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Multi-Frequency Schrödinger Operators

Fix a dimension d ∈ N and consider α ∈ Td := Rd/Zd that is such that the
translation Rα : Td → Td , ω 7→ ω + α is minimal.

If g : Td → R is bounded and measurable, we can consider, for each ω ∈ Td ,
the discrete Schrödinger operator

[Hα,g,ωψ](n) = ψ(n + 1) + ψ(n − 1) + g(ω + nα)ψ(n)

in `2(Z). We call such an operator a generalized quasi-periodic Schrödinger
operator.

By standard arguments involving the ergodicity of Lebesgue measure with
respect to Rα, there is a compact set Σα,g such that for Lebesgue almost every
ω ∈ Td , the spectrum of Hα,g,ω is equal to Σα,g .



The Spectrum of Multi-Frequency Schrödinger Operators

The almost sure spectrum Σα,g can have various topological and
measure-theoretic properties. It can be a Cantor (i.e., perfect and nowhere
dense) set, but it can also be a finite union of non-degenerate compact
intervals. The Cantor spectra that occur can have both positive and zero
Lebesgue measure. Among those that have zero Lebesgue measure, examples
are known with small, and even zero, Hausdorff dimension.

Roughly speaking, when d = 1, it is well known how to produce examples with
zero Lebesgue measure and even zero Hausdorff dimension. On the other hand,
when d > 1, examples are known where the spectrum is a finite union of
intervals, and it is (essentially) open how to produce spectra of zero Lebesgue
measure.

Definition
A function g : Td → R is called elementary if it is measurable and takes finitely
many values. The set of elementary functions g : Td → R is denoted by E(Td).
A subset of E(Td) is called ample if its ‖ · ‖∞-closure in L∞(Td) contains
C(Td).



Zero Measure Cantor Spectrum

Theorem (Chaika-D.-Fillman-Gohlke)

Let d = 2. Then, for Lebesgue almost every α ∈ Td , the set

Zα = {g ∈ E(Td) : Σα,g is a Cantor set of zero Lebesgue measure}

is ample.

Remark
(a) In the case d = 1, this is a 2006 result of D.-Lenz, and the full measure set
of α ∈ T is explicit: T \Q. For d = 2, the full measure set is not explicit.
(b) The fact that the result can be extended to a value of d that is greater
than one is not obvious, and indeed surprising, since the straightforward
extension of the proof for d = 1 is known to fail.
(c) To the best of our knowledge, there is no known example of a quasi-periodic
multi-frequency potential (i.e., d > 1 and g ∈ C(Td)) so that the associated
Schrödinger operator has zero-measure spectrum. It is unclear whether such an
example exists. The fact that arbitrarily small ‖ · ‖∞ perturbations of an
arbitrary g ∈ C(Td) can produce this effect is therefore interesting.
(d) We regard it as an interesting open problem to explore whether this result
can be extended to some larger values of d . Several components of our proof
indeed do extend to values of d greater than 2.



Key Components of the Proof

The proof of the previous theorem is based on several ingredients:

I a principle that derives Cantor spectrum of zero Lebesgue measure for
Schrödinger operators with potentials taking finitely many values from a
dynamical property of the subshift generated by the potentials

I a multi-dimensional continued fraction algorithm, together with an ergodic
measure that is equivalent to Lebesgue measure

I an S-adic description of the orbit of a point under the iteration of the
multi-dimensional continued fraction algorithm

I a principle showing that for almost every point this induces a natural
coding of a suitable torus translation

I a verification that the resulting S-adic subshift obeys the sufficient
condition for zero-measure Schrödinger spectrum for almost every point



Zero-Measure Spectrum via the Boshernitzan Criterion

Definition
Given a finite set A, called the alphabet, give the full shift AZ the product
topology inherited from placing the discrete topology on each factor, and define
the shift map

S : AZ → AZ, [Sx ](n) = x(n + 1)

A subshift over A is a closed (hence compact) S-invariant subset X ⊆ AZ. The
language of a subshift X is

L(X ) := {xn . . . xn+k−1 : x ∈ X , n ∈ Z, k ∈ N}

A subshift X is minimal if each of its S-orbits is dense.

Definition
Let (X ,S) be a minimal subshift. We say that (X , S) satisfies the Boshernitzan
criterion if there exist an S-invariant probability measure µ, a constant C > 0,
and a sequence n1, n2, . . .→∞ so that for all w = w1 · · ·wni ∈ L(X ),

µ({x ∈ X : x1 · · · xni = w}) > C

ni



Zero-Measure Spectrum via the Boshernitzan Criterion

Given a finite alphabet A and a subshift X ⊆ AZ, one can define Schrödinger
operators in `2(Z) by generating potentials which are obtained through
real-valued sampling along the S-orbits of X . That is, if f : X → R is given, we
associate with each x ∈ X the potential Vx : Z→ R given by

Vx(n) = f (Snx), n ∈ Z

The Schrödinger operator Hx in `2(Z) is then given by

[Hxψ](n) = ψ(n + 1) + ψ(n − 1) + Vx(n)ψ(n)

One typically restricts attention to locally constant functions f , that is,
functions that depend on only finitely many entries of the input sequence x .
If X is minimal and f is locally constant, then a simple strong approximation
argument shows that there is a compact set ΣX ,f ⊂ R such that

σ(Hx) = ΣX ,f for every x ∈ X



Zero-Measure Spectrum via the Boshernitzan Criterion

Obviously, a minimal subshift X is finite if and only if every Vx is periodic (in
the non-degenerate case of non-constant f ), and in this case ΣX ,f is well
known to be a union of finitely many non-degenerate compact intervals.
Similarly, if f is constant, the same conclusions hold.

Ruling out these degenerate cases, it is an interesting question whether ΣX ,f

must have zero Lebesgue measure. In fact, Simon had conjectured that this
must be the case in complete generality, but this conjecture has been disproved
[Avila-D.-Zhang].

Theorem (D.-Lenz)

If the minimal subshift X satisfies the Boshernitzan criterion and f is locally
constant, then either all Vx are periodic or the set ΣX ,f is a Cantor set of zero
Lebesgue measure.



The Tribonacci Substitution and the Classical Rauzy Fractal

With the alphabet A3 = {1, 2, 3}, consider the Tribonacci substitution

ST : A3 → A∗3 , 1 7→ 12, 2 7→ 13, 3 7→ 1

This substitution is primitive, that is, there is a power that sends each symbol
to all other symbols. Concretely,

S3
T : 1 7→ 1213121, 2 7→ 12131, 3 7→ 1213

The associated Tribonacci substitution sequence is the element uT = S∞T (1) of

AZ+
3 , which is fixed by ST since ST (1) begins with 1. We have

S0
T (1) = 1

S1
T (1) = 12

S2
T (1) = 1213

S3
T (1) = 1213121

S4
T (1) = 1213121121312

S5
T (1) = 121312112131212131211213

and hence uT = 121312112131212131211213 . . ..



The Tribonacci Substitution and the Classical Rauzy Fractal

Note that

Sk+3
T (1) = Sk+2

T (12)

= Sk+2
T (1)Sk+2

T (2)

= Sk+2
T (1)Sk+1

T (13)

= Sk+2
T (1)Sk+1

T (1)Sk+1
T (3)

= Sk+2
T (1)Sk+1

T (1)Sk
T (1)

In particular, for Tk := |Sk
T (1)|, we have

Tk+3 = Tk+2 + Tk+1 + Tk

which explains the terminology.

In particular, we must have

Tk = λk
T (1 + o(1))

where λT > 1 solves
λ3 − λ2 − λ− 1 = 0



The Tribonacci Substitution and the Classical Rauzy Fractal

The classical Rauzy fractal is constructed as follows:

I Consider R3 = {(x , y , z) : x , y , z ∈ R} and associate x ↔ 1, y ↔ 2,
z ↔ 3.

I Scan uT from left to right and build a “staircase” by starting at (0, 0, 0)
and increasing that component by one which corresponds to the symbol
currently being scanned.

I Since uT = 121312112131212131211213 . . ., the sequence of points so
generated begins with (1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 1, 1), (3, 1, 1),
(3, 2, 1), (4, 2, 1), etc.

I Note that these points cluster along a line LT . We’ll return to this point
momentarily.

I Project the points in the direction of this line to the orthogonal
complement PT of LT .

I The closure of the image in the plane PT is the classical Rauzy fractal.

I If we color the points corresponding to the three different symbols in three
different colors, the Rauzy fractal partitions into three subsets, which
happen to be similar to itself. This is a manifestation of the self-similarity
of the Tribonacci substitution sequence: ST (uT ) = uT .



The Tribonacci Substitution and the Classical Rauzy Fractal
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The construction of the classical Rauzy fractal
(Source: Wikipedia)



The Tribonacci Substitution and the Classical Rauzy Fractal

The classical Rauzy fractal
(Source: Milton Minervino)



The Tribonacci Substitution and the Classical Rauzy Fractal

The Tribonacci substitution matrix is defined by MT = (mij)1≤i,j≤3, where mij

is the number of times the symbol i occurs in ST (j). Thus,

MT =

1 1 1
1 0 0
0 1 0


The primitivity of ST of course reflects the primitivity of MT , seen via

M3
T =

4 3 2
2 2 1
1 1 1


It implies by Perron-Frobenius that there is a simple leading eigenvalue λT > 1,
and the corresponding eigenvector vT , which can be chosen so that all its
components are strictly positive, determines the line LT mentioned earlier.

In fact, det(λI −M) = λ3 − λ2 − λ− 1, and the roots are λT , µT , µ̄T with
|µT | < 1; and hence LT is the expanding subspace and PT is the contracting
subspace associated with M.



The Tribonacci Substitution and the Classical Rauzy Fractal
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The construction of the classical Rauzy fractal
(Source: Wikipedia)
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The classical Rauzy fractal
(Source: Milton Minervino)



The Tribonacci Substitution and the Classical Rauzy Fractal

THE PISOT CONJECTURE 3

on Kc
β
∼= Rn−1 by |β′| < 1 for all β′ Galois conjugates of β. This remarkable

dynamical property of Pisot numbers will be crucial: the contracting space Kc
β

will be suitable to represent geometrically the substitution dynamical system
by a fractal attractor generated by a graph directed iterated function system
with contraction factors given by the Galois conjugates of β. Good references on
fractal geometry are [Fal03, Bar88].

Origins of the geometric interpretation. The geometric theory for the
study of substitution dynamical systems was initiated by Gérard Rauzy in his
seminal work [Rau82]. He succeeded to prove that the substitution dynamical
system (Xσ, S) generated by the Tribonacci substitution σ : 1 �→ 12, 2 �→ 13, 3 �→ 1
is a translation on a two-dimensional torus. The key point was to interpret the
shift as a domain exchange on a fractal domain, later called Rauzy fractal in
his honour, decomposable in three subpieces, or subtiles, which give a suitable
partition for the domain exchange to be coded by (Xσ, S). Another essential
point is that Rauzy showed also that the fractal domain obtained with this
construction can tile periodically the plane where it is represented. Therefore
this domain can be seen as a two-dimensional torus and the domain exchange as
a translation on this torus.

Figure 1. Domain exchange and periodic tiling for the Rauzy
fractal associated with the Tribonacci substitution.

Rauzy’s original idea was to use a special kind of numeration with admissibility
governed by a graph associated with the substitution to obtain the fractal domain
as geometrical representation of the substitutive system. We will see in Chapter 1
how substitutions and numeration are intimately related.

Beta-numeration is a particular case of the substitutive one and there is
an extensive and independent study focused on it. The investigation of tilings
generated by beta-numeration began with the groundwork of Thurston [Thu89]

Periodic tiling of the plane by copies of the Rauzy fractal
(Source: Milton Minervino)



The Tribonacci Substitution and the Classical Rauzy Fractal

Let us list some highlights of the foundational paper [Rauzy 1982]:

I One can tile the plane periodically by copies of the Rauzy fractal.

I In other words, the decomposition of the Rauzy fractal into the three
colored similar pieces induces a partition of T2.

I Moreover, one can use this partition of T2 to code an orbit of the
translation

Tα : T2 → T2, ω 7→ ω + α

with a suitable α ∈ T2 by undoing the association of the three colors and
the three symbols in A3.

I This recovers the Tribonacci substitution sequence (or rather the subshift
it generates).

I In other words, this particular primitive substitution subshift (which is well
known to satisfy the Boshernitzan criterion) arises from a coding of a
torus translation.

The key point underlying our result is that this can be turned around!



S-Adic Systems and Subshifts

An S-adic system over A is defined by a choice of a directive sequence
τ = (τn)∞n=0 of substitutions on A.

For 0 ≤ m < n, we consider compositions of the form τ[m,n] = τm · · · τn. For
a ∈ A, we write wn(a) = τ[0,n](a), and for the substitution matrices, we write
MI = MτI for an interval I . Clearly, for I = [m, n], one has

M[m,n] = MτmMτm+1 · · ·Mτn

The language associated to τ is

L(τ ) := {w ∈ A∗ : w / wn(a) for some a ∈ A and n ∈ N0}

It is easy to check that

X = X (τ ) := {x ∈ AZ : L(x) ⊆ L(τ )}

is a non-empty subshift, provided that

lim
n→∞

max
a∈A
|wn(a)| =∞

In this case, we call X (τ ) the S-adic subshift generated by τ .



The Cassaigne-Selmer Algorithm

Denote R+ = [0,∞) and let

∆ = ∆3 = {(x1, x2, x3) ∈ R3
+ : x1 + x2 + x3 = 1}

The Cassaigne-Selmer algorithm is given by

T : ∆→ ∆, (x1, x2, x3) 7→

( x1−x3
x1+x2

, x3
x1+x2

, x2
x1+x2

) if x1 ≥ x3

( x2
x2+x3

, x1
x2+x3

, x3−x1
x2+x3

) if x3 > x1

There is an ergodic T -invariant probability measure ν on ∆ which is equivalent
to Lebesgue measure.



The Associated S-Adic Subshift

The Cassaigne-Selmer algorithm is of the form

T : ∆→ ∆, x 7→ A(x)−1x

‖A(x)−1x‖1

for some locally constant matrix valued function A : ∆→ GL(3,Z).

We select for each x ∈ ∆ a substitution ϕ(x) on the alphabet A3 = {1, 2, 3}
such that A(x) coincides with the substitution matrix Mϕ(x):

ϕ(x) =

{
γ1 if x1 ≥ x3

γ2 if x3 > x1

with the Cassaigne-Selmer substitutions

γ1 :


1 7→ 1

2 7→ 13

3 7→ 2

γ2 :


1 7→ 2

2 7→ 13

3 7→ 3



The Associated S-Adic Subshift

The orbit of a point x ∈ ∆ under the action of T defines an S-adic system,
called a substitutive realization of (∆,T ,A), given by the directive sequence

φ(x) = (ϕ(T nx))∞n=0

The corresponding subshift is given by (X (φ(x)), S).

On the other hand, we relate to each point x in the 3-dimensional simplex ∆ a
point on the torus T2 by the map π : ∆→ T2, which denotes the projection to
the first 2 coordinates.

Note that π is not a surjective map but for

T2
∆ = {t ∈ T2 : t1 + t2 ≤ 1}

the map π : ∆→ T2
∆, x 7→ π(x) is a bijection.

Below we will use the following fact: if α ∈ T2 \ T2
∆, then −α ∈ T2

∆.



Natural Codings of Torus Translations

For α ∈ T2, let as before

Rα : T2 → T2, Rα(ω) = ω + α

denote the associated torus translation.

Definition
A collection F = {F1, . . . ,Fh} is called a natural measurable partition of T2 if

I
⋃h

i=1 Fi = T2

I Fj ∩ Fk has zero measure for each j 6= k

I each Fi is measurable with dense interior and zero measure boundary

Given the map Rα, the language associated with F, denoted L(F), is the set of
finite words w = w0 · · ·wn ∈ {1, . . . , h}∗ such that

⋂n
k=0 R

−k
α F̊wk 6= ∅, where Å

denotes the interior of A.



Natural Codings of Torus Translations

Definition
A subshift (X ,S) is called a natural coding of (T2,Rα) if its language coincides
with the language of a natural measurable partition {F1, . . . ,Fh} and

⋂
n∈N

n⋂
k=0

R−k
α F̊xk

consists of a single point for every x = (xn)n∈Z ∈ X .

Theorem (Berthé-Steiner-Thuswaldner, Fogg-Noûs)

Let φ be the substitutive realization of the Cassaigne-Selmer algorithm. For
ν-almost every x ∈ ∆, the subshift (X (φ(x)),S) is a natural coding of
(T2,Rπ(x)).

Remark
If F = {F1, . . . ,Fh} is a natural measurable partition of T2, then the language
generated by Rα on F coincides with the language generated by R−α on the
natural measurable partition {−F1, . . . ,−Fh}. In particular, if (X , S) is a
natural coding of (T2,Rα), then it is also a natural coding of (T2,R−α).



S-Adic Subshifts Satisfying the Boshernitzan Criterion

Let φ = (ϕk)∞k=0 be a directive sequence generating an S-adic system,
(X (φ), S).

Definition
For a, b ∈ A, we say that a precedes b at level n if there are m ∈ N and c ∈ A
such that ab / ϕ[n+1,n+m](c). For an interval I = [n + 1, n + `], we say ϕI is a
word builder at level n if, whenever a precedes b at level n, there is c ∈ A such
that ab / ϕI (c).

Theorem (Chaika-D.-Fillman-Gohlke)

Suppose there exists a constant N > 0 so that, for infinitely many n0, there
exist n0 < n1 < n2 < n3 so that

I M[n0+1,n1] and M[n2+1,n3] are positive matrices

I ϕ[n1+1,n2] is a word builder at level n1

I max{‖M[n0+1,n1]‖, ‖M[n1+1,n2]‖, ‖M[n2+1,n3]‖} ≤ N

Then (X (φ), S) satisfies Boshernitzan’s criterion.



Boshernitzan’s Criterion for Codings of Translations

Theorem (Chaika-D.-Fillman-Gohlke)

For Lebesgue almost every α ∈ T2
∆, the subshift (X (φ(π−1(α))), S) satisfies

Boshernitzan’s criterion. In particular, for almost every α ∈ T2, the toral
translation (T2,Rα) admits a natural coding that satisfies Boshernitzan’s
criterion.

Sketch of Proof. The main steps are the following:

I when running the Cassaigne-Selmer algorithm T , identify a local situation
in ∆ that generates a word builder over a finite stretch of the iteration

I show that this local situation has positive measure with respect to ν

I use the Birkhoff ergodic theorem to show that almost every trajectory
enters the local situation infinitely often

I conclude that for almost every point, there are are infinitely many word
builders

One can then deduce that the subshift (X (φ(x)), S) satisfies the sufficient
condition for the Boshernitzan criterion from the previous slide for ν-almost
every x ∈ ∆.



Deriving the Main Result

Proof that zero-measure Cantor spectrum is ample in E(T2). Assume that
(X , S) is a natural coding of Rα : T2 → T2 associated with the natural
measurable partition {F1, . . . ,Fh}.

Given w = w0 · · ·wn ∈ L(X ), let

Fw =
n⋂

k=0

R−k
α Fwk

which is nonempty by the definition of L(X ). Let χw denote the characteristic
function of Fw , and let A denote the algebra generated by {χw : w ∈ L(X )}.

It can then be seen that A is ample as any f ∈ C(Td) is uniformly continuous
and diam(Fw ) can be made as small as desired by taking |w | sufficiently large.

In particular, A \ {constants} is then ample as well.

Now conclude by taking the full measure sets of α’s in T2 that generate a
translation Rα : T2 → T2 that is minimal and admits a natural coding that
satisfies the Boshernitzan criterion.
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