On the Duffin-Schaeffer Conjecture: I

James Maynard

University of Oxford Joint work with D. Koukoulopoulos (Montreal)

> SFB Online Talk Series September 2020

James Maynard On the Duffin-Schaeffer Conjecture: I

イロト イボト イヨト イヨト

I'll give four talks on my recent proof with D. Koukoulopoulos of the Duffin-Schaeffer conjecture.

・ロト ・四ト ・ヨト・ヨト・

I'll give four talks on my recent proof with D. Koukoulopoulos of the Duffin-Schaeffer conjecture.

This first talk will be a colloquium-style overview.

- Introduction/motivation
- Statement and consequences
- High-level overview of key steps

How well can you approximate a real number by rationals?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

How well can you approximate a real number by rationals?

Theorem (Dirichlet)

Let $\alpha \in \mathbb{R}$. Then there exists infinitely many $a, q \in \mathbb{Z}$ such that

$$\left|\alpha-\frac{a}{q}\right|\leq\frac{1}{q^2}.$$

Question

Can we do better than this? What about $1/q^3$? $1/q^4$?

Question

What if we only allow denominators from some subset?

ヘロト 人間 ト 人間 ト 人間 トー

Can we do better than this? What about $1/q^3$? $1/q^4$?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

Can we do better than this? What about $1/q^3$? $1/q^4$?

Lemma (Golden ratio is badly approximable)

Let $\alpha = (1 + \sqrt{5})/2$. For every $a, q \in \mathbb{Z}$ we have

$$\left|\alpha-\frac{a}{q}\right|\geq\frac{1}{3q^2}.$$

Therefore Dirichlet's theorem is essentially best possible!

However, this is specific to a small class of *badly approximable numbers*.

イロト イポト イヨト イヨト

For **individual** $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, how well we can approximate is usually very difficult.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

For **individual** $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, how well we can approximate is usually very difficult.

Problem (Famous open problem)

Are there infinitely many $a, q \in \mathbb{Z}$ such that

$$\left|\pi-\frac{a}{q}\right|\leq\frac{1}{q^3}?$$

For **individual** $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, how well we can approximate is usually very difficult.

Problem (Famous open problem)

Are there infinitely many $a, q \in \mathbb{Z}$ such that

$$\pi-\frac{a}{q}\Big|\leq\frac{1}{q^3}?$$

For **most** numbers α , you cannot get really good approximations.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

For **individual** $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, how well we can approximate is usually very difficult.

Problem (Famous open problem)

Are there infinitely many $a, q \in \mathbb{Z}$ such that

$$\pi-\frac{a}{q}\Big|\leq\frac{1}{q^3}?$$

For **most** numbers α , you cannot get really good approximations.

Lemma

Let S be the set of α such that there are infinitely many a, q with

$$\left|\alpha-\frac{a}{q}\right|\leq\frac{1}{q^3}.$$

Then S has measure 0.

Proof: Union bound. Set of α with some approxmation with denominator at least *B* has size $\leq \sum_{q \geq B} 2/q^2 \leq 3/B$

Denominators from subsets

Question

What if we only allow denominators from some subset? Prime denominators?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

Denominators from subsets

Question

What if we only allow denominators from some subset? Prime denominators?

Theorem (Matomaki)

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then there are infinitely many pairs (a, p) with $a \in \mathbb{Z}$ and p prime such that

$$\left|\alpha - \frac{a}{p}\right| \le \frac{1}{p^{4/3 - \epsilon}}$$

We expect to improve 4/3 to 2, but this seems very difficult!

Theorem (Duffin-Schaeffer)

For **almost all** $\alpha \in [0, 1]$, there are infinitely many solutions to

$$\left|\alpha-\frac{a}{p}\right|<\frac{1}{p^{2-\epsilon}}.$$

Metric Diophantine approximation

- If you want to understand results for every α individually, this is often impossibly hard.
- If you allow for a tiny exceptional set, then sometimes you can say much stronger statements.

Principle (Metric Diophantine approximation)

If you are willing to allow an exceptional set of measure 0, you get a much cleaner and more robust theory.

イロト イポト イヨト イヨト

Metric Diophantine approximation

- If you want to understand results for every α individually, this is often impossibly hard.
- If you allow for a tiny exceptional set, then sometimes you can say much stronger statements.

Principle (Metric Diophantine approximation)

If you are willing to allow an exceptional set of measure 0, you get a much cleaner and more robust theory.

Question (Main Question)

Let $\Delta : \mathbb{Z} \to \mathbb{R}_{>0}$. Can we understand the set

$$\mathcal{L} := \left\{ lpha \in [0, 1] : \exists \textit{ infinitely many } (a, q) \textit{ s.t. } \left| lpha - rac{a}{q} \right| < \Delta(q)
ight\}$$

apart from an exceptional set of measure 0?

ヘロト ヘ部ト ヘヨト ヘヨト

Khinchin's Theorem

$$\mathcal{L} := \left\{ lpha \in [0, 1] : \exists \text{ infinitely many } (a, q) \text{ s.t. } \left| lpha - rac{a}{q} \right| < \Delta(q)
ight\}$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

æ

Khinchin's Theorem

$$\mathcal{L} := \left\{ \alpha \in [0, 1] : \exists \text{ infinitely many } (a, q) \text{ s.t. } \left| \alpha - \frac{a}{q} \right| < \Delta(q) \right\}$$

Theorem (Khinchin's Theorem)

Assume that $q^2 \Delta(q)$ is **decreasing**. Then

$$\operatorname{meas}(\mathcal{L}) = \begin{cases} 1, & \text{if } \sum_{q} q\Delta(q) = \infty, \\ 0, & \text{if } \sum_{q} q\Delta(q) < \infty. \end{cases}$$

ヘロト 人間 ト 人間 ト 人間 トー

Khinchin's Theorem

$$\mathcal{L} := \left\{ \alpha \in [0, 1] : \exists \text{ infinitely many } (a, q) \text{ s.t. } \left| \alpha - \frac{a}{q} \right| < \Delta(q) \right\}$$

Theorem (Khinchin's Theorem)

Assume that $q^2 \Delta(q)$ is **decreasing**. Then

$$\mathsf{meas}(\mathcal{L}) = \begin{cases} 1, & \text{if } \sum_q q \Delta(q) = \infty, \\ 0, & \text{if } \sum_q q \Delta(q) < \infty. \end{cases}$$

This gives an 'almost-all' extension of Dirichlet's theorem!

Corollary

For almost all $\alpha \in [0, 1]$, we have infinitely many solutions to

$$\alpha - \frac{a}{q} \Big| \le \frac{1}{q^2 \log q}.$$

For almost no $\alpha \in [0, 1]$ do we have infinitely many solutions to

$$\left|\alpha-\frac{a}{q}\right|\leq \frac{1}{q^2(\log q)^{1+\epsilon}}.$$

0-1 Laws

- 0-1 laws are the reason metric number theory is nice!
- Khinchin's condition that $q^2 \Delta(q)$ is decreasing is restrictive.

Question

What happens for **general** $\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$? Do we have an analogue of Khinchin's Theorem?

0-1 Laws

- 0-1 laws are the reason metric number theory is nice!
- Khinchin's condition that $q^2 \Delta(q)$ is decreasing is restrictive.

Question

What happens for **general** $\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$? Do we have an analogue of Khinchin's Theorem?

Theorem (Cassels)

For any $\Delta:\mathbb{Z}_{>0}\rightarrow\mathbb{R}_{>0},$ we have

$$\mathsf{meas}(\mathcal{L}) = \mathsf{0}$$
 or $\mathsf{meas}(\mathcal{L}) = \mathsf{1}.$

Question

When does $meas(\mathcal{L}) = 1$, and when does $meas(\mathcal{L}) = 0$?

This classification is much harder than showing meas(\mathcal{L}) $\in \{0, 1\}!$

0-1 laws remind me of a result from probability.

Lemma (Borel-Cantelli)

Let E_1, E_2, \ldots be random events.

- If $\sum_{j} \mathbb{P}(E_j) < \infty$, then almost surely only finitely many E_j occur.
- If ∑_j P(E_j) = ∞ and the E_j are **independent**, then almost surely infinitely many E_j occur.

0-1 laws remind me of a result from probability.

Lemma (Borel-Cantelli)

Let E_1, E_2, \ldots be random events.

• If $\sum_{j} \mathbb{P}(E_j) < \infty$, then almost surely only finitely many E_j occur.

If ∑_j P(E_j) = ∞ and the E_j are independent, then almost surely infinitely many E_j occur.

Choose $\alpha \in [0, 1]$ uniformly at random, let E_q the event that α is in

$$\bigcup_{a \pmod{q}} \left[\frac{a}{q} - \Delta(q), \frac{a}{q} + \Delta(q)\right]$$

First Borel-Cantelli shows that measure 0 part of Khinchin holds for all Δ !

イロト イヨト イヨト イヨト

0-1 laws II

First Borel-Cantelli shows that if $\sum_{q} q\Delta(q) < \infty$ then meas(\mathcal{L}) = 0.

James Maynard On the Duffin-Schaeffer Conjecture: I

イロト イヨト イヨト イヨト

æ

0-1 laws II

First Borel-Cantelli shows that if $\sum_{q} q\Delta(q) < \infty$ then meas(\mathcal{L}) = 0.

Guess

If
$$\sum_{q} q\Delta(q) = \infty$$
 then meas $(\mathcal{L}) = 1$.

- Would remove the decreasing condition in Khinchin's theorem.
- This is saying the E_q are 'quasi-independent' events.

イロト イヨト イヨト イヨト

크

0-1 laws II

First Borel-Cantelli shows that if $\sum_{q} q \Delta(q) < \infty$ then meas(\mathcal{L}) = 0.

Guess

If
$$\sum_{q} q\Delta(q) = \infty$$
 then $\operatorname{meas}(\mathcal{L}) = 1$.

- Would remove the decreasing condition in Khinchin's theorem.
- This is saying the E_q are 'quasi-independent' events.

Proposition (Duffin-Schaeffer)

This guess is false! There exists $\Delta:\mathbb{Z}_{>0}\to\mathbb{R}_{>0}$ such that

$$\sum_{q} q\Delta(q) = \infty$$
 but $\operatorname{meas}(\mathcal{L}) = 0.$

Morally due to overlaps with $a_1/q_1 = a_2/q_2$. **Idea:** restrict attention to reduced fractions a/q with gcd(a, q) = 1.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\mathcal{L}^* := \left\{ \alpha \in [0, 1] : \exists \text{ infinitely many coprime } (a, q) \text{ s.t. } \left| \alpha - \frac{a}{q} \right| < \Delta(q) \right\}$

・ロト ・ 四ト ・ ヨト ・ ヨト

크

$$\mathcal{L}^* := \left\{ lpha \in [0, 1] : \exists \text{ infinitely many coprime } (a, q) \text{ s.t. } \left| lpha - \frac{a}{q} \right| < \Delta(q)
ight\}$$

Conjecture (Duffin-Schaeffer)

For any $\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$ we have

$$\operatorname{meas}(\mathcal{L}^*) = \begin{cases} 1, & \text{if } \sum_q \phi(q) \Delta(q) = \infty, \\ 0, & \text{if } \sum_q \phi(q) \Delta(q) < \infty. \end{cases}$$

Large amount of partial progress dealing with important cases, thanks to *Duffin, Schaeffer, Erdős, Vaaler, Pollington, Vaughan, Harman, Haynes, Beresnevich, Velani, Aistleitner, ...*

イロト イポト イヨト イヨト

$$\mathcal{L}^* := \left\{ lpha \in [0, 1] : \exists \text{ infinitely many coprime } (a, q) \text{ s.t. } \left| lpha - \frac{a}{q} \right| < \Delta(q)
ight\}$$

Conjecture (Duffin-Schaeffer)

For any $\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$ we have

$$\operatorname{meas}(\mathcal{L}^*) = \begin{cases} 1, & \text{if } \sum_q \phi(q) \Delta(q) = \infty, \\ 0, & \text{if } \sum_q \phi(q) \Delta(q) < \infty. \end{cases}$$

Large amount of partial progress dealing with important cases, thanks to *Duffin, Schaeffer, Erdős, Vaaler, Pollington, Vaughan, Harman, Haynes, Beresnevich, Velani, Aistleitner, ...*

Theorem (Koukoulopoulos-M.)

The Duffin-Schaeffer conjecture is true.

イロト イボト イヨト イヨト

Duffin-Schaeffer conjecture II

This can be translated back into our original classification problem.

Corollary (Catlin's conjecture)

Let
$$\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$$
 and $\widetilde{\Delta}(q) := \sup_{q|n} \Delta(n)$. Then

$$\operatorname{meas}(\mathcal{L}) = \begin{cases} 1, & \text{if } \sum_{q} \phi(q) \widetilde{\Delta}(q) = \infty, \\ 0, & \text{if } \sum_{q} \phi(q) \widetilde{\Delta}(q) < \infty. \end{cases}$$

イロト イポト イヨト イヨト

Duffin-Schaeffer conjecture II

This can be translated back into our original classification problem.

Corollary (Catlin's conjecture)

Let
$$\Delta : \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$$
 and $\widetilde{\Delta}(q) := \sup_{q|n} \Delta(n)$. Then

$$\operatorname{meas}(\mathcal{L}) = \begin{cases} 1, & \text{if } \sum_{q} \phi(q) \widetilde{\Delta}(q) = \infty, \\ 0, & \text{if } \sum_{q} \phi(q) \widetilde{\Delta}(q) < \infty. \end{cases}$$

Using a result of Beresnevich-Velani, can also determine the Hausdorff measure of \mathcal{L} or \mathcal{L}^* by convergence/divergence criteria.

Corollary

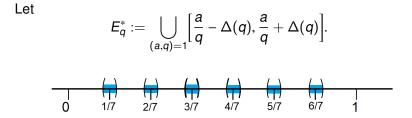
Let $\Delta:\mathbb{Z}_{>0}\rightarrow [0,1/2]$ and

$$s := \inf \{ eta \in \mathbb{R}_{\geq 0} : \sum_q \phi(q) \Delta(q)^eta < \infty \}.$$

Then dim_{\mathcal{H}}(\mathcal{L}^*) = min(s, 1).

Proof is a fun blend of ideas from number theory, combinatorics, ergodic theory,...

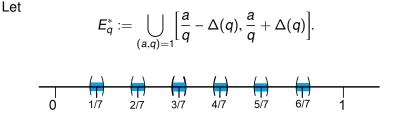
Step 1: Quasi-independence



We want to show that if $\sum_{q} \phi(q) \Delta(q) = \infty$, then almost all α lie in infinitely many E_q^* .

크

Step 1: Quasi-independence



We want to show that if $\sum_{q} \phi(q) \Delta(q) = \infty$, then almost all α lie in infinitely many E_q^* .

 By Borel-Cantelli, we would be done if these E^{*}_q behaved as if the were independent. Following the proof, it suffices to show

 $\operatorname{meas}(E_q^* \cap E_r^*) = (1 + o(1)) \operatorname{meas}(E_q^*) \operatorname{meas}(E_r^*)$ for all q, r.

...but this is too much to hope for.

イロト イポト イヨト イヨト

Step 2: Gallagher's 0-1 Law

Building on Cassels' result, with ergodic theory Gallagher showed

Theorem (Gallagher)

 $meas(\mathcal{L}^*) = 0$ or $meas(\mathcal{L}^*) = 1$.

So meas(\mathcal{L}^*) > 0 implies meas(\mathcal{L}^*) = 1!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Step 2: Gallagher's 0-1 Law

Building on Cassels' result, with ergodic theory Gallagher showed

Theorem (Gallagher)

 $meas(\mathcal{L}^*) = 0$ or $meas(\mathcal{L}^*) = 1$.

So $meas(\mathcal{L}^*) > 0$ implies $meas(\mathcal{L}^*) = 1!$

- Using Gallagher's theorem, we only require much weaker quasi-independence.
- It suffices to show

$$\sum_{q,r} \operatorname{meas}(E_q^* \cap E_r^*) \le 1000000 \sum_q \operatorname{meas}(E_q^*) \sum_r \operatorname{meas}(E_r^*)$$

(an upper bound on average).

This is much more realistic!

イロト イボト イヨト イヨト 二日

Pollington-Vaughan used sieve methods to get an essentially sharp upper bound for $meas(E_a^* \cap E_r^*)$.

イロト イヨト イヨト イヨト

Pollington-Vaughan used sieve methods to get an essentially sharp upper bound for $meas(E_q^* \cap E_r^*)$.

This roughly shows

```
\operatorname{meas}(E_q^* \cap E_r^*) \le 1000000 \operatorname{meas}(E_q^*) \operatorname{meas}(E_r^*)
```

unless both of the following hold:

- q and r have a large GCD.
- *q* and *r* have lots of small prime factors (which divide one but not the other).

Pollington-Vaughan used sieve methods to get an essentially sharp upper bound for $meas(E_a^* \cap E_r^*)$.

This roughly shows

 $\operatorname{meas}(E_q^* \cap E_r^*) \le 1000000 \operatorname{meas}(E_q^*) \operatorname{meas}(E_r^*)$

unless both of the following hold:

- q and r have a large GCD.
- *q* and *r* have lots of small prime factors (which divide one but not the other).

Thus we want to show that on average, it cannot be the case that q, r have a large GCD and have lots of small prime factors.

・ コ ト ・ 雪 ト ・ 画 ト ・ 目 ト

Step 4: Anatomy of integers

We first concentrate on the 'lots of small prime factors' bit. The Pollington-Vaughan bound implies

$$\sum_{\substack{p \mid q \text{ or } r \\ p \geq t}} \frac{1}{p} \le 10 \quad \Rightarrow \quad \operatorname{meas}(E_q^* \cap E_r^*) \le (\log t) \operatorname{meas}(E_q^*) \operatorname{meas}(E_r^*).$$

イロト イヨト イヨト イヨト

Step 4: Anatomy of integers

We first concentrate on the 'lots of small prime factors' bit. The Pollington-Vaughan bound implies

$$\sum_{\substack{p \mid q \text{ or } r \\ p \geq t}} \frac{1}{p} \le 10 \quad \Rightarrow \quad \operatorname{meas}(E_q^* \cap E_r^*) \le (\log t) \operatorname{meas}(E_q^*) \operatorname{meas}(E_r^*).$$

Lemma (Most numbers don't have lots of prime factors)

$$\frac{1}{x} \# \Big\{ n \le x : \sum_{\substack{p \mid n \\ p \ge t}} \frac{1}{p} \ge 8 \Big\} \le e^{-t^2}.$$

Thus the rarity of numbers with lots of prime factors outweighs the fact that $\text{meas}(E_q^* \cap E_r^*)$ can be a bit larger **if they occur in the support of** Δ with the normal frequency.

Erdős-Vaaler used this to establish the Duffin-Schaeffer conjecture when $\Delta_q = O(1/q^2)$.

Step 5: Arithmetic Combinatorics

We still need to understand the 'large GCD' bit.

Question

If I have a set of integers with lots of pairs of elements having a large GCD, what must that set look like?

There is one easy way of constructing a large set where *all* elements have a large GCD: Take all multiples of a large number.

(日)

Step 5: Arithmetic Combinatorics

We still need to understand the 'large GCD' bit.

Question

If I have a set of integers with lots of pairs of elements having a large GCD, what must that set look like?

There is one easy way of constructing a large set where *all* elements have a large GCD: Take all multiples of a large number.

Theorem (Approximate structure of GCD sets)

Let \mathcal{A} be a set with many pairs having a large GCD. Then one of the follow holds:

- A is 'small'.
- 2 There is a large number d which divides many elements of A.

Thus the trivial construction is essentially the only way to make a **large** set.

イロト イポト イヨト イヨト

Step 5: Arithmetic Combinatorics

We still need to understand the 'large GCD' bit.

Question

If I have a set of integers with lots of pairs of elements having a large GCD, what must that set look like?

There is one easy way of constructing a large set where *all* elements have a large GCD: Take all multiples of a large number.

Theorem (Approximate structure of GCD sets)

Let \mathcal{A} be a set with many pairs having a large GCD. Then one of the follow holds:

- A is 'small'.
- 2 There is a large number d which divides many elements of A.

Thus the trivial construction is essentially the only way to make a **large** set. **WARNING:** I'm lying/oversimplifying quite a lot here.

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

$$meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

크

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

$$meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$$

- This can only fail if
 - **1** *q* and *r* have a large GCD.
- AND **2** *q* and *r* have lots of small prime factors.

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

 $meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$

- This can only fail if
 - **1** *q* and *r* have a large GCD.
- AND 2 q and r have lots of small prime factors.
 - By condition 1 and support of Δ, we must then have a large set A with many pairs having large GCD.

イロト イポト イヨト イヨト

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

 $meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$

- This can only fail if
 - **1** *q* and *r* have a large GCD.
- AND **2** *q* and *r* have lots of small prime factors.
 - By condition 1 and support of Δ, we must then have a large set A with many pairs having large GCD.
 - By structure theorem
 - A is 'small'
- **OR (B)** There is a large number d which divides many elements of \mathcal{A} .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

 $meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$

- This can only fail if
 - **1** *q* and *r* have a large GCD.
- AND 2 q and r have lots of small prime factors.
 - By condition 1 and support of Δ, we must then have a large set A with many pairs having large GCD.
 - By structure theorem
 - A is 'small'
- **OR (B)** There is a large number d which divides many elements of \mathcal{A} .
 - If $\triangle \mathcal{A}$ 'small' then trivially only a small effect, so done.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

 $meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$

- This can only fail if
 - 1 q and r have a large GCD.
- AND 2 q and r have lots of small prime factors.
 - By condition 1 and support of Δ, we must then have a large set A with many pairs having large GCD.
 - By structure theorem
 - A is 'small'
- **OR (B)** There is a large number d which divides many elements of \mathcal{A} .
 - If $\triangle \mathcal{A}$ 'small' then trivially only a small effect, so done.
 - If B A essentially has a fixed divisor d, then dividing by d reduces to the Erdős-Vaaler setup.
 Since few numbers satisfy 2 we can handle this case.

イロト イヨト イヨト イヨト

 Using Gallagher+weak Borel-Cantelli, it suffices to show on average

 $meas(E_q^* \cap E_r^*) \le 10^6 meas(E_q^*) meas(E_r^*)$

- This can only fail if
 - 1 q and r have a large GCD.
- AND (2) q and r have lots of small prime factors.
 - By condition 1 and support of Δ, we must then have a large set A with many pairs having large GCD.
 - By structure theorem
 - A is 'small'
- **OR (B)** There is a large number d which divides many elements of \mathcal{A} .
 - If $\triangle \mathcal{A}$ 'small' then trivially only a small effect, so done.
 - If B A essentially has a fixed divisor d, then dividing by d reduces to the Erdős-Vaaler setup.
 Since few numbers satisfy 2 we can handle this case.
 - Therefore done in either case!

イロト イヨト イヨト イヨト

Using standard ideas:

- Ergodic theory: Gallagher's 0-1 law
- Probability: Weak Borel-Cantelli
- Analytic number theory: Pollington-Vaughan bound

we reduce to a problem of 'quasi-independence'.

Using standard ideas:

- Ergodic theory: Gallagher's 0-1 law
- Probability: Weak Borel-Cantelli
- Analytic number theory: Pollington-Vaughan bound

we reduce to a problem of 'quasi-independence'. Using:

- Arithmetic combinatorics: Sets with large GCDs
- Anatomy of integers: Few integers with many prime factors we reduce to a structure theorem.

Using standard ideas:

- Ergodic theory: Gallagher's 0-1 law
- Probability: Weak Borel-Cantelli
- Analytic number theory: Pollington-Vaughan bound

we reduce to a problem of 'quasi-independence'. Using:

- Arithmetic combinatorics: Sets with large GCDs
- Anatomy of integers: Few integers with many prime factors we reduce to a structure theorem. Using
 - Graph theory: Reframe sets as (weighted) dense graphs
 - Combinatorics: 'Compression' argument

we prove the structure theorem.

Thanks for listening!

ヘロト 人間 トイヨト イヨト

æ