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Talk Plan

This talk will give some details about the key technical ideas in the
iterative argument.

1 Handle quality increments in the difficult case
2 Show these quality increments are suitable for the proof
3 Put everything together to finish proof
4 Reflect on the argument
5 Further problems
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Reduced to difficult case

Let’s recall where we got to last time:

We showed we could get the bound we want if we have
quality increments in our iteration procedure.

We have adequate quality increments provided αp , βp are
not both close to 1.

The argument is actually very flexible and works for weighted
graphs (which is actually what comes up in DS problem).

Thus it just requires us to get suitable quality increments when
αp , βp ≈ 1.

Recall: if αp , βp ≈ 1 we cannot obtain a quality increment in
general (with our current setup). We’ve reduced to the situation of
our counterexample!

Need to use extra structure specific to the DS problem.
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Weights in the DS problem

The actual DS problem came with weights φ(q)/q on each vertex.

Main Aim

Show for every set S ⊂ [x, 2x] and every t ≥ 1∑
q,r∈Et

gcd(q,r)≥x1−c/t

φ(q)

q
φ(r)

r︸      ︷︷      ︸
weights ≈ 1

= O
(x2c

t

)
,

where∑
q∈S

φ(q)

q︸︷︷︸
weights ≈ 1

= O(xc), Et :=
{
(q, r) ∈ S2 :

∑
p|qr/ gcd(q,r)2

p≥t

1
p
≥ 10

}
.

Since φ(q)/q =
∏

p|q(1 − 1/p), we gain an additional factor of
(1 − 1/p) whenever we choose to restrict to Vp or Wp .

So we can afford to lose a few factors of 1 − 1/p in our quality
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Weights in the DS problem II

To handle the difficult case we therefore need to use an argument
which is sensitive to the specific weights in the DS problem.

Aim:
1 Show that we can obtain suitable increments if we allow for a

loss of (1 − 1/p) factors
2 Show that we can still get an adequate result if we have the
φ(q)/q weights.

Let’s first show that we can get suitable increments if these losses
are acceptable.
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Difficult case increments

Lemma (Almost-quality increment in difficult case)

Let G be a GCD graph, p a prime and αp , βp ≥ 1 − 1010/p. Then
one of the following holds:

1 q(Gp,p) ≥
(
1 −

1
p

)2(
1 −

1
p3/2

)
q(G),

2 There is a G′ ∈ {Gp ,̂p ,Gp̂,p} such that q(G′) ≥ q(G).

In the second case we get a quality increment. In the first case

The weights φ(q)/q will balance out the factor (1 − 1/p)2.

The total loss from (1 − 1/p3/2) over all iterations is bounded
since

∏
p(1 − 1/p3/2) converges.
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Proof for difficult case

Imagine for a contradiction q(Gp,p) ≤ (1 − 1/p)2(1 − 1/p3/2)q(G)
and q(Gp ,̂p), q(Gp̂,p) ≤ q(G).

Then

δp,p ≤ δ(1 − 1/p)2/10(1 − 1/p3/2)1/10α−1/10
p β−1/10

p

δp ,̂p ≤ δp
1/10α−1/10

p (1 − βp)−1/10.

Let αp = 1 − A/p, βp = 1 − B/p for some A ,B ≥ 0 bounded.

Substituting this all into our constraint

δ = δp,pαpβp + δp ,̂pαp(1 − βp) + δp̂,p(1 − αp)βp + δp̂ ,̂p(1 − αp)(1 − βp)

gives

1 ≤
(
1−

1
p

)2/10(
1−

A
p

)9/10(
1−

B
p

)9/10(
1−

1
p3/2

)1/10
+

B9/10 + A9/10

p
+O

( 1
p9/5

)
.
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Proof for difficult case II

1 ≤
(
1 −

1
p

)2/10(
1 −

A
p

)9/10(
1 −

B
p

)9/10(
1 −

1
p3/2

)1/10
+

B9/10 + A9/10

p
+ O

( 1
p9/5

)

= 1 −
(2 + 9A + 9B)

10p
+

B9/10 + A9/10

p
−

1
p3/2 + O

( 1
p9/5

)
.

But 1 + 9A ≥ 10A9/10 by AM-GM inequality. So
−(2 + 9A + 9B)/10 + B9/10 + A9/10 ≤ 0. So

1 ≤ 1 −
1

p3/2 + O
( 1
p9/5

)
.

Contradiction if p is large!

Therefore either a quality increment, or Gp,p with a controlled loss in
quality
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Quality loss acceptable

We still need to check that this loss really is acceptable.

Before:

Lemma (Quality controls our DS graph)

Let Gstart have edge set Et . If
∑

p∈Pend ,p≥t 1/p ≤ 5 then

#Et �
q(Gstart )

q(Gend)
x2ce−t .

Refined version:

Lemma (Quality controls our DS graph with weighting)

Let Gstart have edge set Et . If
∑

p∈Pend ,p≥t 1/p ≤ 5 then∑
q,r∈Et

φ(q)

q
φ(r)

r
�

q(Gstart )

q(Gend)
x2ce−t

∏
p∈Pbad

(
1 −

1
p

)2
,

where Pbad is the set of primes where we choose Gp,p in the
difficult case.
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Quality controls our DS graph with weighting

Before, proof used

#Eend ≤ #
{
v ,w ≤ 2x :

∑
p|vw/ gcd(vw)2

p≥t

1
p
≥ 10, a |v , b |w

}
�

x2

ab
e−t .

Instead, we use∑
(q,r)∈Eend

φ(q)

q
φ(r)

r
≤

∑
v ,w≤2x
a |v , b |w∑

p|vw/ gcd(vw)2 ,p≥t 1/p≥10

φ(v)

v
φ(w)

w

≤
φ(a)

a
φ(b)

b

∑
v′≤2x/a,w′≤2x/b∑

p|v′w′/ gcd(v′w′)2 ,p≥t 1/p≥5

1

�
φ(a)

a
φ(b)

b
x2

ab
e−t

�
x2

ab
e−t

∏
p∈Pbad

(
1 −

1
p

)2
.
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p≥t

1
p
≥ 10, a |v , b |w

}
�

x2

ab
e−t .

Instead, we use∑
(q,r)∈Eend
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q
φ(r)

r
≤

∑
v ,w≤2x
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φ(v)

v
φ(w)

w

≤
φ(a)

a
φ(b)

b
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1

�
φ(a)

a
φ(b)

b
x2
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e−t

�
x2
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1
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Quality controls our DS graph with weighting

Substituting this bound∑
(q,r)∈Eend

φ(q)

q
φ(r)

r
�

x2

ab
e−t

∏
p∈Pbad
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1 −

1
p

)2

into our (weighted) quality gives
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∏

p∈Pbad
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1 −

1
p

)2
.

Thus∑
q,r∈Et

φ(q)

q
φ(r)

r
� q(Gstart ) �

q(Gstart )

q(Gend)
x2ce−t

∏
p∈Pbad

(
1 −

1
p

)2
.

(An analogous argument works for when
∑

p|ab/ gcd(a,b)2 1/p ≥ 5)
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Summary for quality increments

For our iteration, we consider three cases: if αp ≈ βp ≈ 0, if
αp ≈ βp ≈ 1 or if neither holds.

Easy case: We can always obtain a quality increment unless
αp ≈ βp ≈ 1 or αp ≈ βp ≈ 0.

If αp ≈ βp ≈ 0, then we trivially have a quality loss of at most a
factor (1 − 1/p3/2).

If αp ≈ βp ≈ 1, then either we have a quality increment, or
choose Gp,p and a loss of at most a factor
(1 − 1/p)2(1 − 1/p3/2).

This is (just!) acceptable for our final bounds.
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Putting everything together

1 By Gallagher’s 0-1 law, it suffices to show that meas(L∗) > 0.

2 By weak Borel-Cantelli, this reduces to showing
‘quasi-independence on average’∑

q,r

meas(E∗q ∩ E∗r ) ≤ 1000000
∑

q

meas(E∗q)
∑

r

meas(E∗r )

3 Using Pollington-Vaughan bound, we split according to a
small prime threshold. Suffices to show for all t ≥ 0∑
q,r∈E∗t

meas(E∗q)
∑

r

meas(E∗r ) ≤ e−t
∑

q

meas(E∗q)
∑

r

meas(E∗r ).

4 For the choice of ∆ we are considering, this says∑
q,r∈Et

φ(q)

q
φ(r)

r
� e−tx2c .
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Putting everything together II

5 We re-interpret this as a (weighted) sum over edges in a
complicated graph Gstart . The sum is bounded by q(Gstart ).

6 We repeatedly pass to subgraphs Gstart ⊇ G1 ⊇ G2 ⊇ . . . by
choosing a prime p and a subgraph Gp,p ,Gp ,̂p ,Gp̂,p or Gp̂ ,̂p .

7 If αp , βp are not both near 0 or 1, we can choose a subgraph
with q(Gi+1) ≥ q(Gi).

8 If αp ≈ βp ≈ 0 the situation can be handled trivially with a
bounded total loss in quality.

9 If αp ≈ βp ≈ 1, we find a subgraph with q(Gi+1) ≥ q(Gi) or
Gi+1 = Gp,p with q(Gi+1) ≥ q(Gi)(1 − 1/p)2(1 − 1/p3/2).

10 We end up with Gend where we can’t iterate further and

q(Gend) � q(Gstart )
∏

p∈Pbad

(
1 −

1
p

)2
.

11 Since we can’t iterate, Gend is very simple, and we calculate

q(Gend) � x2ce−t
∏

p∈Pbad

(
1 −

1
p

)2
.
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Putting everything together III

Thus∑
q,r∈Et

φ(q)

q
φ(r)

r
� q(Gstart )

� q(Gend)
∏

p∈Pbad

(
1 −

1
p

)−2
� x2ce−t .

So ∑
q,r

meas(E∗q ∩ E∗r ) ≤ 1000000
∑

q

meas(E∗q)
∑

r

meas(E∗r ).

So
meas(L∗) > 0.

So
meas(L∗) = 1.
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Remarks

The special case ∆(q) ∈ {q−1−c , 0} really does generalize
easily to the general case.

There are minor technical complications to deal with
multiplicity of prime factors and small primes.

The proof only just works - I still don’t fully understand this.

I’ve sketched how to make the argument work, but I produced the
definition of ‘quality’ out of thin air.

Question
Why this definition of quality?
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Why this definition?

Naiive guess: If V ⊆ [V1, 2V1] and W ⊆ [W1, 2W1], then the
number of pairs with gcd at least d should be

O
(V1W1

D2

)
.

Vp Wp

Vp̂ Wp̂

Vp̂ Wp̂

Vp WpVp

Wp̂

If we restrict to Vp̂ and Wp̂ then everything is coprime to p and we
have a very similar setup.
Loss: Smaller vertex sets
Gain: Potentially increased the edge density
Need an increase in edge density to outweigh loss in vertices
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Further avenues

This iterated argument with graphs feels different to most of
the proofs in metric number theory. Are there other
applications?

The additive combinatorial reformulation is interesting in its
own right. Presumably one should be able to extract a
structure theorem?

What about inhomogeneous approximation? Can we
understand

Lβ := {α : ‖nα + β‖ ≤ ∆(n) infinitely many n}?

Diophantine approximation on more exotic spaces?
Manifolds? Non-commutative groups? (e.g. word
approximations in SO(3)?)

Why does the proof only just work?
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Questions

Thank you for listening.
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