in d = 2: general case

At each step choose the subcube, where

Fk(x) = |αR′ |+ |αR′′ |.
Then

∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞

= max
j=1,...,2n+1

∑
R⊃Qj

∣∣αR∣∣

≥ 1

2n+1

∑
Qj

∑
R⊃Qj

∣∣αR∣∣
=

1

2n+1

∑
|R|=2−n

∣∣αR∣∣ ∑
Qj⊂R

1

= 2−n
∑

|R|=2−n

∣∣αR∣∣
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Extension to b-adic nets

A box R ∈ D2
b of dimensions b−m1 × b−m2 is a union of a

b× b array of b-adic boxes of dimensions
b−(m1+1) × b−(m2+1).

Define the family of functions HR . The function φR ∈ HR
iff
• φR takes values ±1 on R and vanishes outside R.
• φR is constant on b-adic subboxes of R of dimensions
b−(m1+1) × b−(m2+1).
• In each row and in each column of the b× b array of
b-adic subboxes of R of dimensions b−(m1+1) × b−(m2+1),
there is exactly one subbox, on which φR = +1.

#HR = b!.

If b = 2, then HR = {±hR} and #HR = 2.
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Small ball inequality and b-adic nets

Theorem

Fix the scale m ∈ N and an integer base b ≥ 2. For each b-adic box
R ∈ D2

b with |R| = b−(m−1), choose a function φR ∈ HR.

(i) A b-adic analogue of the signed small ball inequality holds:

max
x∈[0,1)2

∑
|R|=b−(m−1)

φR(x) = m.

(ii) The set on which the maximum above is achieved has the form

P +
[
0, b−m

)2
,

where P is a standard (0,m, 2)-net in base b.

(iii) Each (0,m, 2)-net P in base b may be obtained this way.

(iv) The number of different (0,m, 2)-nets in base b is (b!)mb
m−1

.
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Dimension reduction: “signed” case

Lemma

Let d ≥ 2. Assume that in dimension d′ = d− 1 ≥ 1 for all
coefficients εR = ±1 we have the following inequality:∥∥∥∥ ∑

|R|≥2−n

εRhR

∥∥∥∥
∞

& n
d′+1

2 = n
d
2 .

Then in dimension d ≥ 2 for all coefficients εR = ±1 we have∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n
d
2 .

In dimension d = 2 equivalent.∥∥∑
|R|≥2−n εRhR

∥∥
2
& nd

′/2

In d = 1 the bound
∥∥∑

|I|≥2−n εIhI
∥∥
∞ ≥ n is trivial.
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Dimension reduction: general case

In dimension d′ = 1 a proper analog would be:∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
This implies the general small ball inequality in d = 2

This would imply the signed small ball inequality in ALL
dimensions d ≥ 2!!!

Unfortunately this estimate is NOT true in general!!!!
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Dimension reduction: general case

In dimension d′ = 1 a proper analog would be:∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
This would easily imply small ball inequality in d = 2. Fix x2:∥∥∥∥ ∑

|R|=2−n

αRhR

∥∥∥∥
L∞(x1)

=

∥∥∥∥ ∑
|R1|≥2−n

( ∑
|R2|= 2−n

|R1|

αR1×R2hR2(x2)

)
hR1(x1)

∥∥∥∥
L∞(x1)

≥
∑

|R1|≥2−n

∣∣∣∣ ∑
|R2|=2−n/|R1|

αR1×R2hR2(x2)

∣∣∣∣ · |R1|.
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In dimension d′ = 1 a proper analog would be:∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
Replace the sup by the average in x2:∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥

∑
|R1|≥2−n

∥∥∥∥ ∑
|R2|=2−n/|R1|

αR1×R2hR2

∥∥∥∥
L1(x2)

· |R1|

=
∑

|R1|≥2−n

∑
|R2|=2−n/|R1|

|αR1×R2 | · |R2| · |R1|

= 2−n
∑

|R|=2−n

|αR|.

Dmitriy Bilyk Small ball inequality & low discrepancy constructions



Dimension reduction: general case

Actually, this one-dimensional bound∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
would imply the “signed” SBI in ALL dimensions d ≥ 2.

Denote Hn =
∑

|R|=2−n

εRhR. Then

‖Hn‖1 ≈ ‖Hn‖2 ≈ n
d−1
2 .

Write x ∈ [0, 1)d as x = (x1, x
′), where x1 ∈ [0, 1), x′ ∈ [0, 1)d−1.

Write R = R1 ×R′ ∈ Dd in a similar way.
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Dimension reduction: general case

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
L∞(x1)

≥
∑

|R1|≥2−n

∣∣∣∣ ∑
|R′|=2−n/|R1|

εR1×R′hR′(x
′)

∣∣∣∣ · |R1|

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞
≥

∑
|R1|≥2−n

∥∥∥∥ ∑
|R′|=2−n/|R1|

εR1×R′hR′(x
′)

∥∥∥∥
L1(x′)

· |R1|

&
n∑
k=0

∑
|R1|=2−k

(n− k)
d−2
2 · 2−k

=

n∑
k=0

(n− k)
d−2
2 ≈ nd/2.
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Similar ideas

Skriganov, 2014:
For any N -point set P ⊂ [0, 1)d there is a digit shift σ such
that

‖DP⊕σ‖∞ & (logN)d/2.

Karslidis, 2015
In any dimension d ≥ 2, if the coefficients have product
structure εR = εR1 · εR′ , then the signed SBI holds∥∥∥∥ ∑

|R|=2−n

εRhR

∥∥∥∥
∞

& nd/2.

L∞ estimate in 1 dimension
⊕ equivalence of L1 and L2 in other d− 1 dimensions
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Dimension reduction: general case FAILS

Unfortunately, this one dimensional bound∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
IS NOT TRUE!!!
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