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Forn,d e N,x € [0,1]9,t,,...,t, € [0,1]¢ and a € R" define the
discrepancy function

n
disc(X) = XXz ... Xg — > Qo) (t;)
i=1

and for p € [1, o]

p\ /P

d n
discp({ti}. {a;}) = | disc s, = /[ P xa = arton (©)
Oy i=1

as well as

discp(n, d) = inf andiscp({t,-},{a,-}).

tq;---,tn, 015 -,
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Consider
n(e,d) = min{n € N : discp(n, d) < ediscp(0,d)}.

The conjecture is that n(e, d) is bounded below by an expression
that grows exponentially in d, i.e. that discp(n, d) is intractable.
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Consider
n(e,d) = min{n € N : discp(n, d) < ediscp(0,d)}.

The conjecture is that n(e, d) is bounded below by an expression
that grows exponentially in d, i.e. that discp(n, d) is intractable.
A closely related question is that of the intractability of the
integration problem in a certain function space.
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For p € [1,0], @ € [0,1], consider the function space
Fr, = {f: [0,1 — R | f absolutely continuous, df € Lp[0,1],f(e) = 0}

with norm [|f|[ee, = [|0f L,
The d-fold tensor product Fy , = ?:1 F{p is the Sobolev space of
functions on [0,1]¢ with dominating mixed smoothness, f(x) = 0
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Consider the integration problem in Fa pr i.e. appoximating the
integration funtional

INT,(f) = / F(x) dx

[0,

by an algorithm

Qualf) =3 o (t).
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For the worst-case error we have

erg,(Qna) =  sup  [INT4(f) = Qna(f)l = [INTa —Qnall(rg )~

fefg plifll<
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For the worst-case error we have

erg (Qua) = sup  |INT4(f) — Qua(f)l = || INTy—Qnall(ps e
’ feFg lif<a »

ng,p(n’ d) = Q,,yl(?efAn ng,p(Qn’d)'

It turns out, using Hlawska-Zaremba identity, that we have
(/p+1/g="1)

discp({ti}, {aj}) = ery (Qn.a)s
discp(n,d) = cp, (n.d).
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What ist known about the tractability of epgp?
1. p € [1,00], & = 1/2: intractable, because

erg (n,d) > (1— nz*d)KPngp(o, d).

2. p=2,a € (0,1): intractable, because
erg (n,d) > (1-nB%){eps (0,d),  forape1/2,1),

proved by decomposing Fp = Fa) p® F(az) pr and further ng

into 29 subspaces of functions with disjoint support F(py and
e(Qna)® > > e(ney,Fp).
be{o,1}d

This works for p # 2 analogously.
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What ist known about the tractability of ngp?

3. p=2,a € {0,1}: intractable.
The proof relies on an orthogonal decomposition
Fip = Gy p © GG 2).p7 s.t. one of the subspaces can be further

decomposed asin2.
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What ist known about the tractability of epgp?

3. p=2,a € {0,1}: intractable.
The proof relies on an orthogonal decomposition
Fip = Gy p ® GG, 2).p" s.t. one of the subspaces can be further
decomposed asin2.
Difficult to generalize for p # 2. Alternative proof for p =2
using Parseval’s identity and a basis of Haar functions:

C(Qn,d)2 - ” INTd *Qn,dH2 - Z HbH2| INTd Qn,d' b>|2
be#d







	

