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Sudler Product

For « € R and N € N we define

N
Pn(ar) =[] 12sin(rra)].
r=1
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Sudler Product

For « € R and N € N we define

N
Pn(ar) =[] 12sin(rra)].
r=1

These kind of products have been studied in a variety of different
fields/contexts:

@ Partition theory @ Uniform distribution
@ Padé approximation @ Discrepancy
@ Continued fractions o Mathematical physics
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Interests

We are interested in the asymptotic behaviour of (Py(a))nen (or
subsequences) for a fixed irrational .
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Interests

We are interested in the asymptotic behaviour of (Py(a))nen (or
subsequences) for a fixed irrational .

For example:

i ?
@ What can we say about nll~>n;o Pgo(a) (@)
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Interests

We are interested in the asymptotic behaviour of (Py(a))nen (or
subsequences) for a fixed irrational .

For example:

i ?
@ What can we say about nll~>n;o Pgo(a) (@)

e What do we know about I}\rl’n inf Py(a)?
—00

(This was asked by Erdés and Szekeres 60 years ago.)
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Basis for these results

Theorem (Mestel, Verschueren, 2016)

Let o = (/5 —1)/2 and let (Fp)nen=(1,1,2,3,5,...) be the
Fibonacci sequence. Then

Fn

nIer;o Pe (@) = 1:11 |2sin(mwre)| = c > 0.
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Generalised version | (Grepstad, N.)

Consider:
e ac(0,1), a=1[0;a1,---,ar]

@ (gn(@))nen best approximation denominators
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Generalised version | (Grepstad, N.)

Consider:
e ac(0,1), a=1[0;a1,---,ar]

@ (gn(@))nen best approximation denominators

o (gn;(@))ien with (nj)ien with nj = ¢i + k for some
kefo,....0—1).

Mario Neumiiller Sudler Product and Unbounded c.f.c.



Generalised version | (Grepstad, N.)

Consider:
e ac(0,1), a=1[0;a1,---,ar]
@ (gn(@))nen best approximation denominators
o (gn;(@))ien with (nj)ien with nj = ¢i + k for some

ke{o,...,0—1}.

Then

lim P = lim Py, = .
Nim Pg,,(a) = lim Pq,, (a) = cx >0
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Generalised version | (Grepstad, N.)

Consider:
e ac(0,1), a=1[0;a1,---,ar]
@ (gn(@))nen best approximation denominators
o (gn;(@))ien with (nj)ien with nj = ¢i + k for some

ke{o,...,0—1}.

Then

lim P = lim Py, = .
Nim Pg,,(a) = lim Pq,, (a) = cx >0

— This means P (,)() has £ limit points.
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Generalised version Il (work in progress)

Consider:
e a € (0,1) with bounded c.f.c.

@ (gn(@))nen best approximation denominators

® (qn;(@))ien
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Generalised version Il (work in progress)

Consider:
e a € (0,1) with bounded c.f.c.

@ (gn(@))nen best approximation denominators

® (qn;(@))ien

If one "adapts” (n;)jen to the structure of the c.f.e. of « then

n; (@)
lim Pg, () = lim H |2sin(mra)| = ¢ > 0.

i—00 i—00
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Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?
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Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?

Lubinsky: a = [0; a1, a2, ...] and (n;)ien strictly increasing with
an; < ap,,, for i € N. Then

lim Pg, (a) = 0.

i—o00
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Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?

Lubinsky: a = [0; a1, a2, ...] and (n;)ien strictly increasing with
an; < ap,,, for i € N. Then

lim Pg, (a) = 0.

i—o00

Consider: e =2;1,2,1,1,4,1,1,6,1,1,8,1..]

Mario Neumiiller Sudler Product and Unbounded c.f.c.



Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?

Lubinsky: a = [0; a1, a2, ...] and (n;)ien strictly increasing with
an; < ap,,, for i € N. Then

lim Pg, (a) = 0.

i—o00

Consider: e =[2;1,2,1,1,4,1,1,6,1,1,8,1...] = [0; T, 2n, 1]°2,
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Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?

Lubinsky: a = [0; a1, a2, ...] and (n;)ien strictly increasing with
an; < ap,,, for i € N. Then

lim Pg, (o) = 0.

i—o00

Consider: e =[2;1,2,1,1,4,1,1,6,1,1,8,1...] = [0; T, 2n, 1]°2,

We know: I_|>m Pgsio(€) =0 (asiy2 < az(jy1)+2)
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Irrationals with unbounded c.f.c.

What do we know about irrationals with unbounded c.f.c.?
Lubinsky: a = [0; a1, a2, ...] and (n;)ien strictly increasing with
an; < ap,,, for i € N. Then

lim Pg, (o) = 0.

i—o00

Consider: e =[2;1,2,1,1,4,1,1,6,1,1,8,1...] = [0; T, 2n, 1]°2,

We know: I_|>m Pgsio(€) =0 (asiy2 < az(jy1)+2)

But:
lim Pg,;(e) =? and I|m Pq3+1( e) =7

1—00
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Open problem

Open Problem

Determine the asymptotic behaviour of Pg, (e).
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Open problem

Open Problem

Determine the asymptotic behaviour of P, (e).
(Or for any other irrational with a similar c.f.e.)
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Open problem

Open Problem

Determine the asymptotic behaviour of P, (e).
(Or for any other irrational with a similar c.f.e.)

Recall: lim Py, ,(e) =0.

i—00
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Open problem

Open Problem

Determine the asymptotic behaviour of P, (e).
(Or for any other irrational with a similar c.f.e.)

Recall: lim Py, ,(e) =0.

i—00
Conjecture:

lim Pq3i(e) = o0 and l'm Pq3:+1( e)=0

1—00
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Thank you for your attention!
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