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Lyapunov Exponents of SL(2,R)-Cocycles

Let us fix a compact metric space Ω, a continuous map T : Ω→ Ω, and an
ergodic Borel probability measure µ. The triple (Ω,T , µ) is often referred to as
the base dynamical system.

Given a continuous map A : Ω→ SL(2,R), we consider the skew product

(T ,A) : Ω× R2 → Ω× R2, (ω, v) 7→ (Tω,A(ω)v)

For each n ∈ Z, the map An : Ω→ SL(2,R) is defined by (T ,A)n) = (T n,An).

By Kingman’s Subadditive Ergodic Theorem, there is a number L(A) ≥ 0,
called the Lyapunov exponent, such that

L(A) = inf
n≥1

1

n

∫
log ‖An(ω)‖ dµ(ω)

= lim
n→∞

1

n

∫
log ‖An(ω)‖ dµ(ω)

= lim
n→∞

1

n
log ‖An(ω)‖ for µ-a.e. ω

Naturally, we are interested in whether L(A) > 0 or L(A) = 0.



Lyapunov Exponents of One-Parameter Families of SL(2,R)-Cocycles

Example

Consider Schrödinger operators

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n)

in `2(Z), where the potential V : Z→ R is dynamically defined, that is,

V (n) = f (T nω)

with a base dynamical system (Ω,T , µ) as above and a continuous map
f : Ω→ R. Then the solutions of the generalized eigenvalue equation

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n)

can be described via (
u(n)

u(n − 1)

)
= A(E)

n (ω)

(
u(0)
u(−1)

)
with the Schrödinger cocycle generated by the map

A(E)(ω) =

(
E − f (ω) −1

1 0

)



Lyapunov Exponents of One-Parameter Families of SL(2,R)-Cocycles

It is natural and customary to write L(E) instead of A(E) for a Schrödinger
cocycle. Since L(E) > 0 strongly indicates that the generalizes eigenfunctions
have exponential behavior, combining this with the existence of polynomially
bounded generalized eigenfunctions spectrally almost everywhere, one expects
spectral localization (i.e., pure point spectrum with exponentially decaying
eigenfunctions) for µ-a.e. ω ∈ Ω when L(E) > 0 holds for sufficiently many
energies E . Let us denote the exceptional set of energies E by

Z := {E : L(E) = 0}

Remark
(a) This connection holds almost always, by not always. In particular, there are
examples with Z = ∅, and yet for all ω ∈ Ω, the point spectrum of H is empty.

(b) Since countable sets cannot carry continuous spectral measures, one would
want to embark on a proof of spectral localization by showing that Z is
countable.

(c) For technical reasons, one generally desires to show that Z is discrete.

(d) This is a natural goal as requiring Z = ∅ is too restrictive.



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

Let us discuss the goal of proving that Z is empty or at least small in several
settings. We begin with the classical example, which is the simplest of them.

Example (The standard Anderson model)

The potential V is given by a realization of a sequence of independent
identically distributed random variables. In our setting, this arises via the
choices

I Ω = I Z, where I ⊂ R is a compact interval

I T : Ω→ Ω is the shift, [Tω](n) = ω(n + 1)

I µ = νZ, where ν is a probability measure supported by I (and
#supp ν ≥ 2)

I f : Ω→ R, f (ω) = ω(0)

In this model one can show that Z = ∅, and the proof is a straightforward
application of Fürstenberg’s Theorem about products of i.i.d. SL(2,R)
matrices.

But what about more general f ’s? Fürstenberg’s Theorem is then no longer
applicable.



Positive Lyapunov Exponents for Schrödinger Cocycles: Examples

Example (The doubling map model)

The doubling map model is generated by

I Ω = T = R/Z
I T : Ω→ Ω, Tω = 2ω

I µ = Leb

I f : Ω→ R suitable, sometimes taken to be λ cos(2πω)

Strictly speaking, the map is non-invertible and hence the resulting operators
are defined on `2(Z+), but this point is not essential to our discussion.

In this model it had been open whether Z is discrete, despite several attempts
at proving this. See, e.g., [Chulaevsky-Spencer 1995], [D.-Killip 2005],
[Sadel-Schulz-Baldes 2008], [Bourgain-Bourgain-Chang 2015], and [Bjerklöv
2020] for partial results.

The binary expansion of ω ∈ T shows that this model may be viewed as a full
shift with a non-local sampling function. Thus, there is some underlying
independence (as the measure is then a product measure), but the resulting
cocycles are not products of i.i.d. SL(2,R) matrices and hence Fürstenberg’s
Theorem does not apply.



The Setting
Our work addresses the problem of proving positive Lyapunov exponents for
Schrödinger operators with potentials generated by hyperbolic transformations.

The setting is general, and we will formulate our results in a way that indicates
this. But we will for simplicity focus on the special case of the full shift in our
discussion below, as this case was already out of reach prior to this work, and
the main ingredients are easier to grasp in this setting.

The general setting assumes that

I (Ω,T ) is a subshift of finite type that has a fixed point

I µ is a T -ergodic probability measure that has a local product structure

While we won’t define all these notions in detail, we do point out that the
assumptions are satisfied by

Ω = {1, . . . , `}Z, [Tω](n) = ω(n + 1), µ = νZ

This allows one to study the Bernoulli Anderson model with more general
sampling functions, as well as the doubling map.

To give another well-known example, we note that they are satisfied by the
Arnold cat map

Ω = T2, T =

(
2 1
1 1

)
, µ = Leb



The Main Results

Theorem (Avila-D.-Zhang)

Suppose f is Hölder continuous and non-constant. Then Z is discrete.

Theorem (Avila-D.-Zhang)

Suppose f is Hölder continuous, non-constant, and globally bunched or locally
constant. Then Z is finite.

Theorem (Avila-D.-Zhang)

For each α ∈ (0, 1], there is a dense Gδ subset G of Cα(Ω,R) such that for
each f ∈ G, we have Z = ∅.

Theorem (Avila-D.-Zhang)

For each α ∈ (0, 1], consider the subspaces of Cα(Ω,R) consisting of globally
bunched or locally constant functions. For each of them, there is an open and
dense subset G such that for every f ∈ G, we have inf{L(E) : E ∈ R} > 0.



The Base Space

Recall that for simplicity we will consider the following special case:

Ω = {1, . . . , `}Z, [Tω](n) = ω(n + 1), µ = νZ

We fix the following metric on Ω:

d(ω, ω̃) = e−N(ω,ω̃)

where
N(ω, ω̃) = max{N ≥ 0 : ωn = ω̃n for all |n| < N}

Definition
The local stable set of a point ω ∈ Ω is defined by

W s
loc(ω) = {ω̃ ∈ Ω : ωn = ω̃n for n ≥ 0}

and the local unstable set of ω is defined by

W u
loc(ω) = {ω̃ ∈ Ω : ωn = ω̃n for n ≤ 0}



Projectivization and Holonomies

Recall that a continuous map A : Ω→ SL(2,R) induces the cocycle

(T ,A) : Ω× R2 → Ω× R2, (ω, v) 7→ (Tω,A(ω)v)

and that An : Ω→ SL(2,R) is defined by (T ,A)n = (T n,An).

By linearity and invertibility of each A(ω), we can projectivize the second
component and consider

(T ,A) : Ω× RP1 → Ω× RP1

Let us denote the fiber {ω} × RP1 by Eω.

Definition
A stable holonomy hs for A is a family of homeomorphisms hs

ω,ω′ : Eω → Eω′ ,
defined whenever ω and ω′ belong to the same local stable set, satisfying

(i) hs
ω′,ω′′ ◦ hs

ω,ω′ = hs
ω,ω′′ and hs

ω,ω = id,

(ii) A(ω′) ◦ hs
ω,ω′ = hs

Tω,Tω′ ◦ A(ω),

(iii) (ω, ω′) 7→ hs
ω,ω′(φ) is continuous when ω, ω′ belong to the same local

stable set, uniformly in φ.

An unstable holonomy hu
ω,ω′ : Eω → Eω′ is defined analogously for pairs of

points in the same unstable set.



Canonical Holonomies

A canonical way of producing stable and unstable holonomies is via suitable
convergence properties of the matrix products An(ω).

Suppose that the limits

Hs
ω,ω′ = lim

n→∞
An(ω′)−1An(ω), Hu

ω,ω′ = lim
n→∞

A−n(ω′)−1A−n(ω)

exist for ω, ω′ in the same stable (resp., unstable) set.

Note that this will follow for example if A is locally constant or, in the case of
Schrödinger cocycles, if ‖f ‖∞ is sufficiently small and E is in (a small
neighborhood of) the spectrum.

The analogues of the properties (i)–(iii) above follow for Hs
ω,ω′ ,Hu

ω,ω′ directly
from the construction, and this in turn implies (i)–(iii) for the induced maps
hs
ω,ω′ , hu

ω,ω′ obtained by projectivization.

Holonomies that arise in this way are called canonical holonomies of A.



Invariant Measures of Projective Cocycles

Consider a projective cocycle (T ,A) : Ω× RP1 → Ω× RP1 that has stable and
unstable holonomies.

Definition
Suppose we are given a (T ,A)-invariant probability measure m on Ω× RP1

that projects to µ in the first component. A disintegration of m along the
fibers is a measurable family {mω : ω ∈ Ω} of conditional probability measures
on RP1 such that m =

∫
mω dµ(ω), that is,

m(D) =

∫
Ω

mω({z ∈ RP1 : (ω, z) ∈ D}) dµ(ω)

for each measurable set D ⊂ Ω× RP1.

Remark
Such a disintegration exists. Moreover, {m̃ω : ω ∈ Ω} is another disintegration
of m if and only if mω = m̃ω for µ-almost every ω ∈ Ω. One checks that
{A(ω)∗mω : ω ∈ Ω} is a disintegration of (T ,A)∗m. In particular, m is
(T ,A)-invariant if and only if A(ω)∗mω = mTω for µ-almost every ω ∈ Ω.



Invariant Measures of Projective Cocycles

Definition
A (T ,A)-invariant probability measure m on Ω×RP1 is called an s-state if it is
invariant under the stable holonomies. That is, the disintegration
{mω : ω ∈ Ω} satisfies

(hs
ω,ω′)∗mω = mω′

for µ-almost every ω ∈ Ω and for every ω′ ∈W s
loc(ω). In this case, we say that

{mω} is s-invariant.

Similarly, m is called a u-state if it is invariant under the unstable holonomies,

(hu
ω,ω′)∗mω = mω′

for µ-almost every ω ∈ Ω and for every ω′ ∈W u
loc(ω)). In this case, we say

that {mω} is u-invariant.

A measure that is both an s-state and a u-state is called an su-state.



Zero Lyapunov Exponent and su-States

Proposition (Bonatti-Gómez-Mont-Viana)

Suppose A admits stable and unstable canonical holonomies. If L(A) = 0, then
every (T ,A)-invariant probability measure m on Ω× RP1 that projects to µ in
the first component has a continuous, su-invariant disintegration {mω : ω ∈ Ω}.

Remark
(a) This uses crucially an earlier related result of Ledrappier, which in turn is
related in spirit to a result of Kotani for Schrödinger cocycles.

(b) When the sampling function is not locally constant or uniformly small, one
needs to work harder to establish a version of the result above. The key idea is
then given by the realization that the vanishing of the Lyapunov exponent in
itself implies a weak analogue of the existence of canonical holonomies.

Applying this to a Schrödinger cocycle A(E), the key idea that makes a direct
connection to spectral theory possible is to

I pass to the conformal barycenter of the fiber measure mω

I identify the conformal barycenter as the Weyl-Titchmarsh function



Periodic Points of the Base Transformation and Schrödinger Spectra

Suppose that ω ∈ Ω is a periodic point for T . That is, there is p ∈ N such that
T pω = ω. It then follows that the associated potential is p-periodic as well:

Vω(n) = Vω(n + p), n ∈ Z

The spectrum of Hω is well known to consist of bands. More precisely, there
are p disjoint open intervals I1, . . . , Ip, so that σ(Hω) is the closure of the union
of the Ij ’s.

The matrix A
(E)
p (ω) is

I elliptic when E ∈ Ij for some j ∈ {1, . . . , p}
I hyperbolic when E 6∈ σ(Hω)

This can be rephrased as follows. The Weyl-Titchmarsh function mω(E) is

I imaginary when E ∈ Ij for some j ∈ {1, . . . , p}
I real when E 6∈ σ(Hω)



Exploiting the Connection

Suppose that ω1, ω2 ∈ Ω are periodic points for T with periods p1, p2 ∈ N. By
the discussion above, except for 2p1 + 2p2 values of E (the endpoints of the
two sets of intervals), we have that mω1 (E) is

I imaginary when E ∈ σ(Hω1 )

I real when E 6∈ σ(Hω1 )

and mω2 (E) is

I imaginary when E ∈ σ(Hω2 )

I real when E 6∈ σ(Hω2 )

Now choose the connector

ωc ∈W u
loc(ω1) ∩W s

loc(ω2)

For every E ∈ Z, we have probability measures {m(E)
ω : ω ∈ Ω} on RP1 that are

invariant under the cocycle and the holonomies.



Exploiting the Connection

Thus, the invariance properties imply that

I mω1 (E) and mω2 (E) are analytically related on Z
I should Z (which is contained in the compact set [−2− ‖f ‖∞, 2 + ‖f ‖∞])

be infinite, the relation extends globally

I and once that is the case, we find that

E ∈ σ(Hω1 )⇔ E ∈ σ(Hω2 )

(the temporary exclusion of the up to 2p1 + 2p2 boundary points of the
participating bands does not affect this conclusion)

We may deduce that Z being infinite has the consequence that all periodic
spectra are the same!

Since T has a fixed point and non-constancy of f allows us to find a
non-constant periodic potential of the form Vω, this yields a contradiction due
to the following result from inverse spectral theory:

Theorem
The spectrum of a periodic Schrödinger operator in `2(Z) consists of a single
interval if and only if the potential is constant.



The Main Results

Theorem (Avila-D.-Zhang)

Suppose f is Hölder continuous and non-constant. Then Z is discrete.

Theorem (Avila-D.-Zhang)

Suppose f is Hölder continuous, non-constant, and globally bunched or locally
constant. Then Z is finite.

Theorem (Avila-D.-Zhang)

For each α ∈ (0, 1], there is a dense Gδ subset G of Cα(Ω,R) such that for
each f ∈ G, we have Z = ∅.

Theorem (Avila-D.-Zhang)

For each α ∈ (0, 1], consider the subspaces of Cα(Ω,R) consisting of globally
bunched or locally constant functions. For each of them, there is an open and
dense subset G such that for every f ∈ G, we have inf{L(E) : E ∈ R} > 0.
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