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Lyapunov Exponents of SL(2,R)-Cocycles

Let us fix a compact metric space Ω, a continuous map T : Ω→ Ω, and an
ergodic Borel probability measure µ. The triple (Ω,T , µ) is often referred to as
the base dynamical system.

Given a continuous map A : Ω→ SL(2,R), we consider the skew product

(T ,A) : Ω× R2 → Ω× R2, (ω, v) 7→ (Tω,A(ω)v)

For each n ∈ Z, the map An : Ω→ SL(2,R) is defined by (T ,A)n) = (T n,An).

By Kingman’s Subadditive Ergodic Theorem, there is a number L ≥ 0, called
the Lyapunov exponent, such that

L = inf
n≥1

1

n

∫
log ‖An(ω)‖ dµ(ω)

= lim
n→∞

1

n

∫
log ‖An(ω)‖ dµ(ω)

= lim
n→∞

1

n
log ‖An(ω)‖ for µ-a.e. ω

Naturally, we are interested in whether L > 0 or L = 0.



Lyapunov Exponents of One-Parameter Families of SL(2,R)-Cocycles

Example

Consider Schrödinger operators

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n)

in `2(Z), where the potential V : Z→ R is dynamically defined, that is,

V (n) = f (T nω)

with a base dynamical system (Ω,T , µ) as above and a continuous map
f : Ω→ R. Then the solutions of the generalized eigenvalue equation

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n)

can be described via (
u(n)

u(n − 1)

)
= A(E)

n (ω)

(
u(0)
u(−1)

)
with the Schrödinger cocycle generated by the map

A(E)(ω) =

(
E − f (ω) −1

1 0

)



Lyapunov Exponents of One-Parameter Families of SL(2,R)-Cocycles

It is natural and customary to denote the Lyapunov exponent of (T ,A(E)) by
L(E). Since L(E) > 0 strongly indicates that the generalizes eigenfunctions
have exponential behavior, combining this with the existence of polynomially
bounded generalized eigenfunctions spectrally almost everywhere, one expects
spectral localization (i.e., pure point spectrum with exponentially decaying
eigenfunctions) for µ-a.e. ω ∈ Ω when L(E) > 0 holds for sufficiently many
energies E . Let us denote the exceptional set of energies E by

Z := {E : L(E) = 0}

Remark
(a) This connection holds almost always, by not always. In particular, there are
examples with Z = ∅, and yet for all ω ∈ Ω, the point spectrum of H is empty.

(b) Since countable sets cannot carry continuous spectral measures, one would
want to embark on a proof of spectral localization by showing that Z is
countable.

(c) For technical reasons, one generally desires to show that Z is discrete.

(d) This is a natural goal as requiring Z = ∅ is too restrictive.



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

Let us discuss the goal of proving that Z is empty or at least small in several
settings. We begin with the classical example, which is the simplest of them.

Example (The standard Anderson model)

The potential V is given by a realization of a sequence of independent
identically distributed random variables. In our setting, this arises via the
choices

I Ω = I Z, where I ⊂ R is a compact interval

I T : Ω→ Ω is the shift, [Tω](n) = ω(n + 1)

I µ = νZ, where ν is a probability measure supported by I (and
#supp ν ≥ 2)

I f : Ω→ R, f (ω) = ω(0)

In this model one can show that Z = ∅, and the proof is a straightforward
application of Fürstenberg’s Theorem about products of i.i.d. SL(2,R)
matrices.



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

Example (The continuum Anderson model)

Recognizing that standard Schrödinger operators are continuum operators, and
their discrete analogs are studied to investigate phenomena of interest in a
technically easier framework, one may ask what can be said about the
continuum Anderson model

H = − d2

dx2
+
∑
n∈Z

qn(ω)f (x − n)

in L2(R), where supp(f ) ⊆ [0, 1] (and f 6≡ 0) and the qn’s are i.i.d. random
variables as before:

I Ω = I Z, where I ⊂ R is a compact interval

I T : Ω→ Ω is the shift, [Tω](n) = ω(n + 1)

I µ = νZ, where ν is a probability measure supported by I (and
#supp ν ≥ 2)

I qn(ω) = ω(n)



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

The map A(E) : Ω→ SL(2,R) is now given by

A(E)(ω) =

(
u′D(1) u′N(1)
uD(1) uN(1)

)
where uD , uN solve

−u′′ + ω(0)fu = Eu

on [0, 1] with (
u′D(0) u′N(0)
uD(0) uN(0)

)
=

(
1 0
0 1

)
In this model one can show that Z is discrete, and the proof is a
non-straightforward application of Fürstenberg’s Theorem about products of
i.i.d. SL(2,R) matrices [D.-Sims-Stolz 2002].



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

Example (The doubling map model)

The doubling map model is generated by

I Ω = T = R/Z
I T : Ω→ Ω, Tω = 2ω

I µ = Leb

I f : Ω→ R suitable, sometimes taken to be λ cos(2πω)

Strictly speaking, the map is non-invertible and hence the resulting operators
are defined on `2(Z+), but this point is not essential to our discussion.

In this model it had been open whether Z is discrete, despite several attempts
at proving this. See, e.g., [Chulaevsky-Spencer 1995], [D.-Killip 2005],
[Sadel-Schulz-Baldes 2008], [Bourgain-Bourgain-Chang 2015], and [Bjerklöv
2020] for partial results.

The binary expansion of ω ∈ T shows that this model may be viewed as a full
shift with a non-local sampling function. Thus, there is some underlying
independence (as the measure is then a product measure), but the resulting
cocycles are not products of i.i.d. SL(2,R) matrices and hence Fürstenberg’s
Theorem does not apply.



Positive Lyapunov Exponents for Schrödinger Cocycles: Goals

Our goal is to explain new approaches to proving that Z is discrete. This will
in particular

I provide a straightforward proof of this fact in the second example
(continuum random Schrödinger operators)

I provide the first general proof of this fact in the third example
(Schrödinger operators defined by uniformly hyperbolic transformations
such as the doubling map)

Thus we will

I develop a novel way of applying a variant of Fürstenberg’s Theorem, and
hence of exploiting independence (remainder of this lecture)

I develop a way to deal with the absence of independence by exploiting the
uniform hyperbolicity of the base transformation (tomorrow’s lecture)



The Fürstenberg Condition

Definition
We say that a closed subgroup G of SL(2,R) satisfies the Fürstenberg
condition if it is non-compact and there does not exist Λ ⊆ RP1 of cardinality
one or two such that gΛ = Λ for all g ∈ G .

Proposition (Fürstenberg 1963)

Let E ∈ R and denote by GE the smallest closed subgroup of SL(2,R) that
contains

{A(E)(ω) : ω ∈ suppµ}

If GE satisfies the Fürstenberg condition, then L(E) > 0.

Remark
(a) This is a (very) special case of a more general theorem.

(b) Even in the SL(2,R) case, it would be more accurate to think of this as a
statement about a probability measure ν on SL(2,R) and the smallest closed
subgroup of SL(2,R) containing its topological support.

(c) The latter formulation would then be applied to the probability measure νE
on SL(2,R) given by the push-forward of the single-site probability measure on
R under the map

V 7→
(
E − V −1

1 0

)



The Fürstenberg-Ishii Condition

Definition
We say that a closed subgroup G of SL(2,R) satisfies the Fürstenberg-Ishii
condition if it contains two elements A,B such that

trA 6= 0, trB 6= 0, det(AB − BA) 6= 0

Proposition (Bucaj-D.-Fillman-Gerbuz-VandenBoom-Wang-Zhang)

Let E ∈ R and denote by GE the smallest closed subgroup of SL(2,R) that
contains

{A(E)(ω) : ω ∈ suppµ}

If GE satisfies the Fürstenberg-Ishii condition, then L(E) > 0.

Remark
(a) As before, this is really a statement about a probability measure ν on
SL(2,R).

(b) We were inspired by an assertion in [Ishii 1973] that det(AB − BA) 6= 0
alone implies that the Lyapunov exponent is positive.

(c) However, this is not correct, as shown by

A =

(
2 0
0 1/2

)
, B =

(
0 −1
1 0

)
, ν =

1

2
(δA + δB)



The Fürstenberg-Ishii Condition

Proof. We show that the Fürstenberg-Ishii condition implies the Fürstenberg
condition.

Recall that the Fürstenberg-Ishii condition guarantees the existence of two
elements A,B of the group such that

trA 6= 0, trB 6= 0, det(AB − BA) 6= 0

Since AB − BA 6= 0, this implies that G contains a non-elliptic element, h, and
hence is non-compact (use gn = hn to see this).

Since det (AB − BA) 6= 0, it follows that A and B have no common
eigenvectors. In particular, there cannot be a set Λ ⊆ RP1 of cardinality one
with AΛ = BΛ = Λ.

Suppose there exists Λ ⊆ RP1 of cardinality two such that AΛ = BΛ = Λ, and
denote Λ = {ū1, ū2}. Since tr A 6= 0, one cannot have Aū1 = ū2 and Aū2 = ū1,
which forces Aūj = ūj for j = 1, 2.

Similarly, tr B 6= 0 forces Būj = ūj , contradicting again the fact that A and B
have no common eigenvectors.



The Fürstenberg-Ishii Condition: the standard Anderson model

Since the single-site distribution is non-degenerate, there are at least two values
a, b ∈ R, a 6= b in its support. Thus, at energy E ∈ R we have the two
admissible transfer matrices

A(E) =

(
E − a −1

1 0

)
, B(E) =

(
E − b −1

1 0

)
Note that for E 6∈ {a, b}, we have trA(E) 6= 0, trB(E) 6= 0. Moreover,

det(A(E)B(E) − B(E)A(E))

= det

[(
(E − a)(E − b)− 1 a− E

E − b −1

)
−
(

(E − b)(E − a)− 1 b − E
E − a −1

)]
= det

(
0 a− b

a− b 0

)
= −(a− b)2

6= 0

By the Fürstenberg-Ishii criterion, it follows via this straightforward calculation
that Z ⊆ {a, b}. Moreover, verifying the Fürstenberg criterion instead, one
finds Z = ∅.



The Fürstenberg-Ishii Condition: the continuum Anderson model

Recall that the continuum Anderson model is the random operator

H = − d2

dx2
+
∑
n∈Z

qn(ω)f (x − n)

in L2(R), where supp(f ) ⊆ [0, 1] (and f 6≡ 0) and the qn’s are i.i.d. random
variables.

Let us for simplicity consider the case where f = χ[0,1) and the qn are Bernoulli
random variables taking the values λ > 0 and 0 with probabilities p and 1− p,
respectively.

In this case we have exactly two basic admissible transfer matrices. Taking
E > λ, they have the form

A(E) =

(
cos
√
E − λ 1√

E−λ sin
√
E − λ

−
√
E − λ sin

√
E − λ cos

√
E − λ

)

B(E) =

(
cos
√
E 1√

E
sin
√
E

−
√
E sin

√
E cos

√
E

)



The Fürstenberg-Ishii Condition: the continuum Anderson model

A(E) =

(
cos
√
E − λ 1√

E−λ sin
√
E − λ

−
√
E − λ sin

√
E − λ cos

√
E − λ

)

B(E) =

(
cos
√
E 1√

E
sin
√
E

−
√
E sin

√
E cos

√
E

)

Note first that for E > λ of the form E = (kπ)2 or E = (kπ)2 + λ, we
immediately get L(E) = 0 as one of A(E), B(E) is the identity, and the other has
powers whose norms cannot grow exponentially.

In particular, Z contains an infinite discrete set.

On the other hand,

E 7→ trA(E), trB(E), det(A(E)B(E) − B(E)A(E))

are analytic functions that do not vanish identically. It follows from the
Fürstenberg-Ishii criterion that Z is discrete.



A Basic Inverse Spectral Theory Result

Lemma
If V1,V2 ∈ L2[0,T ) and the transfer matrices mapping solution data from 0 to
T obey

A(E)(V1) = A(E)(V2) for every E ∈ C

then V1 = V2 Lebesgue almost everywhere on [0,T ).

Proof.
Recall the definition of the Weyl-Titchmarsh-function mj associated with Vj :
taking β large enough, for every E ∈ C \ [−β,∞), there is a unique (modulo
an overall multiplicative constant) solution uj = uj(·,E) of −u′′j + Vjuj = Euj
that satisfies a Dirichlet boundary condition at T , and one then defines

mj(E) =
u′j (0,E)

uj(0,E)
.

By the equality of the transfer matrices, we have m1 = m2, and hence V1 ≡ V2

(a.e.) by a fundamental inverse spectral theory principle; e.g., [Borg 1952],
[Marchenko 1952], [Simon 1999].



Setting and Assumptions

Fix two parameters 0 < δ ≤ m, and define

W =
⋃

δ≤s≤m

L2[0, s).

To distinguish the fibers, let us denote the length of the domain by s = `(f )
whenever f ∈ L2[0, s). We specify a continuum Anderson model by choosing a
probability measure µ̃ on W subject to the uniform boundedness assumption

ν-ess sup ‖f ‖L2 <∞.

We naturally obtain the full shift

Ω = W
Z, µ = µ̃Z, [Tω]n = ωn+1

Then, for each ω ∈ Ω, we obtain a potential Vω by concatenating
. . . , ω−1, ω0, ω1, . . ., and an associated Schrödinger operator Hω = −∂2

x + Vω.



Setting and Assumptions

More specifically, define

sn = sn(ω) :=


∑n−1

j=0 `(ωj) n ≥ 1

0 n = 0

−
∑−1

j=n `(ωj) n ≤ −1

denote In = [sn, sn+1), and define

Vω(x) = ωn(x − sn), for each x ∈ In

For each w ∈W, E ∈ C, AE (w) is the unique SL(2,C) matrix with[
ψ(s1)
ψ′(s1)

]
= AE (w)

[
ψ(0)
ψ′(0)

]
(1)

whenever Hωψ = Eψ with ω0 = w . The Lyapunov exponent L(E) is then
defined as before as the average and typical exponential growth rate of the
resulting matrix products.



Assumptions and Main Result

One obvious obstruction is if all elements of the support of ν commute in the
free product sense, so that one cannot distinguish permutations of elements of
the support after concatenation. When this is the case, all realizations Vω are
periodic, and the model is not actually random.

This is the only obstruction; we formulate the negation of this as our
nontriviality assumption. For fj ∈ L2[0, aj), j = 1, 2, we write

(f1 ? f2)(x) =

{
f1(x) 0 ≤ x < a1

f2(x − a1) a1 ≤ x < a1 + a2.
.

The nontriviality assumption is the following:

There exist fj ∈ supp ν such that f1 ? f2 6= f2 ? f1.

Let us note that the equality that is assumed to fail is in L2, so we really mean
that f1 ? f2 and f2 ? f1 differ on a set of positive Lebesgue measure.



The Main Result

Theorem (Bucaj-D.-Gerbuz-Fillman-VandenBoom-Wang-Zhang)

If ν satisfies the uniform boundedness and nontriviality assumptions, then

Z = {E : L(E) = 0}

is discrete.

Proof. With fj from the nontriviality assumption, denote by Mj(E) = AE (fj)
the associated transfer matrix across the respective interval, and let

Q(E) = M1(E)M2(E)−M2(E)M1(E)

By the Fürstenberg-Ishii criterion,

trM1(E) 6= 0, trM2(E) 6= 0, detQ(E) 6= 0⇒ E 6∈ Z

The functions trM1(E), trM2(E), Q(E), and detQ(E) are analytic, and the
first two are known to not vanish identically by Floquet theory. The
nontriviality assumption and the inverse spectral theory lemma imply that
Q(E) does not vanish identically.

We wish to show that detQ(E) does not vanish identically, either, as this will
conclude the proof.



The Main Result

Suppose for the sake of contradiction that detQ(E) = 0 identically. Fix an
interval I ⊆ R such that M1(E) is elliptic for all E ∈ I ; such an interval exists
due to Floquet theory.

Since detQ(E) = 0 for E ∈ I , M1 and M2 have a common eigenvector.
Furthermore, since M1 is elliptic, the eigenvector may be chosen of the form

v =

(
1
w

)
, w ∈ C \ R

Then, since M1 and M2 have real entries, one deduces that they both have

v̄ =

(
1
w̄

)
as an eigenvector, and therefore Q(E) = 0 for all E ∈ I . But Q(E) only
vanishes on a discrete set; contradiction.

Thus, trM1(E), trM2(E), detQ(E) are nonzero analytic functions, and
therefore the Fürstenberg-Ishii condition, sufficient for L(E) 6∈ Z, holds away
from a discrete set.



Thank you!

Valmir Bucaj Jake Fillman Vitaly Gerbuz

Tom VandenBoom Fengpeng Wang Zhenghe Zhang


