Construction of QMC Finite Element Methods for Elliptic PDEs with Random Coefficients

SFB Kooperations-Workshop (virtual)

Adrian Ebert Johann Radon Institute (RICAM), Linz, Austria

Joint work with Lukas Herrmann and Peter Kritzer January 22, 2021

Problem statement

Problem setting

Consider the parametric elliptic Dirichlet problem given by

$$\begin{aligned} -\nabla \cdot (\boldsymbol{a}(\boldsymbol{x},\boldsymbol{y}) \nabla \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in D \subset \mathbb{R}^d, \\ \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) &= 0 \qquad \text{for } \boldsymbol{x} \text{ on } \partial D, \end{aligned}$$

for $D \subset \mathbb{R}^d$ a bounded, convex Lipschitz polyhedron domain.

Problem statement

Problem setting

Consider the parametric elliptic Dirichlet problem given by

$$\begin{aligned} -\nabla \cdot (\boldsymbol{a}(\boldsymbol{x},\boldsymbol{y}) \, \nabla \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in D \subset \mathbb{R}^d, \\ \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) &= 0 \qquad \text{for } \boldsymbol{x} \text{ on } \partial D, \end{aligned}$$

for $D \subset \mathbb{R}^d$ a bounded, convex Lipschitz polyhedron domain.

Assumptions:

- gradients are taken w.r.t. \boldsymbol{x} and we assume $f: D \to \mathbb{R}$ lies in $L^2(D)$
- the stochastic variable $\mathbf{y} = (y_j)_{j\geq 1}$ is uniformly distributed on $U = \left[-\frac{1}{2}, \frac{1}{2}\right]^{\mathbb{N}}$ with uniform product measure $\mu(\mathrm{d}\mathbf{y}) = \bigotimes_{j\geq 1} \mathrm{d}y_j$
- the parametric diffusion coefficient $a(\mathbf{x}, \mathbf{y})$ depends on the y_j via:

$$a(oldsymbol{x},oldsymbol{y}) = a_0(oldsymbol{x}) + \sum_{j\geq 1} y_j \, \psi_j(oldsymbol{x})$$

Problem statement

Problem setting

Consider the parametric elliptic Dirichlet problem given by

$$\begin{aligned} -\nabla \cdot (\boldsymbol{a}(\boldsymbol{x},\boldsymbol{y}) \, \nabla \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in D \subset \mathbb{R}^d, \\ \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) &= 0 \qquad \text{for } \boldsymbol{x} \text{ on } \partial D, \end{aligned}$$

for $D \subset \mathbb{R}^d$ a bounded, convex Lipschitz polyhedron domain.

Assumptions:

- gradients are taken w.r.t. \boldsymbol{x} and we assume $f: D \to \mathbb{R}$ lies in $L^2(D)$
- the stochastic variable $\mathbf{y} = (y_j)_{j \ge 1}$ is uniformly distributed on $U = \left[-\frac{1}{2}, \frac{1}{2}\right]^{\mathbb{N}}$ with uniform product measure $\mu(\mathrm{d}\mathbf{y}) = \bigotimes_{j \ge 1} \mathrm{d}y_j$
- the parametric diffusion coefficient $a(\mathbf{x}, \mathbf{y})$ depends on the y_j via:

Alternatively:
$$a(\mathbf{x}, \mathbf{y}) = \exp(Z(\mathbf{x}, \mathbf{y}))$$
 with
 $Z(\mathbf{x}, \mathbf{y}) = \sum_{j \ge 1} y_j \psi_j(\mathbf{x})$ and $y_j \sim \mathcal{N}(0, 1)$
1/10

Illustration of the random field a(x, y)

Different realizations¹ of the random field a(x, y)

(a) rough random field sample

(b) rough random field sample

(c) smooth random field sample (Matérn kernel) (d) smooth random field sample (Matérn kernel)

¹By courtesy of Pieterjan Robbe

Solutions of the PDE

Consider the Sobolev space $V = H_0^1(D)$ of functions which vanish on the boundary ∂D with norm

$$\|\boldsymbol{v}\|_{\boldsymbol{V}} := \left(\int_{D}\sum_{j=1}^{d}|\partial_{\boldsymbol{x}_{j}}\boldsymbol{v}(\boldsymbol{x})|^{2}\,\mathrm{d}\boldsymbol{x}\right)^{\frac{1}{2}} = \|\nabla\boldsymbol{v}\|_{L^{2}(D)}.$$

Solutions of the PDE

Consider the Sobolev space $V = H_0^1(D)$ of functions which vanish on the boundary ∂D with norm

$$\|\boldsymbol{v}\|_{\boldsymbol{V}} := \left(\int_{D}\sum_{j=1}^{d}|\partial_{\boldsymbol{x}_{j}}\boldsymbol{v}(\boldsymbol{x})|^{2}\,\mathrm{d}\boldsymbol{x}\right)^{\frac{1}{2}} = \|\nabla\boldsymbol{v}\|_{L^{2}(D)}.$$

Variational formulation of PDE

For given $f \in V^*$ and $\mathbf{y} \in U$, find $u(\cdot, \mathbf{y}) \in V$ such that

$$egin{aligned} \mathcal{A}(oldsymbol{y}; u(\cdot, oldsymbol{y}), v) &= \langle f, v
angle_{V^* imes V} = \int_D f(oldsymbol{x}) v(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} & ext{ for all } v \in V, \end{aligned}$$

with parametric bilinear form $A: \mathit{U} \times \mathit{V} \times \mathit{V} \to \mathbb{R}$ given by

$$A(\mathbf{y}; w, v) := \int_D a(\mathbf{x}, \mathbf{y}) \, \nabla w(\mathbf{x}) \cdot \nabla v(\mathbf{x}) \, \mathrm{d}\mathbf{x} \quad \text{for} \quad w, v \in V.$$

Goal: For a bounded linear functional $G \in V^*$, we want to approximate

$$\mathbb{E}[G(u)] := \lim_{s \to \infty} \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^s} G(u(\cdot, (y_1, \dots, y_s, 0, 0, \dots))) \, \mathrm{d}y_1 \cdots \, \mathrm{d}y_s$$

by randomized rank-1 lattice rules (or other QMC rules) of the form

$$Q_N(G(u_h^s), \mathbf{Z}, \mathbf{\Delta}) = \frac{1}{N} \sum_{k=0}^{N-1} G\left(u_h^s\left(\cdot, \left\{\frac{k\mathbf{Z}}{N} + \mathbf{\Delta}\right\} - \left(\frac{1}{2}, \dots, \frac{1}{2}\right)\right)\right)$$

with generating vector z constructed by a CBC-type algorithm and uniform random shift vector $\mathbf{\Delta} \in [0, 1]^s$.

Goal: For a bounded linear functional $G \in V^*$, we want to approximate

$$\mathbb{E}[G(u)] := \lim_{s \to \infty} \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^s} G(u(\cdot, (y_1, \dots, y_s, 0, 0, \dots))) \, \mathrm{d} y_1 \cdots \, \mathrm{d} y_s$$

by randomized rank-1 lattice rules (or other QMC rules) of the form

$$Q_N(G(u_h^s), \mathbf{Z}, \mathbf{\Delta}) = \frac{1}{N} \sum_{k=0}^{N-1} G\left(u_h^s\left(\cdot, \left\{\frac{k\mathbf{Z}}{N} + \mathbf{\Delta}\right\} - \left(\frac{1}{2}, \dots, \frac{1}{2}\right)\right)\right)$$

with generating vector z constructed by a CBC-type algorithm and uniform random shift vector $\mathbf{\Delta} \in [0, 1]^s$.

• This problem has been extensively studied, see, e.g., Kuo, Schwab, Sloan (2012) or for a broader review article, see Kuo, Nuyens (2016).

The mean square error can be bounded by

$$\mathbb{E}_{\Delta}\left[\left|\mathbb{E}[G(u)] - Q_{N}(G(u_{h}^{s}), z, \Delta)\right|^{2}\right] \leq \mathbb{E}_{\Delta}\left[\underbrace{(I_{s}(G(u_{h}^{s})) - Q_{N}(G(u_{h}^{s}), z, \Delta))^{2}}_{\text{QMC integration error}} + 2\underbrace{(\mathbb{E}[G(u)] - I_{s}(G(u^{s})))^{2} + 2\underbrace{(I_{s}(G(u^{s})) - I_{s}(G(u_{h}^{s})))^{2}}_{\text{finite element error}}\right]^{2}$$

The mean square error can be bounded by

$$\mathbb{E}_{\Delta}\left[\left|\mathbb{E}[G(u)] - Q_{N}(G(u_{h}^{s}), z, \Delta)\right|^{2}\right] \leq \mathbb{E}_{\Delta}\left[\underbrace{\left(I_{s}(G(u_{h}^{s})) - Q_{N}(G(u_{h}^{s}), z, \Delta)\right)^{2}\right]}_{\text{QMC integration error}} + 2\underbrace{\left(\mathbb{E}[G(u)] - I_{s}(G(u^{s}))\right)^{2} + 2\underbrace{\left(I_{s}(G(u^{s})) - I_{s}(G(u_{h}^{s}))\right)^{2}}_{\text{finite element error}}\right]^{2}$$

• Estimates for dimension truncation and finite element error known

The mean square error can be bounded by

$$\mathbb{E}_{\Delta}\left[\left|\mathbb{E}[G(u)] - Q_{N}(G(u_{h}^{s}), \boldsymbol{z}, \boldsymbol{\Delta})\right|^{2}\right] \leq \mathbb{E}_{\Delta}\left[\underbrace{\left(I_{s}(G(u_{h}^{s})) - Q_{N}(G(u_{h}^{s}), \boldsymbol{z}, \boldsymbol{\Delta})\right)^{2}\right]}_{QMC \text{ integration error}} + 2\underbrace{\left(\mathbb{E}[G(u)] - I_{s}(G(u^{s}))\right)^{2} + 2\underbrace{\left(I_{s}(G(u^{s})) - I_{s}(G(u_{h}^{s}))\right)^{2}}_{finite element error}\right]$$

- Estimates for dimension truncation and finite element error known
- QMC error contribution can be bounded (using known error bounds for CBC-type constructions)

Worst-case error

For a Banach space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ and a QMC rule Q_N with point set $P_N = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_N\} \subset [0, 1]^s$ the *worst-case error* is defined as

$$e_{N,s}(Q_N,\mathcal{F}) := \sup_{\|\mathcal{F}\|_{\mathcal{F}} \leq 1} \left| \int_{[0,1]^s} \mathcal{F}(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} - \frac{1}{N} \sum_{k=1}^N \mathcal{F}(\boldsymbol{y}_k) \right|.$$

Worst-case error

For a Banach space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ and a QMC rule Q_N with point set $P_N = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_N\} \subset [0, 1]^s$ the *worst-case error* is defined as

$$e_{N,s}(Q_N,\mathcal{F}) := \sup_{\|F\|_{\mathcal{F}} \leq 1} \left| \int_{[0,1]^s} F(\mathbf{y}) \,\mathrm{d}\mathbf{y} - \frac{1}{N} \sum_{k=1}^N F(\mathbf{y}_k) \right|.$$

Function space setting: Weighted, unanchored Sobolev space $W_{s,\gamma}$ defined over $[-\frac{1}{2}, \frac{1}{2}]^s$ with square integrable mixed first derivatives and non-negative weights $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$. The norm for $F \in W_{s,\gamma}$ equals

$$\|F\|_{\mathcal{W}_{s,\gamma}}^2 := \sum_{\mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{-1} \int_{[-\frac{1}{2},\frac{1}{2}]^{|\mathfrak{u}|}} \left(\int_{[-\frac{1}{2},\frac{1}{2}]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}F}{\partial \boldsymbol{y}_{\mathfrak{u}}}(\boldsymbol{y}_{\mathfrak{u}};\boldsymbol{y}_{-\mathfrak{u}}) \, \mathrm{d}\boldsymbol{y}_{-\mathfrak{u}} \right)^2 \mathrm{d}\boldsymbol{y}_{\mathfrak{u}}.$$

Worst-case error

For a Banach space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ and a QMC rule Q_N with point set $P_N = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_N\} \subset [0, 1]^s$ the *worst-case error* is defined as

$$e_{N,s}(Q_N,\mathcal{F}) := \sup_{\|F\|_{\mathcal{F}} \leq 1} \left| \int_{[0,1]^s} F(\mathbf{y}) \,\mathrm{d}\mathbf{y} - \frac{1}{N} \sum_{k=1}^N F(\mathbf{y}_k) \right|.$$

Function space setting: Weighted, unanchored Sobolev space $W_{s,\gamma}$ defined over $[-\frac{1}{2}, \frac{1}{2}]^s$ with square integrable mixed first derivatives and non-negative weights $\gamma = (\gamma_u)_{u \subseteq \{1:s\}}$. The norm for $F \in W_{s,\gamma}$ equals

$$\|F\|_{\mathcal{W}_{s,\gamma}}^2 := \sum_{\mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{-1} \int_{[-\frac{1}{2},\frac{1}{2}]^{|\mathfrak{u}|}} \left(\int_{[-\frac{1}{2},\frac{1}{2}]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}F}{\partial \boldsymbol{y}_{\mathfrak{u}}}(\boldsymbol{y}_{\mathfrak{u}};\boldsymbol{y}_{-\mathfrak{u}}) \, \mathrm{d}\boldsymbol{y}_{-\mathfrak{u}} \right)^2 \mathrm{d}\boldsymbol{y}_{\mathfrak{u}}.$$

• We will consider lattice rules, a special family of QMC rules:

Definition: Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo method of the form

$$Q_N(f, \mathbf{z}) := \frac{1}{N} \sum_{k=0}^{N-1} f\left(\left\{\frac{k\mathbf{z}}{N}\right\}\right),$$

where $z \in \mathbb{Z}^s$ is called the generating vector of the lattice rule.

Definition: Rank-1 lattice rule

A rank-1 lattice rule is a quasi-Monte Carlo method of the form

$$Q_N(f, \mathbf{z}) := rac{1}{N} \sum_{k=0}^{N-1} f\left(\left\{rac{k\mathbf{z}}{N}
ight\}
ight),$$

where $z \in \mathbb{Z}^s$ is called the generating vector of the lattice rule.

Figure 2: Fibonacci lattice with N = 55 and z = (1, 34) (left) and a rank-1 lattice with N = 32 and z = (1, 9) constructed by the CBC construction (right)

• Regularity analysis reveals that derivative bounds of POD form, i.e.,

 $\|\partial^{\boldsymbol{\nu}} u(\cdot, \boldsymbol{y})\|_{V} \leq C \boldsymbol{b}^{\boldsymbol{\nu}} \Gamma(|\boldsymbol{\nu}|) \|f\|_{V^{*}}.$

- Regularity analysis reveals that derivative bounds of POD form, i.e., $\|\partial^{\boldsymbol{\nu}} u(\cdot, \boldsymbol{y})\|_{V} \leq C \boldsymbol{b}^{\boldsymbol{\nu}} \Gamma(|\boldsymbol{\nu}|) \|f\|_{V^{*}}.$
- \bullet Using the definition of the norm $\|\cdot\|_{\mathcal{W}_{s,\gamma}}$ this leads to the estimate

$$\|G(u_h^s)\|_{\mathcal{W}_{s,\gamma}} \leq C \, \|f\|_{V^*} \|G\|_{V^*} \left(\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{\Gamma(|\mathfrak{u}|)^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_{\mathfrak{u}}}\right)^{1/2}.$$

- Regularity analysis reveals that derivative bounds of POD form, i.e., $\|\partial^{\nu} u(\cdot, \boldsymbol{y})\|_{V} \leq C \boldsymbol{b}^{\nu} \Gamma(|\nu|) \|f\|_{V^{*}}.$
- \bullet Using the definition of the norm $\|\cdot\|_{\mathcal{W}_{s,\gamma}}$ this leads to the estimate

$$\|G(u_h^s)\|_{\mathcal{W}_{s,\gamma}} \leq C \|f\|_{V^*} \|G\|_{V^*} \left(\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{\Gamma(|\mathfrak{u}|)^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_{\mathfrak{u}}}\right)^{1/2}.$$

• Using the error bound obtained for the standard CBC algorithm, the QMC error contribution can be bounded by

$$C \|f\|_{V^*} \|G\|_{V^*} C_{\gamma,\lambda} \left(\frac{2}{N}\right)^{1/2}$$

with constant

$$C_{\gamma,\lambda} := \left[\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{\lambda} \, \varrho^{|\mathfrak{u}|}(\lambda)\right]^{\frac{1}{\lambda}} \left[\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{\Gamma(|\mathfrak{u}|)^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_{\mathfrak{u}}}\right]$$

- Regularity analysis reveals that derivative bounds of POD form, i.e., $\|\partial^{\nu} u(\cdot, \boldsymbol{y})\|_{V} \leq C \boldsymbol{b}^{\nu} \Gamma(|\nu|) \|f\|_{V^{*}}.$
- \bullet Using the definition of the norm $\|\cdot\|_{\mathcal{W}_{s,\gamma}}$ this leads to the estimate

$$\|G(u_h^s)\|_{\mathcal{W}_{s,\gamma}} \leq C \|f\|_{V^*} \|G\|_{V^*} \left(\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{\Gamma(|\mathfrak{u}|)^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_{\mathfrak{u}}}\right)^{1/2}$$

• Using the error bound obtained for the standard CBC algorithm, the QMC error contribution can be bounded by

$$C \|f\|_{V^*} \|G\|_{V^*} C_{\gamma,\lambda} \left(\frac{2}{N}\right)^{1/2}$$

with constant

$$C_{\boldsymbol{\gamma},\lambda} := \left[\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{\lambda} \, \varrho^{|\mathfrak{u}|}(\lambda)\right]^{\frac{1}{\lambda}} \left[\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{\Gamma(|\mathfrak{u}|)^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_{\mathfrak{u}}}\right].$$

• The resulting weights $\gamma_{\mathfrak{u}}^*$ which minimize the constant $C_{\gamma,\lambda}$ are therefore also of POD form and depend on the random field $a(\mathbf{x}, \mathbf{y})$. 8/10

 Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for elliptic PDEs with random coefficients showed that the occurring weights are of POD form, i.e., γ_u = Γ(|u|) ∏_{j∈u} γ_j

- Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for elliptic PDEs with random coefficients showed that the occurring weights are of POD form, i.e., $\gamma_{\mathfrak{u}} = \Gamma(|\mathfrak{u}|) \prod_{i \in \mathfrak{u}} \gamma_i$
- These weights strongly depend on the regularity of the random field, which is characterized by a sequence of b_j with sparsity p ∈ (0,1)

- Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for elliptic PDEs with random coefficients showed that the occurring weights are of POD form, i.e., $\gamma_{\mathfrak{u}} = \Gamma(|\mathfrak{u}|) \prod_{i \in \mathfrak{u}} \gamma_i$
- These weights strongly depend on the regularity of the random field, which is characterized by a sequence of b_j with sparsity p ∈ (0, 1)
- **Problem 1:** Construction cost for finding a suitable rank-1 lattice rule with N points in s dimensions is $O(s N \ln N + s^2 N)$

- Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for elliptic PDEs with random coefficients showed that the occurring weights are of POD form, i.e., $\gamma_{\mathfrak{u}} = \Gamma(|\mathfrak{u}|) \prod_{i \in \mathfrak{u}} \gamma_i$
- These weights strongly depend on the regularity of the random field, which is characterized by a sequence of b_j with sparsity p ∈ (0,1)
- **Problem 1:** Construction cost for finding a suitable rank-1 lattice rule with *N* points in *s* dimensions is $O(s N \ln N + s^2 N)$
- Possible remedy: Gantner, Herrmann, Schwab showed that for locally supported basis functions ψ_j it is possible to obtain product weights, γ_u = ∏_{j∈u} γ_j, leading to a construction cost of O(s N ln N)

- Seminal article by Kuo, Schwab, Sloan (2012) on QMC FEM for elliptic PDEs with random coefficients showed that the occurring weights are of POD form, i.e., $\gamma_{\mathfrak{u}} = \Gamma(|\mathfrak{u}|) \prod_{i \in \mathfrak{u}} \gamma_i$
- These weights strongly depend on the regularity of the random field, which is characterized by a sequence of b_j with sparsity p ∈ (0, 1)
- **Problem 1:** Construction cost for finding a suitable rank-1 lattice rule with N points in s dimensions is $O(s N \ln N + s^2 N)$
- Possible remedy: Gantner, Herrmann, Schwab showed that for locally supported basis functions ψ_j it is possible to obtain product weights, γ_u = ∏_{j∈u} γ_j, leading to a construction cost of O(s N ln N)
- Problem 2: Currently, the lattice rules have to be computed for every individual problem (depending on a(x, y)) leading to high computational efforts when many problems are solved.

Problem

- Device QMC finite element methods for the given PDE class that can be used simultaneously for a range of problems (without needing to construct a QMC rule repeatedly)
- Show theoretically and numerically that such methods achieve good error convergence rates

Subproblems:

- Either: Device new QMC/lattice rules which yield almost optimal error convergence rates for a large range of weight sequences
- Or: Show that existing constructions can achieve this goal provided that the weight sequences satisfy certain conditions

Thank you for your attention!