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These slides are from a series of four lectures given at the Johann Radon Institute

for Computational and Applied Mathematics (RICAM) held on March 24 and

March 25 2021.

It was an honor to be asked to present on quasi-Monte Carlo (QMC) sampling in

Austria, from where so much of QMC comes and has come. The talks were

virtual; I would have otherwise made sure to get some Linzertorte. That will have

to wait.

1. Quasi-Monte Carlo

2. Randomized Quasi-Monte Carlo

3. QMC Beyond the Cube

4. QMC and Variable Importance

A small number of corrections have been made since then.

Introduction to QMC Sampling: RICAM, March 2021
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Quasi-Monte Carlo
Estimate µ =

∫
[0,1]d

f(x) dx by

µ̂ =
1

n

n∑
i=1

f(xi)

getting

|µ̂− µ| 6 D∗n(x1, . . . ,xn)× VHK(f)

with

D∗n(x1, . . . ,xn) = O
( log(n)d−1

n

)
= o(n−1+ε), any ε > 0

Three problems

1) How to estimate |µ̂− µ| for given f and n?

2) What about all those logs?

3) What if VHK(f) =∞?

Introduction to QMC Sampling: RICAM, March 2021
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1
2 of RQMC

I will leave out most of randomized lattice methods

focussing on scrambling of digital constructions

For lattices see works by

Hickernell, Joe, Kritzer, Kuo, L’Ecuyer, Lemieux, Nuyens, Sloan, Tuffin, Ulrich

and many others

Introduction to QMC Sampling: RICAM, March 2021
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Problem 1

Estimating |µ̂− µ|

Introduction to QMC Sampling: RICAM, March 2021



Lecture 2/4: Randomized QMC 6

QMC is deterministic
Repeat f(x1), . . . , f(xn) get same µ̂

|µ̂n − µ̂n/2| might describe accuracy of µ̂n/2

Or it could be too small

Randomized QMC (RQMC)

Inject some randomness into xi

Keeping them at low discrepancy

E.G. P
(
D∗n < B (log(n))d

n

)
= 1

Then do independent repeats

Introduction to QMC Sampling: RICAM, March 2021
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RQMC
1) Make xi ∼ U[0, 1)d individually,

2) keeping D∗n(x1, . . . ,xn) = O(n−1+ε) collectively.

Then

E(f(xi)) =

∫
[0,1]d

f(x) dx = µ

E(µ̂) =
1

n

n∑
i=1

E(f(xi)) = µ

|µ̂− µ| 6 D∗n(x1, . . . ,xn)VHK(f)

Ensure that

D∗n 6 Cn−1+ε with probability 1

Therefore

E((µ̂− µ)2) = O(n−2+2ε)

Introduction to QMC Sampling: RICAM, March 2021
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R independent replicates

µ̂ =
1

R

R∑
r=1

µ̂r

V̂ar(µ̂) =
1

R(R− 1)

R∑
r=1

(µ̂r − µ̂)2

If VHK(f) <∞ then

E((µ̂− µ)2) = O
(n−2+ε

R

)
Random shift Cranley & Patterson (1976)

Scrambled nets O (1995,1997,1998)

Linear scramble Matousek (1998)

Survey in L’Ecuyer & Lemieux (2005)

Introduction to QMC Sampling: RICAM, March 2021
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Rotation modulo 1
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Cranley−Patterson rotation

Shift the points by u ∼ U[0, 1)s with wraparound:

xi → xi + u (mod 1).

Shown for a lattice; can work with nets.

At least it removes x1 = 0:

P(xi = 0) = 0.
Introduction to QMC Sampling: RICAM, March 2021
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Digit scrambling

1) Chop space into b slabs. Shuffle.

2) Repeat within each of b slabs.

3) Then within b2 sub-slabs.

4) Ad infinitum b3, b4, . . .

5) And the same for all s coordinates.

Each xi ∼ U[0, 1)s and

P((x1, . . . ,xn) are a net) = 1 O (1995)

So Niederreiter (1987,1992) still apply

Cheaper scrambles: digital shift and random linear.
Introduction to QMC Sampling: RICAM, March 2021
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Example scrambles
Two components of the first 530 points of a Faure (0, 53)-net in base 53.
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Nested uniform

Randomized Faure points

The digital shift is much like a Cranley-Patterson rotation.

It uses just one random u for all points: x̃i = xi ⊕ u. (bitwise)

Nested linear Matousek (1998) and nested uniform O (1995)

have the same Var(µ̂).

nested linear takes less memory Introduction to QMC Sampling: RICAM, March 2021
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Unscrambled Faure
First n = 112 = 121 points of Faure (0, 11)-net in [0, 1]11.
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Two projections of 121 Faure points

Unscrambled points are very structured.

Scrambling breaks it up.
Introduction to QMC Sampling: RICAM, March 2021
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Confidence intervals
Loh (2003):

central limit theorem for µ̂ when t = 0

µ̂ ≈ N (µ,Var(µ̂))

with nested uniform sampling

RMSE O(n−1+εR−1/2) =⇒ small R popular

The bootstrap t of Efron (1982) gives good confidence intervals for small sample

sizes O (1992)

Introduction to QMC Sampling: RICAM, March 2021
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Problem 2

Those logs
1) present the ANOVA

Hoeffding (1948), Sobol’ (1969), Efron & Stein (1981)

2) describe wavelet expansion

for QMC from O (1997)

3) control the variance

Introduction to QMC Sampling: RICAM, March 2021
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ANOVA Example
f(x1, x2) = 6x1x

2
2

Write it as
∑
u⊆{1,2} fu(x)

fu(x) = fu(xu) xu = (xj)j∈u

Recurse

f∅(x1, x2) =

∫ 1

0

∫ 1

0

6x1x
2
2 dx1 dx2 = 1

f{1}(x1, x2) =

∫ 1

0

(6x1x
2
2 − 1) dx2 = 2x1 − 1

f{2}(x1, x2) =

∫ 1

0

(6x1x
2
2 − 1) dx1 = 3x2

2 − 1

f{1,2}(x1, x2) = 6x1x
2
2 − 1− (2x1 − 1)− (3x2

2 − 1)

= 6x1x
2
2 − 2x1 − 3x2

2 + 1

For f{1,2} integrate over x∅, i.e., no variables

Introduction to QMC Sampling: RICAM, March 2021
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ANOVA decomposition
f(x) =

∑
u⊆1:d

fu(x)

where fu depends on x only through xu = (xj)j∈u.

Don’t attribute to xu what can be explained by xv for v ( u

Typographical conveniences

−u ≡ 1:d \ u − j ≡ −{j} dxu =
∏
j∈u

dxj

Recursive definition

f∅(x) =

∫
[0,1]d

f(x) dx = µ (constant)

f{j}(x) =

∫
[0,1]d−1

(
f(x)− µ

)
dx−j (function of xj )

fu(x) =

∫
[0,1]d−|u|

(
f(x)−

∑
v(u

fv(x)
)

dx−u (function of xu)

Introduction to QMC Sampling: RICAM, March 2021
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ANOVA properties
j ∈ u =⇒

∫ 1

0

fu(x) dxj = 0

u 6= v =⇒
∫

[0,1]d
fu(x)fv(x) dx = 0

Variance components

σ2
u = Var(fu(x)) =

0, u = ∅∫
fu(x)2 dx, else.

Decomposition

f(x) =
∑
u⊆1:d

fu(x)

σ2 = Var(f(x)) =
∑
u⊆1:d

σ2
u

Introduction to QMC Sampling: RICAM, March 2021
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Randomized QMC

µ̂ =
1

n

n∑
i=1

f(xi) =
1

n

n∑
i=1

∑
u⊆1:d

fu(xi) =
∑
u⊆1:d

µ̂u

µ̂u ≡
1

n

n∑
i=1

fu(xi)

For any RQMC method

Var(µ̂) =
∑
u⊆1:d

Var(µ̂u)

O (2019) QMC notes online

Requires

x1j , . . . , xnj uniform and

independent of x1j′ , . . . , xnj′

Introduction to QMC Sampling: RICAM, March 2021
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Elementary intervals

If f is constant with elementary intervals of volume bt−m

then µ̂ = µ

Same if f is a sum of such functions
Introduction to QMC Sampling: RICAM, March 2021
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Wavelet expansion
From O (1997) SINUM

νu,k(x) constant within cells of volume
∏
j∈u b

−kj k ∈ N|u|

fu(x) =
∑

k∈N|u|
νu,k(x) (orthogonal)

Finding

Var(µ̂) =
∑
u⊆1:d

∑
k∈N|u|

Var(µ̂u,k)

µ̂u,k =
1

n

n∑
i=1

νu,k(xi)∑
j∈u

kj 6 m− t =⇒ Var(µ̂u,k) = 0

One can use Walsh functions for digital nets

Dick (2008), Dick & Pillichshammer (2005), Entacher (1997,1998), Larcher &

Pillichshammer (2001), and more Introduction to QMC Sampling: RICAM, March 2021
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Gain coefficients

VarRQMC(µ̂) =
1

n

∑
u

∑
k

Γu,kσ
2
u,k

VarMC(µ̂) =
1

n

∑
u

∑
k

σ2
u,k

For t = 0

Γu,k 6 Γ =
( b

b− 1

)d−1

6 exp(1) ≈ 2.718

NB: When t = 0 we must have b > d

For t > 0

Γu,k 6 Γ = bt
(b+ 1

b− 1

)s
O (1998)

Extends to first λbm points of a (t, s)-sequence in base b 1 6 λ < b

Improved bounds in Niederreiter & Pirsic (2001) Introduction to QMC Sampling: RICAM, March 2021
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Those logs
Let f(x) have variance σ2

Var(µ̂) 6
Γ̄

n
σ2

For finite n

RMSE 6 σ Γ
1/2
n−1/2

Without powers of log(n)

Later

‘smoothness’ yields RMSE = O(n−3/2 log(n)(d−1)/2)

Powers of log(n) can reappear only when they are negligible

Introduction to QMC Sampling: RICAM, March 2021
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Problem 3

What if VHK(f ) =∞?

Introduction to QMC Sampling: RICAM, March 2021
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Converse
Riemann integrable f and D∗n(x1, . . . ,xn)→ 0

=⇒ µ̂n → µ

Less well known

|µ̂n − µ| → 0 whenever D∗n → 0

=⇒ f Riemann integrable Niederreiter (1977)

f not BVHK

1) integrable singularities

Sobol’ (1973), O (2006), Hartinger & Kainhofer (2006), Basu & O (2018)

2) ‘most’ f(x) = 1{x ∈ A} A ⊂ [0, 1]d

He & Wang (2015)

3) f with ‘kinks and jumps’

Sloan, Kuo, Griebel, Griewank

Introduction to QMC Sampling: RICAM, March 2021
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Gains Γu,k → 0

Var(µ̂) =
1

n

∑
u

∑
k

Γu,kσ
2
u,k

lim
n=bm→0

Γu,k = 0

If f ∈ L2[0, 1]d

RMSE(µ̂) = Var(µ̂) = o
( 1

n

)
This covers f(x) = 1{x∈A} for measurable A

Square integrable singularities / kinks / jumps

Introduction to QMC Sampling: RICAM, March 2021
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Laws of large numbers
From O & Rudolf (2020)

f ∈ L1+δ[0, 1]d some δ > 0

Weak law

lim
n=bm→∞

P
(
|µ̂n − µ| > ε

)
= 0

Strong law

P
(

lim sup
n→∞

|µ̂n − µ| > ε
)

= 0, i.e.

P
(

lim
n→∞

µ̂n = µ
)

= 1

Needed by Balandat et al. (2020) for Bayesian optimization in NeurIPS

First prove for f ∈ L2 adapting Etemadi’s (1981) SLLN

then use Riesz-Thorin interpolation

Introduction to QMC Sampling: RICAM, March 2021
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Three problems
We can estimate the error · · · more work needed

For f ∈ L2, RQMC cannot be powers of log n worse than MC

Don’t need f to be BVHK

Introduction to QMC Sampling: RICAM, March 2021
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Smoothness

∂uf(x) =
∏
j∈u

∂

∂xj
f(x) is continuous for all u ⊆ 1:d

Consequence

Var(νu,k) decays quickly with
∑
j∈u kj

Var(µ̂) = O
(
n−3 log(n)d−1

)
Var(µ̂) 6 Γσ2n−1 still holds

O (1997, 2008)

Introduction to QMC Sampling: RICAM, March 2021
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Scrambled net properties
Using σ2 =

∫
(f(x)− µ)2 dx

If Then N.B.

f ∈ L1+δ P(limn→∞ µ̂n = µ) = 1 O & Rudolf (2020)

f ∈ L2 Var(µ̂) = o(1/n) even if VHK(f) =∞
f ∈ L2 Var(µ̂) 6 Γσ2/n if t = 0, Γ 6 e

.
= 2.718

all ∂uf ∈ L2 Var(µ̂) = O(log(n)d−1/n3) O (1997,2008)

Geometrically

Scrambling Faure breaks up the diagonal striping of the nets.

Scrambling Sobol’ points moves the full / empty blocks around.

Introduction to QMC Sampling: RICAM, March 2021
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Scrambling vs shifting
Explanation from Hickernell Consider n = 2m points in [0, 1).

QMC

van der Corput points

• · · · · · · · · · |• · · · · · · · · ·|• · · · · · · · · ·|• · · · · · · · · ·|

Shift

Shift all points by U ∼ U(0, 1) with wraparound.

· · · • · · · · · · |· · · • · · · · · ·|· · · • · · · · · ·|· · · • · · · · · ·|

Scramble

Get a stratified sample, independent xi ∼ U[(i− 1)/n, i/n)

· · · • · · · · · · |· · · · · · · · • ·|· · · · · • · · · ·|· · • · · · · · · ·|

Random errors cancel yielding an O(n−1/2) improvement.Introduction to QMC Sampling: RICAM, March 2021
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New software

Three python language projects were mentioned at MCQMC 2020

• QMCPy Fred Hickernell++

• PyTorch Max Balandat++

• Scipy Pamphile Roy++

Especially scrambled Sobol’

Introduction to QMC Sampling: RICAM, March 2021
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Sobol’
First 8 Sobol’ points in [0, 1]4

0.000 0.000 0.000 0.000

0.500 0.500 0.500 0.500

0.250 0.750 0.750 0.750

0.750 0.250 0.250 0.250

0.125 0.625 0.375 0.125

0.625 0.125 0.875 0.625

0.375 0.375 0.625 0.875

0.875 0.875 0.125 0.375

Many implementations did not like the leading 0 = (0, 0, 0, 0, 0)

They dropped it and used x2, · · · ,x2m+1

starting at (1/2, 1/2, 1/2, 1/2)

This is not a net

Introduction to QMC Sampling: RICAM, March 2021
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Dropping initial point
17 Sobol' points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

17 scrambled Sobol' points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Can worsen the rate of convergence

Introduction to QMC Sampling: RICAM, March 2021
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Just one point
Can make a big difference:

• includes x1 ◦ skips x1

50 100 200 500 1000 2000 5000 20000

1e
−

06
1e

−
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1e
−

04
1e

−
03

1e
−

02

Sum of 5 centered exp(x)

Sample size n
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E

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

Easy function: f(x) =
∑5
j=1(exp(xj)− e+ 1)

Reference lines O(n−1) and O(n−3/2) Introduction to QMC Sampling: RICAM, March 2021
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Reason
|µ̂n − µ| ≈ n−3/2

Changing one point is O(1/n) change

larger than the error

Sobol’ points out that

|µ̂n − µ| 6
C

n
and |µ̂n+1 − µ| 6

C

n+ 1

=⇒
|f(xn+1)− µ| = O

( 1

n

)
Consequences

1) Don’t use n = 10k for a net in base 2

2) Don’t burn in / warm up RQMC

3) Don’t take every k’th RQMC

See O (2020) about “Dropping the first Sobol’ point”
Introduction to QMC Sampling: RICAM, March 2021
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Wing weight function
Surjanovic & Bingham (2013)

0.036S0.758
w W 0.0035

fw

( A

cos2(Λ)

)0.6

q0.006λ0.04
( 100tc

cos(Λ)

)−0.3

(NxWdg)0.49 + SwWp

Variable Range Meaning

Sw [150, 200] wing area (ft2)

Wfw [220, 300] weight of fuel in the wing (lb)

A [6, 10] aspect ratio

Λ [−10, 10] quarter-chord sweep (degrees)

q [16, 45] dynamic pressure at cruise (lb/ft2)

λ [0.5, 1] taper ratio

tc [0.08, 0.18] aerofoil thickness to chord ratio

Nz [2.5, 6] ultimate load factor

Wdg [1700, 2500] flight design gross weight (lb)

Wp [0.025, 0.08] paint weight (lb/ft2)

Introduction to QMC Sampling: RICAM, March 2021
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Wing weight function

50 100 200 500 1000 2000 5000 20000
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Wing weight function

Sample size n
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This function on [a, b] ⊂ R10 has low effective dimension.

We don’t normally want the average weight of a randomly made wing.

This function has physical origin. Introduction to QMC Sampling: RICAM, March 2021
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Accuracy from RQMC
Coordinate projection of a (t,m, d)-net

x1,u,x2,u, . . . ,xn,u ∈ [0, 1]|u| u ⊆ 1:d

It is a (tu,m, |u|)-net with tu 6 t

For Sobol’ and |u| = 1 we get tu = 0

Niederreiter & Pirsic (2001) ‘Microstructure’

Schmid (2001) ‘Projections’

Projection-based bound

Var(µ̂) =
∑
u⊆1:d

Var(µ̂u) 6
1

n

∑
u⊆1:d

Γ̄|u|,mσ
2
u

6
1

n

∑
u⊆1:d

btu
(b+ 1

b− 1

)|u|
σ2
u

6
1

n

∑
u⊆1:d

2tu3|u|σ2
u for b = 2

Favorable cases dominated by σ2
u for small |u|

Introduction to QMC Sampling: RICAM, March 2021
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Rotated lattices
Cannot get Var(µ̂) 6 Γσ2/n for all f ∈ L2

Var(µ̂) = σ2 possible (for adversarial f )

Random shifts do not reduce error by≈ n1/2

See however Kritzer, Kuo, Nuyens, Ullrich (2019) who use random n

No apparent central limit theorem

L’Ecuyer

No strong law of large numbers

(yet)

Introduction to QMC Sampling: RICAM, March 2021
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Challenges
1)

µ =

∫
Ω

f(x) dx Ω 6= [0, 1]d

E.g. triangles, balls, spheres, simplices, Markov chains

2)

sup
x
|f(x)| =∞

Cannot easily get O(n−3/2+ε)

Work in progress with S. Liu

Introduction to QMC Sampling: RICAM, March 2021
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