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Talk Plan

This talk will give an introduction to the key new technical ideas in
the proof.

1 Reduce to addive combinatorial problem about sets with large
GCDs

2 Reformulate as a combinatorial problem about graphs
3 Overview of the iterative argument for graphs
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Main Aim

Recall that we are given a function ∆ : Z>0 → R≥0.

The aim is to show ‘quasi independence’ on average

Main Aim∑
q,r

meas(E∗q ∩ E∗r ) ≤ 106
∑
q,r

meas(E∗q) meas(E∗r )

(for some suitable range of summation for q, r)

Here
Eq :=

⋃
1≤a≤q

gcd(a,q)=1

[a
q
−∆(q),

a
q

+ ∆(q)
]
.
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Special case

Let’s focus on a special case to emphasize the main ideas.
∆(q) ∈ {q−1−c , 0} for some constant c ∈ [0, 1].
∆(q) = 0 if q has a repeated prime factor or a factor < 101010

.
∆(q) is supported on a union of dyadic intervals
[x1, 2x1] ∪ [x2, 2x2] ∪ . . . with xi+1 > x2

i and∑
q∈[xi ,2xi ] φ(q)∆(q) ∈ [1, 2].

In this setup, we have that

meas(E∗q) �
φ(q)

q
q−c

(A � B means A = O(B) means |A | ≤ cB for a constant c > 0)

Aim

Let S = {q ∈ [x, 2x] : ∆(q) , 0}. Then∑
q,r∈S

meas(E∗q ∩ E∗r ) = O(1).
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Simplification II

Lemma (Pollington-Vaughan bound)∑
p|q or r

p≥t

1
p
≤ 11 ⇒ meas(E∗q∩E∗r ) ≤ 100(log t) meas(E∗q) meas(E∗r ).

Moreover, if gcd(q, r) ≤ x1−c/t then∑
p|q or r

p≥t

1
p
≤ 11 ⇒ meas(E∗q ∩ E∗r ) ≤ 100 meas(E∗q) meas(E∗r ).

This reduces to showing for every set S ⊂ [x, 2x] and every t ≥ 1∑
q,r∈Et

gcd(q,r)≥x1−c/t

φ(q)

q
φ(r)

r
= O

(x2c

t

)
,

where∑
q∈S

φ(q)

q
= O(xc), Et :=

{
(q, r) ∈ S2 :

∑
p|qr/ gcd(q,r)2

p≥t

1
p
≥ 10

}
.
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Model problem

If we ignore the φ(q)/q weights, this simplifies to: If #S = xc and
S ⊆ [x, 2x], is it the case that

#
{
(q, r) ∈ Et : gcd(q, r) ≥ x1−c/t

}
= O(x2c/t)?

This is interesting even for t = 1 (i.e. ignoring the small prime
factors condition).

Problem (Model problem)

What sets S ⊆ [x, 2x] have #S ≈ xc and 1% of pairs (s1, s2) ∈ S2

with gcd(s1, s2) ≥ x1−c?

We hope to say that any such set must be very structured, and so
can then be analysed explicitly.
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GCD Graphs

We visualise these sets as a graph

Vertices: Elements of the set. Edges: Pairs with large GCD.
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A positive proportion of pairs have a large GCD, so a dense graph.
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GCD Graphs

Technical point: actually we consider bipartite version

Vertices: Elements of the set (two copies).
Edges: Pairs with large GCD.

11a

12a

20a

55a

10a

25a

35a

7a

11b

12b

20b

55b

10b

25b

35b

7b

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

20

55

25

35

10

12

7

James Maynard On the Duffin-Schaeffer Conjecture: 2



GCD Graphs

Technical point: actually we consider bipartite version
Vertices: Elements of the set (two copies).

Edges: Pairs with large GCD.

11a

12a

20a

55a

10a

25a

35a

7a

11b

12b

20b

55b

10b

25b

35b

7b

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

20

55

25

35

10

12

7

James Maynard On the Duffin-Schaeffer Conjecture: 2



GCD Graphs

Technical point: actually we consider bipartite version
Vertices: Elements of the set (two copies).

Edges: Pairs with large GCD.

11a

12a

20a

55a

10a

25a

35a

7a

11b

12b

20b

55b

10b

25b

35b

7b

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

20

55

25

35

10

12

7

James Maynard On the Duffin-Schaeffer Conjecture: 2



GCD Graphs

Technical point: actually we consider bipartite version
Vertices: Elements of the set (two copies).
Edges: Pairs with large GCD.

11a

12a

20a

55a

10a

25a

35a

7a

11b

12b

20b

55b

10b

25b

35b

7b

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

20

55

25

35

10

12

7

James Maynard On the Duffin-Schaeffer Conjecture: 2



GCD Graphs

Technical point: actually we consider bipartite version
Vertices: Elements of the set (two copies).
Edges: Pairs with large GCD.

11a

12a

20a

55a

10a

25a

35a

7a

11b

12b

20b

55b

10b

25b

35b

7b

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

5
5

5
7

5
2

4

10
5

5

5

5

5

11

20

55

25

35

10

12

7

James Maynard On the Duffin-Schaeffer Conjecture: 2



Setup

We’re given a dense graph with edges corresponding to big GCDs.

We want to either:
Find a highly structured subset coming from the same divisor.
Show that the graph must have few vertices.

Key Idea: We will repeatedly throw away a few ‘unstructured’
vertices/edges, to form a sequence of subgraphs

G1 ⊇ G2 ⊇ G3 ⊇ . . .

where we increase ‘structure’ at each step.
We don’t try to control the (finite) number of iterations.
Since the final graph cannot be iterated further, we hope that
it will be simple to explicitly analyse.
(e.g. all vertices are a multiple of d, so everything connected.)
If we increase structure at each step, we hope that we can
understand our original graph from the final one.
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The basic manouvre

The key step to pass from Gi to Gi+1 is to restrict each vertex class
to elements which are a multiple of p or coprime to p.

Let Gi have vertex sets V and W . Choose a prime p arbitrarily.
Define

Vp := {v ∈ V : p|v}, Vp̂ := {v ∈ V : p - v},

Wp := {w ∈ W : p|w}, Wp̂ := {w ∈ V : p - w}.

Gi : V W

Vp̂ Wp̂

Vp WpVp Wp

Edges with GCD multiple of p

Vertices a multiple of p Vertices a multiple of p

Vp̂ Wp̂

Edges with GCD coprime to p

Vertices coprime to p Vertices coprime to p
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The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂Vp̂ Wp̂

Vp WpVp

Wp̂Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂

Vp̂ Wp̂

Vp Wp

Vp

Wp̂Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂

Vp̂ Wp̂

Vp Wp

Vp

Wp̂

Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂

Vp̂ Wp̂

Vp WpVp

Wp̂

Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂Vp̂ Wp̂

Vp WpVp

Wp̂Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂Vp̂ Wp̂

Vp WpVp

Wp̂Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



The basic manouvre II

We will throw away either Vp or Vp̂ and either Wp or Wp̂ and let
Gi+1 be the resulting graph.

Vp Wp

Vp̂ Wp̂Vp̂ Wp̂

Vp WpVp

Wp̂Vp̂

Wp

If we do this repeatedly for every prime that occurs in any GCD,
eventually all GCDs will come from the same fixed divisor.

Question
How do we maintain control over this procedure?

James Maynard On the Duffin-Schaeffer Conjecture: 2



‘Quality’

Question
How do we maintain control over this procedure?

We define a statistic which increases at each iteration, and
controls our original graph.

We need to keep track of previous iterations, so consider a
bipartite graph G with a set P of primes.

Definition (Quality of a graph)

We define the quality of G with vertex sets V ,W and set of primes
P as q(G) = δ10 ·#V ·#W ·

∏
p∈P

p

where δ is the edge density.

P is the set of all primes where we have chosen (Vp ,Wp̂) or
(Vp̂ ,Wp) in earlier iterations.
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Quality II

Why is this definition of any use?

Recall our setup:
Begin with Gstart , a dense bipartite graph with vertex sets in
[x, 2x] and edges formed by joining v ,w if gcd(v ,w) ≥ x1−c .
Apply the iteration procedure until all primes dividing any GCD
have been accounted for, leaving a subgraph Gend .

Lemma (Quality controls our original graph)

Let Gstart have edge set Estart . Then

#Estart �
q(Gstart )

q(Gend)
x2c

Lemma (Quality increment)

If max(#Vp̂/#V ,#Wp̂/#W) ≥ 1040/p then we can choose a
subgraph G′ from Vp ,Vp̂ ,Wp ,Wp̂ with

q(G′) ≥ q(G).
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#Estart �
q(Gstart )

q(Gend)
x2c

Lemma (Quality increment)

If max(#Vp̂/#V ,#Wp̂/#W) ≥ 1040/p then we can choose a
subgraph G′ from Vp ,Vp̂ ,Wp ,Wp̂ with

q(G′) ≥ q(G).
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Quality III

Lemma (Quality controls our original graph)

Let Gstart have edge set Estart . Then

#Estart �
q(Gstart )

q(Gend)
x2c

Lemma (Quality increment)

If (conditions) then there is a subgraph G′ with

q(G′) ≥ q(G).

If we pretended that we can always find G′, then we see that we
can ensure q(Gend) ≥ q(Gstart ), so

#Estart � x2c

This is almost what we want! If #Estart ≈ x2c then iterations must
lose nothing, which is very close to giving our structure theorem.
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Application to DS

For the DS problem we only need to save in the upper bound
based on the threshold t for small prime factors. In this case

Estart = Et :=
{
(q, r) ∈ S2 :

∑
p|qr/ gcd(q,r)2

p≥t

1
p
≥ 10

}
.

Using the fact that the density of numbers with
∑

p|n,p≥t 1/p ≥ 10 is
O(e−t ) we can refine the lemma.

Lemma (Quality controls our DS graph)

Let Gstart have edge set Et . Then either

#Et �
q(Gstart )

q(Gend)
x2ce−t

or q(Gend) ≥ etq(Gstart ).

Thus in either case #Et � x2ce−t , which is what we need.
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Idealised iteration procedure

We start with Gstart = (Vstart ,Wstart ,Estart ) with Pstart = ∅.

We then form a finite sequence of subgraphs
Gstart = G0 ⊇ G1 ⊇ G2 ⊇ ... ⊇.
To go from G = Gi to Gi+1, we choose a prime p which
divides gcd(v ,w) for some v ∈ Vi , w ∈ Wi but that doesn’t
divide all v ∈ Vi ,w ∈ Wi .
By Lemma, there is a subgraph G′ ∈ {Gp,p ,Gp̂,p ,Gp ,̂p ,Gp̂ ,̂p}

with q(G′) ≥ q(G). If G′ = Gp ,̂p or Gp̂,p then Pi+1 := Pi ∪ {p}
and otherwise Pi+1 := Pi . We set Gi+1 := G′.
Since each prime can only be chosen once, this procedure
terminates when there are no primes left.
Since we can’t iterate any more, if p| gcd(v ,w) for some
v ∈ Vend ,w ∈ Wend then p|v for all v and p|w for all w.
If p ∈ Pend then p|v for all v and p - w for all w, or vice versa.
Thus there are a, b such that a |v for all v ∈ Vend , b |w for all
w ∈ Wend , and (v ,w) ∈ Eend ⇒ gcd(v ,w) = gcd(a, b) ≥ x1−c .
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Quality increment

Thus we’re in a good position if we can always get a quality
increment.

Recall:

Lemma (Quality increment)

If max(#Vp̂/#V ,#Wp̂/#W) ≥ 1040/p then we can choose a
subgraph G′ from Vp ,Vp̂ ,Wp ,Wp̂ with

q(G′) ≥ q(G).

This adequately gives quality increments provided αp , βp are not
both close to 1.

(The argument generalizes easily to weighted graphs - DS problem
has φ(q)/q weights on vertices.)
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Difficult case

Question
What if αp , βp ≈ 1?

This is a more technical situation, and we cannot obtain a quality
increment in general.

This is because the model problem has a counterexample!

Example (S. Chow)

If S = {n!/j : j ∈ [n/2, n]} ⊆ [(n − 1)!, 2(n − 1)!] then:

All pairs s1, s2 ∈ S have gcd(s1, s2) ≥ n!/n2.

There is no d ∈ Z of size� (n − 1)!/#S which divides a
positive proportion of elements.
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Difficult case II

Question
So what do we do?

The φ(q)/q weights save us!
These dampen down the contribution of numbers with many small
prime factors, which is what happens when αp , βp ≈ 1 for many
primes p. ∑

q,r∈Eend

φ(q)

q
φ(r)

r
≤
φ(a)

a
φ(b)

b
x
a

x
b

e−t

We gain a factor φ(a)φ(b)/(ab). This allows us to lose a factor of
(1 − 1/p)2 in quality if we restrict to Vp and Wp .

To account for this, we use a different (more technical)
definition of quality.
This change in argument means the iteration needs to be
done it two stages.
This difficult situation is precisely that of the counterexample.
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Summary

The key argument is with ‘GCD graphs’.

We define q(G) which captures a useful notion of ‘structure’.

We repeatedly pass to subsets of the vertices which are all a
multiple of some prime p, or all coprime to p. A ‘compression
argument’.

We do this in a way that increases q(G) at each iteration.

When this process finaly terminates the resulting graph is very
simple to analyse since all vertices on the left are a multiple of
a and all on the right a multiple of b and GCDs are gcd(a, b).

This essentially puts us in the Erdős-Vaaler situation and so
compatible with bounds from the ‘anatomy of integers’.

Extra care is needed when almost all elements are a multiple
of many small primes p. In this case the φ(q)/q weights which
are natural in the DS problem save us!
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Questions

Thank you for listening.
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