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Introduction

Joint work with Dimitris Koukoulopoulos and Kevin Ford. Equal sums in
random sets and the concentration of divisors, arXiv:1908.00378.

Let n be a “typical” integer (say selected at random from [1,X ], for large
X ).

What do the divisors of n look like?

We will be interested in the particular question of how concentrated they
are.
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Hooley’s ∆-function

Obituary of Hooley by Roger Heath-Brown:
https://royalsocietypublishing.org/doi/10.1098/rsbm.2020.0027

Define
∆(n) := max

i
#{d |n : e i 6 d 6 e i+1}.

Ben Green (Oxford) On the divisors of a typical integer February 5, 2021 3 / 1



Hooley’s ∆-function

What do we expect? Trivially ∆(n) > 1, but nothing else is obvious, even
heuristically.

Classical: let n 6 X be a random integer. n has ∼ (logX )log 2+o(1)

divisors.

Thus, on the log scale, there are D := logX “bins” (intervals [e i , e i+1])
and typically (logX )log 2+o(1) ≈ D0.693 “balls” (divisors) to put in them.

If these balls were distributed uniformly and independently then (“birthday
paradox”) we would expect two in the same box, but not three.

Maier and Tenenbaum (1985, resolving a 1948 conjecture of Erdős):
∆(n) > 2 a.s.
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Heuristics on Hooley’s ∆-function

The logs of the divisors of n have a lot of additive structure.

For example, if n = p1 · · · pk is squarefree (which is the generic case) then
the log d are the grid {ε1 log p1 + · · ·+ εk log pk : εi ∈ {0, 1}}.

This leads to far more bunching of the divisors than the näıve heuristic
suggests.

Maier and Tenenbaum already obtained in 1985 the bound

∆(n)� (log log n)c1+o(1) a.s., where c1 = − log 2

log(1− 1
log 3 )

≈ 0.288.

In 2009, with a much more elaborate argument, they improved this to

∆(n)� (log log n)c2+o(1), a.s. where c2 =
log 2

log
(1−1/ log 27

1−1/ log 3

) ≈ 0.338.

They conjectured that this is optimal.
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A new lower bound

Theorem (FGK 2019)

We have ∆(n)� (log log n)c3+o(1) a.s., where c3 = η ≈ 0.353.

We conjecture that this is optimal.

η is given by η = log 2
log(2/ρ) , where ρ ≈ 0.281 is given in terms of a rather

complicated recurrence: ρ satisfies the equation

1

1− ρ/2
= log 2 +

∞∑
j=1

1

2j
log
(aj+1 + aρj
aj+1 − aρj

)
,

where the sequence aj is defined by

a1 = 2, a2 = 2 + 2ρ, aj = a2
j−1 + aρj−1 − a2ρ

j−2 (j > 3).
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A random model for the problem

A logarithmic random set A is a subset of N in which we select i to lie in
A with probability 1/i , these choices being independent.

Well-known principle. (Turán–Kubilius, etc) The logarithms of the prime
factors of a random (squarefree) integer n 6 X behave somewhat like
A ∩ [1, . . . ,D], D = logX , at least away from the edges.
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A random model for the problem

A logarithmic random set A is a subset of N in which we select i to lie in
A with probability 1/i , these choices being independent.

Well-known principle. (Turán–Kubilius, etc) The logarithms of the prime
factors of a random (squarefree) integer n 6 X behave somewhat like
A ∩ [1, . . . ,D], D = logX , at least away from the edges.

Correspondingly, the logs of the divisors of n 6 X should behave like the
sums of elements of A in [1, . . . ,D].

Let rA(x) be the number of ways of writing x as a sum of elements of A.

Model problem: what is maxx6D rA(x)?
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Truncated model problem

Determine βk , the supremum of all exponents c < 1 for which the
following is true, a.s. as D →∞:

Some x is representable in k different ways as a sum of elements of
A ∩ [Dc ,D].

Lemma

∆(n)� (log log n)log k/ log(1/βk )−o(1) a.s.

Idea: first pass to the model problem. No explicit link between the model
setting and the integer setting in the existing literature. Proof uses fairly
familiar probabilistic and sieve theoretic ideas.

Model problem: “tensor trick”: If x is a sum of elements of A ∩ [Dc ,D] in
k ways and if y is a sum of elements of A∩ [Dc2

,Dc ] in k ways then x + y
is a sum of elements of A ∩ [Dc2

,D] in k2 ways.
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Main theorem – model problem

Last slide: βk is the supremum of all exponents c < 1 for which the
following is true, a.s. as D →∞: there is some x representable in k
different ways as a sum of elements of A ∩ [Dc ,D], where A is a
logarithmic random set.

Proposition

lim supk→∞
log k

log(1/βk ) > η, with η as defined before.

Determining the exact values of the βk is an extremely complicated
problem. We do know that β2 = 1− 1

log 3 , and in a future paper we will
show that

β3 =
log 3− 1

log 3 + log 3−log 2
log 2−log(e−1)

≈ 0.026.
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Further βk values

We will also show that

β4 =
log 3− 1

log 3 + 1
ξ + 1

ξλ

= 0.01295186091360511918 . . .

where

ξ =
log 2− log(e − 1)

log(3/2)
, λ =

log 2− log(e − 1)

1 + log 2− log(e − 1)− log(1 + 21−ξ)
.

β5 appears not to have a closed form expression, but can be given
numerically to high accuracy.
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Flags and entropy

One of the main ideas of our paper is that βk (essentially) coincides with
what appears to be a completely different problem, to do with optimizing
measures over the cube {0, 1}k . Even stating this problem requires some
work.

Definition (Flags and subflags)

Let k ∈ N. By an r -step flag we mean a nested sequence

V : 〈1〉 = V0 6 V1 6 V2 6 · · · 6 Vr 6 Qk

of vector spaces. Here 1 = (1, 1, . . . , 1) ∈ Qk . Another flag

V ′ : 〈1〉 = V ′0 6 V ′1 6 V ′2 6 · · · 6 V ′r 6 Qk

is said to be a subflag of V if V ′i 6 Vi for all i . In this case we write
V ′ 6 V . It is a proper subflag if it is not equal to V .
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Entropy of a subspace

Definition (Entropy of a subspace)

Suppose that ν is a finitely supported probability measure on Qk and that
W 6 Qk is a vector subspace. Then we define

Hν(W ) := −
∑
x

ν(x) log ν(W + x).

Remark. This is the (Shannon) entropy of the distribution on cosets
W + x induced by ν.

Example: if ν is the uniform measure on {0, 1}2 and if W is the line
x1 = x2 then

Hν(W ) = −1

2
log(

1

2
)− 1

4
log(

1

4
)− 1

4
log(

1

4
) =

3

2
log 2.
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Optimisation problem

Define γk to be the supremum of all constants cr+1 such that the
following exist:

1 An r -step flag V whose members are distinct, spanned by elements of
{0, 1}k and which is nondegenerate in the sense that Vr is not
contained in any subspace {x ∈ Qk : xi = xj};

2 Parameters 1 > c1 > c2 > · · · > cr+1 > 0;
3 Probability measures µ1, . . . , µr , with µi supported on {0, 1}k ∩ Vi

such that we have the following entropy condition

e(V ′) > e(V ), (1)

for all subflags V ′ 6 V , where

e(V ′) :=
r∑

j=1

(cj − cj+1)Hµj (V
′
j ) +

r∑
j=1

cj dim(V ′j /V
′
j−1).

Define the variant γ̃k in exactly the same way, except with (??) replaced by
the strict entropy condition e(V ′) > e(V ) for all proper subflags V ′ < V .
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Equal sums in random sets again

Theorem

We have 0 < γ̃k 6 βk 6 γk .

Probably, γ̃k = βk = γk , but we cannot quite prove this.

Very rough idea. Let A be a logarithmic random set. Suppose I have
distinct sets A1, . . . ,Ak ⊂ A with∑

a∈A1

a = · · · =
∑
a∈Ak

a.

We associate a flag as follows.

The Venn diagram of the subsets A1, . . . ,Ak produces a natural partition
of A into 2k subsets, which we denote by Bω for ω ∈ {0, 1}k . Here
Ai = tω:ωi=1Bω.
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Associating a flag to a Venn diagram

The Venn diagram of the subsets A1, . . . ,Ak produces a natural partition
of A into 2k subsets, which we denote by Bω for ω ∈ {0, 1}k . Here
Ai = tω:ωi=1Bω.

We iteratively select vectors ω1, . . . , ωr to maximize
∏r

j=1(maxBωj )

subject to the constraint that 1, ω1, . . . , ωr are linearly independent over
Q.

We then define Vj = SpanQ(1, ω1, . . . , ωj) for j = 0, 1, . . . , r . The point is
that the ωi provide the “right” basis for analysing the equal sums
equations ∑

a∈A1

a = · · · =
∑
a∈Ak

a.
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A tree recurrence

~ρ = (ρ0, ρ1, ρ2, . . . ), ρ0 = 1. Recurrence: f C (ρ) =
∑

C→C ′ f
C ′(ρ)ρi−1 .
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A tree recurrence
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Solving* the optimisation problem

Theorem

Suppose that the flag V is fixed. Under certain conditions (satisfied in
situations of interest) the optimal value of cr+1 in the optimisation
problem is given by the formula

γ̃k(V ) = (log 3− 1)
/(

log 3 +
r−1∑
i=1

dim(Vi+1/Vi )

ρ1 · · · ρi

)
.

Write Γj for the cell at level j (that is, coset of Vj) containing 0 ∈ Qk .
The ρi satisfy the “ρ-equations” ρ0 = 1 and

f Γj+1(ρ) = (f Γj (ρ))ρj edim(Vj+1/Vj ), j = 1, 2, . . . , r − 1,

where the f C (ρ) are defined by a tree recurrence as illustrated in the
pictures.
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Solving the optimisation problem

The ρ-equations consist of the single equation f Γ2(ρ) = (f Γ1(ρ))ρ1e2, that
is to say 3ρ1 + 4 · 2ρ1 + 4 = 3ρ1e2.

This has the unique solution ρ1 ≈ 0.306481.
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Solving the optimisation problem – sketch

Fix a flag V : 〈1〉 = V0 6 V1 6 V2 6 · · · 6 Vr 6 Qk . Recall that γk is the
supremum of all constants cr+1 such that there are

1 parameters 1 > c1 > c2 > · · · > cr+1 > 0, and

2 probability measures µ1, . . . , µr , with µi supported on {0, 1}k ∩ Vi

such that we have the entropy condition e(V ′) > e(V ) for all subflags
V ′ 6 V , where

e(V ′) :=
r∑

j=1

(cj − cj+1)Hµj (V
′
j ) +

r∑
j=1

cj dim(V ′j /V
′
j−1).

Step 1. solve the problem in which the entropy condition is only required
to hold for very special subflags V ′ (called “basic”): those in which
V ′i = Vi for i 6 m, and then V ′i = Vm for i = m + 1, . . . , r . This involves
a linear programming approach.
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Solving the optimisation problem – sketch

Step 2. Show that, for the parameters ci and measures µi found in step 1,
the more general entropy condition e(V ′) > e(V ) for an arbitrary subflag
V ′ follows automatically from the very special case of basic flags.

Crucial idea is symmetrisation via repeated use of submodularity property
of entropy. If σ is a permutation of coordinates preserving the flag V , then

2 e(V ′) = e(V ′) + e(σ(V ′)) > e(V ′ + σ(V ′)) + e(V ′ ∩ σ(V ′)).

Step 3. Finally, show that one can perturb by arbitrarily small amounts to
get a system satisfying the strict entropy condition e(V ′) > e(V ) (this is
not as trivial as one might think).
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Which flags are optimal?

Short answer: we are not quite sure.

Longer answer: based on numerical evidence and “naturality” we believe
that so-called binary flags are (asymptotically) optimal.

Definition (Binary flags)

Let k = 2r be a power of two. Identify Qk with QP[r ] (where P[r ] means
the power set of [r ] = {1, . . . , r}) and define a flag V ,

〈1〉 = V0 6 V1 6 · · · 6 Vr = QP[r ],

as follows: Vi is the subspace of all (xS)S⊂[r ] for which xS = xS∩[i ] for all
S ⊂ [r ].
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ρ parameters for binary flags

Given ~ρ = (ρ0, ρ1, ρ2, . . . ), ρ0 = 1, set up the tree-recurrence f C (ρ) = 1
for C at level 0 and then for C at level i by f C (ρ) =

∑
C→C ′ f

C ′(ρ)ρi−1

where C ′ runs over the children of C .

The ρ-equations:

f Γj+1(ρ) = (f Γj (ρ))ρj edim(Vj+1/Vj ), j = 1, 2, . . . , r − 1,

where Γj is the cell at level j containing 0.

We have already seen that the first nontrivial such equation is
f Γ2(ρ) = (f Γ1(ρ))ρ1e2, that is to say 3ρ1 + 4 · 2ρ1 + 4 = 3ρ1e2.

This has the unique solution ρ1 ≈ 0.306481.

To write down the ρ-equation for j = 2, one must compute f Γ3(ρ), and
without any additional theory the only means we have to do this is to draw
the full tree structure for the binary flag V of order 3 (on Q8).
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ρ parameters for binary flags
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ρ parameters for binary flags

In particular

f Γ3(ρ) = (3ρ1+4·2ρ1+4)ρ2+8(2·2ρ1+4)ρ2+16·4ρ2+8·(2ρ1+2)ρ2+32·2ρ2+16.

The second ρ-equation is

f Γ3(ρ) = f Γ2(ρ)ρ2e4,

which has the numerical solution ρ2 ≈ 0.2796104 . . . .

Theorem

ρ = limj→∞ ρj exists.

(Very) rough idea: “almost self-similarity”: the cell structure on {0, 1}2r+1

induced by the binary flag of order r + 1 is “almost” the product of two
copies of the structure on {0, 1}2r . Doesn’t help with computations.
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Recursion relations and computations

Proposition

Define a sequence ai ,j by the relations ai ,1 = 2, ai ,2 = 2 + 2ρi−1 and

ai ,j = a2
i ,j−1 + a

ρi−1

i−1,j−1 − a
2ρi−1

i−1,j−2 (j > 3).

Then
ai ,i+1 = a

ρi−1

i−1,ie
2i−1

.
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Tabulating the ρj

j ρj

1 0.3064810093305

2 0.2796104150767
3 0.2813005404710
4 0.2812067224539
5 0.2812115789381
6 0.2812113387071
7 0.2812113502101
8 0.2812113496729
9 0.2812113496974

10 0.2812113496963
11 0.2812113496964
12 0.2812113496964
13 0.2812113496964
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Limit of the ρj

Proposition

Define a sequence aj (depending on an arbitrary parameter ρ ∈ (0, 1)) by

a1 = 2, a2 = 2 + 2ρ, aj = a2
j−1 + aρj−1 − a2ρ

j−2 (j > 3).

Then the limit ρ = limi→∞ ρi satisfies the relation

1

1− ρ/2
= log 2 +

∞∑
j=1

1

2j
log
(aj+1 + aρj
aj+1 − aρj

)
.
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