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Talk Plan

I’ll give four talks on my recent proof with D. Koukoulopoulos of the
Duffin-Schaeffer conjecture.

This first talk will be a colloquium-style overview.
1 Introduction/motivation
2 Statement and consequences
3 High-level overview of key steps
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Introduction

Question
How well can you approximate a real number by rationals?

Theorem (Dirichlet)

Let α ∈ R. Then there exists infinitely many a, q ∈ Z such that∣∣∣∣α − a
q

∣∣∣∣ ≤ 1
q2 .

Question

Can we do better than this? What about 1/q3? 1/q4?

Question
What if we only allow denominators from some subset?

James Maynard On the Duffin-Schaeffer Conjecture: I



Introduction

Question
How well can you approximate a real number by rationals?

Theorem (Dirichlet)

Let α ∈ R. Then there exists infinitely many a, q ∈ Z such that∣∣∣∣α − a
q

∣∣∣∣ ≤ 1
q2 .

Question

Can we do better than this? What about 1/q3? 1/q4?

Question
What if we only allow denominators from some subset?

James Maynard On the Duffin-Schaeffer Conjecture: I



Improved approximations

Question

Can we do better than this? What about 1/q3? 1/q4?

Lemma (Golden ratio is badly approximable)

Let α = (1 +
√

5)/2. For every a, q ∈ Z we have∣∣∣∣α − a
q

∣∣∣∣ ≥ 1
3q2 .

Therefore Dirichlet’s theorem is essentially best possible!

However, this is specific to a small class of badly approximable
numbers.
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Improved approximations II

For individual α ∈ R\Q, how well we can approximate is usually
very difficult.

Problem (Famous open problem)

Are there infinitely many a, q ∈ Z such that∣∣∣∣π − a
q

∣∣∣∣ ≤ 1
q3 ?

For most numbers α, you cannot get really good approximations.

Lemma
Let S be the set of α such that there are infinitely many a, q with∣∣∣∣α − a

q

∣∣∣∣ ≤ 1
q3 .

Then S has measure 0.

Proof: Union bound. Set of α with some approxmation with
denominator at least B has size ≤

∑
q≥B 2/q2 ≤ 3/B.
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Denominators from subsets

Question
What if we only allow denominators from some subset? Prime
denominators?

Theorem (Matomaki)

Let α ∈ R\Q. Then there are infinitely many pairs (a, p) with a ∈ Z
and p prime such that ∣∣∣∣α − a

p

∣∣∣∣ ≤ 1
p4/3−ε

We expect to improve 4/3 to 2, but this seems very difficult!

Theorem (Duffin-Schaeffer)

For almost all α ∈ [0, 1], there are infinitely many solutions to∣∣∣∣α − a
p

∣∣∣∣ < 1
p2−ε .
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Metric Diophantine approximation

If you want to understand results for every α individually, this
is often impossibly hard.

If you allow for a tiny exceptional set, then sometimes you can
say much stronger statements.

Principle (Metric Diophantine approximation)

If you are willing to allow an exceptional set of measure 0, you get
a much cleaner and more robust theory.

Question (Main Question)

Let ∆ : Z→ R>0. Can we understand the set

L :=
{
α ∈ [0, 1] : ∃ infinitely many (a, q) s.t.

∣∣∣∣α − a
q

∣∣∣∣ < ∆(q)
}

apart from an exceptional set of measure 0?
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Khinchin’s Theorem

L :=
{
α ∈ [0, 1] : ∃ infinitely many (a, q) s.t.

∣∣∣∣α − a
q

∣∣∣∣ < ∆(q)
}

Theorem (Khinchin’s Theorem)

Assume that q2∆(q) is decreasing. Then

meas(L) =

1, if
∑

q q∆(q) = ∞,

0, if
∑

q q∆(q) < ∞.

This gives an ‘almost-all’ extension of Dirichlet’s theorem!

Corollary

For almost all α ∈ [0, 1], we have infinitely many solutions to∣∣∣∣α − a
q

∣∣∣∣ ≤ 1
q2 log q

.

For almost no α ∈ [0, 1] do we have infinitely many solutions to∣∣∣∣α − a
q

∣∣∣∣ ≤ 1
q2(log q)1+ε .
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0-1 Laws

0-1 laws are the reason metric number theory is nice!

Khinchin’s condition that q2∆(q) is decreasing is restrictive.

Question
What happens for general ∆ : Z>0 → R>0?
Do we have an analogue of Khinchin’s Theorem?

Theorem (Cassels)

For any ∆ : Z>0 → R>0, we have

meas(L) = 0 or meas(L) = 1.

Question

When does meas(L) = 1, and when does meas(L) = 0?

This classification is much harder than showing meas(L) ∈ {0, 1}!

James Maynard On the Duffin-Schaeffer Conjecture: I



0-1 Laws

0-1 laws are the reason metric number theory is nice!

Khinchin’s condition that q2∆(q) is decreasing is restrictive.

Question
What happens for general ∆ : Z>0 → R>0?
Do we have an analogue of Khinchin’s Theorem?

Theorem (Cassels)

For any ∆ : Z>0 → R>0, we have

meas(L) = 0 or meas(L) = 1.

Question

When does meas(L) = 1, and when does meas(L) = 0?

This classification is much harder than showing meas(L) ∈ {0, 1}!

James Maynard On the Duffin-Schaeffer Conjecture: I



0-1 laws II

0-1 laws remind me of a result from probability.

Lemma (Borel-Cantelli)
Let E1,E2, . . . be random events.

1 If
∑

j P(Ej) < ∞, then almost surely only finitely many Ej occur.
2 If

∑
j P(Ej) = ∞ and the Ej are independent, then almost

surely infinitely many Ej occur.

Choose α ∈ [0, 1] uniformly at random, let Eq the event that α is in⋃
a (mod q)

[a
q
−∆(q),

a
q

+ ∆(q)
]

First Borel-Cantelli shows that measure 0 part of Khinchin holds for
all ∆!
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0-1 laws II

First Borel-Cantelli shows that if
∑

q q∆(q) < ∞ then meas(L) = 0.

Guess

If
∑

q q∆(q) = ∞ then meas(L) = 1.

Would remove the decreasing condition in Khinchin’s theorem.

This is saying the Eq are ‘quasi-independent’ events.

Proposition (Duffin-Schaeffer)

This guess is false! There exists ∆ : Z>0 → R>0 such that∑
q

q∆(q) = ∞ but meas(L) = 0.

Morally due to overlaps with a1/q1 = a2/q2.
Idea: restrict attention to reduced fractions a/q with gcd(a, q) = 1.
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Duffin-Schaeffer conjecture

L∗ :=
{
α ∈ [0, 1] : ∃ infinitely many coprime (a, q) s.t.

∣∣∣∣α−a
q

∣∣∣∣ < ∆(q)
}

Conjecture (Duffin-Schaeffer)

For any ∆ : Z>0 → R>0 we have

meas(L∗) =

1, if
∑

q φ(q)∆(q) = ∞,

0, if
∑

q φ(q)∆(q) < ∞.

Large amount of partial progress dealing with important cases,
thanks to Duffin, Schaeffer, Erdős, Vaaler, Pollington, Vaughan,
Harman, Haynes, Beresnevich, Velani, Aistleitner, . . .

Theorem (Koukoulopoulos-M.)

The Duffin-Schaeffer conjecture is true.
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Duffin-Schaeffer conjecture II

This can be translated back into our original classification problem.
Corollary (Catlin’s conjecture)

Let ∆ : Z>0 → R>0 and ∆̃(q) := supq|n ∆(n). Then

meas(L) =

1, if
∑

q φ(q)∆̃(q) = ∞,

0, if
∑

q φ(q)∆̃(q) < ∞.

Using a result of Beresnevich-Velani, can also determine the
Hausdorff measure of L or L∗ by convergence/divergence criteria.

Corollary

Let ∆ : Z>0 → [0, 1/2] and

s := inf{β ∈ R≥0 :
∑

q φ(q)∆(q)β < ∞}.

Then dimH(L∗) = min(s, 1).

Proof is a fun blend of ideas from number theory, combinatorics,
ergodic theory,...
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Step 1: Quasi-independence

Let
E∗q :=

⋃
(a,q)=1

[a
q
−∆(q),

a
q

+ ∆(q)
]
.

We want to show that if
∑

q φ(q)∆(q) = ∞, then almost all α lie in
infinitely many E∗q.

By Borel-Cantelli, we would be done if these E∗q behaved as if
the were independent. Following the proof, it suffices to show

meas(E∗q ∩ E∗r ) = (1 + o(1)) meas(E∗q) meas(E∗r ) for all q, r .

...but this is too much to hope for.
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Step 2: Gallagher’s 0-1 Law

Building on Cassels’ result, with ergodic theory Gallagher showed

Theorem (Gallagher)

meas(L∗) = 0 or meas(L∗) = 1.

So meas(L∗) > 0 implies meas(L∗) = 1!

Using Gallagher’s theorem, we only require much weaker
quasi-independence.

It suffices to show∑
q,r

meas(E∗q ∩ E∗r ) ≤ 1000000
∑

q

meas(E∗q)
∑

r

meas(E∗r )

(an upper bound on average).

This is much more realistic!
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Step 3: Sieve bound for measures

Pollington-Vaughan used sieve methods to get an essentially
sharp upper bound for meas(E∗q ∩ E∗r ).

This roughly shows

meas(E∗q ∩ E∗r ) ≤ 1000000 meas(E∗q) meas(E∗r )

unless both of the following hold:
1 q and r have a large GCD.
2 q and r have lots of small prime factors (which divide one but

not the other).

Thus we want to show that on average, it cannot be the case that
q, r have a large GCD and have lots of small prime factors.
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Step 4: Anatomy of integers

We first concentrate on the ‘lots of small prime factors’ bit.
The Pollington-Vaughan bound implies∑
p|q or r

p≥t

1
p
≤ 10 ⇒ meas(E∗q ∩ E∗r ) ≤ (log t) meas(E∗q) meas(E∗r ).

Lemma (Most numbers don’t have lots of prime factors)

1
x

#
{
n ≤ x :

∑
p|n
p≥t

1
p
≥ 8

}
≤ e−t2

.

Thus the rarity of numbers with lots of prime factors outweighs the
fact that meas(E∗q ∩ E∗r ) can be a bit larger if they occur in the
support of ∆ with the normal frequency.

Erdős-Vaaler used this to establish the Duffin-Schaeffer conjecture
when ∆q = O(1/q2).
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support of ∆ with the normal frequency.

Erdős-Vaaler used this to establish the Duffin-Schaeffer conjecture
when ∆q = O(1/q2).
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Step 5: Arithmetic Combinatorics

We still need to understand the ‘large GCD’ bit.

Question
If I have a set of integers with lots of pairs of elements having a
large GCD, what must that set look like?

There is one easy way of constructing a large set where all
elements have a large GCD: Take all multiples of a large number.

Theorem (Approximate structure of GCD sets)

Let A be a set with many pairs having a large GCD. Then one of
the follow holds:

1 A is ‘small’.
2 There is a large number d which divides many elements of A.

Thus the trivial construction is essentially the only way to make a
large set. WARNING: I’m lying/oversimplifying quite a lot here.
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Putting it all together

Using Gallagher+weak Borel-Cantelli, it suffices to show on
average

meas(E∗q ∩ E∗r ) ≤ 106 meas(E∗q) meas(E∗r )

This can only fail if
1 q and r have a large GCD.
2 q and r have lots of small prime factors.AND

By condition 1 and support of ∆, we must then have a large
set A with many pairs having large GCD.
By structure theorem

A A is ‘small’
B There is a large number d which divides many elements of A.OR

If A A ’small’ then trivially only a small effect, so done.
If B A essentially has a fixed divisor d, then dividing by d
reduces to the Erdős-Vaaler setup.
Since few numbers satisfy 2 we can handle this case.
Therefore done in either case!
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Summary

Using standard ideas:

Ergodic theory: Gallagher’s 0-1 law

Probability: Weak Borel-Cantelli

Analytic number theory: Pollington-Vaughan bound

we reduce to a problem of ‘quasi-independence’.

Using:

Arithmetic combinatorics: Sets with large GCDs

Anatomy of integers: Few integers with many prime factors

we reduce to a structure theorem. Using

Graph theory: Reframe sets as (weighted) dense graphs

Combinatorics: ’Compression’ argument

we prove the structure theorem.
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Questions

Thanks for listening!
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