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Poncelet’s Theorem

In 1813, Jean—Victor Poncelet, while a prisoner of war,

proved a remarkable theorem that says if K is an ellipse

Poncelet's inside a circle so that there is a triangle circumscribed about
K inscribed in the circle,

then there are infinitely many such triangles, indeed, so
many that their vertices fill the outer circle and their
tangent points of all them fill K.

There has been a huge literature motivated by this gem of
projective geometry, even a recent book. In this talk, | will
consider three different related developments.



Theme #1: Siebeck’s Theorem

In 1864, Jorg Siebeck proved a theorem later popularized in
Marden's 1948 book, Geometry of Polynomials:

e L Theorem Let {wj}g-’:l be the vertices of a convex polygon
in C ordered clockwise. Let m; € R, w41 = w; and let
P
M(z) = /
5=2—,
j=1 J

Then the zero's of M are the foci of a curve of class p — 1
which touches the line segments w;w;1; 7 =1,...,p at
the point dividing the line in ratio m;/m;i1.

| am not going to try to give you the rather complicated
definitions of the foci of a curve nor of class nor discuss
them. | raise this to emphasize there is a n—gon version,
that M and its zeros play a special role and that the ratios
mj/m;j41 occur.



Theme #2: Finite Blaschke Products

Starting in 2002, Ulrich Daepp, Pamela Gorkin (husband
and wife) and collaborators considered finite Blaschke

Poncelet’s products of the form for {2;}7_; C D (maybe not different)
Theorem n
Z — z;
B(z) = .
(Z) H 1—2z2
J=1

These are precisely Schur functions (analytic maps of D to
itself) which are analytic in a neighborhood of D of
magnitude 1 on D with n zeros (they actually consider zB
and sometimes divide their basic function by z; we prefer to
take this B and sometime multiply it by z). Since

|2B(z)| <1 on D, the map € s arg [e? B(e™)] is strictly
increasing in 6 and by the argument principle is n + 1 to 1
so, YA € 9D, In + 1 solutions w;; j =1,...,n+1 of
wB(w) = X (they just take ); it will be clear later why we
like X as our label).



Poncelet’s
Theorem

The main result in this approach is
Theorem For any {z;}7_; C D and any A € D, there
exist m;(A) > 0 with Z;Z;Lll mj(A) = 1 so that

n+1
mj(A) _ B(z)
Z z—wj  zB(z)— A

Jj=1

The right side of this expression is a rational function of z
which is 271 + O(|z|72) at infinity and with poles exactly at
the w; so the left side is just a partial fraction expansion
and Z;L;rll mj(A) = 1 follows from the asymptotics at
infinity. The main issue is the proof that m; > 0 and they
proved this by finding an explicit formula for the m; in
terms of the z's and w's. It is left unmentioned that there is

a probability measure and what its significance is.



Theme #2: Finite Blaschke Products

The following theorem is natural to state in this B(z)

language

Ponclet' Theorem Fix A # p1 both in 9D and let {w;}7~} (resp.
{uj}”“) be the solutions of 2B(z) = A (resp. 2B(2) = [n).

Then the w's and u's interlace. Conversely, if one is given

interlacing sets, there is a unique n fold Blaschke product so

that the w's and u's are the solutions of a zB(z) equation.

This result was first proven by Gao and Wu in the S,
framework below and the w's and u's enter as vertices of
Poncelet (n + 1)—gons. Their proof is long and involves lots
of manipulations of determinants. The later, much shorter,
proof of Daepp, Gorkin and Voss constructs some rational
Herglotz functions with given interlacing zeros and poles.
We have a simple third proof. For reasons that will become
obvious later, for now, I'll call this Wendroff's Theorem for
Blaschke products. Parameter counting is a little subtle.



Theme #3: Completely Non—Unitary

Contractions With Defect Index 1

An operator on a Hilbert space is called a contraction if its
norm is at most 1. It is called completely non—unitary if it
Poncelet’s has no invariant subspace on which it is unitary. In the
Theorem finite dimensional case, this is equivalent to be there being
no eigenvector with eigenvalue \ obeying |A| = 1.

In the finite dimensional case, the defect index of a
contraction, A, is defined to be the dimension of the range
of 1 — A*A. The space S, is the set of Completely
Non-Unitary Contractions on C™ with defect index 1. They
were studied in a series of independent papers by Boris
Mirman and by Hwa-Long Gau and Pei Yuan Wu, both
series starting in 1998. One important theorem is

Theorem For any {z;}}_; C D (maybe not different), there
is an operator A € S,, whose eigenvalues (counting algebraic
multiplicity) are the z;. Any two elements in S, are
unitarily equivalent <= they have the same eigenvalues.



Theme #3: Numerical Range

Recall that if A is an operator on a Hilbert space, H, then
N (A), the numerical range of an operator, A, on H is the
set of values (¢, Ap) where we run through all ¢ € H with
el =1 (not < 1!). It is a subtle fact that N(A) is a
convex subset of C and an easy fact that it is compact
when H is finite dimensional.

Poncelet’s
Theorem

It is not hard to show that if A is normal, then (the closure
of) N(A) is the closed convex hull of the spectrum, so, in
the finite dimensional normal case, N(A) is the convex hull
of the eigenvalues and so a convex polygon. In particular, if
A 'is a k dimensional unitary operator with simple spectrum,
then N(A) is a convex k—gon inscribed in 9D.



Theme #3: Unitary Dilations

Let H C K two Hilbert spaces and P the orthogonal
projection from C onto H. If A € L(H), B € L(K), we are
Poncelet's interested in the relation A = PBP | #. If that holds we
say that A is a compression of B and that B is a dilation of
A. In case dim(K) < oo, we call dim(K) — dim(#) the
rank of the dilation.
Given a contraction, A on H, one is interested in finding
and B € L(K) so that B is a unitary dilation of A. It is
easy to construct such a dilation on X = H & H, so if
dim(H) = n, a rank n unitary dilation, but one can show
there is a one parameter family of rank one unitary
dilations, {B)}xcap of any A € S,,. For different A, the
eigenvalues are different, every point on the circle is an
eigenvalue of some B,.



Poncelet’s
Theorem

Theme #3: Unitary Dilations

The big theorem in these papers is
Theorem Let A € S,, and {B)}acsp its rank one unitary
dilations. For each fixed A\, N(B,) is a solid n + 1-gon with
vertices on JD. Each edge of this polygon is tangent to
N(A) at a single point and as A moves through all of 9D,
these tangent points trace out the entire boundary of
N(A). Moreover

N(A) = [ N(By)

A€dD
If, for a fixed \ one forms
P
M
M(z) = .
B>
Jj=1

for suitable m, then the zeros of M are precisely the
eigenvalues of A.



The Bottom Line

The point of our work is the claim that while the authors
didn't realize it, they were secretly studying OPUC
Poncelet's (orthogonal polynomials on the unit circle). This allows us
Theorem to find proofs and some extensions of the results and to
illuminate the meaning of some formulae. For example,

’f m;(\)  B(2)

z—w; zB(z)— A\

j=1
is a formula that can be interpreted as a matrix resolvent on
the left and a Cramer’s rule ratio of determinants on the
right. Moreover, as I'll explain, the above is essentially a
very special case of a result called Khrushchev's formula, a
result published in 2001, remarkably the year before Daepp,
Gorkin and Mortini proved the above!
We'll also be able to find new results in OPUC theory
motivated by the above theories.



Szegd Recursion and Verblunsky

Coefficients

We'll give a lightning review of OPUC to fix notation, state
our main results and, if time allows, say something about
the proofs.

OPUC on One
Toe

The standard reference (he said modestly) for OPUC is my
pairs of books which total 1044 pages. In response to a
request from a friend, | wrote a 30 page summary of the
high points which | called “OPUC on one foot" after a story
in the Talmud. Here | need to remind/tell you of a few of
the high points so | think of the next few slides as “OPUC
on one toe".

OPUC involves the study of probability measures dy on 9D
which are non—trivial, i.e. not finite point measures. Given
such a measure, one can look at the inner product in
L?(0D, dyt) and form the monic orthogonal polynomials,
®,,(z), and orthonormal polynomials, ¢, (2).



OPUC on One
Toe

Szegd Recursion and Verblunsky

Coefficients

Let P, be the n + 1-dimensional space of polynomials in z
of degree at most n and define for P, € P,

Alas, it is standard to use this symbol even though it is n
dependent; one hopes n will be clear from the context!
Szeg6 recursion says that

Ppt1(2) = 2@n(2) — 0P, (2)

nt+1(2) = @5(2) — nz®n(2)

The second equation is what you get by applying * to the
first, so often, only the first is written. o, = —®; ,(0) are
complex numbers, called Verblunsky coefficients; they lie in
D. There is also inverse Szeg6 recursion. Note that &,

. Qn—1
determines {a;}} .



The Norm of 9,

One useful calculation is to note if one writes
2®p(2) = Ppt1(z) + @, P} (2), the vectors on the right side
are orthogonal, so

$:eUConOne (I) 2 q) 9 9 (I)* 9 (I) o @
1280 " = |Pnia[|” + lom " P57 = ([ @npall = pnl[Pnl

where p; = /1 — |o;|2. This is where |ay,| < 1 from. We
also see that, by induction that

n—1
@5l = H Pj
7=0

This implies that ||®y,+1]] < ||®y,|| which should not be
surprising, since, by the relation between minimization and
orthogonality, one knows that ®,, is the monic polynomial
of degree n that minimizes the norm of all such norms.



OPUC on One
Toe

Carathéodory Functions and All That

Given a probability measure, du, on 9D, we define two
associated functions on ID:

eia z ZJ\Z
Fo - [ St aues e - PR

called the Carathéodory function and Schur function of du
after their defining properties. They obey

Re(F(z)) > 0; F(0) =1 and |f(2)| < 1. Schur associated
a set of parameters to a Schur function via fy = f

Yn + an-i—l(z)
W)= B0 fule) = P
If fis a finite degree m Blaschke product, then ~,, € 0D
and the process terminates. If not (in which case we call f
a non-trivial Schur function), we can define the Schur
iterates, fn, and Schur parameters, v,(f) € D, for all n.




The Geronimus and Verblunsky Theorems

Schur’s Theorem (1917) There is a one—one
correspondence between non—trivial Schur functions and
sequences {7V, }o2, in D given by the map from f to its
OPUC on One Schur parameters.

Toe

Verblunsky’s Theorem (1935) There is a one—one
correspondence between non—trivial probability measures on
0D and sequences {a;, }52 , in D given by the map from a
measure to its OPUC and the Verblunsky coefficients
defined via Szegé recursion.

Geronimus’ Theorem (1944) Let du be a non—trivial
probability measures on 9D and f its Schur function. Then

an(dp) = vn(f)

This theorem explains why one writes Szegé recursion with
the complex conjugate and minus sign on a.



Khrushchev’'s Formula

In 2002, Khrushchev found a new approach to
Rakhmanoff's Theorem with lots of other interesting stuff.
A basic result he needed was the following

OPUC on One Theorem (Khrushchev's formula) Let f be the Schur

function of some non-trivial probability measure, dyu, on the
unit circle and let f,, be its nt" Schur iterate. Let

By (z) = ®,(2)/®} (z). Then the Schur function of the
probability measure |¢,,(¢9)|2du is f,(2)B,(2).

This formula is an OPUC analog of the fact that the
Green's function for a whole line Schrédinger operator is the
product of two suitably normalized Weyl solutions.



OPUC on One
Toe

Wendroff’'s Theorems for OPRL and

OPUC

Wendroff’s Theorem for OPRL (Wendroff 1961) For
OPRL, the zeros of P, and P41 lie in R and strictly
interlace. Conversely, given any 2n + 1 interlacing points in
R, there exist a set of OPRL so those are the zeros of P,
and P, 1. Moreover all such measures have the same
Jacobi parameters {q; ?:_11 and {b;}_; and so the same

1
{p; ;lil :




Wendroff’'s Theorems for OPRL and

OPUC

Wendroff’'s Theorem for OPUC (Geronimus 1946 in
Annals of Math!) For OPUC, the zeros of ®,, lie in D.
Conversely, given any n points in D (allowing multiplicity),
OPUC on One there exist a set of OPUC so those are the zeros of ®,,.
Toe Moreover all such measures have the same Verblunsky
coefficients {aj};":_& and so the same {p;}7_.

Of course, the results on the zeros long predate these
theorems. Uniqueness of the a's in the OPUC theorem
comes from inverse Szegé recursion. One way (Erdélyi,
Nevai, Zhang and Geronimo) of getting existence is to use
N=1d0/|®,(")|? which turns out to have ®,, as an OPUC
and remaining a;; = 0 for j > n.



Compressed Multiplication Operators

Let P; be the space of polynomials of degree at most j and
let P, be the projection onto P, _1. We call it P, since
dimranP, is n. Given a non-trivial measure, let M, be
OPUC on One multiplication on by z on L?(0D, du). By a compressed

Toe multiplication operator, | mean the compression of the
unitary M, to polynomials of degree at most n — 1, i.e.
A= P,M,P, restricted to P,,_1.




Characteristic Polynomials of

Compressed Multiplication Operators

Theorem A depends only on {«; ?:_01, i.e. two A's with

the same such a's are unitarily equivalent. The eigenvalues
of A are precisely the zeros of ®,, (up to algebraic

OPUC on One multiplicity) so

Toe det(z — A) = @,,(2)

This implies that if two A's are unitarily equivalent, they
have the same ®,,, and, so, by inverse Szegé recursion, the
same {ozj};‘:_ol. To prove the guts of theorem, let ¢ be a
polynomial in P,_1 with (A —{)g=0. Then (z — ()q(z)
must lie in the kernel of P, but any polynomial of degree at
most n in the kernel is a multiple of ®,,. To say that ¢ # 0
and (z — {)q(z) is a multiple of ®,, precisely says that
B,,(¢) = 0.



Trivial Measures and POPUC

Suppose now that du is a trivial measure on 9D, say with
n + 1 pure points, {w]}?ill Then {zF}1_ are still
independent, so one can used Gram—Schmidt to form

OPUC on One {®;}7_1. As the norm minimizer, one also has that
Toe
n+1
G = [[ (2 —wy)
Jj=1

Since this has norm 0, one expects and indeed finds that
®,, 11 is given by Szegé recursion but with |a,,| = 1. That is
trivial measures are described by sets of n + 1 Verblunsky
coefficients, the first n in D and the last in OD. The
corresponding multiplication operators are precisely the

n + 1-dimensional unitaries with a cyclic vector.



Trivial Measures and POPUC

This motivates, the following: Suppose, we are given a
non-trivial measure with Verblunsky coefficients, {a;}32,,
and we consider, ®,,(z). Given A € 9D, we define the
OPUC on One paraorthogonal polynomial (POPUC) by

Toe

D, 11(2;N) = 2®0,(2) — APE(2)

Theorem Fix {aj};‘;(} all in D and let A be the
corresponding compressed multiplication operator. The
POPUC of degree n + 1 are in one to one correspondence
with the rank one unitary dilations of A. The eigenvalues of
the unitary, Uy, associated to ®,,11(z; \) are the zeros of
that polynomial so that

det(z — Uy) = Ppr1(z;A)




GGT Matrices

The operators, A and Uy act on spaces with natural
-1

orthonormal bases, namely {¢;}"—; and {¢;}}_;. One can
compute the matrix elements explicitly and | called these
OPUC on One matrices GGT matrices and the bases GGT bases. The
Toe .. .. . .

explicit form is important in some of the proofs in our work
but since we don't need it below, | won't be explicit here.
There is another matrix representation called CMV which is
superior for the infinite dimensional case, in part, because
the OPs may not be a complete basis in the infinite case.
But since the GGT bases are complete for P, they are
simpler for this study.



Main Results

We next summarize our main results:

Theorem 1 Every compressed multiplication operator lies
in Sp,.

Theorem 2 Every element in S, is unitarily equivalent to a
compressed multiplication operator.

Theorem 3 For any set of n elements (with multiplicity) in
D, there is a compressed multiplication operator with those
eigenvalues. Two compressed multiplication operators with
the same characteristic polynomial are unitarily equivalent.

These theorems imply the main classification result on S,,.




Main Results

Numerical Range

For each A € 9D, let Uy be the associated unitary, ®,,11
the associated POPUC, {fw]}?ill the zeros of ®,,11, cyclicly
ordered, and 7); the associated normalized eigenvectors, so
1j(2) = N; ' ®pi1(2)/ (2 — wj). Let mj = |{nj, on)]> >0
(since deg(n;) = n) so Z?ill m; = 1. Let A be the
dimension n compressed multiplication operator.

Theorem 4 For j =1,...,n+ 1, the line from w; to w;i4
intersects N (A) in a single point, (;, and

I¢; — wjl/I¢; — wjg1] = mj/mjq1. In particular,

[0 16 — wyl = T2 ¢ — wisl.

Theorem 5 For each A, we have that N(U)) is a solid

(n + 1)-gon whose sides are tangent to N(A). ON(A) is a
strictly convex analytic curve and one has that

N(A) = MeanN (Uy)



Blaschke Products

With the above definition of the m;, the spectral measure

for ¢, is dv = Z;ill M0, -

Theorem 6 One has that

1 P, (2)
: _dv(6) = -
Main Results / z — 620 V( ) Z@n(Z) — )\@%(z)

If {z;}7_, are the zeros of ®,,, then

P, (2)/ P (2) = [Ty f:;j;, so this is the Blaschke product
theorem of Daepp et al quoted above with a very different
proof of the positivity of the m; and of the formula.

This result can be proven from Khrushchev's formula by
taking limits to extend his formula to trivial measures. It can
also be obtained from general formulae | have in my OPUC
book for M—functions. We have two simple direct proofs.



Blaschke Products

Theorem 7 If {a;}7~ 1 are the Verblunsky coefficients of
the original problem the Verblunsky coefficients of dv are
given by

aj(dv) = =Xap—1—j, j=0,...,n—1; an(dv) = A
Main Results

The A =1 case of this result is implicit in a remark in my
OPUC book on rank two decoupling of CMV matrices but
our proofs are more direct.



Wendroff’'s Theorem

Theorem 8 (Wendroff's Theorem for (P)OPUC) The
zero's of POPUC's for two values of X interlace. Conversely,
given two sets of n + 1 interlacing points on JD, there exist
unique {aj};-‘:_ol in D and A, i in OD so these are zeros of
the associated POPUCs.

Main Results

This theorem is equivalent to a result of Gao—Wu quoted
above. We have a new proof. At about the same time as
this independently of Gao-Wu and each other, Golinskii and
Cantero—Moral-Velazquez proved the first result. The strict
interlacing of the first half of the next theorem is due to
Simon. We have a new proof and the full result.



Wendroff’'s Theorem

Theorem 9 (Wendroff's Theorem for Second Kind
POPUC) Let {w]}?ill be the zeros of a POPUC, ®,,11,
ordered clockwise and {yj}?ill be the zeros of associated
second kind POPUC, W, .1, ordered clockwise, so that ¥ is
the first zero after wy going clockwise. Then the w's and
y's strictly interlace and one has that

Main Results

n+1 n+1

ITvi=-11w
j=1 j=1

n+1 n+1

Conversely, if {w;};7; and {y;} 7] are strictly interlacing
and obey the above then there i |s a unique set of
Verqunsky coefficients ag,...,0n_1 €D and X € 9D so
that {w;}7 +1is the set of zeros of the associated POPUC

and {y;}77 "+1 the zeros of the associated second kind OPUC.



Compressed Multiplication Operators

Let A= P,M.P,. Then ||Ap| = ||p|| if deg(p) < n —2,
while [|Ap,_1|| = |an—1| by Szeg6 recursion, so 1 — A*A =
Pi—1<80n—1, Yn—1. Since the eigenvalues of A are zeros of
®,,, no eigenvalue has absolute value 1. Hence A € S,, and
we have that

The Class Sy, Theorem 1 Every compressed multiplication operator lies
in Sp,.



Proof of Theorem 2

Recall that Theorem 2 says that “Every element in S, is
unitarily equivalent to a compressed multiplication
operator.” We have two proofs of this result, neither short.
One proof uses the polar decomposition of an A € S,,. Let
Zn—1 be a unit vector in ran(1 — A*A). Complete
nonunitarity is equivalent to x,_1 being cyclic for the

The Class S, unitary part of the polar decomposition so it is equivalent to
a unitary GGT matrix which we turn on its head and then
use the full polar decomposition to see that A is equivalent
to a compressed GGT matrix.

The other proof uses x,,_1 and an induction motivated by
inverse Szegd recursion to construct a basis {th}?:_ol which
yield a set of OPUC.

A third proof uses Theorem 3 and the classification theorem
for S,, but since we want to use Theorem 2 to prove the
classification theorem, we don't use this.



Proof of Theorem 3

Recall that Theorem 3 says that “For any set of n elements
(with multiplicity) in D, there is a compressed multiplication
operator with those eigenvalues. Two compressed
multiplication operators with the same characteristic
polynomial are unitarily equivalent.”

The Class Sy, A little thought shows that this is a restatement of
Wendroff's Theorem for OPUC.



Numerical Range

Edges of N(U))

Let P; be the space of polynomials of degree at most j so
U, acts on P, and A on P,_1. For any ¢ € P,, we have
that (¢, Uny)) = Z"H zi|{n;,¥)|? so that the only such
expectations that ||e in the line between z; and z;41 come
from ) = linear combinations of 7; and 7;41. Since

Y € Pro1 < (pn, 1) =0, the only unit vector in both
Pp—1 and that 2D space is (recall m; = |(n;, ¢n)|?)

¥ = [(@n:M)Mj+1 — (©n, Mj41)M5]/+/M5 F Mg so

mjz]+1 + m]+1ZJ

(¢, AY) =

which by a simple calculation implies that

Theorem 4 For j =1,...,n+ 1, the line from w; to w;4;
intersects N (A) in a single point ¢ and

I¢; — wj]/K] wjt1] = mj/mjq1. In particular,

1
H |CJ wj| = H?il G — wjtal.



Proof of Theorem 5

Recall that Theorem 5 says that “For each A, we have that
N(U,) is a solid n 4 1-gon whose sides are tangent to
N(A). ON(A) is a strictly convex analytic curve and one
has that

N(A) = NxeanN(U,)"

It is easy to see that U) is analytic in A, so its eigenvectors
Numerical Range are real analytic in A and so the tangent points move
analytically. Given that N(A) is convex, we see that its
boundary is an analytic convex curve. Uniqueness of the
points on polygon sides implies strict convexity.

Clearly N(A) C N(U),) proving one direction of the above
equality. If £ ¢ N(A), pick x in the interior of N(A). Let ¢
be the line segment between y and & which must meet
ON(A) in a single point (. The tangent to ON(A) at ¢
must be a side of some N(Uy) so £ ¢ N(Uy). [



Cramer’s Rule

We want to prove that [ — gdu(O) #@b*(z). In a
GGT basis, ¢, is the last baS|s element in the P, basis, so
we are asking for the lower right corner matrix element of
the resolvent of the GGT unitary, Uy. By Cramer’s rule, this
is a ratio of determinants. Recognizing that dropping the

last row and column gives us A, we find that

1 det(z — A)
The M-Function gp’ 780 _— > 7
for POPUC z — U, det(z — Uy)

Given the relation of determinants of A and U, to OPUC
and POPUC, we get the required formulal



Blaschke Products

In my OPUC book, | prove and use that

P, (2)

Bp(z) =

"= 50
is a Schur function because it is analytic in D and of
magnitude 1 on JD. It enters in Khrushchev theory. A
simple calculation of the Carathéodory function for AB,,
and, from that, the M-function, shows the associated
measure is dvy as computed above.

Szegé recursion for ®,_1 and ¢ _; show that

The Schur
functions —Qp—1 + ZBn_l(Z)

Associated to
OPUC By, (Z )

Tl ap—12Bp_1(z)

which is just the Schur algorithm. Thus, the Schur iterates
are AB,,_; and one finds, by Geronimus’ theorem, that

aj(dv) = —Aap—1—j5; j=0,....,n—1 an(dv) = A



Wendroff for POPUC

Our proof depends on the observation that if
2P, — AP = Qpi1; 2P, — P = Ry41, then

_ )‘Qn-i-l(z) B :U’Rn-i-l (Z)
(A—n)z

This immediately implies uniqueness. It also shows that if
®n+1 and R, 11 have a common zero, then it is a zero of
®,,. On the one hand this shows that if one move the zeros
to go from 2" to ®,, keeping all zeros inside I, the
deformed @, +1 and R, 11 cannot have common zeros
which means interlacing for the case where 2" implies
iendiols interlacing in general.

Theorem for
POPUC

D,(2)



Wendroff for POPUC

Conversely, one can note if a polynomial P, has a zero on
0D, then P} has a zero in the same place, so if Q41
defined as zP,, — AP} also has zero there. A deformation
argument shows that if P, is defined in terms of zeros Q0,11
and R,,11 and the first formula on the page, shows that P,
has its zeros inside D so we can use Wendroff for OPUC.

Wendroff's
Theorem for
POPUC



Wendroff for Second Kind POPUC

The key to proving this theorem is that F'(z) = iii is the
rational Carathéodory function of the measure associated to
the POPUC. Such a function is pure imaginary between the
poles with monotone imaginary part implying a single zero,
hence the interfacing. Since it is pure imaginary, the
reflection principle implies that F' (%) = —F(z). The
product condition follows from this.

For the converse, one shows under the conditions on the
zeros the function

I - g52)
Wendroff's f(Z) - Hn+1(1 _ ’u_)jZ)

Theorem for j=1

POPUC

is a rational Carathéodory function whose measure has the
given first and second kind POPUC's.



Final Remarks

From N(A) to the Eigenvalues

We haven't discussed the eigenvalues as foci, so it is
interesting to note that what have discussed provides two
ways to go from N(A) to the eigenvalues for A € S,,.
Firstly, we can take an point on ON(A) and by drawing the
tangents get a circumscribed Poncelet (n + 1)-gon. The
intersection points gives us w; and the sides give us

n+1
mjy1/my; and so via 3 77 m; =1, the m;. So we can

7’L+1 (5

construct the measure dv =} 7, m;d,,. Because of

il — ew dv(0) = #@PM’ we see the eigenvalues are

the zeros of the function defined by this integral.

Alternatively, we can construct two circumscribed Poncelet
(n + 1)—gons and use Wendroff's theorem for POPUC to
get the Verblunsky coefficients, so ®,, and the eigenvalues
as its zeros.




Two Matrix Representations

The refined standard proof that the eigenvalues determine
A € S, rely on a canonical matrix representation realizing
A as a compressed shift using model theory. The
representation is upper triangular in what is known as a
Takenaka-Malmquist-Walsh basis from work going back to
1925. Our proof depends on a different matrix realization as
a Hessenberg matrix. It would be interesting to see if the
TMW basis is useful in OPUC and if the GGT basis is
useful in model theory.

Final Remarks



Announcement from the AMS

As | was preparing this talk, | got an announcement of a
new book from the AMS/MAA

Finding Ellipses
Yot Blaackn Prodotns, Peacaiers Thaarem,
L T e e e e L e

IR AT They forgot OPUC!
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