Problem: On the convexity of zeta functions

Cooperation workshop (online)

Linz, January 22, 2021

Notation

We consider the following Dirichlet series:

$$\psi(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for which we assume that the coefficients $a_n \ge 0$ for $n \ge 1$ and the series is uniformly convergent for s > 1.

In this class we can find the Riemann zeta-function

$$\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s},$$

and the Lambda function

$$\lambda(s) := \sum_{n=0}^{\infty} \frac{1}{(2n+1)^s}.$$

Notation: Convexity and Concavity of f

Definition

• A function *f* is **convex** if

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

holds for all x, y in the domain of f and for all non-negative α , β with $\alpha + \beta = 1$.

• The function f is **concave** if

$$f(\alpha x + \beta y) \ge \alpha f(x) + \beta f(y).$$

 Also f is strictly convex (or strictly concave) if equality is possible only when α = 0, β = 0 or x = y.

イロト 不得下 イヨト イヨト

Concavity of the function $1/\psi(s)$

Cerone and Dragomir (2009)

Find Dirichlet series ψ with non-negative coefficients which has the property that the function $1/\psi$ is concave where it is defined.

Cerone and Dragomir (2009)

Consider the Dirichlet series $\psi(s) = \sum_{n \ge 1} a_n / n^s$, the following statements are equivalent:

- the function $1/\psi$ is a concave on $(1,\infty),$
- for any $s_1, s_2 > 1$, and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$, we have

$$\psi(\alpha s_1 + \beta s_2) \leq \frac{\psi(s_1)\psi(s_2)}{\alpha\psi(s_1) + \beta\psi(s_2)}.$$

• for any s > 1, we have

$$\psi^{''}(s)\psi(s)\geq 2(\psi^{'}(s))^2$$

Cerone and Dragomir (2009)

The function $1/\zeta(s)$ is concave on the interval $[\zeta^{-1}(e), \infty)$, where ζ^{-1} denotes the inverse function of ζ and

 $\zeta^{-1}(e) \simeq 1.474464287.$

Conjecture: Cerone and Dragomir (2009)

The function $1/\zeta(s)$ is concave on the whole interval $(1,\infty)$,

イロト 不得 トイヨト イヨト 二日

Concavity of the function $1/\zeta(s)$

Alkan (2019)

The function $1/\zeta(s)$ is strictly concave on the interval $(1,\infty)$.

Alkan (2020)

The function $1/\zeta(s)$ is strictly concave for $s \ge 0.22$.

Remark

 \bullet The strict concavity of $1/\zeta$ is seen to be consequence of

$$\zeta^{''}(s)\zeta(s)-2(\zeta^{'}(s))^2>0, \hspace{1em}$$
 on the interval $(1,\infty).$

The function 1/ζ is strict concave if and only if d²/ds² (1/ζ(s)) < 0.
We have

$$\zeta^{''}(s)\zeta(s) - 2(\zeta^{'}(s))^2 = rac{2\gamma}{(s-1)^3} + O\left(rac{1}{(s-1)^2}
ight)$$

Our suggestion

Find the best value of c such that the function $1/\zeta$ is strictly concave for $s\geq c.$

(日) (同) (三) (三)

- E. Alkan, Biased behavior of weighted Mertens sums, Int. J. Number Theory 16 (2020) pp. 547–577.
- E. Alkan, Resolution of a conjecture on the convexity of zeta functions, J. Math. Anal. Appl. 472 (2019) pp. 1987–2016.
- P. Cerone and S. S. Dragomir, Some convexity properties of Dirichlet series with positive terms, *Math. Nachr.* 282 (2009) pp. 964–975.