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These slides are from a series of four lectures given at the Johann Radon Institute

for Computational and Applied Mathematics (RICAM) held on March 24 and

March 25 2021.

It was an honor to be asked to present on quasi-Monte Carlo (QMC) sampling in

Austria, from where so much of QMC comes and has come. The talks were

virtual; I would have otherwise made sure to get some Linzertorte. That will have

to wait.

1. Quasi-Monte Carlo

2. Randomized Quasi-Monte Carlo

3. Quasi-Monte Carlo Outside the unit Cube

4. Variable Importance and Sobol’ indices

A small number of corrections have been made since then.

Introduction to QMC Sampling: RICAM, March 2021
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More accurate title

1
2 of QMC

I will leave out most of lattice methods

focussing on digital nets and related constructions.

Introduction to QMC Sampling: RICAM, March 2021
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What is Quasi-Monte Carlo?
It is a method of sampling.

Mostly for integration over a continuum.

Designed to be better than random (Monte Carlo).
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We get a discrete approximation to a continuous problem.
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Why QMC?
1) It solves real world problems to help people

2) The mathematics is interesting (curiosity) or elegant (aesthetics)

These are not separate

Example problems

1) Approximate µ =
∫
[0,1]d

f(x) dx

2) Simulate some phenomenon many times to ‘see what happens’

These are not separate, either

Introduction to QMC Sampling: RICAM, March 2021
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How to integrate
Choose the first thing that works in this order

1) closed form expression

2) symbolic mathematics (e.g., Maple, Mathematica, Sage)

3) classical quadrature (e.g., Simpson’s rule)

4) QMC or randomized QMC (RQMC)

5) Monte Carlo

6) Markov chain Monte Carlo (MCMC)

7) approximate MCMC

Sparse grids might be in position 3.5 or 4.

Maybe RQMC can absorb MC

Introduction to QMC Sampling: RICAM, March 2021
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Classic rules

I ≡
∫ b

a

f(x) dx
.
= (b− a)

n∑
i=0

wif(xi)

for a 6 x0 < x1 < x2 < · · · < xn 6 b and wi ∈ R

Simpson’s rule

Î =
b− a
3n

[
f(x0)+4f(x1)+2f(x2)+4f(x3)+· · ·+4f(xn−1)+f(xn)

]
If f (4) continuous

|Î − I| 6 (b− a)4

180n4
max
a6x6b

|f (4)(x)| = O(n−4)

Introduction to QMC Sampling: RICAM, March 2021
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Dimension d > 1
Fubini:∫ 1

0

∫ 1

0
f(x, y) dxdy =

∫ 1

0
I(y) dy for I(y) =

∫ 1

0
f(x, y) dx

Take n× n grid

Simpson’s for x given y (inner)

then for y (outer)

Generally take N = n× n× · · · × n point grid xi ∈ [0, 1]d

Product of Simpson’s rules

At best O(n−4) = O(N−4/d)

Imagine one dimensional integral of perfect d− 1 dimensional integrals

Higher order

O(n−r) over [0, 1] =⇒ at best O(n−r/d) in dimension d.

Introduction to QMC Sampling: RICAM, March 2021
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Bakhvalov
For r > 1 and M > 0 define “nice” functions

FMr =

{
f :[0, 1]d → R

∣∣∣∣ ∣∣∣ ∂f(x)

∂xα1
1 · · ·x

αd

d

∣∣∣ 6M, αj > 0,

d∑
j=1

αj = r

}
Curse of dimension

For any rule like Î =
∑n
i=1 wif(xi) there is k > 0 and f ∈ FMr with

|Î − I| > kn−r/d.

Consequence

Large d =⇒ no good rule for all f ∈ FMr

Fooling functions

f(xi) = 0 for i = 1, . . . , n

See monographs Novak, Wozniakowski

Introduction to QMC Sampling: RICAM, March 2021
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Monte Carlo
Integrals as expectations

µ ≡ E(f(x)) =
∫
Rd

f(x)p(x) dx

Take xi
iid∼ p and

µ̂ =
1

n

n∑
i=1

f(xi)

If E(f(x)2) <∞

Then E
(
(µ̂− µ)2

)
= O

( 1
n

)
Root mean squared error (RMSE) is O(n−1/2) any d

Does not need r > 0 (smoothness)

Puzzle: does this break Bakhvalov’s curse of dimension?

Introduction to QMC Sampling: RICAM, March 2021
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Quasi-Monte Carlo
We want to do better than RMSE = O(n−1/2).

We begin with

µ =

∫
[0,1]d

f(x) dx i.e. p = U[0, 1]d

For general x ∼ p

Transformations ψ(·) from Devroye (1986)

x ∼ U[0, 1]d =⇒ ψ(x) ∼ p∫
Rs

g(x)p(x) dx =

∫
[0,1]d

g(ψ(x)) dx

=

∫
[0,1]d

f(x) dx f = g ◦ ψ

Caution: ψ can make f irregular
Introduction to QMC Sampling: RICAM, March 2021
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Illustration
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MC and two QMC methods in the unit square
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Hammersley sequence

MC points always have clusters and gaps. What is random is where they appear.

QMC points avoid clusters and gaps to the extent that mathematics permits.

Idea let’s pick points that are more equally spread out.

Introduction to QMC Sampling: RICAM, March 2021
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Measuring uniformity
We need a way to verify that the points xi are ‘spread out’ in [0, 1]d.

The most fruitful way is to show that

U {x1,x2, . . . ,xn}
.
= U[0, 1]d

Discrepancy

A discrepancy is a distance ‖F − F̂n‖ between measures

F = U[0, 1]d and F̂n = U {x1,x2, . . . ,xn}.

There are many discrepancies.

As integrals

µ =

∫
f(x) dF (x) µ̂ =

∫
f(x) dF̂n(x)

so we want F̂n ≈ F .

Introduction to QMC Sampling: RICAM, March 2021
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Local discrepancy
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0 0.3

0.7

The box [0,a) contains 6/20 = points and has 0.3× 0.7 = 0.21 of the area.

δ(a) ≡ 0.30− 0.21 = 0.09

Star discrepancy

D∗n = D∗n(x1, . . . ,xn) = sup
a∈[0,1)d

|δ(a)| = ‖δ‖∞

For d = 1 this is Kolmogorov-Smirnov distance
Introduction to QMC Sampling: RICAM, March 2021
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Discrepancies
D∗n = sup

a∈[0,1)d

∣∣F̂n([0,a))− F ([0,a))∣∣
Dn = sup

a,b∈[0,1)d

∣∣F̂n([a, b))− F ([a, b))∣∣
D∗n 6 Dn 6 2dD∗n

Lp discrepancies

D∗pn =

(∫
[0,1)d

|δ(a)|p da

)1/p

e.g., Warnock uses p = 2

Also

Discrepancies over (triangles, rotated rectangles, balls · · · convex sets · · · ).
Beck, Chen, Schmidt, Brandolini, Travaglini, Colzani, Gigante, Cools, Pillards

Wrap-around discrepancies Hickernell

Best results are only for axis-aligned hyper-rectangles.

That’s enough for good integration. Introduction to QMC Sampling: RICAM, March 2021
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Discrepancy
Classical field, dates from Weyl (1916)

Recent book:

A Panorama of Discrepancy Theory (2014)

Chen, Srivastav, Travaglini

Chapter 9: Dick & Pillichshammer

Discrepancy and Quasi-Monte Carlo Integration

Discrepancy has beautiful math.

It is fundamental

Computable finite approximations to mathematical problems:

in the continuum

or in combinatorially large settings

Introduction to QMC Sampling: RICAM, March 2021
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QMC’s law of large numbers

1) If f is Riemann integrable on [0, 1]d, and

2) D∗n(x1, . . . ,xn)→ 0

Then

1

n

n∑
i=1

f(xi)→
∫
[0,1]d

f(x) dx

How fast?

MC has the RMSE and central limit theorem.

QMC has the Koksma-Hlawka inequality.

Introduction to QMC Sampling: RICAM, March 2021
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Koksma-Hlawka theorem∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
[0,1)d

f(x) dx

∣∣∣∣∣ 6 D∗n × VHK(f)

VHK is the total variation in the sense of Hardy (1905) and Krause (1903)

Koksma’s inequality

For d = 1 and f ′ continuous

|µ− µ̂| = · · · =
∣∣∣∣∫ 1

0

δ(x)f ′(x) dx

∣∣∣∣ 6 ‖δ‖∞‖f ′‖1 = D∗n × V (f)

V (f) = ‖f ′‖1 =
∫ 1

0
|f ′(x)|dx ordinary total variation

Introduction to QMC Sampling: RICAM, March 2021
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Rates of convergence
Can get D∗n = O

( log(n)d−1
n

)
= o(n−1+ε) any ε > 0.

Then if VHK(f) <∞
|µ̂− µ| = o(n−1+ε) vs Op(n

−1/2) for MC

What about those logs?

Maybe log(n)d−1/n� 1/
√
n

Low effective dimension (later) counters them

As do some randomizations (later)

Roth (1954)

D∗n = o
( log(n)(d−1)/2

n

)
is unattainable

Gap between log(n)(d−1)/2 and log(n)d−1 subject to continued work.

E.g., Lacey, Bilyk

Introduction to QMC Sampling: RICAM, March 2021
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Tight and loose bounds
They are not mutually exclusive.

Koksma-Hlawka is tight

|µ̂− µ| 6 (1− ε)D∗n(x1, . . . ,xn)× VHK(f) fails for some f

Equality for a worst case function, e.g., f ′
.
= ±δ.

Koksma-Hlawka is also very loose

It can greatly over-estimate actual error. Usually δ and f ′ are dissimilar.

µ̂− µ = −〈δ, f ′〉

Like Chebychev’s inequality

Pr
(
|x− E(x)| > k

√
Var(x)

)
6

1

k2

E.g., Pr
(
|N (0, 1)| > 10

)
6 0.01 is loose.

Yes: 1.5× 10−23 6 10−2

Introduction to QMC Sampling: RICAM, March 2021
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Variation
Hardy-Krause variation has surprises for us. O (2005)

f(x1, x2) =

1, x1 + x2 6 1/2

0, else

VHK(f) =∞ on [0, 1]2

VHK(fε) <∞, for some fε with ‖f − fε‖1 < ε

Cusps, kinks, jumps

f(x) = max(θT1x, θ
T
2x)

generally has VHK(f) =∞ with d > 3

QMC-friendly discontinuities

Axis parallel discontinuities may have VHK <∞.

Used by e.g., X. Wang, I. Sloan, Z. He

Introduction to QMC Sampling: RICAM, March 2021
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Next
1) Famous first uses of MC

2) Famous first uses of QMC

3) QMC constructions

Introduction to QMC Sampling: RICAM, March 2021
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Landmark papers in MC
Some landmark papers where Monte Carlo was applied:

• Physics Metropolis et al. (1953)

• Discrete event simulation Tocher & Owen (1960)

• Chemistry (reaction equations) Gillespie (1977)

• Financial valuation Boyle (1977)

• Bootstrap resampling Efron (1979)

• Bayes (maybe 5 landmarks in early days of MCMC)

• Nonsmooth optimization Kirkpatrick et al. (1983)

• Computer graphics (path tracing) Kajiya (1988)

Introduction to QMC Sampling: RICAM, March 2021
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Landmark uses of QMC
• Particle transport methods in physics / medical imaging Jerome Spanier++

• Financial valuation, some early examples Paskov & Traub 1990s

• Graphical rendering Heinrich then Alex Keller++

• Solving PDEs in random environments

Frances Kuo, Dirk Nuyens, Christoph Schwab++, 2015

• Particle methods Chopin & Gerber (2015)

The next landmark methods

Some strong candidate areas:

• machine learning

• Bayes

• uncertainty quantification (UQ)

These areas are already seeing QMC sampling.
Introduction to QMC Sampling: RICAM, March 2021
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Extensibility
For d = 1, the equispaced points xi = (i− 1/2)/n have D∗n =

1

2n
Best possible.

● ● ● ● ●

0 1

But where do we put the n+1’st point?

We cannot get D∗n = O(1/n) along a sequence x1, x2, . . . .

Extensible sequences

Take first n points of x1,x2,x3, . . . ,xn,xn+1,xn+2, . . . .

Then we can get D∗n = O((log n)d/n).

d not d− 1

Introduction to QMC Sampling: RICAM, March 2021
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van der Corput
i φ2(i)

1 1 0.1 1/2 0.5

2 10 0.01 1/4 0.25

3 11 0.11 3/4 0.75

4 100 0.001 1/8 0.125

5 101 0.101 5/8 0.625

6 110 0.011 3/8 0.375

7 111 0.111 7/8 0.875

8 1000 0.0001 1/16 0.0625

9 1001 0.1001 9/16 0.5625

Take xi = φ2(i). Extensible with D∗n = O(log(n)/n).

Commonly xi = φ2(i− 1) starts at x1 = 0. Introduction to QMC Sampling: RICAM, March 2021
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Halton sequences
The van der Corput trick works for any base. Use bases 2, 3, 5, 7, . . .
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864 random points

Halton sequence in the unit square

Via base b digital expansions

i =
K∑
k=0

bkaik → φb(i) ≡
K∑
k=0

b−1−kaik

xi = (φ2(i), φ3(i), . . . , φp(i)) Introduction to QMC Sampling: RICAM, March 2021
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Digital nets
Halton sequences are balanced if n is a multiple of 2a and 3b and 5c . . .

Digital nets use just one base b =⇒ balance all margins equally.

Elementary intervals

Some elementary intervals in base 5

Introduction to QMC Sampling: RICAM, March 2021
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Digital nets
E =

s∏
j=1

[ aj
bkj

aj + 1

bkj

)
, 0 6 aj < bkj

(0,m, s)-net

n = bm points in [0, 1)s. If vol(E) = 1/n then E has one of the n points.

e.g. Faure (1982) points, prime base b > s

(t,m, s)-net

If E deserves bt points it gets bt points. Integer t > 0.

e.g. Sobol’ (1967) and Niederreiter & Xing (1995) points b = 2

Smaller t is better (but a construction might not exist).

minT project

Schürer & Schmid (2006, 2009, 2010) give bounds on t given b, m and s

Monographs

Niederreiter (1992), Dick & Pillichshammer (2010)
Introduction to QMC Sampling: RICAM, March 2021
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Example nets
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A (0,3,2) net
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A (0,4,2) net

Two digital nets in base 5

The (0, 4, 2)-net is a bivariate margin of a (0, 4, 5)-net.

The parent net has 54 = 625 points in [0, 1)5.

It balances 43,750 elementary intervals.

We should remove that diagonal striping artifact (later).
Introduction to QMC Sampling: RICAM, March 2021
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Digital net constructions
Write i =

∑K
k=0 aikb

k (simplest for prime b) and let

xi1 ≡


xi10

xi11
...

xi1K

 =


C

(1)
11 C

(1)
12 . . . C

(1)
1K

C
(1)
21 C

(1)
22 . . . C

(1)
2K

...
...

. . .
...

C
(1)
K1 C

(1)
K2 . . . C

(1)
KK




ai0

ai1
...

aiK

 mod b

Now put xi1 ∈ [0, 1] take xi1 =
∑K
k=0 xi1kb

1−k.

Generally xij = C(j)ai mod b for i = 0, . . . , bm − 1 and j = 1, . . . , s.

Good C(j) give small t.

See Dick & Pillichshammer (2010), Niederreiter (1991)

Finding matrices: L’Ecuyer, Nuyens, Kuo

Computational cost

About the same as a Tausworth random number generator.

Base b = 2 offers some advantages. Introduction to QMC Sampling: RICAM, March 2021
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Extensible nets
Nets can be extended to larger sample sizes.

(t, s)-sequence in base b

Infinite sequence of (t,m, s)-nets.

x1, . . . ,xbm︸ ︷︷ ︸ xbm+1, . . . ,x2bm︸ ︷︷ ︸ · · · xkbm+1, . . . ,x(k+1)bm︸ ︷︷ ︸ · · ·
(t,m, s)−net︸ ︷︷ ︸

1st

(t,m, s)−net︸ ︷︷ ︸
2nd

· · · (t,m, s)−net︸ ︷︷ ︸
b’th︸ ︷︷ ︸

(t,m+1,s)−net

· · ·

And recursively for all m > t.

Examples

Sobol’ b = 2 Faure t = 0 Niederreiter & Xing b = 2 (mostly)

Introduction to QMC Sampling: RICAM, March 2021
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Sobol’ points
Top row: (xi,1, xi,2) Bottom row: (xi,10, xi,11)
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Using ‘direction numbers’ of Kuo and Joe

Introduction to QMC Sampling: RICAM, March 2021



Lecture 1/4: Quasi-Monte Carlo 34

Very simple example

f(x) =

(
d∑
j=1

xj

)2

E(f(x)) =
d2

4
+

d

12
d = 12

Reference lines∝ n−1/2 and n−1, • for n = 2k
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This integrand depends only on one or two inputs at a time.
Introduction to QMC Sampling: RICAM, March 2021



Lecture 1/4: Quasi-Monte Carlo 35

A finance problem
Paskov & Traub considered a financial valuation problem with d = 360

360 monthly interest rate fluctuations

f(x) was value of a tranche of a portfolio of mortgages

No assurance that it would work

Recall Bakhvalov

Also log(n)360/n

is increasing in n until n = e360 ≈ 2.2× 10156

Surprise!

QMC worked very well

Why?

Introduction to QMC Sampling: RICAM, March 2021
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Finance integrand
Figure 4 from Caflisch, Morokoff & O (1997)
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QMC worked ok for d = 360. Better results for other strategies in that paper

Hybrid: 50 QMC and 310 MC

For more hybrids in finance see Del Chicca & Larcher (2014)

Hybrids generally Spanier, Hofer, Niederreiter, Kritzer, Puchhammer ++
Introduction to QMC Sampling: RICAM, March 2021
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What if we succeed for large d?
Sometimes we get high accuracy for large d.

We didn’t beat the curse of dimensionality.

We may have just had an easy, non-worst case function.

Bakhvalov never promised universal failure:

only the existence of hard cases.

Two kinds of easy

• Truncation: only the first s� d components of x matter

• Superposition: the components only matter “s at a time”

Either way

f might not be “fully d-dimensional”.

Introduction to QMC Sampling: RICAM, March 2021
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Studying the good cases
Two main tools to describe it

• Weighted spaces and tractability

• ANOVA and effective dimension

Decompositions

f(x) = feasy(x) + fhard(x)

1

n

n∑
i=1

f(xi) =
1

n

n∑
i=1

feasy(xi) +
1

n

n∑
i=1

fhard(xi)

If we’re lucky then QMC works well on feasy while fhard is tiny.

Introduction to QMC Sampling: RICAM, March 2021



Lecture 1/4: Quasi-Monte Carlo 39

Function decompositions
f(x) = µ+ f1(x1) + f2(x2) + · · ·+ fd(xd)

+ f1,2(x1, x2) + · · ·+ fd−1,d(xd−1, xd)

+ · · ·+ f1,2,...,d(x1, x2, . . . , xd)

There are many decompositions

See Kuo, Sloan, Wasilkowski (2010)

We will look at the “Analysis of variance” (ANOVA)

Hoeffding (1948), Sobol’ (1969), Efron & Stein (1981)

More tersely

f(x) = µ+
d∑
r=1

∑
16j1<j2<···<jr6d

fj1,j2,...,jr (xj1 , . . . , xjr )

Introduction to QMC Sampling: RICAM, March 2021
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Decompositions continued

f(x) = µ+
d∑
r=1

∑
16j1<j2<···<jr6d

fj1,j2,...,jr (xj1 , . . . , xjr )

Write xu = (xj)j∈u E.g. x{1,3,4} = (x1, x3, x4)

Even more tersely

f(x) ≡
∑
u⊆1:d

fu(x)

fu(x) = f(xu)

I.e., fu(x) only depends on xj for j ∈ u

f∅ is constant µ

Introduction to QMC Sampling: RICAM, March 2021
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Nearly additive
Caflisch, Morokoff & O (1997)

Numerical inspection =⇒
99.96% of the variance in the finance function from additive approximation

fadd(x) = µ+
360∑
j=1

fj(xj)

σ2 ≡ Var(f(x)), x ∼ U[0, 1]360

Var(fadd(x))
.
= 0.9996σ2

Var(f(x)− fadd(x))
.
= 0.0004σ2

Additive functions are easy to integrate

They’re essentially one dimensional

Introduction to QMC Sampling: RICAM, March 2021
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K-H on a decomposition

f(x) =
∑
u⊆1:d

fu(xu)

Then

µ̂− µ =
∑
u⊆1:d

(
1

n

n∑
i=1

fu(xi,u)−
∫
fu(xu) dxu

)
|µ̂− µ| 6

∑
u⊆1:d

D∗n(x1,u, . . . ,xn,u)× VHK(fu)

Often D∗n(xi,u)� D∗n(xi) for small |u|. E.g. log(n)|u|−1/n

If also VHK(fu) is small for large u,

then all the terms are small.

Introduction to QMC Sampling: RICAM, March 2021
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Effective dimension
A function might not be “fully d-dimensional”

|u| := cardinality of u

due := max{j ∈ 1:d | j ∈ u}, d∅e = 0

Effective dimension s

Caflisch, Morokoff & O (1997)

σ2
u = Var(fu(x)) under x ∼ U[0, 1]d∑

due6s

σ2
u > 0.99

∑
u⊆1:d

σ2
u truncation sense

∑
|u|6s

σ2
u > 0.99

∑
u⊆1:d

σ2
u superposition sense

Using ANOVA decomp

First QMC paper

Richtmyer (1951) has a truncation version Introduction to QMC Sampling: RICAM, March 2021
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Effective dimension
• Explains in hindsight why QMC worked

• Motivates methods that reduce effective dimension

Find f̃ with E(f̃(x)) = E(f(x)) but f̃ has lower effective dimension

Brownian bridge Moskowitz & Caflisch (1996)

Principal components Ackworth, Broadie & Glasserman (1998)

Adaptive Imai & Tan (2014)

• But when can we expect QMC to work in the future?

Weighted spaces

Function classes F where

f ∈ F =⇒ QMC likely to work

Introduction to QMC Sampling: RICAM, March 2021
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Weighted spaces
Hickernell (1996), Sloan & Wozniakowski (1998)

Then Dick, Kuo, Novak, Wasilkowski many more

Most recently: Kritzer, Pillichshammer & Wasilkowski (2021)

∂u ≡
∏
j∈u

∂

∂xj
assume ∂1:df exists

Inner product, weights γu > 0

Fγ,C = {f | ‖f‖γ 6 C}

‖f‖2γ =
∑
u⊆1:d

1

γu

∫
[0,1]u

∣∣∣∣∫
[0,1]−u

∂uf(x) dx−u

∣∣∣∣2 dxu
How it works

Small γu =⇒ only small ‖∂uf‖ in ball

=⇒ sampling xu well cannot be “important”

So make γu large for small |u| and due Introduction to QMC Sampling: RICAM, March 2021
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Product weights
γu =

∏
j∈u γj where 1 > γj decrease rapidly with j.

Larger |u| =⇒ smaller γu
Increasing due reduces γu

γ{1,3,6} 6 γ{1,3,5}

Now f ∈ Fγ,C implies ∂uf small when |u| large.

Common choices

γj = j−a a ∈ {1, 2}

Non product weights

Many more weight choices: Dick, Kuo, Sloan (2013)

Introduction to QMC Sampling: RICAM, March 2021
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Tractability
Sloan & Wozniakowski (1996) and many more

For f ∈ Fγ,C and n = 0 data · · · guess µ̂0 = 0 Initial error

Err(d, n = 0) = sup
f∈Fγ,C

|µ(f)|

For method µ̂

Err(d, n) ≡ sup
f∈F
|µ̂− µ|

n∗(d, ε) ≡ First n with Err(d, n) 6 ε× Err(d, 0)

Weak tractability

n∗(d, ε) = poly(d, 1/ε)

Strong tractability

n∗(d, ε) = poly(1/ε)
∞∑
j=1

γj <∞ suffices

See Dick, Kuo, Sloan (2013)
Introduction to QMC Sampling: RICAM, March 2021
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Open or partly open problems
• Which weighted space to use?

I.e., how to choose γ?

• By which factor ε should we reduce the initial error?

Does it depend on d?

• ANOVA captures L2 magnitude of fu for small |u| but not their smoothness.

Griebel, Kuo & Sloan (2010) give conditions where low order ANOVA

components are smooth.

Context

We design an algorithm for all f ∈ F
The user may have only one f

or a few or a finite space of them

Introduction to QMC Sampling: RICAM, March 2021
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Choosing γ
Each γ corresponds to a reproducing kernel Hilbert space (RKHS)H = Fγ

The question

Which RKHS should we use in a given problem?

H1 or H2 or · · · or HJ · · ·

1) sometimes f ∈ Hj all j = 1, . . . , J

and f ∈ H1 vsH2 have very different implications

2) sometimes f belongs to none of them.

while |f − f̃ | 6 ε where f̃ ∈ H

Starts

Wang & Sloan have suggestions for finance

Kuo, Schwab +co-authors have suggestions when solving PDEs

Novak told me about ‘fat F problem’ in Wozniakowski (1986) IBC

Introduction to QMC Sampling: RICAM, March 2021
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Uncertainty
Important for µ̂ to be accurate

=⇒ important to measure accuracy

Koksma-Hlawka

Tells us |µ̂− µ| = o(n−1+ε) but misses the lead constant

|µ̂− µ| 6 D∗n × VHK(f) = ?× ??? =????

|µ̂− µ| 6 ε× Err(d, 0) = ε× ???

What we get
VHK(f) <∞ =⇒ |µ̂− µ| <∞
VHK(f) =∞ =⇒ |µ̂− µ| 6∞

Next lecture

Randomized QMC for error estimation

Another approach

GAIL by Hickernell and others
Introduction to QMC Sampling: RICAM, March 2021
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Thanks
• Johannes Kepler Universität Linz

• RICAM: Johann·Radon·Institute for Computational and Applied Mathematics

• MCQMC series & Harald Niederreiter

• U.S. NSF: grants up to and including IIS-1837931

• Invitation: Peter Kritzer, Gerhard Larcher, Lucia Del Chicca

• Introductions: Peter Kritzer, Gerhard larcher, Gunther Leobacher

• Organization: Melanie Traxler

Introduction to QMC Sampling: RICAM, March 2021
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Post presentation
The next three slides were not shown. The first has an open problem about

whether one can construct a persistent fooling function f with ‖f‖HK = 1 for

which |µ̂− µ| > c log(n)d−1/n for all n and some c > 0. Taking xi to be a

given QMC sequence like that of Halton or Sobol’ would be interesting. Finding

that any sequence must have such a fooling function would be more interesting. I

have had email discussions about this but do not yet know the answer. For d = 1

and f(x) = x the van der Corput sequence has error

1/(2n) = O(log(n)d−1/n) at n = 2m. Bad choices of n can make it like

log(n)/n.

After that come slides on lattices and higher order nets.

Introduction to QMC Sampling: RICAM, March 2021
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Open problem
What is the worst case for

lim sup
n→∞

|µ̂− µ| × n

log(n)?

for VHK(f) = 1

Base case

E.g., for xi a Sobol’ sequence

More general

For minimax xi

Discussions with Novak, Hickernell, Nuyens

Introduction to QMC Sampling: RICAM, March 2021
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Lattices
The other main family of QMC points. An extensive literature, e.g., Sloan & Joe,

Kuo, Nuyens, Dick, Cools, Hickernell, Lemieux, L’Ecuyer· · ·
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z = (1,253)

Some lattice rules for n=377

Computation like congruential generators

xi =
( i
n
,
Z2i

n
,
Z3i

n
, . . . ,

Zdi

n

)
(mod 1) Zj ∈ N

chooseZ = (1, Z2, Z3, . . . , Zd) wisely Introduction to QMC Sampling: RICAM, March 2021
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Higher order nets
Results from Dick, Baldeaux

Start with a net zi ∈ [0, 1)2s dimensions.

‘Interleave’ digits of two variables to make a new one:

zi,2j = 0.g1g2g3 · · ·
zi,2j+1 = 0.h1h2h3 · · ·

−→ xi,j = 0.g1h1g2h2g3h3 · · · .

Error is O(n−2+ε) under increased smoothness:
∂2s

∂x21 . . . ∂x
2
d

f

Scrambling gets RMSE O(n−2−1/2+ε)

Even higher

Start with ks dimensions interleave down to s.

Get O(n−k+ε) and O(n−k−1/2+ε) (under still higher smoothness)

Very promising

Cost: many inputs and much smoothness.

Starting to be used in PDEs. Kuo, Nuyens, Scwhab

Introduction to QMC Sampling: RICAM, March 2021


