Subsequences of Automatic Sequences

Clemens Müllner

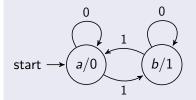
TU Wien

Friday, January 22, 2021

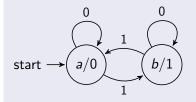
Clemens Müllner

Subsequences of Automatic Sequences

$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $u = (u_n)_{n \ge 0} = 011010011001...$
 $u_n = s_2(n) \mod 2.$



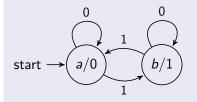
$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $u = (u_n)_{n \ge 0} = 011010011001...$
 $u_n = s_2(n) \mod 2.$



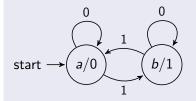
 $n = 22 = (10110)_2, \qquad u_{22} = 1$

 $u = (u_n)_{n \ge 0} = 011010011001 \dots$

 $u_n = s_2(n) \mod 2.$



$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $u = (u_n)_{n \ge 0} = 011010011001...$
 $u_n = s_n(n) \mod 2$



$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $u = (u_n)_{n \ge 0} = 011010011001...$
 $u_n = s_2(n) \mod 2.$

Theorem (Gelfond - 1967)

 $(s_q(an + b))_{n \ge 0}$ is uniformly distributed modulo m (under natural conditions for q, m).

Theorem (Drmota, Mauduit, Rivat - 2019)

 $(s_2(n^2))_{n\geq 0}$ is normal modulo 2.

Theorem (Drmota, Mauduit, Rivat - 2011)

Let P(n) be a polynomial with integer coefficients. Then, for $q \ge q_0(P)$, $(s_q(P(n)))_{n\ge 0}$ is uniformly distributed modulo m.

Theorem (Gelfond - 1967)

 $(s_q(an + b))_{n \ge 0}$ is uniformly distributed modulo m (under natural conditions for q, m).

Theorem (Drmota, Mauduit, Rivat - 2019)

 $(s_2(n^2))_{n\geq 0}$ is normal modulo 2.

Theorem (Drmota, Mauduit, Rivat - 2011)

Let P(n) be a polynomial with integer coefficients. Then, for $q \ge q_0(P)$, $(s_q(P(n)))_{n\ge 0}$ is uniformly distributed modulo m.

Theorem (Gelfond - 1967)

 $(s_q(an + b))_{n \ge 0}$ is uniformly distributed modulo m (under natural conditions for q, m).

Theorem (Drmota, Mauduit, Rivat - 2019)

 $(s_2(n^2))_{n\geq 0}$ is normal modulo 2.

Theorem (Drmota, Mauduit, Rivat - 2011)

Let P(n) be a polynomial with integer coefficients. Then, for $q \ge q_0(P)$, $(s_q(P(n)))_{n\ge 0}$ is uniformly distributed modulo m.

A notorious open problem

Show that $(s_2(n^3))_{n\geq 0}$ is uniformly distributed modulo 2.

A hopefully simpler problem

Show that $(s_2(n^3 + 2m^3))_{n,m \ge 0}$ is uniformly distributed modulo 2.

Similar questions

Show that $(s_2(P(n_1,...,n_k)))_{n_i\geq 0}$ is uniformly distributed modulo 2.

A notorious open problem

Show that $(s_2(n^3))_{n\geq 0}$ is uniformly distributed modulo 2.

A hopefully simpler problem

Show that $(s_2(n^3 + 2m^3))_{n,m \ge 0}$ is uniformly distributed modulo 2.

Similar questions

Show that $(s_2(P(n_1,...,n_k)))_{n_i\geq 0}$ is uniformly distributed modulo 2.

A notorious open problem

Show that $(s_2(n^3))_{n\geq 0}$ is uniformly distributed modulo 2.

A hopefully simpler problem

Show that $(s_2(n^3 + 2m^3))_{n,m \ge 0}$ is uniformly distributed modulo 2.

Similar questions

Show that $(s_2(P(n_1, \ldots, n_k)))_{n_i \ge 0}$ is uniformly distributed modulo 2.

Known Results

- Rewriting the statement using exponential sums.
- Using "Cutting techniques" to reduce the number of relevant digits.
- Estimates for

$$\sum_{n\leq 2^{\nu}} e\left(\frac{1}{2}s_2(n) + n\alpha\right) = 2^{\nu} \prod_{\lambda=0}^{\nu-1} \left|\sin(2^{\lambda}\pi\alpha)\right|.$$

New Approach?

Combination of the circle Method (e.g. Waring's problem) and estimates for (1).

Known Results

- Rewriting the statement using exponential sums.
- Using "Cutting techniques" to reduce the number of relevant digits.
- Estimates for

$$\sum_{n\leq 2^{\nu}} e\left(\frac{1}{2}s_2(n) + n\alpha\right) = 2^{\nu} \prod_{\lambda=0}^{\nu-1} \left|\sin(2^{\lambda}\pi\alpha)\right|.$$

New Approach?

Combination of the circle Method (e.g. Waring's problem) and estimates for (1).

Known Results

- Rewriting the statement using exponential sums.
- Using "Cutting techniques" to reduce the number of relevant digits.
- Estimates for

$$\sum_{n \le 2^{\nu}} e\left(\frac{1}{2}s_2(n) + n\alpha\right) = 2^{\nu} \prod_{\lambda=0}^{\nu-1} \left|\sin(2^{\lambda}\pi\alpha)\right|.$$
 (1)

New Approach?

Combination of the circle Method (e.g. Waring's problem) and estimates for (1).

Known Results

- Rewriting the statement using exponential sums.
- Using "Cutting techniques" to reduce the number of relevant digits.
- Estimates for

$$\sum_{n \le 2^{\nu}} e\left(\frac{1}{2}s_2(n) + n\alpha\right) \bigg| = 2^{\nu} \prod_{\lambda=0}^{\nu-1} \left|\sin(2^{\lambda}\pi\alpha)\right|.$$
(1)

< □ > < 凸

New Approach?

Combination of the circle Method (e.g. Waring's problem) and estimates for (1).

Some simplification

Use the Rudin-Shapiro sequence instead of Thue-Morse.

The Fourier-Transform is uniformly of size \sqrt{N} .

Thank you!

Clemens Müllner

Subsequences of Automatic Sequences

 $22.\ 01.\ 2021$

Some simplification

Use the Rudin-Shapiro sequence instead of Thue-Morse. The Fourier-Transform is uniformly of size \sqrt{N} .

Thank you!

Clemens Müllner

Subsequences of Automatic Sequences

Some simplification

Use the Rudin-Shapiro sequence instead of Thue-Morse. The Fourier-Transform is uniformly of size \sqrt{N} .

Thank you!

Clemens Müllner

Subsequences of Automatic Sequences