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These slides are from a series of four lectures given at the Johann Radon Institute

for Computational and Applied Mathematics (RICAM) held on March 24 and

March 25 2021.

It was an honor to be asked to present on quasi-Monte Carlo (QMC) sampling in

Austria, from where so much of QMC comes and has come. The talks were

virtual; I would have otherwise made sure to get some Linzertorte. That will have

to wait.

1. Quasi-Monte Carlo

2. Randomized Quasi-Monte Carlo

3. QMC Beyond the Cube

4. QMC and Variable Importance

A small number of corrections have been made since then.

Introduction to QMC: RICAM, March 2021
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QMC
Estimate µ =

∫
[0,1]d

f(x) dx by µ̂ =
1

n

n∑
i=1

f(xi)

Koksma-Hlawka

|µ̂− µ| 6 D∗n(x1, . . . ,xn)× ‖f‖HK

Discrepancy is with respect to axis-oriented boxes [0,a] or [a, b]

Variation is based on axis-oriented differences of differences

Introduction to QMC: RICAM, March 2021
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Non-cubic domains
µ =

∫
Ω

f(x) dx

Triangle Simplex Cylinder

Disk Sphere Ball Spherical triangle

What axes?

For discrepancy and variation

Cartesian products

Ω =

s∏
j=1

Ωj , Ωj ⊂ Rdj

Disk× Sphere× Sphere× Interval× · · ·× Spherical triangle

Introduction to QMC: RICAM, March 2021
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The cube
“You’ll never get out of the cube.”

The Cube Jim Henson & Jerry Jule (1969)

is a surreal and somewhat grim film about being stuck in a cube.

Other people can get in and out

German version

KUBUS by glassbooth (2008)

Introduction to QMC: RICAM, March 2021
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General measures
D∗n(·;µ) = D∗n(x1, . . . ,xn;µ) is star discrepancy wrt measure µ

Theorem from ‘Gates of Hell’ paper

Aistleitner, Bilyk & Nikolov (2016), For any normalized measure µ on Rd

there exist points with D∗n(·;µ) 6 log(n)d−1/2/n

References from GoH paper

• Aistleitner & Dick (2015)

discrepancy and Koksma-Hlawka for general signed measures.

• Aistleitner & Dick (2014) For any normalized measure µ on [0, 1]d,

D∗n(·;µ) 6 63
√
d
(
2 + log2(n)(3d+1)/2

)
/n.

• Beck (1984) had log(n)2d .

• Götz (2002) first Koksma-Hlawka for general measures.

Introduction to QMC: RICAM, March 2021
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QMC sampling
We emphasize constructions

1) Measure preserving maps from [0, 1]d onto Ω, and

2) Direct constructions, e.g., by recursively partitioning Ω.

Introduction to QMC: RICAM, March 2021
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Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

Introduction to QMC: RICAM, March 2021
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Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

• Non-existence results show that constructions don’t exist.

No! You can’t do that.

Introduction to QMC: RICAM, March 2021
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Existence proofs
For users, they are frustrating.

• Constructions say how to do something.

Yes! You can do this.

• Non-existence results show that constructions don’t exist.

No! You can’t do that.

• Existence proofs show that non-existence proofs don’t exist.

Maybe! Keep looking.

However

They can be interesting, elegant or deep.

(And may hint at constructions.)

Introduction to QMC: RICAM, March 2021
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Non-cubic domains
We want

µ =

∫
Ω

f(x) dx, bounded Ω ⊂ Rd, vol(Ω) = 1

Transformations

For measure preserving τ : [0, 1]s → Ω

µ̂ =
1

n

n∑
i=1

(f ◦ τ)(xi), xi ∈ [0, 1]s

But f ◦ τ might not be well behaved. No problem for MC; challenge for QMC.

Choices for τ
Devroye (1986), Fang & Wang (1994), Pillards & Cools (2005)

Introduction to QMC: RICAM, March 2021
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The triangle
Brandolini, Colzani, Gigante & Travaglini (2013)

• define a ‘trapezoid discrepancy’ in the simplex and a variation

• prove a Koksma-Hlawka inequality

but gave no constructions of points with vanishing discrepancy.

Pillards & Cools (2005)

• lots of measure preserving mappings

• get variation & discrepancy & Koksma-Hlawka

but gave no conditions for vanishing discrepancy of transformed points.

Chen & Travaglini (2013)

prove existence of point sets with vanishing trapezoid discrepancy for the triangle

Introduction to QMC: RICAM, March 2021
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Trapezoid discrepancy
Brandolini et al. (2013,2014)

A C

B

F ELb

La

D

Ta,b,C

a

b

Ω = 4(A,B,C)

Discrepancy for Ta,b,C ∩ Ω

sup over trapezoids

Corresponding variation

Elegant argument · · ·
· · · extends to simplices

Introduction to QMC: RICAM, March 2021
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van der Corput
i φ2(i)

1 1 0.1 1/2 0.5

2 10 0.01 1/4 0.25

3 11 0.11 3/4 0.75

4 100 0.001 1/8 0.125

5 101 0.101 5/8 0.625

6 110 0.011 3/8 0.375

7 111 0.111 7/8 0.875

8 1000 0.0001 1/16 0.0625

9 1001 0.1001 9/16 0.5625

Take xi = φ2(i). Extensible with D∗n = O(log(n)/n).

Commonly xi = φ2(i− 1) starts at x1 = 0. Introduction to QMC: RICAM, March 2021



Lecture 3/4: QMC beyond the cube 15

Triangular van der Corput
For i’th point in T = 4(A,B,C), write

i =

Ki∑
k=1

dk,i4
k−1, dk,i ∈ {0, 1, 2, 3}

Split T into 4 congruent sub-triangles, T (0), T (1), T (2), T (3)

Place xi in T (d1,i)

Recurse
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Construction continued

0

12

3

AB

C

00
01 02

03 10
1112

13

20
2122

23

30
3132

33

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

Corners of the subtriangle

T (d) =



4
(
B+C

2 , A+C
2 , A+B

2

)
, d = 0,

4
(
A, A+B

2 , A+C
2

)
, d = 1,

4
(
A+B

2 , B, B+C
2

)
, d = 2,

4
(
A+C

2 , B+C
2 , C

)
, d = 3.

Introduction to QMC: RICAM, March 2021
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For n = 4k

Lb

La

Lb

La

Lb

Lb

LaLa

• n subtriangles, 1 point each

• all discrepancy from within shaded

triangles

• enumerate all possibilities

• upright vs inverted are different

Introduction to QMC: RICAM, March 2021
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Results
Let DP

n be (anchored) parallelogram discrepancy.

First n = 4k points

DP
n =

 7
9 , n = 1

2
3
√
n
− 1

9n else

Any consecutive n = 4k points

DP
n 6

2√
n
− 1

n

First n points

DP
n 6

12√
n

Basu & O (2015)

This rate is not optimal

Introduction to QMC: RICAM, March 2021
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Kronecker lattice in the triangle
Basu & O (2015)
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1) Place a square grid in R2

2) Rotate it α radians

3) Intersect with right triangle

4) Linear map to desired4

Critical: choose good α
Introduction to QMC: RICAM, March 2021
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Kronecker continued
θ ∈ R is badly approximable if there exists c > 0 with

dist(nθ,Z) > c/n, ∀n ∈ N

Quadratic irrationals θ = (a+ b
√
c)/d are badly approximable.

Here a, b, c, d ∈ Z, b, d 6= 0, square free c > 1

Chen & Travaglini (2007) There exist points with

Polygon discrepancy = O(log(n)/n)

Basu & O (2015) For trapezoids:

rotate a grid by α radians where tan(α) is a quadratic irrational.

E.g., for α = 3π/8, tan(α) = 1 +
√

2

Introduction to QMC: RICAM, March 2021
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Triangular Kronecker
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Triangular lattice points

X X X X

A grid with a ‘Kronecker rotation’ gets DP
n = O(log(n)/n). Basu & O (2015)

This is the best possible rate. Chen & Travaglini (2013)

Generalization

Hexagon = six triangles, et cetera

Very unlikely to generalize to higher dimensional simplices or Cartesian products

of simplices. (D. Bilyk personal communication) Introduction to QMC: RICAM, March 2021
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Geometric van der Corput
Map i = 1, 2, 3, . . . into xi ∈ Ω.

• replace triangle by more general set Ω

• split Ω into b equal volumes

• recursively

Introduction to QMC: RICAM, March 2021
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Splits of a triangle

A B

C

0

a

b c

1 a

b

c

b = 2

A B

C

0
a

b

c

1

a

b c

2
a

b

c

b = 3

A B

C

0

ab

c
1

a b

c

2
a b

c

3
a b

c

b = 4

The triangle can be recursively split 2-fold, 3-fold or 4-fold.

This allows digital constructions in those bases.

Introduction to QMC: RICAM, March 2021
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Not all splits work well
26 Decomposition 33 Decomposition 43 Decomposition

The base 3 split leads to very unfavorable aspect ratios.

The regions do not ‘converge nicely’ to a point.

E.g., Stromberg (1994) defines ‘converge nicely’

(Bounded aspect ratios.)

Introduction to QMC: RICAM, March 2021
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Splits don’t have to be congruent

• Mix ‘arc splits’ and ‘radial splits’ to keep aspect ratio bounded

• Not a global alternation; different cells get different splits

Basu & O (2015)

See Beckers & Beckers (2012) for non-recursive splits
Introduction to QMC: RICAM, March 2021
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Tetrahedron
• chop off 4 tetrahedral corners

• remaining volume makes 4 more

• but they’re not congruent to first 4

• binary splits may be better (split a longest edge)

Image: By Tomruen - Own work, CC BY-SA 3.0, wikipedia
Introduction to QMC: RICAM, March 2021
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Spherical triangles
• 4 way split at arc midpoints · · · not equal area

• 4 way equal area split of Song, Kimerling, Sahr (2002) uses ‘small circle’

boundaries, not great circles

• binary splits may be better · · · use first step in Arvo (1995)

Arvo’s work underlies much of modern movies and computer games

More about Arvo

Arvo shows how to pick D so

vol(ABD)

vol(ABC)
= u

We can use u = 1/2.

Image by Peter Mercator - Own work, CC BY-SA 3.0, Wikipedia
Introduction to QMC: RICAM, March 2021
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Geometric nets
We want points in Ωs for Ω ⊂ Rd

E.g., light path

camera→4→4→4→ · · · → 4 → light source

Use digital nets

A (t,m, s)-net, b = 4 or b = 2, puts xi ∈ 4s (componentwise)

Use other partitions

Other b-fold equal area recursive partitions can be used for Ω 6= 4

Scramble the nets

Unbiasedness and error cancellation benefits under smoothness.

Introduction to QMC: RICAM, March 2021
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More generally

Ω =
s∏
j=1

Ωj , Ωj ⊂ Rdj

τj : [0, 1]→ Ωj digital map, base b

Take ui = (ui1, . . . , uis) ∈ [0, 1]s,

(t,m, s)-net or (t, s)-sequence in base b.

Componentwise map: xi = τ(ui)

xi = (xi1, . . . , xis)

xij = τj(uij)

Introduction to QMC: RICAM, March 2021
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Scrambled geometric nets
Take vol(Ωj) = 1 and Ω =

∏s
j=1 Ωj and let

µ =

∫
Ω

f(x) dx, µ̂ =
1

n

n∑
i=1

f(xi)

where xi are scrambled geometric nets.

For f ∈ L2(Ω)

E(µ̂) = µ Var(µ̂) = o
( 1

n

)
Var(µ̂) 6 Γ× σ2

n

where σ2 =
∫

Ω
(f(x)− µ)2 dx, and

Γ is the largest gain coefficient of the (t,m, s)-net

E.g., t = 0 implies Γ 6 exp(1)
.
= 2.718

Introduction to QMC: RICAM, March 2021
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Convergence rates
µ =

∫
Ω
f(x) dx, Ω = X s, X ⊂ Rd

For smooth f , nested uniform scrambled nets and nice partitions

Var(µ̂) = O
( (log n)s−1

n1+2/d

)
Basu & O (2017)

Using smoothness of f and ‘hole free’ Sobol’ extensibility condition on X ’s

Note

Effect of d more critical than s

Additionally

Central limit when t = 0 Basu & Mukherjee (2017)

Tractability over products of simplices Basu (2015)

Strong law of large numbers O & Rudolf (2020)

Introduction to QMC: RICAM, March 2021
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Transformations
Let τ transform U[0, 1]m into U(Ω).

∫
Ω

f(x) dx =

∫
[0,1]m

(f ◦ τ)(u) du

We want f ◦ τ ∈ BVHK for QMC and mixed partials in L2 for RQMC

BVHK compositions

For f ◦ τ : R→ R→ R:

f ∈ Lipschitz, τ ∈ BV =⇒ f ◦ τ ∈ BV. Josephy (1981)

No such simple rule in higher dimensions.

Variation is bounded via integrated absolute mixed partials.

So we study derivatives of f(τ(u)).

Introduction to QMC: RICAM, March 2021
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Faà di Bruno
Derivatives of composite functions, R→ R→ R
Faà di Bruno (1855,1857), Arbogast (1800)

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

h′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)

h′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) + f ′(g(x))g′′′(x)

Our map is

RD → Rd → R
which has many more terms

Constantine & Savits (1996) give a general Faà di Bruno theorem

Basu & O (2016) simplify it for

∂u(f ◦ τ), u ⊆ {1, . . . , D}
i.e., differentiate at most once wrt each xj

Allows tests of BVHK. Introduction to QMC: RICAM, March 2021
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Some mappings
The following mappings work well for MC, but not QMC

Triangle T2 ⊂ R3

u ∈ [0, 1]3, xj = τj(u) =
log(uj)∑3
i=1 log(ui)

x ∼ U(T2)

Even xj(u) 6∈ BVHK([0, 1]3).

Sphere Sd−1 ⊂ Rd

xj = τj(u) =
Φ−1(uj)√∑d
i=1 Φ−1(ui)2

, x ∼ U(Sd−1)

Again, xj(u) 6∈ BVHK([0, 1]d).

Introduction to QMC: RICAM, March 2021
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BVHK compositions
For u ∈ [0, 1]D and

f(τ1(u), . . . , τd(u))

If these hold

1) ∂vτj(uv:1−v) ∈ Lpj ([0, 1]|v|), pj ∈ [1,∞] v ⊆ {1, 2, . . . , D}

2)
∑d
j=1 1/pj 6 1

3) f ∈ C(d)(Rd)

Then

f ◦ τ ∈ BVHK
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RQMC smooth
1) ∂vτj ∈ Lpj ([0, 1]D), pj ∈ [2,∞], and

2)
∑d
j=1 1/pj 6 1/2

3) f ∈ C(d)(Rd)

make f ◦ τ smooth enough for RMSE= O(n−3/2+ε) under RQMC.

f ∈ C(d) can be weakened if pj are increased

Introduction to QMC: RICAM, March 2021



Lecture 3/4: QMC beyond the cube 37

Fang & Wang (1993)
Three mappings to a simplex, one to the sphere, and one to a ball.

Example

Ad = {(x1, . . . , xd) | 0 6 x1 6 x2 6 · · · 6 xd 6 1}

Transformation

x1 = τ1(u) = u1

x2 = τ2(u) = u1 × u1/2
2

x3 = τ3(u) = u1 × u1/2
2 × u1/3

3

...

xd = τd(u) = u1 × u1/2
2 × u1/3

3 × · · · × u1/d
d
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Results

All five Fang & Wang mappings τ are in BVHK.

So composing with f has a chance.

None of them yield τ with mixed partials in L2.

So no RMSE = O(n−3+ε).

Still have

RMSE = o(1/n) and RMSE 6 Γσ2/n
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Markov chains
Sometimes no known transformation yields

ψ(x) ∼ p for x ∼ U[0, 1]d

Markov chain Monte Carlo

xi = φ(xi−1,ui), ui ∼ U[0, 1]d

xi
d→ p as i→∞

Estimate

µ̂ =
1

n

n∑
i=1

f(xi)

µ̂ =
1

n

b+n∑
i=b+1

f(xi) burn-in

µ̂ =
1

n

n∑
i=1

f(xk×i) thinningIntroduction to QMC: RICAM, March 2021
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What about QMC for MCMC?
We need a stream u1,u2,u3, · · · ∈ [0, 1]d

v1, v2, . . . , vd︸ ︷︷ ︸
u1

vd+1, vd+2, . . . , v2d︸ ︷︷ ︸
u2

· · · v(n−1)d+1, v(n−1)d+2, . . . , vnd︸ ︷︷ ︸
un

Now we need a “driving sequence” v1, v2, · · · ∈ [0, 1]

Completely uniformly distributed

D∗n

(
(v1, . . . , vs), (v2, . . . , vs+1), · · · (vN , . . . , vN+s)

)
→ 0 all s > 1

Not just s = d
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