QMC and Variable Importance

Art B. Owen

Stanford University



These slides are from a series of four lectures given at the Johann Radon Institute for
Computational and Applied Mathematics (RICAM) held on March 24 and March 25 2021.

It was an honor to be asked to present on quasi-Monte Carlo (QMC) sampling in Austria, from
where so much of QMC comes and has come. The talks were virtual; | would have otherwise

made sure to get some Linzertorte. That will have to wait.

1. Quasi-Monte Carlo

2. Randomized Quasi-Monte Carlo
3. QMC Beyond the Cube

4. QMC and Variable Importance

A small number of corrections have been made since then.



Black box functions

y = f(x), where
d
w:(ajl,xg,...,a:d)EXQHXj
j=1

Questions

® How important is x;?

® How important is x,, for u C 1:d?

Context

Models in science and engineering:

semiconductors, aerospace, malaria control, climate models, - - -
Black box predictions:

Al / machine learning
Quasi-Monte Carlo

Effective dimension



What is importance?

A variable is important if changing it changes something else that is important.

Local sensitivity
%,

—f(xg)  etcetera

6’33j

Global sensitivity

Make random changes to @,, keeping * _,, fixed

study E((f(x) — f(z'))?)

where x, # x, andx_, = x’_,
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Global sensitivity analysis

Global: consider all x not just focal
potentially all ' # x not just local

Some references

For books giving context and uses see:

Fang, Li & Sudijanto (2010), Saltelli, Chan & Scott (2009), Saltelli, Ratto & Andres (2008),
Cacuci, lonescu-Bujor & Navon (2005), Saltelli, Tarantola & Campolongo (2004), Santner,
Williams & Notz (2003)

Many scientific communities participate, many terms:

FANOVA DACE FAST SAMO MASCOT UCM HDMR NPUA uQ

Major survey paper

Razavi et al. (2021) 26 authors
Environmental Modelling and Software

Introduction to QMC Sampling: RICAM, March 2021



Outline

1) ANOVA and notation

2) Sobol’ indices and mean dimension
Mean dimension of a neural network

4
S

)
)
3) Mean dimension of ridge functions
)
)

Shapley value



ANOVA for L?[0, 1]¢

Origins: Hoeffding (1948) Sobol’ (1969) Efron & Stein (1981)

Notation
Foru C 1:d={1,...,d}
lu| = card(u)

—u=u‘={1,2,...,d} —u

Ifu={j1,72, -, Jju|} then @y, = (Tj,,...,2;, )and dz, = Hje,u dz;

Decomposition
uCl:d

fu(x) only depends on x; for j € wu.



Independence is critical
Uniformity is not

ANOVA properties

1
jEuj/Ofu(a:)dxj:O
uFv = /fu(a:)fv(a:)da::()

Variances

0 u=g.

2 5(f){ffu<w> do u+ o

General 1?2



Sobol’ indices

Li = Z 03 v contained in u Sobol’ (1993)
vCu

7,3 = Z 05 v ‘touches’ u Homma & Saltelli (1996)
vNuF#LJ

2

Large 7,

means x,, important

Small ?3 means &,, unimportant can be frozen Sobol

Normalization

2 2
and —% are like R? measures for x,,

0-2

1~



Examples

d=4andu = {1,2}

Tley = 0(1y +0{ay + 012

Tl = 0{1y +0(2y T 001y
+0{15p +0l1ay T 0l T 0oy
+ {154yt 0{234) T 0123 T 0124

2
T 011,2,3,4}

|dentity

2 | =2 __ 2
T, TT_,=0O

10
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Variance explained

T,, Is the variance ‘explained by’ x,,

For j € v, fo fo(x

)dx,; = 0. (*)

As a Sobol’ index

Var(E(f() | .,)) Var(va )=Zﬁ

vCu vCu
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Hybrid points
Yy = x,:z2_, means
Tj, JEU

Y; = _

Example

z = (0.1,0.2,0.3,0.4,0.5, 0.6)
z = (0.9,0.8,0.7,0.6,0.5,0.4)
33{1’2,4’5}32{3,6} = (01, 02, 07, 04, 05, 04)

Glue

. is a ‘glue operator’.
We glue @, to z_, togetx,:z_, € [0, 1]d

12



For z, 2 »9 ulo, 1]¢

From Sobol’ (1993)

An identity

vCl1l:d

Z E(fo(x)fo(xy:z_y))  lineintegral on z;
Z E(f,(x)?) f» does not depend on z_,,
vCu

p* +

13



Pick and freeze methods

Evaluate f at two points:

Freeze: keep some components e.g., T, — Ty,

Pick: change the others g, LT _y — Z_y
|dentities
= /f(a:)f(azu:z_u) dedz — p? Sobol’ (1993)
1
— 5 /((f(:l:) — f(®_y:2zy))?dedz  Jansen (1999)

Use MC, QMC, RQMC
There are many such identities

Like tomography

global integrals reveal internal structure
we don’t have to estimate any f,,

14



Mean dimension
2
o
v(f) =3 lul7s
Low mean dimension = f dominated by low dimensional aspects

Identity from Liu & O (2006)

Answer from 2¢ variance components equals
sum of d Sobol’ indices

15



Example

Kuo, Schwab, Sloan (2011)
1

= -, x ~ U[0,1]°%
1 +Z?io1 zj/J!

f(z)

Find numerically that

1.00356 < v(f) < 1.00684  (99% confidence)

vs effective dimension

1) easier to compute
2) not defined via 0.99 or other threshold

3) not restricted to integer values

16



Ridge functions
f(x) =g(0"x), x,0 € RY

More generally

flx)=g(©"'x), =R’
O e R r<d
g:R" >R

We're interested in

r<Ld

Normalization
O'e=1, 6#'6=1

17
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Ridge functions and QMC

1) P. Constantine (2015) ridge functions are ubiquitous in physical sciences and
engineering (active subspaces)

2) Integrands that are dominated by low dimensional aspects are favorable for QMC

3) Smooth ridge functions are dominated by low dimensional aspects

Therefore

QMC should often be very effective in the physical sciences

Finer print
1) usually f(x) ~ g(©Tx)

2) the low dimensional parts ought to be regular
Commonly true Griebel, Kuo, Sloan (2013, 2017)

3) we use mean dimension



Spoiler
Sometimes mean dim is O(1) as d — o
Sometimes mean dim is O(v/d) as d — o

What matters

1) smoothness of g(+)

2) sparsity of 6 or ©

19



Gaussian setting

r~N0,I;)) = 2z=0"z~N(0,1,)
— z=0"z ~N(0,1)

Moments
Let p() be N (0, I) density

4= / 9(@Te)eu()dz = | g()en(2)dz

0% = /Rd (9(0T@) — 1) pa(x) dz =

Monte Carlo rate independent of d

| (02) =) er(z)az

20
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One dimensional ridge functions

z~N(0,I) f(z) zg(—ij) =g(N(0,1)) 0=—=

Examples of g(z)

15

1.0

9(2)

0.0
I




Smooth g

1 d
f(z) = g ﬁ;xj g<z>=<1><z—t>=/_oo

g(z) =Phi(z-t)fort=0,1, 2

p(y) dy
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Nominal dimension

Rand. Sobol’ points on Sobol’ index n = 2'4; 5 repeats.

1 <logy(d) <35 75 allthe same
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Nominal dimension

Via randomized Sobol' n = 219; 5 repeats.
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Puzzler

Is a kink like a step or like ®(z — t)?
Infinite Hardy-Krause variation like the step
Has weak derivative like ®(z — t)

Kink is a once integrated step
see Griewank, Kuo, Ledvey & Sloan (2018)

For jump or kink: f,, is smooth for |u| < d
Griebel, Kuo & Sloan (2013, 2017)

24



Mean dimension

4.0

25 3.0

2.0

1.5

1.0

Kink ¢

|
f(x)=g 77 ;xj g(z) = max(z — t,0)

Kinksatt=2, 0, -2
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[ [ [ [
1e+00 1le+03 1le+06 1le+09

Nominal dimension
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Theorem

Theorem 3.1 of Hoyt & O (2020) upper bound for v( f) when
f(x) = g(x"O) and g(-) is Hélder o

Lipschitz corollary
If f(x) = g(O©Tx) for & ~ N(0, Iz) with ©T© = I, then
02
v(f) <rx ps)
where g is Lipschitz C' with 0% = Var(f(x)) = Var(g(z)).

r = 1 corollary
Ford>r=1and|g(z) —g(2')| < Clz-2']|* 0<a<1
v(f)=0(d"~)

Implied constants in Hoyt & O (2020)
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Mean dimension of a neural network

Paper is Hoyt & O (2021)
Journal of Uncertainty Quantification

Theorem is about how to compute
Z {5}

efficiently handling O(d?) correlations
Variant of Winding stairs works best
Jansen, Rossing, Daamen (1994)

Example

Mean dimension of a neural network on 28 X 28 = 768 pixels

27



MNIST data

Digits 0, 1, ..., 9in 28 x 28 gray level images
70,000 images from LeCun

Neural net architecture from Yalcin (2018)

Second last layer produces go(x), g2(x), . . ., go().

Last layer (softmax) is
exp(gy(x))

) = >0y explg;())

Mean dimension

The g; had modest mean dimension
The f; not so much

Problem

Very unrealistic independence models on the 768 pixel values

28
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Independent pixel distributions

Binary Uniform Bootstrapping All Bootstrapping 75 True sample
u

From left to right
U/{o, 1}768
U0, 1]768
resample pixels independently from data
resample pixels (one class)
Example image



v( fy) with softmax

30

Samp. 0 1 2 3 4 5 6 7 8 9
binary | 11.07  936.04 1043 992 1869 1022 1327 13.37 867 16.54
unif. | 6.92 4,10899 728 660 990 7.03 692 803 561 948
comb. | 8.77 468 406 395 456 511  7.62 462 3.43  7.39
0| 352 6.81 348 720 656 578 754 467 404  9.08

1| 36.12 288 600 343 775 376 874 760 283 558

2 | 10.03 3.86 368 470 823 1227 1257 720 431 17.23

3 | 23.20 469 595 410 696 672 1363 7.10 442  9.00

4| 7.42 839 759 996 381 763 857 535 3.86 6.82

5| 812 477 572 482 560 348 761 728 354 7.87

6| 922 565 436 652 431 667 357 643 428 11.99

7 | 857 585 442 409 466 509 359 359 429 558

8 | 19.58 6.06 454 477 821 628 1315 672 420 10.11

9| 747 700 525 496 315 452 734 374 292  3.48




V/(gy) without softmax

Samp. | 0 1 2 3 4 5 6 7 8 9
binary | 1.66 1.76 174 172 173 179 175 169 174 1.79
unif. | 1.65 162 166 166 167 171 171 161 168 1.70
comb. | 1.79 177 170 173 1.73 1.90 1.88 1.78 1.90 1.89
0192 165 168 169 165 1.80 186 156 1.68 1.81
1148 156 135 161 1.62 157 149 142 156 1.50

2| 155 166 162 174 157 172 167 161 178 159
3|156 165 159 158 163 1.85 159 164 1.67 1.66
41187 162 161 155 170 175 176 166 157 1.78
5171 160 159 1.63 172 178 174 162 176 1.90

6| 165 160 160 1.66 168 170 165 160 1.54 1.63
71173 159 161 163 160 162 165 157 159 1.63
8173 165 160 164 166 178 175 164 1.84 1.75
9|18 168 161 163 173 180 186 167 1.69 1.82
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Pixel importance maps

Functions are g,, for predicting Y = y
Map shows f? for 786 pixels §

Larger = brighter

Resampling pixels from y = 0 images

77 Values (Bootstrapping 0s, no Softmax)

0 prediction 1 prediction 2 prediction 3 prediction 4 prediction

5 prediction 6 prediction 7 prediction 8 prediction 9 prediction

32



Next topic:

Shapley value

1) connects to Sobol’ indices

2) bridge to variable importance in machine learning

33



15 million Euros

Shapley’s (1953) value can be used to quantify the contribution of members to a team.
We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team  Output value in €

%) 0
A 4,000,000
B 4,000,000
C 4,000,000
A,B 9,000,000
AC 10,000,000
B,C 11,000,000
A,B,C 15,000,000

Q: How should we split the €15,000,000 earned by A, B, C among them?



15 million Euros

Shapley’s (1953) value can be used to quantify the contribution of members to a team.

We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team  Output value in €

%) 0
A 4,000,000
B 4,000,000
C 4,000,000
A,B 9,000,000
AC 10,000,000
B,C 11,000,000
A,B,C 15,000,000

Q: How should we split the €15,000,000 earned by A, B, C among them?
A: Shapley says: A gets €4,500,000, B gets€5,000,000, C gets €5,500,000
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Shapley setup

Letteam u C 1:d = {1,2,...,d} create value val(u).
Total value is val(1:d).
We attribute ¢; of thisto 7 € 1:d.

Shapley axioms

Efficiency Y0 ¢; = val(1:d)
Dummy If val(u U {i}) = val(u), all u then ¢; = 0
Symmetry Ifval(u U {i}) =val(uU {j}), al uN{z,j} = & then ¢, = ¢,

Additivity  If games val, val’ have values ¢, ¢’ then val 4 val’ has value ¢, + (b;-

Shapley (1953) shows there is a unique solution.
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Shapley’s solution

Lettingu +j =u U {j}

b; = % S (d B 1>1(val(u + ) — val(u)

Weighted average of value increments from 7

37



For variable importance

Let variables x1, T2, ..., T4 be team members trying to explain f.
The value of any subset u is how much can be explained by x,,.
Choose val(u) =12 = > ., 02

Shapley value

1 d—1\""

uC—{j}

38



After some algebra
= > |u| o2 0 (2013)

u:JeEU

Shapley shares 03 equally among all 5 € w.
There seem to be no nice estimation identities like Sobol’s.

Bracketing

2 —2
Ty S 5 ST

39



Shapley

Song, Nelson & Staum (2016) advocate Shapley for dependent case
where ANOVA is problematic

® Computation is a challenge.
® They present an approach.

® Apply it to some real-world problems.

O & Prieur (2016)

® Verify that it handles dependence well

® QGive special cases / properties



Shapley value for explainable Al

Why was target subject ¢
® denied a loan?
® sent to the emergency room?
® predicted to commit a crime?

Lundberg & Lee and Najmi & Sundararajan look at f (¢ :2—y,)
for a baseline value suchas z = (1/n) Y " | «;

Shapley value for variable 7 via
val(u) = f(xtu:z—u) — f(2)
val(l:d) = f(x:) — f(2)

41



Cohort Shapley

Mase, O, Seiler (2020) don't like physically impossible combinations
Birth date after graduation

or logically impossible ones
Patient’s maximum O+9 below average O5

Cohort

C't v, subjects ¢ with T; ,, = T 4,
possibly rounding continuous ; ;
val(u) = Average f(x;) fori € Cy .,

Important variables move the average subject predictions towards the target subject

Connection to QMC world

We make use of the anchored decomposition
alternative to ANOVA
See Kuo, Sloan, Wasilkowski, Wozniakowski (2010)
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Some support from Hitachi, Ltd.
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The next two backup slides did not get presented.
One shows mean dimension of a famous QMC integrand due to Keister.

Another describes how a pre-integration method of Griewank, Kuo, Ledvey & Sloan (2018) can
reduce mean dimension from O(~+/d) to O(1).
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Keister function

f@) = cos(2). 2~ N0, 1
Hoyt & O (in preparation)

Keister's function: mean dimension vs nominal

Mean dim

1.0 12 14 16 1.8 20

Square root of d

|| . vd 1
R L AN =, =) forl
eason 9 N 9 y or arged



Preintegration

Integrate out one of the d variables

Griewank, Kuo, Ledvey, Sloan (2018)

~

o
flo) = filw) = [ F@)p(an) o,
— 00
Handle x, in closed form or by quadrature

Consequences
f(x) = §(0Tx) is also a ridge function
Can get g(-) Lipschitz when g(-) is not. E.g. step function

Can even get

Good to pre-integrate for { = arg max; |6;]|.
Hoyt & O (2020)
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