Der Wissenschaftsfonds.

Institut für Analysis und Zahlentheorie

Zahlentheoretisches Kolloquium

16.11.2021, 11:00 Uhr

Diversity in Rationally Parameterized Fields

Benjamin Klahn MSc
 (TU Graz)

Let $F(x, y) \in \mathbb{Q}[x, y]$ be an irreducible polynomial of degree $d>1$ in y. Hilbert's Irreducibility Theorem (HIT) states that for the vast majority of integers n the polynomial $F(n, y) \in \mathbb{Q}[y]$ is irreducible, i.e. $\left[\mathbb{Q}\left(\theta_{n}\right): \mathbb{Q}\right]=d$ for any root θ_{n} of $F(n, y)$. However, HIT does not answer the following questions:

Given an integer N, what is the degree of $\mathbb{Q}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right)$? How many distinct fields are there among $\mathbb{Q}\left(\theta_{j}\right), 1 \leq j \leq N$?

These questions were first studied by Dvornicich and Zannier, who showed that there is a positive constant c such that $\mathbb{Q}\left(\theta_{1}, \ldots, \theta_{N}\right) \geq e^{c N / \log N}$, and consquently that there are at least $c^{\prime} N / \log N$ many distinct fields among $\mathbb{Q}\left(\theta_{j}\right)$ with $j \leq N$.

We will consider the larger set of fields $\mathbb{Q}\left(\theta_{r}\right)$ where $r \in \mathbb{Q}$ varies over rational numbers of height $H(r) \leq N$. Under some assumptions on F we will obtain a lower bound on the number of distinct fields among $\mathbb{Q}\left(\theta_{r}\right), H(r) \leq N$.

Ch. Elsholtz

