Working title: The structure of low-discrepancy sequences in [0, 1)

Lukas Spiegelhofer

January 22, 2021, SFB 55 Meeting

Lukas Spiegelhofer (MU Leoben) The structure of low-discrepancy sequences in [0, 1) January 22, 2021 1/7

The van der Corput sequence

Let

$$n = \varepsilon_0(n)2^0 + \varepsilon_1(n)2^1 + \varepsilon_2(n)2^2 + \cdots$$

be the base-2 expansion of n and

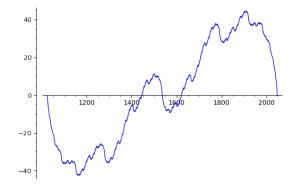
$$\omega(n) = \sum_{j\geq 0} \varepsilon_j(n) 2^{-j-1}$$

the van der Corput sequence in base 2. The discrepancy $d(N) = ND_N(\omega)$ of $\omega(0), \ldots, \omega(N-1)$ satisfies

$$d(1) = 1$$
, $d(2N) = d(N)$, $d(2N+1) = \frac{d(N) + d(N+1) + 1}{2}$

Lukas Spiegelhofer (MU Leoben) The structure of low-discrepancy sequences in [0, 1) January 22, 2021 2/7

The function d has a fractal appearance, which we can see from (a linear transformation of) the partial sums.



 $(\sim S., UDT)$

Lukas Spiegelhofer (MU Leoben)

The structure of low-discrepancy sequences in [0, 1)

Research problems

Drmota, Larcher, and Pillichshammer showed that d(N) satisfies a central limit theorem:

$$\frac{1}{M} \# \left\{ N < M : d(N) \le \frac{1}{4} \log_2 N + y \frac{1}{\sqrt{48}} \sqrt{\log_2 N} \right\} = \Phi(y) + o(1).$$

Problem 1. Study the limiting distribution of the discrepancy of certain low-discrepancy sequences in one dimension.

What about the (2,3)-Halton sequence? (Lower bound due to Levin...)

Problem 2. Prove more detailed results (e.g. tail estimates) for the distribution of d(N).

Can we find hints concerning the structure of general low-discrepancy sequences from such theorems?

Strong irregularities of distribution

Tijdeman and Wagner showed that a sequence has "almost nowhere small discrepancy":

Let ω be a sequence in [0, 1), and $M \ge 0$, N > 1 be integers. Then $D_N(\omega) < \log N/100$ for at most $2N^{5/6}$ integers $n \in (M, M + N]$. (Sós considered this question for $\{n\alpha\}$ -sequences.) — strong irregularities of distribution.

We could for example ask how the exponent ("5/6") changes if we change the constant ("1/100"). T–W proved in fact that it converges to zero with the constant.

Exact moments for the van der Corput-discrepancy

For the van der Corput sequence, we can find exact expressions for certain moments of the discrepancy:

$$m_{k,\ell,\lambda}=\frac{1}{2^{\lambda}}\sum_{n=2^{\lambda}}^{2^{\lambda+1}-1}d(n)^{k}d(n+1)^{\ell}.$$

Clearly, $m_{0,0,\lambda} = 1$ and it is easy to show that $m_{1,0,\lambda} = 1 + \lambda/4$. The matrix powers that appear for the higher moments appear to have simple explicit descriptions \dots

Summarizing: For sure, there is more to say about the discrepancy of the van der Corput sequence, and maybe we even learn something about the usual behaviour of low-discrepancy sequences.

Thank you!

⁰ Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).