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Simon’s Hausdorff Dimension Conjecture

Hausdorff Dimension Conjecture (Simon 2005)

Suppose that µ is a non-trivial probability measure on ∂D whose Verblunsky
coefficients satisfy

∞∑
n=0

nγ |αn|2 <∞

for γ ∈ (0, 1). Then there is a set S ⊂ ∂D of Hausdorff dimension at most
1− γ so that for z ∈ ∂D \ S , the associated Szegő matrices Tn(z) are bounded:

sup
n≥0
‖Tn(z)‖ <∞.

In particular, µsing is supported by a set of dimension at most 1− γ.

We will proceed as follows:

I define all objects that appear in the statement of the conjecture

I explain why the statement is natural and interesting

I explain why the statement is optimal

I describe the general approach to the proof

I briefly discuss the steps of the proof



Probability Measures on the Circle and Their Verblunsky Coefficients

Suppose µ is a non-trivial (i.e., not finitely supported) probability measure on
the unit circle ∂D = {z ∈ C : |z | = 1}.

By the non-triviality assumption, the functions 1, z , z2, · · · are linearly
independent in the Hilbert space

H = L2(∂D, dµ)

and hence one can form, by the Gram-Schmidt procedure, the monic
orthogonal polynomials Φn(z), whose Szegő dual is defined by

Φ∗n = znΦn(1/z)

There are constants {αn}n∈Z+ in D = {z ∈ C : |z | < 1}, called the Verblunsky
coefficients, so that

Φn+1(z) = zΦn(z)− αnΦ∗n(z), for n ∈ Z+,

which is the so-called Szegő recurrence.

Conversely, every sequence {αn}n∈Z+ in D arises as the sequence of Verblunsky
coefficients for a suitable nontrivial probability measure on ∂D.



The Szegő Matrices
If we consider instead the orthonormal polynomials

ϕ(z , n) =
Φn(z)

‖Φn(z)‖ ,

it is easy to see that with ρn = (1− |αn|2)1/2, the Szegő recurrence becomes

ρnϕ(z , n + 1) = zϕ(z , n)− αnϕ
∗(z , n)

The Szegő recurrence can be written in a matrix form as follows:(
ϕ(z , n + 1)
ϕ∗(z , n + 1)

)
=

1

ρn

(
z −αn

−αnz 1

)(
ϕ(z , n)
ϕ∗(z , n)

)
Alternatively, one can consider a different initial condition and derive the
orthogonal polynomials of the second kind, by setting ψ(z , 0) = 1 and then(

ψ(z , n + 1)
−ψ∗(z , n + 1)

)
=

1

ρn

(
z −αn

−αnz 1

)(
ψ(z , n)
−ψ∗(z , n)

)
Define the associated Szegő matrices by

Tn(z) =
1

2

(
ϕn(z) + ψn(z) ϕn(z)− ψn(z)
ϕ∗n(z)− ψ∗n (z) ϕ∗n(z) + ψ∗n (z)

)



Simon’s Hausdorff Dimension Conjecture

Hausdorff Dimension Conjecture (Simon 2005)

Suppose that µ is a non-trivial probability measure on ∂D whose Verblunsky
coefficients satisfy

∞∑
n=0

nγ |αn|2 <∞

for γ ∈ (0, 1). Then there is a set S ⊂ ∂D of Hausdorff dimension at most
1− γ so that for z ∈ ∂D \ S , the associated Szegő matrices Tn(z) are bounded:

sup
n≥0
‖Tn(z)‖ <∞.

In particular, µsing is supported by a set of dimension at most 1− γ.

I it is well known that µsing is supported by

S =
{
z ∈ ∂D : sup

n≥0
‖Tn(z)‖ =∞

}
I the statement is also true for the endpoints γ = 0 and 1, but this was

already known when the conjecture was made
I of course the conclusion for γ = 0 is vacuous, but this endpoint case is

interesting anyway due to the optimality of the result
I indeed, the fact that in the case γ = 0, µsing can be one-dimensional is

one of the most important consequences of Szegő’s Theorem



Szegő’s Theorem – The Case γ = 0

Verblunsky’s form (1936) of Szegő’s theorem (1920/21) reads

∞∏
n=0

(1− |αn|2) = exp

(∫
log(w(θ))

dθ

2π

)
,

where w denotes the Radon-Nikodym derivative of the absolutely continuous
part of µ with respect to the normalized Lebesgue measure on the unit circle.

This identity implies in particular that

∞∑
n=0

|αn|2 <∞ ⇔
∫

log(w(θ))
dθ

2π
> −∞.

Observe that the singular part of µ is entirely unrestricted by this condition
(other than by having weight less than 1), and hence one can have measures µ
whose Verblunsky coefficients satisfy

∑
nγ |αn|2 <∞ with γ = 0 and singular

part of Hausdorff dimension 1 = 1− γ.



Super-Coulomb Decay – The Case γ = 1

Golinskii and Ibragimov established in 1971 the following statement:

∞∑
n=0

n|αn|2 <∞ ⇒ µsing = 0

We see in particular that if
∑

nγ |αn|2 <∞ with γ = 1, then µsing is supported
by a set of dimension 0 = 1− γ.

Thus, the Hausdorff dimension conjecture asks for a linear interpolation of the
known endpoint results.

There is another reason why this particular interpolation is expected to be the
correct one: it is known, due to a 2005 paper by Denisov and Kupin, that any
general upper bound for the dimension of a support of µsing cannot be smaller
than 1− γ!



Related Results for Schrödinger Operators

There are some results in the same spirit for Schrödinger operators

[Hψ](x) = −ψ′′(x) + V (x)ψ(x), ψ(0) = 0

in L2(0,∞). Write

S := {E ∈ (0,∞) : all solutions of Hu = Eu are bounded}

Theorem (Remling 1998)

Suppose that

|V (x)| ≤ C

(1 + x)α

for some α ∈ [ 1
2
, 1]. Then, dimS ≤ 4(1− α).

Remark
(a) The bound is non-trivial only for α ∈ ( 3

4
, 1].

(b) The α-assumption implies the γ-assumption ((1 + x)
γ
2 V (x) ∈ L2) for every

γ < 2α− 1. Thus, the corresponding non-trivial γ-range is ( 1
2
, 1).

(c) As in all works on problems of this type, the boundedness of solutions is
proved by establishing WKB asymptotics for them. Thus, the actual result is
somewhat stronger than mere boundedness.



Related Results for Schrödinger Operators

Theorem (Remling 2000)

Suppose that

|V (x)| ≤ C

(1 + x)α

for some α ∈ [ 1
2
, 1]. Then, dimS ≤ 2(1− α).

Theorem (Christ-Kiselev 2001)

Suppose that ∫
(1 + x)γ |V (x)|2 dx <∞

for some γ ∈ (0, 1]. Then, dimS ≤ 1− γ.

Remark
(a) The optimality of the bound 1− γ follows again from the 2005 work of
Denisov and Kupin.

(b) The Simon conjecture asks for the direct OPUC analog of the
Christ-Kiselev Schrödinger operator result.

(c) On the other hand, the method Remling uses seems to be easier to carry
over to the OPUC setting. However, note that he does not prove the
Schrödinger version of Simon’s conjecture with his method. Worse yet, it is not
clear whether this is in principle even possible.



The Main Result

In the remainder of the talk we want to discuss the following result, which
simply states that Simon’s OPUC Hausdorff dimension conjecture is true:

Theorem (D.-Guo-Ong)

Suppose that µ is a non-trivial probability measure on ∂D whose Verblunsky
coefficients satisfy

∞∑
n=0

nγ |αn|2 <∞

for γ ∈ (0, 1). Then there is a set S ⊂ ∂D of Hausdorff dimension at most
1− γ so that for z ∈ ∂D \ S , the associated Szegő matrices Tn(z) are bounded:

sup
n≥0
‖Tn(z)‖ <∞.

In particular, µsing is supported by a set of dimension at most 1− γ.



Prüfer Variables

Let {αn}n≥0 be the Verblunsky coefficients of a nontrivial probability measure
dµ on ∂D. As mentioned above, the αn’s give rise to a sequence {Φn(z)}n≥0 of
monic polynomials (via the Szegő recurrence) that are orthogonal with respect
to dµ.

For β ∈ [0, 2π), we also consider the monic polynomials {Φn(z , β)}n≥0 that are
associated in the same way with the Verblunsky coefficients {e iβαn}n≥0. The
parameter β corresponds to a variation of the initial condition for the Szegő
recursion. In particular, the orthogonal polynomials of both the first and second
kind arise for suitable choices of β, and hence we can bound the Szegő
matrices once we have bounds for these two relevant values of β.

Let η ∈ [0, 2π). Define the Prüfer variables Rn, θn by

Φn(e iη, β) = Rn(η, β) exp [i(nη + θn(η, β))]

where Rn > 0, θn ∈ [0, 2π), and |θn+1 − θn| < π. Thus, the desired
boundedness statement for the β-dependent orthogonal polynomials can be
established by bounding the β-dependent Prüfer radius Rn(η, β) as n→∞
outside a set of η’s that has sufficiently small Hausdorff dimension.



Prüfer Equations

The Prüfer variables obey the following pair of equations:

R2
n+1(η, β)

R2
n (η, β)

= 1 + |αn|2 − 2Re
(
αne

i [(n+1)η+β+2θn(η,β)]
)
,

e−i(θn+1(η,β)−θn(η,β)) =
1− αne

i [(n+1)η+β+2θn(η,β)]

[1 + |αn|2 − 2Re (αne i [(n+1)η+β+2θn(η,β)])]
1/2
.

Since the Szegő matrices Tn(z) are expressed via the normalized polynomials,
we note that when {αn} ∈ `2, we have for rn(η, β) = |ϕn(η, β)| the following
two-sided estimates:

rn(η, β) ∼ Rn(η, β) ∼ exp

(
−

n−1∑
j=0

Re(αje
i [(j+1)η+β+2θj (η,β)])

)



Uniformly Hölder Continuous Measures and A.E. Boundedness

Theorem
Assume that

∑
nγ |αn|2 <∞ holds for some γ ∈ (0, 1). Suppose that ν is a

finite Borel measure on (0, 2π) with the following two properties:

(i) There is a δ > 0 such that ν is supported by (δ, 2π − δ).

(ii) There is a D ∈ (1− γ, 1) such that ν is uniformly D-Hölder continuous,
that is, ν(I ) . |I |D for every interval I ⊆ (0, 2π).

Then
sup{Rn(η, β) : β ∈ [0, 2π), n ∈ Z+} <∞

for ν-almost every η.

Assuming this theorem, we can give the proof of the main result:



Deriving the Main Result

Proof of the Hausdorff Dimension Conjecture. We have to show that

S = {η ∈ [0, 2π) : sup
n≥0
‖Tn(e iη)‖ =∞}

has Hausdorff dimension at most 1− γ.
Assuming this fails, and hence dimH(S) > 1− γ, it follows from standard
results in measure theory that there is a finite Borel measure ν with the
following two properties:

(i) There is a δ > 0 such that ν is supported by S ∩ (δ, 2π − δ).

(ii) There is a D ∈ (1− γ, 1) such that ν is uniformly D-Hölder continuous,
that is, ν(I ) . |I |D for every interval I ⊆ (0, 2π).

In particular, the previous theorem is applicable to this measure and it ensures
for ν-almost every η the boundedness of the Prüfer radius as n→∞ for all
initial phases β, and in particular those two that correspond to the entries of
the Szegő matrices. In particular, for ν-almost every η, the Szegő matrices
Tn(e iη) remain bounded as n→∞, in contradiction with the definition of S
and the fact that S supports the measure ν. This completes the proof.



Estimates for the WKB Transform

Let us write

ψ(k, η, β) = (k + 1)η + β + 2θn(η, β)

ω(s, η, β) = (s + 1)η + β +
1

η

s−1∑
k=0

|αk |2

Theorem
Assume that

∑
nγ |αn|2 <∞ holds for some γ ∈ (0, 1). Suppose that ν is a

finite Borel measure on (0, 2π) with the following two properties:

(i) There is a δ > 0 such that ν is supported by (δ, 2π − δ).

(ii) There is a D ∈ (1− γ, 1) such that ν is uniformly D-Hölder continuous,
that is, ν(I ) . |I |D for every interval I ⊆ (0, 2π).

Then

sup
β

L∑
s=0

∣∣∣∣∫ f (η)e iω(s,η,β) dν(η)

∣∣∣∣2 . (L + 1)1−D

∫
|f (η)|2 dν(η),

for all f ∈ L2((0, 2π), dν) and L ∈ Z+.



Remling’s Divide-and-Conquer Strategy

Lemma
Given a sequence of Verblunsky coefficients {αn}n∈Z+ ⊆ D that is not finitely
supported, define the strictly increasing sequence {xn}n∈Z+ ⊆ Z+ by

I x0 = 0,

I for every n ∈ Z+, xn+1 is the smallest power of 2 so that xn+1 > xn and
αj 6= 0 for at least one j ∈ [xn, xn+1).

If
∑

nγ |αn|2 <∞ holds for some γ ∈ (0, 1), then for every

D ∈ (1− γ, 1)

and every integer

N ∈
(

2− γ − D

D + γ − 1
,∞
)

we have
∞∑
n=1

|xn − xn−1|
1−D
2 ‖αχ[xn−1,xn)‖2 <∞

and
sup
n
‖αχ[xn−1,xn)‖1‖|xn − xn−1|

1−D
2 αχ[xn−1,xn)‖

N
2 <∞



Remling’s Divide-and-Conquer Strategy

With

Nn := max

1,

 1√∑xn−1
m=xn−1

(xn − xn−1)1−D |αm|2


we subdivide the interval [xn−1, xn) into Nn subintervals and then define the
next generations of this iteration scheme inductively.

Lemma
In order for

∞∑
n=1

Nn∑
l1,l2,...,lj−1=1

∣∣∣∣∣∣
yj−1(lj−1)−1∑

k=yj−1(lj−1−1)

αke
iω(k,η)e isτ(k,η)

k∑
m=yj−1(lj−1−1)

αme
iω(m,η)

∣∣∣∣∣∣
to converge for ν-almost every η and s ∈ N, it suffices to show that

∞∑
n=1

Nn∑
l1,l2,...,lj=1

∣∣∣∣∣∣
yj (lj )−1∑

k=yj (lj−1)

αke
iω(k,η)e isτ(k,η)

k∑
m=yj (lj−1)

αme
iω(m,η)

∣∣∣∣∣∣
converges for ν-almost every η and s ∈ N.



Remling’s Divide-and-Conquer Strategy

Proposition

Assume that
∑

nγ |αn|2 <∞ holds for some γ ∈ (0, 1), and let {xn} be chosen
as in the previous lemma. Suppose that ν is a finite Borel measure on (0, 2π)
with the following two properties:

(i) There is a δ > 0 such that ν is supported by (δ, 2π − δ).

(ii) There is a D ∈ (1− γ, 1) such that ν is uniformly D-Hölder continuous,
that is, ν(I ) . |I |D for every interval I ⊆ (0, 2π).

Then
sup{Rxn (η, β) : β ∈ [0, 2π), n ∈ Z+} <∞

for ν-almost every η.

Lastly, interpolate between the xn’s via Kiselev’s 1999 maximal function
estimate!
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