

Institut f. Analysis und Zahlentheorie

Zahlentheoretisches Kolloquium

Dienstag, 30.10.2018, 15:00

Seminarraum Analysis-Zahlentheorie (NT02008), Kopernikusgasse 24/II

Galois properties of rings of integer-valued polynomials

Dr. Giulio Peruginelli

(Univ. Padova)

Let K be a number field with ring of integers O_K . Recently, Loper and Werner introduced the following ring which generalizes the classical definition of ring of integer-valued polynomials: $\operatorname{Int}_{\mathbb{Q}}(O_K) = \{f \in \mathbb{Q}[X] \mid f(O_K) \subseteq O_K\}$. If $K = \mathbb{Q}$ then we get the classical ring $\operatorname{Int}(\mathbb{Z})$ of polynomials with rational coefficients mapping \mathbb{Z} into \mathbb{Z} . Loper and Werner prove that $\operatorname{Int}_{\mathbb{Q}}(O_K)$ is a Pr" ufer domain, which is stricly contained in $\operatorname{Int}(\mathbb{Z})$ if K is a proper extension of \mathbb{Q} . Here, we show that in case K, K' are Galois extensions of \mathbb{Q} , then $\operatorname{Int}_{\mathbb{Q}}(O_K) = \operatorname{Int}_{\mathbb{Q}}(O_{K'})$ if and only if K = K'. We also characterize a basis for $\operatorname{Int}_{\mathbb{Q}}(O_K)$ as a \mathbb{Z} -module when K/\mathbb{Q} is a tamely ramified Galois extension. This is a joint work with Bahar Heidaryan and Matteo Longo.

We also give the following new generalization: for any number fields K, K', if $\operatorname{Int}_{\mathbb{Q}}(O_K) = \operatorname{Int}_{\mathbb{Q}}(O_{K'})$, then K, K' are conjugated over \mathbb{Q} .

Sophie Frisch