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Poncelet’s Theorem

In 1813, Jean–Victor Poncelet, while a prisoner of war,
proved a remarkable theorem that says if K is an ellipse
inside a circle so that there is a triangle circumscribed about
K inscribed in the circle,

then there are infinitely many such triangles, indeed, so
many that their vertices fill the outer circle and their
tangent points of all them fill K.

There has been a huge literature motivated by this gem of
projective geometry, even a recent book. In this talk, I will
consider three different related developments.
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Theme #1: Siebeck’s Theorem

In 1864, Jörg Siebeck proved a theorem later popularized in
Marden’s 1948 book, Geometry of Polynomials:
Theorem Let {wj}pj=1 be the vertices of a convex polygon
in C ordered clockwise. Let mj ∈ R, wp+1 = w1 and let

M(z) =

p∑
j=1

mj

z − wj

Then the zero’s of M are the foci of a curve of class p− 1
which touches the line segments wjwj+1; j = 1, . . . , p at
the point dividing the line in ratio mj/mj+1.
I am not going to try to give you the rather complicated
definitions of the foci of a curve nor of class nor discuss
them. I raise this to emphasize there is a n–gon version,
that M and its zeros play a special role and that the ratios
mj/mj+1 occur.
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Theme #2: Finite Blaschke Products

Starting in 2002, Ulrich Daepp, Pamela Gorkin (husband
and wife) and collaborators considered finite Blaschke
products of the form for {zj}nj=1 ⊂ D (maybe not different)

B(z) =

n∏
j=1

z − zj
1− z̄jz

These are precisely Schur functions (analytic maps of D to
itself) which are analytic in a neighborhood of D of
magnitude 1 on ∂D with n zeros (they actually consider zB
and sometimes divide their basic function by z; we prefer to
take this B and sometime multiply it by z). Since

|zB(z)| < 1 on D, the map eiθ 7→ arg
[
eiθB(eiθ)

]
is strictly

increasing in θ and by the argument principle is n+ 1 to 1
so, ∀λ ∈ ∂D, ∃n+ 1 solutions wj ; j = 1, . . . , n+ 1 of
wB(w) = λ̄ (they just take λ; it will be clear later why we
like λ̄ as our label).
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Theme #2: Finite Blaschke Products

The main result in this approach is
Theorem For any {zj}nj=1 ⊂ D and any λ ∈ ∂D, there
exist mj(λ) > 0 with

∑n+1
j=1 mj(λ) = 1 so that

n+1∑
j=1

mj(λ)

z − wj
=

B(z)

zB(z)− λ̄

The right side of this expression is a rational function of z
which is z−1 + O(|z|−2) at infinity and with poles exactly at
the wj so the left side is just a partial fraction expansion
and

∑n+1
j=1 mj(λ) = 1 follows from the asymptotics at

infinity. The main issue is the proof that mj > 0 and they
proved this by finding an explicit formula for the mj in
terms of the z’s and w’s. It is left unmentioned that there is
a probability measure and what its significance is.
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Theme #2: Finite Blaschke Products

The following theorem is natural to state in this B(z)
language
Theorem Fix λ 6= µ both in ∂D and let {wj}n+1

j=1 (resp.
{uj}n+1

j=1 ) be the solutions of zB(z) = λ̄ (resp. zB(z) = µ̄).
Then the w′s and u′s interlace. Conversely, if one is given
interlacing sets, there is a unique n fold Blaschke product so
that the w’s and u’s are the solutions of a zB(z) equation.
This result was first proven by Gao and Wu in the Sn
framework below and the w’s and u’s enter as vertices of
Poncelet (n+ 1)–gons. Their proof is long and involves lots
of manipulations of determinants. The later, much shorter,
proof of Daepp, Gorkin and Voss constructs some rational
Herglotz functions with given interlacing zeros and poles.
We have a simple third proof. For reasons that will become
obvious later, for now, I’ll call this Wendroff’s Theorem for
Blaschke products. Parameter counting is a little subtle.
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Theme #3: Completely Non–Unitary
Contractions With Defect Index 1

An operator on a Hilbert space is called a contraction if its
norm is at most 1. It is called completely non–unitary if it
has no invariant subspace on which it is unitary. In the
finite dimensional case, this is equivalent to be there being
no eigenvector with eigenvalue λ obeying |λ| = 1.
In the finite dimensional case, the defect index of a
contraction, A, is defined to be the dimension of the range
of 1−A∗A. The space Sn is the set of Completely
Non–Unitary Contractions on Cn with defect index 1. They
were studied in a series of independent papers by Boris
Mirman and by Hwa-Long Gau and Pei Yuan Wu, both
series starting in 1998. One important theorem is
Theorem For any {zj}nj=1 ⊂ D (maybe not different), there
is an operator A ∈ Sn whose eigenvalues (counting algebraic
multiplicity) are the zj . Any two elements in Sn are
unitarily equivalent ⇐⇒ they have the same eigenvalues.
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Theme #3: Numerical Range

Recall that if A is an operator on a Hilbert space, H, then
N(A), the numerical range of an operator, A, on H is the
set of values 〈ϕ,Aϕ〉 where we run through all ϕ ∈ H with
‖ϕ‖ = 1 (not ≤ 1!). It is a subtle fact that N(A) is a
convex subset of C and an easy fact that it is compact
when H is finite dimensional.
It is not hard to show that if A is normal, then (the closure
of) N(A) is the closed convex hull of the spectrum, so, in
the finite dimensional normal case, N(A) is the convex hull
of the eigenvalues and so a convex polygon. In particular, if
A is a k dimensional unitary operator with simple spectrum,
then N(A) is a convex k–gon inscribed in ∂D.
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Theme #3: Unitary Dilations

Let H ⊂ K two Hilbert spaces and P the orthogonal
projection from K onto H. If A ∈ L(H), B ∈ L(K), we are
interested in the relation A = PBP � H. If that holds we
say that A is a compression of B and that B is a dilation of
A. In case dim(K) <∞, we call dim(K)− dim(H) the
rank of the dilation.
Given a contraction, A on H, one is interested in finding K
and B ∈ L(K) so that B is a unitary dilation of A. It is
easy to construct such a dilation on K = H⊕H, so if
dim(H) = n, a rank n unitary dilation, but one can show
there is a one parameter family of rank one unitary
dilations, {Bλ}λ∈∂D of any A ∈ Sn. For different λ, the
eigenvalues are different, every point on the circle is an
eigenvalue of some Bλ.
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Theme #3: Unitary Dilations

The big theorem in these papers is
Theorem Let A ∈ Sn and {Bλ}λ∈∂D its rank one unitary
dilations. For each fixed λ, N(Bλ) is a solid n+ 1–gon with
vertices on ∂D. Each edge of this polygon is tangent to
N(A) at a single point and as λ moves through all of ∂D,
these tangent points trace out the entire boundary of
N(A). Moreover

N(A) =
⋂
λ∈∂D

N(Bλ)

If, for a fixed λ one forms

M(z) =

p∑
j=1

mj

z − wj

for suitable mj , then the zeros of M are precisely the
eigenvalues of A.
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The Bottom Line

The point of our work is the claim that while the authors
didn’t realize it, they were secretly studying OPUC
(orthogonal polynomials on the unit circle). This allows us
to find proofs and some extensions of the results and to
illuminate the meaning of some formulae. For example,

n+1∑
j=1

mj(λ)

z − wj
=

B(z)

zB(z)− λ̄

is a formula that can be interpreted as a matrix resolvent on
the left and a Cramer’s rule ratio of determinants on the
right. Moreover, as I’ll explain, the above is essentially a
very special case of a result called Khrushchev’s formula, a
result published in 2001, remarkably the year before Daepp,
Gorkin and Mortini proved the above!
We’ll also be able to find new results in OPUC theory
motivated by the above theories.
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Szegő Recursion and Verblunsky
Coefficients

We’ll give a lightning review of OPUC to fix notation, state
our main results and, if time allows, say something about
the proofs.

The standard reference (he said modestly) for OPUC is my
pairs of books which total 1044 pages. In response to a
request from a friend, I wrote a 30 page summary of the
high points which I called “OPUC on one foot” after a story
in the Talmud. Here I need to remind/tell you of a few of
the high points so I think of the next few slides as “OPUC
on one toe”.
OPUC involves the study of probability measures dµ on ∂D
which are non–trivial, i.e. not finite point measures. Given
such a measure, one can look at the inner product in
L2(∂D, dµ) and form the monic orthogonal polynomials,
Φn(z), and orthonormal polynomials, ϕn(z).
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Szegő Recursion and Verblunsky
Coefficients

Let Pn be the n+ 1–dimensional space of polynomials in z
of degree at most n and define for Pn ∈ Pn

P ∗n(z) = znPn

(
1

z̄

)
Alas, it is standard to use this symbol even though it is n
dependent; one hopes n will be clear from the context!
Szegő recursion says that

Φn+1(z) = zΦn(z)− ᾱnΦ∗n(z)

Φ∗n+1(z) = Φ∗n(z)− αnzΦn(z)

The second equation is what you get by applying ∗ to the
first, so often, only the first is written. αn ≡ −Φ∗n+1(0) are
complex numbers, called Verblunsky coefficients; they lie in
D. There is also inverse Szegő recursion. Note that Φn

determines {αj}n−1
j=0 .
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The Norm of Φn

One useful calculation is to note if one writes
zΦn(z) = Φn+1(z) + ᾱnΦ∗n(z), the vectors on the right side
are orthogonal, so

‖zΦn‖2 = ‖Φn+1‖2 + |αn|2‖Φ∗n‖2 ⇒ ‖Φn+1‖ = ρn‖Φn‖

where ρj =
√

1− |αj |2. This is where |αn| < 1 from. We
also see that, by induction that

‖Φn‖ =

n−1∏
j=0

ρj

This implies that ‖Φn+1‖ ≤ ‖Φn‖ which should not be
surprising, since, by the relation between minimization and
orthogonality, one knows that Φn is the monic polynomial
of degree n that minimizes the norm of all such norms.
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Carathéodory Functions and All That

Given a probability measure, dµ, on ∂D, we define two
associated functions on D:

F (z) =

∫
eiθ + z

eiθ − z
dµ(θ); F (z) =

1 + zf(z)

1− zf(z)

called the Carathéodory function and Schur function of dµ
after their defining properties. They obey
Re(F (z)) > 0; F (0) = 1 and |f(z)| < 1. Schur associated
a set of parameters to a Schur function via f0 ≡ f

γn(f) = fn(0); fn(z) =
γn + zfn+1(z)

1 + γ̄nzfn+1(z)

If f is a finite degree m Blaschke product, then γm ∈ ∂D
and the process terminates. If not (in which case we call f
a non–trivial Schur function), we can define the Schur
iterates, fn, and Schur parameters, γn(f) ∈ D, for all n.
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The Geronimus and Verblunsky Theorems

Schur’s Theorem (1917) There is a one–one
correspondence between non–trivial Schur functions and
sequences {γn}∞n=0 in D given by the map from f to its
Schur parameters.

Verblunsky’s Theorem (1935) There is a one–one
correspondence between non–trivial probability measures on
∂D and sequences {αn}∞n=0 in D given by the map from a
measure to its OPUC and the Verblunsky coefficients
defined via Szegő recursion.

Geronimus’ Theorem (1944) Let dµ be a non–trivial
probability measures on ∂D and f its Schur function. Then

αn(dµ) = γn(f)

This theorem explains why one writes Szegő recursion with
the complex conjugate and minus sign on α.



Poncelet’s
Theorem

OPUC on One
Toe

Main Results

The Class Sn

Numerical Range

The M-Function
for POPUC

The Schur
functions
Associated to
OPUC

Wendroff’s
Theorem for
POPUC

Final Remarks

Khrushchev’s Formula

In 2002, Khrushchev found a new approach to
Rakhmanoff’s Theorem with lots of other interesting stuff.
A basic result he needed was the following

Theorem (Khrushchev’s formula) Let f be the Schur
function of some non–trivial probability measure, dµ, on the
unit circle and let fn be its nth Schur iterate. Let
Bn(z) = Φn(z)/Φ∗n(z). Then the Schur function of the
probability measure |ϕn(eiθ)|2dµ is fn(z)Bn(z).

This formula is an OPUC analog of the fact that the
Green’s function for a whole line Schrödinger operator is the
product of two suitably normalized Weyl solutions.
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Wendroff’s Theorems for OPRL and
OPUC

Wendroff’s Theorem for OPRL (Wendroff 1961) For
OPRL, the zeros of Pn and Pn+1 lie in R and strictly
interlace. Conversely, given any 2n+ 1 interlacing points in
R, there exist a set of OPRL so those are the zeros of Pn
and Pn+1. Moreover all such measures have the same
Jacobi parameters {aj}n−1

j=1 and {bj}nj=1 and so the same
{pj}n+1

j=1 .
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Wendroff’s Theorems for OPRL and
OPUC

Wendroff’s Theorem for OPUC (Geronimus 1946 in
Annals of Math!) For OPUC, the zeros of Φn lie in D.
Conversely, given any n points in D (allowing multiplicity),
there exist a set of OPUC so those are the zeros of Φn.
Moreover all such measures have the same Verblunsky
coefficients {αj}n−1

j=0 and so the same {ϕj}nj=0.

Of course, the results on the zeros long predate these
theorems. Uniqueness of the α’s in the OPUC theorem
comes from inverse Szegő recursion. One way (Erdélyi,
Nevai, Zhang and Geronimo) of getting existence is to use
N−1dθ/|Φn(eiθ)|2 which turns out to have Φn as an OPUC
and remaining αj = 0 for j ≥ n.
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Compressed Multiplication Operators

Let Pj be the space of polynomials of degree at most j and
let Pn be the projection onto Pn−1. We call it Pn since
dim ranPn is n. Given a non-trivial measure, let Mz be
multiplication on by z on L2(∂D, dµ). By a compressed
multiplication operator, I mean the compression of the
unitary Mz to polynomials of degree at most n− 1, i.e.
A = PnMzPn restricted to Pn−1.
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Characteristic Polynomials of
Compressed Multiplication Operators

Theorem A depends only on {αj}n−1
j=0 , i.e. two A’s with

the same such α’s are unitarily equivalent. The eigenvalues
of A are precisely the zeros of Φn (up to algebraic
multiplicity) so

det(z −A) = Φn(z)

This implies that if two A’s are unitarily equivalent, they
have the same Φn, and, so, by inverse Szegő recursion, the
same {αj}n−1

j=0 . To prove the guts of theorem, let q be a
polynomial in Pn−1 with (A− ζ)q = 0. Then (z − ζ)q(z)
must lie in the kernel of Pn but any polynomial of degree at
most n in the kernel is a multiple of Φn. To say that q 6= 0
and (z − ζ)q(z) is a multiple of Φn precisely says that
Φn(ζ) = 0.
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Trivial Measures and POPUC

Suppose now that dµ is a trivial measure on ∂D, say with
n+ 1 pure points, {wj}n+1

j=1 . Then {zk}nk=0 are still
independent, so one can used Gram–Schmidt to form
{Φj}nj=1. As the norm minimizer, one also has that

Φn+1 =

n+1∏
j=1

(z − wj)

Since this has norm 0, one expects and indeed finds that
Φn+1 is given by Szegő recursion but with |αn| = 1. That is
trivial measures are described by sets of n+ 1 Verblunsky
coefficients, the first n in D and the last in ∂D. The
corresponding multiplication operators are precisely the
n+ 1–dimensional unitaries with a cyclic vector.
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Trivial Measures and POPUC

This motivates, the following: Suppose, we are given a
non–trivial measure with Verblunsky coefficients, {αj}∞j=0,
and we consider, Φn(z). Given λ ∈ ∂D, we define the
paraorthogonal polynomial (POPUC) by

Φn+1(z;λ) = zΦn(z)− λ̄Φ∗n(z)

Theorem Fix {αj}n−1
j=0 all in D and let A be the

corresponding compressed multiplication operator. The
POPUC of degree n+ 1 are in one to one correspondence
with the rank one unitary dilations of A. The eigenvalues of
the unitary, Uλ, associated to Φn+1(z;λ) are the zeros of
that polynomial so that

det(z − Uλ) = Φn+1(z;λ)
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GGT Matrices

The operators, A and Uλ act on spaces with natural
orthonormal bases, namely {ϕj}n−1

j=0 and {ϕj}nj=0. One can
compute the matrix elements explicitly and I called these
matrices GGT matrices and the bases GGT bases. The
explicit form is important in some of the proofs in our work
but since we don’t need it below, I won’t be explicit here.
There is another matrix representation called CMV which is
superior for the infinite dimensional case, in part, because
the OPs may not be a complete basis in the infinite case.
But since the GGT bases are complete for Pn, they are
simpler for this study.
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Sn

We next summarize our main results:

Theorem 1 Every compressed multiplication operator lies
in Sn.

Theorem 2 Every element in Sn is unitarily equivalent to a
compressed multiplication operator.

Theorem 3 For any set of n elements (with multiplicity) in
D, there is a compressed multiplication operator with those
eigenvalues. Two compressed multiplication operators with
the same characteristic polynomial are unitarily equivalent.

These theorems imply the main classification result on Sn.
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Numerical Range

For each λ ∈ ∂D, let Uλ be the associated unitary, Φn+1

the associated POPUC, {wj}n+1
j=1 the zeros of Φn+1, cyclicly

ordered, and ηj the associated normalized eigenvectors, so
ηj(z) = N−1

j Φn+1(z)/(z − wj). Let mj = |〈ηj , ϕn〉|2 > 0

(since deg(ηj) = n) so
∑n+1

j=1 mj = 1. Let A be the
dimension n compressed multiplication operator.

Theorem 4 For j = 1, . . . , n+ 1, the line from wj to wj+1

intersects N(A) in a single point, ζj , and
|ζj − wj |/|ζj − wj+1| = mj/mj+1. In particular,∏n+1
j=1 |ζj − wj | =

∏n+1
j=1 |ζj − wj+1|.

Theorem 5 For each λ, we have that N(Uλ) is a solid
(n+ 1)-gon whose sides are tangent to N(A). ∂N(A) is a
strictly convex analytic curve and one has that

N(A) = ∩λ∈∂DN(Uλ)
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Blaschke Products

With the above definition of the mj , the spectral measure
for ϕn is dν =

∑n+1
j=1 mjδwj .

Theorem 6 One has that∫
1

z − eiθ
dν(θ) =

Φn(z)

zΦn(z)− λ̄Φ∗n(z)

If {zj}nj=1 are the zeros of Φn, then

Φn(z)/Φ∗n(z) =
∏n
j=1

z−zj
1−z̄jz , so this is the Blaschke product

theorem of Daepp et al quoted above with a very different
proof of the positivity of the mj and of the formula.

This result can be proven from Khrushchev’s formula by
taking limits to extend his formula to trivial measures. It can
also be obtained from general formulae I have in my OPUC
book for M–functions. We have two simple direct proofs.



Poncelet’s
Theorem

OPUC on One
Toe

Main Results

The Class Sn

Numerical Range

The M-Function
for POPUC

The Schur
functions
Associated to
OPUC

Wendroff’s
Theorem for
POPUC

Final Remarks

Blaschke Products

Theorem 7 If {αj}n−1
j=0 are the Verblunsky coefficients of

the original problem, the Verblunsky coefficients of dν are
given by

αj(dν) = −λᾱn−1−j , j = 0, . . . , n− 1; αn(dν) = λ

The λ = 1 case of this result is implicit in a remark in my
OPUC book on rank two decoupling of CMV matrices but
our proofs are more direct.
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Wendroff’s Theorem

Theorem 8 (Wendroff’s Theorem for (P)OPUC) The
zero’s of POPUC’s for two values of λ interlace. Conversely,
given two sets of n+ 1 interlacing points on ∂D, there exist
unique {αj}n−1

j=0 in D and λ, µ in ∂D so these are zeros of
the associated POPUCs.

This theorem is equivalent to a result of Gao–Wu quoted
above. We have a new proof. At about the same time as
this independently of Gao-Wu and each other, Golinskii and
Cantero–Moral–Velázquez proved the first result. The strict
interlacing of the first half of the next theorem is due to
Simon. We have a new proof and the full result.
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Wendroff’s Theorem

Theorem 9 (Wendroff’s Theorem for Second Kind
POPUC) Let {wj}n+1

j=1 be the zeros of a POPUC, Φn+1,
ordered clockwise and {yj}n+1

j=1 be the zeros of associated
second kind POPUC, Ψn+1, ordered clockwise, so that y1 is
the first zero after w1 going clockwise. Then the w’s and
y’s strictly interlace and one has that

n+1∏
j=1

yj = −
n+1∏
j=1

wj

Conversely, if {wj}n+1
j=1 and {yj}n+1

j=1 are strictly interlacing
and obey the above, then there is a unique set of
Verblunsky coefficients α0, . . . , αn−1 ∈ D and λ ∈ ∂D so
that {wj}n+1

j=1 is the set of zeros of the associated POPUC
and {yj}n+1

j=1 the zeros of the associated second kind OPUC.
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Compressed Multiplication Operators

Let A = PnMzPn. Then ‖Ap‖ = ‖p‖ if deg(p) ≤ n− 2,
while ‖Aϕn−1‖ = |αn−1| by Szegő recursion, so 1−A∗A =
ρ2
n−1〈ϕn−1, ·〉ϕn−1. Since the eigenvalues of A are zeros of

Φn, no eigenvalue has absolute value 1. Hence A ∈ Sn and
we have that

Theorem 1 Every compressed multiplication operator lies
in Sn.
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Proof of Theorem 2

Recall that Theorem 2 says that “Every element in Sn is
unitarily equivalent to a compressed multiplication
operator.” We have two proofs of this result, neither short.
One proof uses the polar decomposition of an A ∈ Sn. Let
xn−1 be a unit vector in ran(1−A∗A). Complete
nonunitarity is equivalent to xn−1 being cyclic for the
unitary part of the polar decomposition so it is equivalent to
a unitary GGT matrix which we turn on its head and then
use the full polar decomposition to see that A is equivalent
to a compressed GGT matrix.
The other proof uses xn−1 and an induction motivated by
inverse Szegő recursion to construct a basis {xj}n−1

j=0 which
yield a set of OPUC.
A third proof uses Theorem 3 and the classification theorem
for Sn but since we want to use Theorem 2 to prove the
classification theorem, we don’t use this.



Poncelet’s
Theorem

OPUC on One
Toe

Main Results

The Class Sn

Numerical Range

The M-Function
for POPUC

The Schur
functions
Associated to
OPUC

Wendroff’s
Theorem for
POPUC

Final Remarks

Proof of Theorem 3

Recall that Theorem 3 says that “For any set of n elements
(with multiplicity) in D, there is a compressed multiplication
operator with those eigenvalues. Two compressed
multiplication operators with the same characteristic
polynomial are unitarily equivalent.”

A little thought shows that this is a restatement of
Wendroff’s Theorem for OPUC.
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Edges of N(Uλ)

Let Pj be the space of polynomials of degree at most j so
Uλ acts on Pn and A on Pn−1. For any ψ ∈ Pn, we have
that 〈ψ,Uλψ〉 =

∑n+1
j=1 zj |〈ηj , ψ〉|2 so that the only such

expectations that lie in the line between zj and zj+1 come
from ψ = linear combinations of ηj and ηj+1. Since
ψ ∈ Pn−1 ⇐⇒ 〈ϕn, ψ〉 = 0, the only unit vector in both
Pn−1 and that 2D space is (recall mj = |〈ηj , φn〉|2)
ψ = [〈ϕn, ηj〉ηj+1 − 〈ϕn, ηj+1〉ηj ]/

√
mj +mj+1 so

〈ψ,Aψ〉 =
mjzj+1 +mj+1zj

mj +mj+1

which by a simple calculation implies that
Theorem 4 For j = 1, . . . , n+ 1, the line from wj to wj+1

intersects N(A) in a single point ζj and
|ζj − wj |/|ζj − wj+1| = mj/mj+1. In particular,∏n+1
j=1 |ζj − wj | =

∏n+1
j=1 |ζj − wj+1|.
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Proof of Theorem 5

Recall that Theorem 5 says that “For each λ, we have that
N(Uλ) is a solid n+ 1-gon whose sides are tangent to
N(A). ∂N(A) is a strictly convex analytic curve and one
has that

N(A) = ∩λ∈∂DN(Uλ)′′

It is easy to see that Uλ is analytic in λ, so its eigenvectors
are real analytic in λ and so the tangent points move
analytically. Given that N(A) is convex, we see that its
boundary is an analytic convex curve. Uniqueness of the
points on polygon sides implies strict convexity.

Clearly N(A) ⊂ N(Uλ) proving one direction of the above
equality. If ξ /∈ N(A), pick χ in the interior of N(A). Let `
be the line segment between χ and ξ which must meet
∂N(A) in a single point ζ. The tangent to ∂N(A) at ζ
must be a side of some N(Uλ) so ξ /∈ N(Uλ).
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Cramer’s Rule

We want to prove that
∫

1
z−eiθ dν(θ) = Φn(z)

zΦn(z)−λ̄Φ∗
n(z)

. In a
GGT basis, ϕn is the last basis element in the Pn basis, so
we are asking for the lower right corner matrix element of
the resolvent of the GGT unitary, Uλ. By Cramer’s rule, this
is a ratio of determinants. Recognizing that dropping the
last row and column gives us A, we find that〈

ϕ,
1

z − Uλ
ϕ

〉
=

det(z −A)

det(z − Uλ)

Given the relation of determinants of A and Uλ to OPUC
and POPUC, we get the required formula!
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Blaschke Products

In my OPUC book, I prove and use that

Bn(z) =
Φn(z)

Φ∗n(z)

is a Schur function because it is analytic in D and of
magnitude 1 on ∂D. It enters in Khrushchev theory. A
simple calculation of the Carathéodory function for λBn
and, from that, the M-function, shows the associated
measure is dνλ as computed above.

Szegő recursion for Φn−1 and Φ∗n−1 show that

Bn(z) =
−ᾱn−1 + zBn−1(z)

1− αn−1zBn−1(z)

which is just the Schur algorithm. Thus, the Schur iterates
are λBn−j and one finds, by Geronimus’ theorem, that
αj(dν) = −λᾱn−1−j ; j = 0, . . . , n− 1 αn(dν) = λ
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Wendroff for POPUC

Our proof depends on the observation that if
zΦn − λ̄Φ∗n = Qn+1; zΦn − µ̄Φ∗n = Rn+1, then

Φn(z) =
λQn+1(z)− µRn+1(z)

(λ− µ)z

This immediately implies uniqueness. It also shows that if
Qn+1 and Rn+1 have a common zero, then it is a zero of
Φn. On the one hand this shows that if one move the zeros
to go from zn to Φn keeping all zeros inside D, the
deformed Qn+1 and Rn+1 cannot have common zeros
which means interlacing for the case where zn implies
interlacing in general.
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Wendroff for POPUC

Conversely, one can note if a polynomial Pn has a zero on
∂D, then P ∗n has a zero in the same place, so if Qn+1

defined as zPn − λ̄P ∗n also has zero there. A deformation
argument shows that if Pn is defined in terms of zeros Qn+1

and Rn+1 and the first formula on the page, shows that Pn
has its zeros inside D so we can use Wendroff for OPUC.
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Wendroff for Second Kind POPUC

The key to proving this theorem is that F (z) =
Ψ∗
n+1

Φ∗
n+1

is the
rational Carathéodory function of the measure associated to
the POPUC. Such a function is pure imaginary between the
poles with monotone imaginary part implying a single zero,
hence the interfacing. Since it is pure imaginary, the
reflection principle implies that F

(
1
z̄

)
= −F (z). The

product condition follows from this.

For the converse, one shows under the conditions on the
zeros the function

f(z) =

∏n+1
j=1 (1− ȳjz)∏n+1
j=1 (1− w̄jz)

is a rational Carathéodory function whose measure has the
given first and second kind POPUC’s.
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From N(A) to the Eigenvalues

We haven’t discussed the eigenvalues as foci, so it is
interesting to note that what have discussed provides two
ways to go from N(A) to the eigenvalues for A ∈ Sn.
Firstly, we can take an point on ∂N(A) and by drawing the
tangents get a circumscribed Poncelet (n+ 1)–gon. The
intersection points gives us wj and the sides give us
mj+1/mj and so via

∑n+1
j=1 mj = 1, the mj . So we can

construct the measure dν =
∑n+1

j=1 mjδwj . Because of∫
1

z−eiθ dν(θ) = Φn(z)

zΦn(z)−λ̄Φ∗
n(z)

, we see the eigenvalues are
the zeros of the function defined by this integral.

Alternatively, we can construct two circumscribed Poncelet
(n+ 1)–gons and use Wendroff’s theorem for POPUC to
get the Verblunsky coefficients, so Φn and the eigenvalues
as its zeros.



Poncelet’s
Theorem

OPUC on One
Toe

Main Results

The Class Sn

Numerical Range

The M-Function
for POPUC

The Schur
functions
Associated to
OPUC

Wendroff’s
Theorem for
POPUC

Final Remarks

Two Matrix Representations

The refined standard proof that the eigenvalues determine
A ∈ Sn rely on a canonical matrix representation realizing
A as a compressed shift using model theory. The
representation is upper triangular in what is known as a
Takenaka-Malmquist-Walsh basis from work going back to
1925. Our proof depends on a different matrix realization as
a Hessenberg matrix. It would be interesting to see if the
TMW basis is useful in OPUC and if the GGT basis is
useful in model theory.
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Announcement from the AMS

As I was preparing this talk, I got an announcement of a
new book from the AMS/MAA

They forgot OPUC!
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And Now a Word from Our Sponsor

SIMON/1
AMS on the Web  
www.ams.org

816 pages on 50lb stock  •  Backspace: 2 5/16''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.

Real Analysis
A Comprehensive Course in Analysis, Part 1
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And Now a Word from Our Sponsor

SIMON/2.1
AMS on the Web  
www.ams.org

664 pages on 50lb stock  •  Backspace: 2''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.

Basic Complex Analysis
A Comprehensive Course in Analysis, Part 2A
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And Now a Word from Our Sponsor

SIMON/2.2
AMS on the Web  
www.ams.org

344 pages on 50lb stock  •  Backspace: 1 3/8''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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And Now a Word from Our Sponsor

SIMON/3
AMS on the Web  
www.ams.org

784 pages on 50lb stock  •  Backspace: 2 1/4''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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Operator Theory
A Comprehensive Course in Analysis, Part 4

Barry Simon
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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And Now a Word from Our Sponsor

And tada, the latest book


