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Overview

My goal in this talk is to explain two sum rules in the
spectral theory of orthogonal polynomials, one of which I
was involved with about 20 years ago. I will then describe
the original method of proof exploiting methods of complex
analysis. We’ll see various functions that arise in that
approach seem ad hoc and mysterious. Finally I’ll explain a
more recent approach of some probabilists that obtains the
result using the method of large deviations for some
standard random matrix models. This new approach will
explain what the previously ad hoc functions are and take
the mystery away. It will expose interesting new connections
between random matrix theory and the spectral theory of
orthogonal polynomials.
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Szegő Recursion and Verblunsky
Coefficients

We start with orthogonal polynomials on the unit circle, aka
OPUC. Let dµ be a probability measure on ∂D. Then, there
are monic orthogonal polynomials, Φn, and recursion
relations due to Szegő in 1939

Φn+1(z) = zΦn(z)− αnΦ∗n(z)

where Φ∗n is the polynomial obtained by conjugating and
reversing the order of the coefficients. The {αn}∞n=0, called
Verblunsky coefficients, lie in D and there is a one-one
correspondence, called the Verblunsky map, from measures
of infinite support and sequences in D. For measures with
exactly n pure points, there are only n non–trivial OPs, and
n α’s. αn−1 ∈ ∂D. One has ‖Φk‖ = ρ0 . . . ρk−1 where
ρj =

√
1− |αj |2 which explains why in the n–point case

where ‖Φn‖ = 0 we have |αn−1| = 1. For this set of n
point measures, the set of measures and the set of
Verblunsky coefficients is 2n− 1 (real) dimensional.
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Szegő’s Theorem: Toeplitz version

Szegő’s Theorem concerns probability measures on ∂D of
the form

dµ(θ) = w(θ)
dθ

2π
+ dµs(θ)

where dµs is singular w.r.t. dθ. The Toeplitz determinant
Dn(dµ) is the n x n determinant with

ck` ≡
∫
ei(k−`)θdµ(θ) = 〈e−ik·, e−i`·〉L2(dµ)

In 1915, Szegő proved that

lim
n→∞

Dn(dµ)1/n = exp

[∫
log(w(θ)) dθ2π

]
While this is true in general, Szegő only proved it when
dµs = 0.
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Szegő’s Theorem: OPUC version

In 1920, Szegő realized that, because a Toeplitz matrix is
just the Gram matrix of {zj}n−1

j=0 , it is also the Gram matrix
of {Φj}n−1

j=0 which is diagonal so

Dn =

n−1∏
j=0

‖Φj‖2

so using that ‖Φj‖ is monotone decreasing (by a variational
argument), one has an equivalent form of his theorem,
namely

lim
n→∞

‖Φn‖2 = exp

[∫
log(w(θ) dθ2π

]
But the recursion relation was only published by Szegő in
1939, so he didn’t have a form in term’s of αn and ρn.
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Szegő’s Theorem: Szegő-Verblunsky
sum rule

In two remarkable 1935-36 papers, long unappreciated,
Samuel Verblunsky (then just past his PhD. under
Littlewood) first of all extended Szegő’s theorem to allow a
singular part, introduced the αn in a different form than as
recursion coefficients and wrote Szegő’s theorem as a sum
rule

∞∑
j=0

log(1− |αj |2) =

∫
log(w(θ))

dθ

2π

It is critical that this always holds although both sides may
be −∞. This implies what I’ve called a “spectral theory
gem”

∞∑
j=0

|αj |2 <∞ ⇐⇒
∫

log(w(θ))
dθ

2π
> −∞

In particular,
∑∞

j=0 |αj |2 <∞⇒ Σac = ∂D.
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Szegő’s Theorem: Szegő-Verblunsky
sum rule

What makes the gems so interesting is that they allow
arbitrary singular parts of the measures so long as the Szegő
condition holds, i.e.

∫
log(w(θ)) dθ2π > −∞. If∑∞

j=0 |αj | <∞, one can show that there is a scattering
theory and strong asymptotic completeness holds in that
there is only a.c. spectrum. The VS sum rules implies in
going from `1 to `2 Verblunsky coefficients, one can have
arbitrary mixed spectral types.

In the late 1990’s unaware of the OPUC literature, my
research group was studying 1D Schrodinger operators,
− d2

dx2
+ V (x) and the difference between L1 and L2

conditions. Deift–Killip had proven there was a.c. spectrum
for L2 and showing there were examples with mixed
spectrum was one of the problems in my list at the 2000
ICMP. Little did I know that an analogous problem had
been solved in 1935!
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Jacobi Parameters

Next orthogonal polynomials on the real line, aka OPRL.
One starts with a probability measure, µ, of compact
support in R and forms the orthonormal polynomials,
{pn(x)}∞n=0. They obey recursion relations

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x)

which sets up a one-one correspondence (which we’ll call
the Jacobi map) between such measures (with an infinity of
points in their support) and sequences {an, bn}∞n=1 of
bounded a’s in (0,∞) and b’s in R (called Jacobi
parameters). If Pn are the monic OPs, then one has
‖Pn‖ = a1 . . . an.
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Jacobi Parameters

There is also a correspondence between point measures with
finite support and suitable sets of finitely many Jacobi
parameters. If there are n pure points, then Pn is 0 in
L2(dµ) so an = 0 and again there are 2n− 1 Jacobi
parameters – n b’s and n− 1 a’s.

For later purposes, I need some details on one approach to
going from measures to Jacobi parameters. The more usual
method than the one I want to discuss just forms the OPs
and looks at the recursion parameters. Instead, consider the
once stripped Jacobi parameters, i.e. {aj+1, bj+1}∞j=1

obtained by dropping the first row and column of the Jacobi
matrix. For any non–trivial probability measure of compact
support, let m(z) =

∫
dµ(x)/(x− z) and let m1 be the

spectral measure for the once stripped problem.
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Jacobi Parameters

Then one can prove that

m(z) =
1

b1 − z − a2
1m1(z)

Using that m1(z) = −z−1 + O(z−2), one sees that one can
go from the measure to m to a1, b1 and m1 (and so
inductively all Jacobi parameters) by looking at Taylor
coefficients of m(z)−1 near infinity. Conversely, one can go
from Jacobi parameters to m (and so µ) by summing a
continued fraction expansion (that goes back to Jacobi,
Chebyshev and Markov). One can also get the just
mentioned Taylor coefficients as polynomials in the Jacobi
parameters.

One consequence of this is that the poles of m1 (i.e. the
pure points of µ1) are precisely the zeros of m.
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Szegő Condition

Here is one version of Szegő’s Theorem for OPRL. The map
z 7→ z + z−1 maps ∂D to [−2, 2] (via eiθ 7→ 2 cos θ) and so
measures, µ, on [−2, 2] to measures, ρ, on ∂D which are
symmetric under complex conjugation (since the above map
is 2 to 1 except at ±1). In 1922, Szegő found a relation of
the OPRL for µ to the OPUC for ρ and this allowed later
authors to prove a version of Szegő’s theorem for
dµ = w(x) dx+ dµs (with s(x) = (4− x2)−1/2):

lim inf
n→∞

n∏
j=1

aj =
√

2 exp

(∫ 2

−2
log |πs(x)w(x)|s(x)

dx

4π

)
The condition for the finiteness of the integral is called the
Szegő condition:∫ 2

−2
log |w(x)|(4− x2)−1/2 dx > −∞
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Szegő Condition

This doesn’t yield a gem because

inf
n

n∏
j=1

aj > −∞ ⇐⇒
∫ 2

−2
log |w(x)|(4− x2)−1/2 dx

only holds under the a priori condition that µ is supported
inside [−2, 2] and this is not simply expressible in terms of
the Jacobi parameters; for example, it doesn’t only depend
on the parameters near ∞ and can be changed by
modifying a single a or b.
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Killip–Simon Theorem

In 2001 (published 2003), Killip and I proved the following
gem which we regard as an OPRL analog of the
Verblunsky–Szegő gem where {E±j }

N±
j=1 are the eigenvalues

outside [−2, 2] (with + above 2 and - below -2):

Killip-Simon Theorem If dµ = w(x)dx+ dµs is a measure
of compact support on R and {an, bn}∞n=1 its Jacobi
parameters, then

∞∑
j=1

|aj − 1|2 + b2j <∞

if and only if the essential support of µ is [−2, 2] and∫ 2

−2
log(w(x))

√
4− x2 dx > −∞

∑
j,±

(|E±j |−2)3/2 <∞
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Killip–Simon Theorem

This result on Jacobi Hilbert-Schmidt perturbations of the
free Jacobi matrix should be compared with a celebrated
theorem of von-Neumann that any bounded self-adjoint
operator has a Hilbert-Schmidt perturbation with only dense
point spectrum!

We called
∫ 2
−2 log(w(x))

√
4− x2 dx > −∞ the quasi-Szegő

condition since the square root appeared to the +1/2 power
rather than the −1/2 in the Szegő condition. We called∑

j,±(|E±j | − 2)3/2 <∞ a Lieb-Thirring condition since it
is the discrete analog of the celebrated inequality from
which Lieb and Thirring proved stability of matter, viz for
−∆ + V (x) on L2(Rd) (for d = 1, p = 1)∑

|En|p ≤ C
∫
|V (x)|p+d/2 dx
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Killip–Simon Sum Rule

The gem comes from a sum rule. Let
Q(µ) = 1

2π

∫ 2π
0 log

(
sin(θ)

Imm(2 cos(θ))

)
sin2(θ)dθ,

G(a) = a2 − 1− log(a2) and

F (E) ≡ 1
4 [β2−β−2− log(β4)] E = β+β−1 |β| > 1

Then the Killip-Simon sum rule says

Q(µ) +
∑
j,±

F (E±j ) =

∞∑
n=1

1
4b

2
n + 1

2G(an)

As with the Szegő–Verblunsky sum rule, an important point
is that it always holds although both sides may be +∞.
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Killip-Simon Sum Rule

The gem comes from the fact that F ≥ 0, vanishes exactly
at E = ±2 and is O((|E| − 2)3/2) there and that G ≥ 0,
vanishes exactly at a = 1 and is O((a− 1)2) there.
The positivity of the terms is essential to be sure that there
aren’t cancelations. Case had an infinite number of sum
rules that he stated (without indication of when they hold
nor rigorous proof), coming from terms of a suitable Taylor
series, but none was positive. What Killip-Simon realized is
that C0 + 1

2C2 had only positive terms although it was
mysterious why this sum is positive and so unclear how to
generate positive sum rules.

As in the OPUC case, this sum rule implies the existence of
Hilbert–Schmidt perturbations with mixed spectrum.
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Step–by–Step Sum Rule

I know of many proofs of Szegő’s Theorem but until
recently all proofs of the Killip–Simon sum rule were
variants of our original proof which I want to describe some
parts of. A key part is that it is required to hold in case
both sides are infinite and it is hard to control infinite sums
so we had the idea of building up the sums. Suppose that
the sum rule holds for both µ and the once striped measure,
µ1. Then subtracting one sum from the other we get that

Q(µ)−Q(µ1) +
∑
j,±

[
F (E±j )− F (E

(1)±
j )

]
= 1

4b
2
1 + 1

2G(a1)

Because the eigenvalues E±j and E(1)±
j interlace and F is

monotone, the sum is of positive terms and always
convergent (interlacing sums).
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Step–by–Step Sum Rule

While the log(w) integral might divergence, one can show
that a log(w/w1) integral is always convergent. So this
formula always makes sense as finite terms. We’ll discuss
the proof of this formula, called, for obvious reasons, a
step–by-step sum rule.

If you iterate coefficient striping and assume the boundary
term goes away, you get the full sum rule. What Killip and I
found is so long as lots of terms were positive, one could
get an always–valid full sum rule from a step–by–step sum
rule. The proof is a somewhat subtle. Among other things
it used the fact that the function Q is lower
semi-continuous in µ which we discovered by noting it was a
relative entropy. We were proud of this realization although
shortly afterwards we discovered Verblubsky’s papers and
found he also proved and used semicontinuity (although
without realizing he had an entropy) – in 1935!
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Poisson–Jensen Formula

The step–by–step sum rule will involve a Poisson–Jensen
formula whose classical form we recall. Define Blaschke
factors, b(z, w) to be z is w = 0 and otherwise − |w|(z−w)

w(1−w̄z)
Let f be analytic on the unit disk and in Nevanlinna class,
i.e. sup0<r<1

∫
log+(|f(reiθ)|) dθ <∞. If {zj}Nj=1 is a

listing of the zeros of f , then
∑N

j=1(1− |zj |) <∞ which
implies that B(z) =

∏N
j=1 b(z, zj) converges to an analytic

function vanishing exactly at the zj . Suppose also that for
some p > 1, we have that log(f(z)/B(z)) lies in Hp (which
we’ll call the “Lp–condition”).

The famous theorem of Smirnov and Beurling says that for
some ω ∈ ∂D, we have that (Poisson–Jensen formula)

f(z) = ωB(z) exp

(∫
eiθ + z

eiθ − z
log |f(eiθ)|dθ

2π

)
Without the Lp–condition, there a singular inner part.
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Meromorphic Herglotz Functions

By a meromorphic Herglotz function, we mean a function
meromorphic on D, real on (−1, 1) with
Im z > 0⇒ Im f(z) > 0. It is easy to see that such
functions have zeros and poles only on (−1, 1) and the
zeros and poles are simple and interlace. If one looks at the
product of Blaschke factors and their inverses for the zeros
and poles in (−r, r), it can be shown that they have a limit
as r ↑ 1 – an analog of alternating sums converging. Let’s
suppose f(0) = 0 and let B(z) be the limiting product of
zero and pole Blashcke factors other than the zero at 0.
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Meromorphic Herglotz Functions

One can prove that in D ∩ C+, one has that
|argzB(z)| ≤ 2π so that arg(f(z)/zB(z)) is bounded on
D. Since arg(g) = Im(log g), M. Riesz’s Theorem implies
that log(f(z)/zB(z)) is in all Hp with p <∞ so it obeys a
Poisson–Jensen formula (with no singular inner part). Thus

f(z) = zB(z) exp

(∫
eiθ + z

eiθ − z
log |f(eiθ)|dθ

2π

)
Taking log’s, one gets relations between Taylor coefficients
of log(f(z)/z), certain sums involving logs or powers of
zeros and poles and integrals cos(nθ) log |f(eiθ)|.
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Case Step–by-Step Sum Rules

Recall that m(z) =
∫
dµ(x)/(x− z). It defines a Herglotz

function on C+, real on R. Thus M(z) = −m(z + z−1) is
what we called a meromorphic Herglotz function. Its poles
are the eigenvalues of J under the inverse image of the map
z 7→ z + z−1 and its zeros are the same for J1. The Taylor
coefficients of log M(z) about zero are related to those of
m(z) at infinity and so polynomials in the Jacobi
parameters.

The above procedure thus yields a relation between
polynomials of Jacobi parameters, the difference of
functions of the eigenvalues of J and J1 and integral of
log |M(eiθ)|. Because m(z)−1 = b1 − z − a2

1m1(z), one
finds that |M(eiθ)|−2ImM(eiθ) = a2

1ImM1(eiθ) so the log
integral is a log of ratios of w and w1.
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P2 Sum Rule

What results is a step–by–step sum rule which if iterated
with boundary terms dropped yields the formal sum rules
stated by Case (although, unlike Case, Killip and I had
explicit formulae for the polynomials in the Jacobi
parameters). These Cn step–by–step sum rules, especially
C0 have turned out to be useful in spectral theory, but to
get a gem, one needs positivity and Killip and I found that
none of the Case rules had the required positivity.

However, we discovered that C0 + 1
2C2 had the required

positivity. We had no explanation of why this was so but
observed it. We called this the P2 sum rule (P for positive)
and it is now known as the Killip–Simon sum rule. The
rather complicated functions F and G just arose by taking
the functions from the Case sum rule and combining them.
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Mysteries

While the gem one gets from the P2 sum rule is simple and
elegant, the proof has lots of mysteries:

1 Why are there any positive combinations?
2 It is easy to understand the (4− x2)−1/2 dx of the

Szegő condition. It is dθ under x = cos(θ).
Equivalently, it is the potential theoretic equilibrium
measure for [−2, 2] but where the heck does the
(4− x2)1/2 dx come from?

3 What does the function
G(a) = a2 − 1− log(a2)

mean?
4 What does the function

F (E) = 1
4 [β2 − β−2 − log β4]; E = β + β−1

mean?
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The LD Framework

Large deviations go back to Laplace. The modern theory
was initiated by Cramér in the 1930’s and made into a
powerful machine by Donsker–Varadhan and
Freidlin–Wentzel and then Varadhan alone (work for which
he got the Abel prize). Two standard texts are
Deuschel–Stroock and Dembo–Zeitouni.

We consider a sequence of probability measures, {µn}∞n=1,
on a space, X. Naively, one has a Large Deviation Principle
(aka LDP) if the µn–probability that x is near x0 is
O(e−nI(x0)). To be mathematically precise, one supposes
that X is a Polish space (aka complete metric space), allows
multiplicative factors other than n and so speaks of the
speed, an, rate function, I : X → [0,∞] and requires that:
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The LD Framework

1 I is lower semicontinuous
2 For all closed sets F ⊂ X

lim supn→∞
1
an

logµn(F ) ≤ − infx∈F I(x)

3 For all open sets U ⊂ X
lim infn→∞

1
an

logµn(U) ≥ − infx∈U I(x)

One of the simplest but also most powerful results is that of
Cramér: Let {Xj}∞j=1 be iidrv with individual expectation
E. Let µn be the distribution on R of 1

n

∑n
j=1Xj . Then an

LDP holds with speed n and rate function

I(x) = sup
θ

[
θx− log

(
E(eθX)

)]
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Cramér Example

Let X be an exponential random variable, i.e. with density
χ[0,∞)(x)e−x dx. Then

log
(
E(eθX)

)
=

{
− log(1− θ), if θ < 1

∞, if θ ≥ 1

For x ≤ 0, taking θ → −∞ in θx− log
(
E(eθX)

)
, we see

that I(x) =∞. If x > 0, the θ derivative of
θx− log

(
E(eθX)

)
vanishes at θ = 1− x−1 at which point

θx− log
(
E(eθX)

)
has the value x− 1− log(x). Thus

I(x) =

{
x− 1− log(x), if x > 0

∞, if x ≤ 0

Notice that G(a) = I(a2), which we’ll see is no
coincidence!!!
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LDP and Sum Rules

Gamboa, Nagel and Rouault had the following lovely idea.
Let X be the set of probability measures on ∂D or on R
(with some song and dance to handle measures which don’t
have compact support — I’ll henceforth suppress this
phrase) and suppose we have a sequence of probability
measures on X with an LDP. The Verblunsky and Jacobi
maps are continuous to sequences of Verblunsky coefficients
or Jacobi parameters and so one has an LDP on sequence
space. But the rate functions are clearly the same, so we
have the equality of a function of the spectral measures and
of a function of the parameters and as rate functions, these
functions are automatically non-negative!!!!! We thus have
a way to generate positive sum rules and demanding they
be finite gives us a gem.
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LDP and Sum Rules

GNR had the further idea that the measures on the spectral
measures should come from random matrix measures with a
cyclic vector in the limit as the matrix dimension goes to
infinity.

Of course, the issue becomes to effectively compute the rate
function on both sides and alas, we haven’t yet found a
magic way to do these calculations in a general context.

The reception of the GNR paper illustrates the dangers of
working in between two disparate areas. They wrote the
paper in a way that only experts on large deviations could
understand it, but such experts didn’t understand the
spectral theory context.
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LDP and Sum Rules

Jonathan Breuer and I couldn’t understand the paper so we
consulted Ofer Zeitouni who said he’d looked quickly at the
paper and there didn’t seem to be much new there! In fact,
the calculations of rate functions on the two sides wasn’t so
far from prior calculations of rate functions. What was new
was the realization that because a rate function could be
computed in two ways, one is able to prove interesting
equalities. So they had some troubles getting published
what I regard as one of the more interesting recent papers
in spectral theory. In the end, Jonathan, Ofer and I used
their methods to study higher order sum rules and we also
wrote a pedagogic translation of their paper accessible to
spectral theorists.
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CUE: Measure Side

Circular Unitary Ensemble, aka CUE, is just another name
for Haar Measure in U(n), the n x n unitary matrices, for
varying n. Any fixed vector is cyclic with probability one, so
the corresponding spectral measures have the form∑n

j=1wjδθj where λj ≡ eiθj are the eigenvalues. Haar
measure induces a measure on measures which is supported
on the n-point measures.

As is well–known, the λ’s and w’s are independent of each
other, the w’s are uniformly distributed on the simplex
{w|

∑n
j=1wj = 1} and by the Weyl integration formula, the

θ’s have distribution
1

n!

∏
1≤j<k≤n

|eiθj − eiθk |2
n∏
j=1

dθj
2π
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CUE: Measure Side

The first step in the analysis of the measure side is to
analyze what probabilists call the empirical measure and
physicists the density of states, namely the random measure
1
n

∑n
j=1 δθj . This also defines a family of measures on

measures and, in 1997, Ben Arous and Guionnet made the
important discovery that this (or rather an analog on the
real line with a confining potential) has an LDP with speed
n2 (note the square) and rate function the 2D Coulomb
energy −

∫
log |x− y| dµ(x) dµ(y).

This is easy to understand. The Weyl distribution can be
viewed as a discrete two dimensional Coulomb gas in the
canonical ensemble (2D because |x− y|−2 is the
exponential of −2 log |x− y|). The n→∞ limit is a high
density limit and due to repulsion, there is a strong
tendency towards equal spacing.
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CUE: Measure Side

To get a significant difference from equal spacing, one has
O(n2) smaller distances and so the speed is n2. The
optimal spacing will still be locally equal and the discrete
Coulomb energy will converge to the continuum.
The fact that n2 is much larger than n implies that for a
measure to have finite rate at speed n, it has to have points
close to uniformly distributed and the large deviations
comes entirely from the lack of a uniform weight.
The weights are close to independent (except for the
normalization they are) – a slick way to see this is to note if
Yj are positive exponentially distributed iidrv, then
wj = Yj/

∑n
j=1 Yj . This allows one (using Cramér’s

theorem on small blocks) to prove an LDP for the spectral
measure with speed n and rate function the Szegő integral
−
∫

log(w(θ)) dθ2π .
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CUE: Coefficient Side

In 2004, Killip and Nenciu wrote down the distribution of
{αj}n−1

j=0 induced by restricting Haar measure as we are.
The α’s are independent with αn−1 (which lies on ∂D)
uniformly distributed on ∂D and for j = 0 . . . n− 2, αj has
density on D

n− j − 1

π
(1− |z|2)n−j−2 d2z

which says that αj is distributed as the first complex
component of a unit vector in Cn−j .∏
ρ2
j appears to the nth power so the rate function is

−
∑∞

j=1 log(1− |αj |2). In this calculation, one makes use
of the theory of LDP projective limits to handle the
technicalities of going from finite to infinite support. So,
voilá, a new proof of Szegő’s Theorem!!!!!
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GUE

The Gaussian Unitary Ensemble, aka GUE, is the probability
measure on n× n self adjoint matrices so that
{aii}i=1,...,n, {Re(aij)}1≤i<j≤n and {Im(aij)}1≤i<j≤n are
independent identically distributed Gaussian random
variables of mean zero and suitable, n–dependent variance.

The argument for GUE, normalized so the limiting density is
the semicircle law on [−2, 2], is similar to that for CUE.
Instead of results of Killip-Nenciu for the distribution of α’s,
one has earlier results of Dumitriu and Edelman for the
Jacobi parameters. The calculation is made easier by the
independence of the Jacobi parameters (which leads to
sums of terms that depend only on a single a or b).
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GUE

One needs to make some additional arguments going back
to Ben Arous-Dembo-Guionnet to deal with eigenvalues
outside the essential support.

What results is a new proof of the Killip-Simon sum rule.
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Mysteries Solved

We can now solve the mysteries:
1 Why are there any positive combinations? This is the

basic GNR theory of positive sum rules.
2 It is easy to understand the (4− x2)−1/2 dx of the

Szegő condition but where the heck does the
(4− x2)1/2 dx come from? This is the Wigner
semi–circle law; essentially the measure is the potential
theory equilibrium measure in quadratic external field.

3 What does the function
G(a) = a2 − 1− log(a2)

mean? As we’ve seen, this is the rate function for
square roots of sums of exponential RVs.

4 What does the function

F (E) = 1
4 [β2 − β−2 − log β4]; E = β + β−1

mean? This is the Coulomb potential of the Wigner
semi–circle distribution plus a quadratic external field.
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And Now a Word from Our Sponsor

SIMON/1
AMS on the Web  
www.ams.org

816 pages on 50lb stock  •  Backspace: 2 5/16''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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And Now a Word from Our Sponsor

SIMON/2.1
AMS on the Web  
www.ams.org

664 pages on 50lb stock  •  Backspace: 2''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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A Comprehensive Course in Analysis, Part 2A
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And Now a Word from Our Sponsor

SIMON/2.2
AMS on the Web  
www.ams.org

344 pages on 50lb stock  •  Backspace: 1 3/8''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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For additional information
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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And tada, the latest book


