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Problem statement

Problem setting

Consider the parametric elliptic Dirichlet problem given by

−∇ · (a(x , y)∇u(x , y)) = f (x) for x ∈ D ⊂ Rd ,

u(x , y) = 0 for x on ∂D,

for D ⊂ Rd a bounded, convex Lipschitz polyhedron domain.

Assumptions:

• gradients are taken w.r.t. x and we assume f : D → R lies in L2(D)

• the stochastic variable y = (yj)j≥1 is uniformly distributed on

U =
[
− 1

2 ,
1
2

]N
with uniform product measure µ(dy) =

⊗
j≥1 dyj

• the parametric diffusion coefficient a(x , y) depends on the yj via:
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Alternatively: a(x , y) = exp(Z (x , y)) with

Z (x , y) =
∑
j≥1

yj ψj(x) and yj ∼ N (0, 1)
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Illustration of the random field a(x , y)

Different realizations1of the random field a(x, y)

(a) rough random field sample (b) rough random field sample

(c) smooth random field sample (Matérn kernel) (d) smooth random field sample (Matérn kernel)

1By courtesy of Pieterjan Robbe
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Solutions of the PDE

Consider the Sobolev space V = H1
0 (D) of functions which vanish on the

boundary ∂D with norm

‖v‖V :=

(∫
D

d∑
j=1

|∂xj v(x)|2 dx
) 1

2

= ‖∇v‖L2(D).

Variational formulation of PDE

For given f ∈ V ∗ and y ∈ U, find u(·, y) ∈ V such that

A(y ; u(·, y), v) = 〈f , v〉V ∗×V =

∫
D

f (x)v(x) dx for all v ∈ V ,

with parametric bilinear form A : U × V × V → R given by

A(y ;w , v) :=

∫
D

a(x , y)∇w(x) · ∇v(x) dx for w , v ∈ V .
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Quantity of interest

Goal: For a bounded linear functional G ∈ V ∗, we want to approximate

E[G (u)] := lim
s→∞

∫
[− 1

2 ,
1
2 ]s

G (u(·, (y1, . . . , ys , 0, 0, . . .)))dy1 · · · dys

by randomized rank-1 lattice rules (or other QMC rules) of the form

QN(G (ush), z ,∆) =
1

N

N−1∑
k=0

G

(
ush

(
· ,
{
kz
N

+ ∆

}
−
(

1

2
, . . . ,

1

2

)))
with generating vector z constructed by a CBC-type algorithm and

uniform random shift vector ∆ ∈ [0, 1]s .

• This problem has been extensively studied, see, e.g., Kuo, Schwab,

Sloan (2012) or for a broader review article, see Kuo, Nuyens (2016).
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Typical QMC finite element error analysis

Denote by ush(x , y) := uh(x , (y{1:s}; 0)) the FE approximation of a weak

solution of the PDE with truncated diffusion coefficient a(x , (y{1:s}; 0)),

where uh is a FE approx. and we set (y{1:s}; 0) = (y1, . . . , ys , 0, 0, . . .).

The mean square error can be bounded by

E∆

[
|E[G (u)]− QN(G (ush), z ,∆)|2

]
≤ E∆

[
(Is(G (ush))− QN(G (ush), z ,∆)︸ ︷︷ ︸

QMC integration error

)2
]

+ 2(E[G (u)]− Is(G (us))︸ ︷︷ ︸
dimension truncation error

)2 + 2(Is(G (us))− Is(G (ush))︸ ︷︷ ︸
finite element error

)2

• Estimates for dimension truncation and finite element error known

• QMC error contribution can be bounded (using known error bounds for

CBC-type constructions)
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Quality measure and function space

Worst-case error

For a Banach space (F , ‖ · ‖F ) and a QMC rule QN with point set

PN = {y 1, . . . , yN} ⊂ [0, 1]s the worst-case error is defined as

eN,s(QN ,F) := sup
‖F‖F≤1

∣∣∣∣∣
∫

[0,1]s
F (y)dy − 1

N

N∑
k=1

F (y k)

∣∣∣∣∣ .

Function space setting: Weighted, unanchored Sobolev space Ws,γ

defined over [− 1
2 ,

1
2 ]s with square integrable mixed first derivatives and

non-negative weights γ = (γu)u⊆{1:s}. The norm for F ∈ Ws,γ equals

‖F‖2
Ws,γ

:=
∑

u⊆{1:s}

γ−1
u

∫
[− 1

2 ,
1
2 ]|u|

(∫
[− 1

2 ,
1
2 ]s−|u|

∂|u|F

∂yu

(yu; y−u) dy−u

)2

dyu.

• We will consider lattice rules, a special family of QMC rules:
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Definition: Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo method of the form

QN(f , z) :=
1

N

N−1∑
k=0

f

({
kz
N

})
,

where z ∈ Zs is called the generating vector of the lattice rule.

z

z

Figure 2: Fibonacci lattice with N = 55 and z = (1, 34) (left) and a rank-1

lattice with N = 32 and z = (1, 9) constructed by the CBC construction (right)
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QMC integration error contribution

• Regularity analysis reveals that derivative bounds of POD form, i.e.,

‖∂νu(·, y)‖V ≤ C bν Γ(|ν|) ‖f ‖V ∗ .

• Using the definition of the norm ‖ · ‖Ws,γ this leads to the estimate

‖G (ush)‖Ws,γ ≤ C ‖f ‖V ∗‖G‖V ∗
( ∑

u⊆{1:s}

Γ(|u|)2
∏

j∈u b
2
j

γu

)1/2

.

• Using the error bound obtained for the standard CBC algorithm, the

QMC error contribution can be bounded by

C ‖f ‖V ∗‖G‖V ∗ Cγ,λ

(
2

N

)1/λ

with constant

Cγ,λ :=

[ ∑
∅6=u⊆{1:s}

γλu %
|u|(λ)

] 1
λ
[ ∑
u⊆{1:s}

Γ(|u|)2
∏

j∈u b
2
j

γu

]
.

• The resulting weights γ∗u which minimize the constant Cγ,λ are

therefore also of POD form and depend on the random field a(x , y).
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Motivation

• Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for

elliptic PDEs with random coefficients showed that the occurring

weights are of POD form, i.e., γu = Γ(|u|)
∏

j∈u γj

• These weights strongly depend on the regularity of the random field,

which is characterized by a sequence of bj with sparsity p ∈ (0, 1)

• Problem 1: Construction cost for finding a suitable rank-1 lattice

rule with N points in s dimensions is O(s N lnN + s2N)

• Possible remedy: Gantner, Herrmann, Schwab showed that for

locally supported basis functions ψj it is possible to obtain product

weights, γu =
∏

j∈u γj , leading to a construction cost of O(s N lnN)

• Problem 2: Currently, the lattice rules have to be computed for

every individual problem (depending on a(x , y)) leading to high

computational efforts when many problems are solved.
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Open Problem

Problem

• Device QMC finite element methods for the given PDE class

that can be used simultaneously for a range of problems

(without needing to construct a QMC rule repeatedly)

• Show theoretically and numerically that such methods

achieve good error convergence rates

Subproblems:

• Either: Device new QMC/lattice rules which yield almost optimal

error convergence rates for a large range of weight sequences

• Or: Show that existing constructions can achieve this goal provided

that the weight sequences satisfy certain conditions
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Thank you for your attention!

10/10


