

Institut f. Analysis und Zahlentheorie

Zahlentheoretisches Kolloquium

22. Jänner 2016, 14:00 Uhr

Seminarraum C 208, 2. Stock, Steyrergasse 30, TU Graz

Divisibility of binomial coefficients by powers of two

Dr. Lukas Spiegelhofer (TU Wien)

Abstract

It is known that the number $a(\alpha, n)$ of binomial coefficients $\binom{n}{t}$ exactly divisible by 2^{α} can be expressed using a polynomial P_{α} in block-additive functions in base 2. For example, we have

$$\begin{aligned} a(1,n)/a(0,n)\& &= \frac{1}{2}|n|_{10},\\ a(2,n)/a(0,n)\& &= -\frac{1}{8}|n|_{10} + |n|_{100} + \frac{1}{4}|n|_{110} + \frac{1}{8}|n|_{10}^2, \end{aligned}$$

where $|n|_w$ is the number of times the word w occurs as a subword of the base-2 expansion of n.

In this talk, we present a method for obtaining the sequence of coefficients of a given monomial in the polynomials P_0, P_1, \ldots as a generating function.

In particular, we apply this method to the monomial X_{10}^k (corresponding to the term $|n|_{10}^k$) and the associated sequence $(c_{\alpha}^{(k)})_{\alpha\geq 0}$ of coefficients, obtaining the generating function

$$\sum_{\alpha \ge 0} c_{\alpha}^{(k)} x^{\alpha} = \left(\log \left(1 + \frac{x}{2} \right) \right)^k.$$

P. Grabner