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Consider the weighted Korobov space Hd,α,γ ⊆ L2([0,1]d ) with
smoothness parameter α > 1 and product weights γ = (γj)j≥1.

Functions in the space are absolutely convergent Fourier series,

f (x) =
∑
h∈Zd

f̂ (h)e2πih·x .

Using the usual CBC construction, we can construct, for prime N, a
generating vector g ∈ {1,2, . . . ,N − 1}d of a rank-1 lattice rule such
that

[eN,d,α,γ(Hd,α,γ ,g)]2 ≤
21/λ

N1/λ

d∏
j=1

(
1 + γλj ζ(αλ)

)1/λ

for all λ ∈ (1/α,1].
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Now, make special choices for the weights γj :
Let c > 0 be a constant. For ` ∈ N, let H(`)

d,α,γ(`) denote the Korobov

space with product weights γ(`) = (γ
(`)
j )j≥1, where

γ(`) =
( c

`
,

c
`
,

c
`︸ ︷︷ ︸

` components

,0,0, . . .
)
,

i.e.,

γ
(`)
j =

{
c
` for 1 ≤ j ≤ `,
0 for j > `.
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Question: Asked by G. Larcher in 2020:

Can we find a single generating vector g∗ that yields a low integration
error for all spaces H(`)

d,α,γ(`) , ` ∈ N, simultaneously?

Answer: Yes and No.
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Let H(0)
d,α,γ(0) denote the usual Korobov space with product weights

γ(0) = (γ
(0)
j )j≥1, where

γ(0) =
(c

1
,

c
2
,

c
3
, . . .

)
,

i.e.,
γ
(0)
j =

c
j

for j ≥ 1.
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Note that we always have γ(`)j ≤ γ
(0)
j for all j ≥ 1 and all ` ≥ 1, and

hence
γ
(`)
u :=

∏
j∈u

γ
(`)
j ≤

∏
j∈u

γ
(`)
j =: γ

(0)
u

for all u ⊆ {1, . . . ,d}.

This implies that, for any ` ∈ N,

eN,d,α,γ(`)(H(`)

d,α,γ(`) ,g) ≤ eN,d,α,γ(0)(H(0)
d,α,γ(0) ,g)

for any generating vector g.
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Use the CBC construction to obtain a g∗ such that

[eN,d,α,γ(`)(H(`)

d,α,γ(`) ,g∗)]2

≤ [eN,d,α,γ(0)(H(0)
d,α,γ(0) ,g∗)]2

≤ 21/λ

N1/λ

d∏
j=1

(
1 + (γ

(0)
j )λζ(αλ)

)1/λ

for all λ ∈ (1/α,1].
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Note that
d∑

j=1

γ
(0)
j =

d∑
j=1

c
j
' log d ,

so the upper bound yields polynomial tractability, simultaneously for
all H(`)

d,α,γ(`) .

Question: Can we get a similar result for strong polynomial
tractability?

Answer: Yes and No.
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By using the fact that γ(`)j = 0 for any j ≥ `+ 1, we can sharpen the
previous result. We can easily deduce the existence of a g∗ such that

[eN,d,α,γ(`)(H(`)

d,α,γ(`) ,g∗)]2

≤ [eN,`,α,γ(0)(H(0)
`,α,γ(0) ,g∗)]2

≤ 21/λ

N1/λ

∏̀
j=1

(
1 + (γ

(0)
j )λζ(αλ)

)1/λ

for all λ ∈ (1/α,1].

This bound holds for all ` ∈ N, and also for all d ∈ N, so we have
strong polynomial tractability for each ` ∈ N.
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However...

...the constant for strong polynomial tractability depends on `.

Open question:
Can we obtain a similar result, where the implied constant is
independent of ` ?

(Much) more generally:
Given two Korobov spaces with two different weight sequences:
when does the CBC construction for one space also work (in the
sense of error convergence and tractability) for the other?

Some results by J. Dick and T. Goda, but far from complete answers.
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Thanks for your attention.
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