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Discrepancy function

Consider a set PN ⊂ [0, 1]d consisting of N points:

Define the discrepancy function of the set PN as

DN (x) = ]{PN ∩ [0, x)} −Nx1x2 . . . xd

Extremal discrepancy (star-discrepancy):

‖DN‖∞ = sup
x∈[0,1]d

|DN (x)|.

Lp discrepancy: ‖DN‖p =

( ∫
[0,1]d

|DN (x)|p dx
)1/p

.
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Roth’s Theorem

Klaus Roth, October 29, 1925 – November 10, 2015

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73–79.)

There exists Cd ≥ 0 such that for any N -point set PN ⊂ [0, 1]d

‖DN‖2 ≥ Cd(logN)
d−1
2 .
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Roth’s Theorem

According to Roth himself, this was his favorite result.

William Chen (private communication)

Kenneth Stolarsky (private communication)

Ben Green (comment on Terry Tao’s blog)
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Roth’s Theorem: legacy

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73–79.)

There exists Cd ≥ 0 such that for any N -point set PN ⊂ [0, 1]d

‖DN‖2 ≥ Cd(logN)
d−1
2 .

4 papers by Roth (On irregularities of distribution. I–IV)

10 papers by W.M. Schmidt (On irregularities of
distribution. I–X)

2 by J. Beck (Note on irregularities of distribution. I–II)

4 by W. W. L. Chen (On irregularities of distribution.
I–IV)

2 by Beck and Chen (Note on irregularities of distribution.
I–II)

a book by Beck and Chen, “Irregularities of distribution”.
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Roth’s theorem, extensions and sharpness

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all PN ⊂ [0, 1]d with
#PN = N :

‖DN‖p & (logN)
d−1
2

Theorem (Davenport, 1956 (d = 2, p = 2); Roth, 1979 (d ≥ 3,
p = 2); Chen, 1982 (p > 2, d ≥ 3); Chen, Skriganov, 2000’s)

There exist sets PN ⊂ [0, 1]d with

‖DN‖p . (logN)
d−1
2
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Roth’s orthogonal function method

Dyadic intervals in [0, 1]:

D =

{
I =

[
m

2n
,
m+ 1

2n

)
: m,n ∈ Z, n ≥ 0, 0 ≤ m < 2n

}
.

L∞ normalized Haar function on a dyadic Interval I:
hI = −1Ileft + 1Iright

Orthogonality:

〈hI′ , hI′′〉 =

∫ 1

0
hI′(x)·hI′′(x) dx = 0, I ′, I ′′ ∈ D, I ′ 6= I ′′,

f ∈ L2([0, 1]) can be written as f =
∑

I∈D∗
〈f,hI〉
|I| hI

Dmitriy Bilyk Discrepancy & harmonic analysis



Roth’s orthogonal function method

Dyadic intervals in [0, 1]:

D =

{
I =

[
m

2n
,
m+ 1

2n

)
: m,n ∈ Z, n ≥ 0, 0 ≤ m < 2n

}
.

L∞ normalized Haar function on a dyadic Interval I:
hI = −1Ileft + 1Iright

Orthogonality:

〈hI′ , hI′′〉 =

∫ 1

0
hI′(x)·hI′′(x) dx = 0, I ′, I ′′ ∈ D, I ′ 6= I ′′,

f ∈ L2([0, 1]) can be written as f =
∑

I∈D∗
〈f,hI〉
|I| hI

Dmitriy Bilyk Discrepancy & harmonic analysis



Roth’s orthogonal function method

Dyadic intervals in [0, 1]:

D =

{
I =

[
m

2n
,
m+ 1

2n

)
: m,n ∈ Z, n ≥ 0, 0 ≤ m < 2n

}
.

L∞ normalized Haar function on a dyadic Interval I:
hI = −1Ileft + 1Iright

Orthogonality:

〈hI′ , hI′′〉 =

∫ 1

0
hI′(x)·hI′′(x) dx = 0, I ′, I ′′ ∈ D, I ′ 6= I ′′,

f ∈ L2([0, 1]) can be written as f =
∑

I∈D∗
〈f,hI〉
|I| hI

Dmitriy Bilyk Discrepancy & harmonic analysis



Roth’s orthogonal function method

Dyadic intervals in [0, 1]:

D =

{
I =

[
m

2n
,
m+ 1

2n

)
: m,n ∈ Z, n ≥ 0, 0 ≤ m < 2n

}
.

L∞ normalized Haar function on a dyadic Interval I:
hI = −1Ileft + 1Iright

Orthogonality:

〈hI′ , hI′′〉 =

∫ 1

0
hI′(x)·hI′′(x) dx = 0, I ′, I ′′ ∈ D, I ′ 6= I ′′,

f ∈ L2([0, 1]) can be written as f =
∑

I∈D∗
〈f,hI〉
|I| hI

Dmitriy Bilyk Discrepancy & harmonic analysis



Roth’s orthogonal function method

L∞ normalized Haar function on a dyadic Interval I:
hI = −1Ileft + 1Iright

For a dyadic rectangle R = I1 × ...× Id ⊂ [0, 1]2

hR(x) := hI1(x1) · ... · hId(xd)

f ∈ L2([0, 1]d): f =
∑

R∈Dd
∗

〈f,hR〉
|R| hR
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Roth’s orthogonal function method

Main idea:

DN ≈
∑

R: |R|≈ 1
N

〈DN , hR〉
|R|

hR
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Roth’s orthogonal function method

Define the collection

Hd
n = {~r = (r1, . . . , rd) ∈ Zd+ : ‖~r‖1 = n},

where the `1 norm is defined as ‖~r‖1 = |r1|+ · · ·+ |rd|.

These vectors will specify the shape of the dyadic
rectangles in the following sense: for R ∈ Dd, we say that
R ∈ Dd~r if |Rj | = 2−rj for j = 1, . . . , d.

Obviously, if R ∈ Dd~r and ~r ∈ Hd
n, then |R| = 2−n

For a fixed ~r, all the rectangles R ∈ Dd~r are disjoint.

#Hd
n =

(
n+ d− 1

d− 1

)
≈ nd−1,
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Roth’s orthogonal function method

A function f on [0, 1]d is an r-function with parameter
~r ∈ Zd+ if f is of the form

f(x) =
∑
R∈Dd

~r

εRhR(x),

Generalized Rademacher functions (if the signs εR = 1, one
obtains Rademacher functions)

For an r-function f2 = 1 and thus ‖f‖2 = 1

Orthogonal for different r.
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Haar coefficients of DN : counting part

DN (x) =
∑
p∈PN

1[p,~1](x)−N · x1 · · · · · xd,

In dimension d = 1:
∫
1[q,1](x) · hI(x) dx =

∫ 1
q hI(x) dx = 0

For p ∈ [0, 1]d∫
[0,1]d

1[p,~1](x) · hR(x) dx =

d∏
j=1

∫ 1

pj

hRj (xj) dxj = 0

when p 6∈ R.

If R ∈ Dd is empty, i.e. R ∩ PN = ∅:〈∑
p∈PN

1[p,~1], hR

〉
= 0.
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Haar coefficients of DN : linear part

DN (x) =
∑
p∈PN

1[p,~1](x)−N · x1 · · · · · xd,

Easy to compute

〈Nx1 . . . xd, hR〉 = N

d∏
j=1

〈xj , hRj (xj)〉 = N · |R|
2

4d
.

If a rectangle R ∈ Dd does not contain points of PN

〈DN , hR〉 = −N |R|24−d.
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Haar coefficients of DN : linear part (intuition)

Let R ⊂ [0, 1]2 be an arbitrary dyadic rectangle of
dimensions 2h1 × 2h2 which does not contain any points of
PN

Let R′ ⊂ R be the lower left quarter of R.

For any point x = (x1, x2) ∈ R′

DN

(
x
)
−DN

(
x+ (h1, 0)

)
+DN

(
x+ (h1, h2)

)
−DN

(
x+ (0, h2)

)
= −N · h1h2 = −N · |R|

4

Integrate over R′ to get 〈DN , hR〉.
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Roth’s orthogonal function method

Lemma

Let PN ⊂ [0, 1]d and let n ∈ N be such that 2n−2 ≤ N < 2n−1.
Then, for any ~r ∈ Hd

n, there exists an r-function f~r

〈DN , f~r〉 ≥ cd > 0.

f~r =
∑

R∈Dd
~r
:R∩PN=∅

(−1) · hR +
∑

R∈Dd
~r
:R∩PN 6=∅

sgn
(
〈DN , hR〉

)
· hR

〈DN , f~r〉 ≥ −
∑

R∩PN=∅

〈DN , hR〉 =
∑

R∩PN=∅

〈Nx1 . . . xd, hR〉

=
∑

R∩PN=∅

N · |R|
2

4d
≥ 2n−1 · 2n−2 · 2−2n

4d
= cd.
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Roth’s theorem: Proof 1 (Duality)

“Test function”
F =

∑
~r∈Hd

n

f~r.

Orthogonality:

‖F‖2 =

( ∑
~r∈Hd

n

‖f~r‖22
)1/2

= (#Hd
n)1/2 ≈ n

d−1
2 .

Previous lemma:

〈DN , F 〉 ≥ (#Hd
n) · cd ≈ nd−1.

Cauchy– Schwarz:

‖DN‖2 ≥
〈DN , F 〉
‖F‖2

& n
d−1
2 ≈

(
logN

) d−1
2
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Roth’s theorem: Proof 1 (Orthogonality)

‖DN‖22 ≥
∑

|R|=2−n, R∩PN=∅

|〈DN , hR〉|2

|R|

=
∑
~r∈Hd

n

∑
R∈Dd

~r
:R∩PN=∅

N2 · 2−4n

2−n · 42d

& (#Hd
n) · 2n−1 · 22n−42−3n

≈ nd−1 ≈
(

logN
)d−1

.
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L∞ estimates

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN
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Low discrepancy sets

The van der Corput set with N = 212 points(
0.x1x2...xn, 0.xnxn−1...x2x1

)
, xk = 0 or 1.

Discrepancy ≈ logN
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Low discrepancy sets

The irrational (α =
√

2) lattice with N = 212 points(
n/N, {nα}

)
, n = 0, 1, ..., N − 1.

Discrepancy ≈ logN
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Low discrepancy sets

Random set with N = 212 points

Discrepancy ≈
√
N
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L∞ estimates

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN

d ≥ 3, Halton, Hammersley (1960):

There exist PN ⊂ [0, 1]d with ‖DN‖∞ . (logN)d−1
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Conjectures and results

Conjecture 1

‖DN‖∞ & (logN)d−1

Conjecture 2

‖DN‖∞ & (logN)
d
2

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d ≥ 3 there exists η > 0 such that the following estimate
holds for all N -point distributions PN ⊂ [0, 1]d:

‖DN‖∞ & (logN)
d−1
2

+η .

Dmitriy Bilyk Discrepancy & harmonic analysis



Conjectures and results

Conjecture 1

‖DN‖∞ & (logN)d−1

Conjecture 2

‖DN‖∞ & (logN)
d
2

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d ≥ 3 there exists η > 0 such that the following estimate
holds for all N -point distributions PN ⊂ [0, 1]d:

‖DN‖∞ & (logN)
d−1
2

+η .

Dmitriy Bilyk Discrepancy & harmonic analysis



Conjectures and results

Conjecture 1

‖DN‖∞ & (logN)d−1

Conjecture 2

‖DN‖∞ & (logN)
d
2

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d ≥ 3 there exists η > 0 such that the following estimate
holds for all N -point distributions PN ⊂ [0, 1]d:

‖DN‖∞ & (logN)
d−1
2

+η .

Dmitriy Bilyk Discrepancy & harmonic analysis



The small ball inequality

Instead of studying DN we shall look at
∑

|R|=2−n

αRhR

Small Ball Conjecture

For dimensions d ≥ 2, we have

n
d−2
2

∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

d = 2: Talagrand, ’94; Temlyakov, ’95; DB, Feldheim ’15.

Sharpness: random signs/Gaussians.
d−1
2 follows from an L2 estimate.

Connected to probability, approximation, discrepancy.

Known: d−1
2 + η(d) for d ≥ 3

(DB, Lacey, Vagharshakyan, 2008)
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The L2 estimate

∥∥∥∥ ∑
R∈Dd: |R|=2−n

αRhR

∥∥∥∥
2

=

 ∑
|R|=2−n

|αR|22−n
 1

2

&

∑
|R|=2−n |αR|2−n/2(

nd−12n
) 1

2

= n−
d−1
2 · 2−n

∑
|R|=2−n

|αR|.
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The ‘signed’ version small ball inequality

Small Ball Conjecture

For dimensions d ≥ 2, if all εR = ±1, we have∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

& n
d
2

Hd
n = {(r1, r2, . . . , rd) ∈ Zd+ : r1 + · · ·+ rd = n}

#Hd
n ≈ nd−1

By orthogonality∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
2

=

( ∑
~r∈Hd

n

‖f~r‖22
)1/2

=
√

#Hd
n ≈ n

d−1
2
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The small ball conjecture and discrepancy

Small Ball Conjecture

For dimensions d ≥ 2, we have for all choices of αR

n
1
2
(d−2)

∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

Conjecture 2

‖DN‖∞ & (logN)
d
2

In both conjectures one gains a square root over the L2

estimate.
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The small ball conjecture and discrepancy

Signed Small Ball Conjecture

For dimensions d ≥ 2, we have for all choices of αR = ±1∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& n
d
2

Conjecture 2

‖DN‖∞ & (logN)
d
2

In both conjectures one gains a square root over the L2

estimate.

Dmitriy Bilyk Discrepancy & harmonic analysis



Discrepancy estimates Small Ball inequality (signed)

Dimension d = 2

‖DN‖∞ & logN

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n

(Schmidt, ’72; Halász, ’81) (Talagrand, ’94; Temlyakov, ’95)

Higher dimensions, L2 bounds

‖DN‖2 & (logN)(d−1)/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
2

& n(d−1)/2

Higher dimensions, conjecture

‖DN‖∞ & (logN)d/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& nd/2

Higher dimensions, known results

‖DN‖∞ & (logN)
d−1
2 +η

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n
d−1
2 +η

Table: Discrepancy estimates and the signed Small Ball inequality
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d = 2: proof (V. Temlyakov, ’95)

Hn =
∑

R: |R|=2−n

αRhR, αR = ±1

Set fk =
∑

R: |R1|=2−k

αRhR, k = 1, . . . , n

Construct a test function as a Riesz product:

Ψ
def
=

n∏
k=1

(1 + fk)

Ψ ≥ 0∫
Ψ = 1∥∥Ψ
∥∥
1

= 1

Thus ∥∥Hn∥∥∞ ≥ 〈Hn,Ψ〉 =
∑

R: |R|=2−n
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Construct a test function as a Riesz product:

Ψ
def
=

n∏
k=1

(1 + fk)

Ψ ≥ 0∫
Ψ = 1∥∥Ψ
∥∥
1

= 1

Thus ∥∥Hn∥∥∞ ≥ 〈Hn,Ψ〉 =
∑

R: |R|=2−n

2−n
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Structure of the Riesz product

Ψ
def
=

n∏
k=0

(1 + fk) =

{
2n+1 if fk = +1 for all k,

0 otherwise.

Assume that εR = +1 for all R.

fk(x1, x2) = +1 iff
(k + 1)st binary digit of x1 = (n− k + 1)st digit of x2.

if this holds for all k = 0, 1, ..., n:
Van der Corput set with N = 2n+1 points, i.e. the set of all
points of the form(

0.x(1)x(2) . . . x(n)x(n+1), 0.x(n+1)x(n) . . . x(2)x(1)
)
.
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Riesz product

Small ball inequality (d=2)

For d = 2, we have∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|

Riesz product: Ψ(x) =
∏n
k=1(1 + fk)

Sidon’s theorem

If a bounded 2π-periodic function f has lacunary Fourier series
∞∑
k=1

ake
inkx, nk+1/nk > λ > 1, then∥∥f∥∥∞ &

∞∑
k=1

|ak|

Riesz product: PK(x) =
∏K
k=1(1 + εk cosnkx)
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Discrepancy function Lacunary Fourier series

DN (x) = #{PN ∩ [0, x)} −Nx1x2 f(x) ∼
∑∞
k=1 ck sinnkx,

nk+1

nk
> λ > 1

‖DN‖2 &
√

logN ‖f‖2 ≡
√∑

|ck|2
(Roth, ’54)

‖DN‖∞ & logN ‖f‖∞ &
∑
|ck|

(Schmidt, ’72; Halász, ’81) (Sidon, ’27)

Riesz product:
∏(

1 + cfk
)

Riesz product:∏(
1 + cos(nkx+ φk)

)
‖DN‖1 &

√
logN ‖f‖1 & ‖f‖2

(Halász, ’81) (Sidon, ’30)

Riesz product:
∏(

1 + i · c√
logN

fk
)

Riesz product:∏(
1 + i · |ck|‖f‖2 cos(nkx+ θk)

)
Table: Discrepancy function and lacunary Fourier series
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d = 2 proof (DB, Feldheim, ’15)

-1

1

1

-1

-1 1

1 -1

-2 0

0 2
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A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}

For each k = n+1
2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =

n∑
k=n+1

2

Fk(x) =
n+ 1

2
· 2 = n+ 1.
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A new proof in d = 2: signed case
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A new proof in d = 2: signed case

At the initial step each rectangle contains exactly two
chosen squares.

They lie in the opposite quarters of the rectangle, since
εRhR(x) ≥ 0

At each following step every rectangle R will contain
exactly two previously chosen squares.

We further choose a sub square in each of those and they
have to lie in the opposite quarters of R.
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Connection to binary (t,m, d)-nets

Definition

A set P of N = bm points in [0, 1)d is called a (t,m, d)-net in
base b if every b-adic box of volume b−m+t contains exactly bt

points of P.

Since every dyadic R with |R| = 2−n contains exactly two
of the 2n+1 chosen squares, the extremal set is a
(1, n+ 1, 2)-net in base b = 2.

Since in every such R these points lie in opposite quarters,
it is actually a (0, n+ 1, 2)-net in base b = 2.
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Examples of two-dimensional nets

When εR = +1 for all R ∈ D2 with |R| = 2−n:
Van der Corput set with N = 2n+1 points.

If εR depends only on the geometry of R, i.e.
εR = ε(|R1|, |R2|):
digit-shifted Van der Corput set.

If the coefficients have product structure, i.e. for
R = R1 ×R2 we have εR1 · εR2 :
so-called Owen’s scrambling of Van der Corput set.

Each dyadic (0,m, 2)-net P may be obtained this way

The total number of different binary (0,m, 2)-nets is

2m2m−1

(Xiao, 1996)
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A new proof in d = 2: general case

At each step choose the subcube, where

Fk(x) = |αR′ |+ |αR′′ |.
Then

∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞

= max
j=1,...,2n+1

∑
R⊃Qj

∣∣αR∣∣

≥ 1

2n+1

∑
Qj

∑
R⊃Qj

∣∣αR∣∣
=

1

2n+1

∑
|R|=2−n

∣∣αR∣∣ ∑
Qj⊂R

1

= 2−n
∑

|R|=2−n

∣∣αR∣∣
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Extension to b-adic nets

A box R ∈ D2
b of dimensions b−m1 × b−m2 is a union of a

b× b array of b-adic boxes of dimensions
b−(m1+1) × b−(m2+1).

Define the family of functions HR . The function φR ∈ HR
iff
• φR takes values ±1 on R and vanishes outside R.
• φR is constant on b-adic subboxes of R of dimensions
b−(m1+1) × b−(m2+1).
• In each row and in each column of the b× b array of
b-adic subboxes of R of dimensions b−(m1+1) × b−(m2+1),
there is exactly one subbox, on which φR = +1.

#HR = b!.

If b = 2, then HR = {±hR} and #HR = 2.
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Small ball inequality and b-adic nets

Theorem

Fix the scale m ∈ N and an integer base b ≥ 2. For each b-adic box
R ∈ D2

b with |R| = b−(m−1), choose a function φR ∈ HR.

(i) A b-adic analogue of the signed small ball inequality holds:

max
x∈[0,1)2

∑
|R|=b−(m−1)

φR(x) = m.

(ii) The set on which the maximum above is achieved has the form

P +
[
0, b−m

)2
,

where P is a standard (0,m, 2)-net in base b.

(iii) Each (0,m, 2)-net P in base b may be obtained this way.

(iv) The number of different (0,m, 2)-nets in base b is (b!)mb
m−1

.
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