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Discrepancy function

Consider a set Py C [0,1]¢ consisting of N points:

)

Define the discrepancy function of the set Py as

DN(.T) = ﬁ{'PN N [0,37)} — lexg ... Xq
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Discrepancy function

Consider a set Py C [0,1]¢ consisting of N points:

MCPA RN

Define the discrepancy function of the set Py as

DN(.T) = ﬁ{'PN N [0,37)} — lexg ... Xq

Extremal discrepancy (star-discrepancy):

[DNlloc = sup |Dn(z)].
z€0,1]¢
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Discrepancy function

Consider a set Py C [0,1]¢ consisting of N points:

MCPA RN

Define the discrepancy function of the set Py as

DN(.T) = ﬁ{'PN N [0,37)} — lexg ... Xq

Extremal discrepancy (star-discrepancy):

[DNlloc = sup |Dn(z)].
z€0,1]¢

1/p
LP discrepancy: ‘DN‘p:( / \DN(a?)]pda:> :
[0,1)¢
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Roth’s Theorem

Klaus Roth, October 29, 1925 — November 10, 2015

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73-79.)

There exists Cq > 0 such that for any N-point set Py C [0, 1]¢

d—1
2 .

[ Dnll2 > Cq(log N)
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th’s Theorem

According to Roth himself, this was his favorite result.

e William Chen (private communication)
o Kenneth Stolarsky (private communication)

e Ben Green (comment on Terry Tao’s blog)

12 comments

Comments feed for this article &Y
12 November, 2015 at 9:55 am I did meet Roth, in Inverness around 7 Hvim
Ben Green years ago. I asked him what his favourite g ,am

proof (among his results was) and he said
the lower bound for the L~2 discrepancy of point sets with respect to axis parallel
boxes. It is a very elegant argument, nicely described in Bernard Chazelle’s book
“Discrepancy Theory”, Later in his career he became qguite interested in the
“Heilbronn triangle problem”, which came up in conversation the other day: given
n peints in the unit square, what's the smallest area of triangle they are

guaranteed to span. I believe that ,,—2+0(1} is conjectured, and that Roth was the
first to improve on the trivial bound ({1 /n ). Subsequently bounds of the farm
((n~17¢) were obtained.

17 €5 9 @ Rate This
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Roth’s Theorem: legacy

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73-79.)

There exists Cq > 0 such that for any N-point set Py C [0, 1]%

d—1
|IDnll2 > Cy(log N) 2.

4 papers by Roth (On irregularities of distribution. I-IV)

10 papers by W.M. Schmidt (On irregularities of
distribution. I-X)

2 by J. Beck (Note on irregularities of distribution. I-IT)

4 by W. W. L. Chen (On irregularities of distribution.
I-1V)

2 by Beck and Chen (Note on irregularities of distribution.
I-1I)

a book by Beck and Chen, “Irregularities of distribution”.

(]

(]
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Roth’s theorem, extensions and sharpness

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all Py C [0,1]% with
#Pn = N:

d—1
2

IDnllp 2 (log N)
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Roth’s theorem, extensions and sharpness

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all Py C [0,1]% with

#Py = N:
d—1
[Dnllp 2 (log N) 2

Theorem (Davenport, 1956 (d = 2, p = 2); Roth, 1979 (d > 3,

p = 2); Chen, 1982 (p > 2, d > 3); Chen, Skriganov, 2000’s)

There exist sets Py C [0, 1]% with

IDlly < (log N)F

Discrepancy & harmonic analysis

Dmitriy Bilyk



Roth’s orthogonal function method

e Dyadic intervals in [0, 1]:

1
D:{I:[m,nﬂ_):m,neZ,n20,0§m<2”}.
2n°2n
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Roth’s orthogonal function method

e Dyadic intervals in [0, 1]:

1
D:{I:[m,nﬂ_):m,neZ,n20,0§m<2”}.
2n°2n

o L*° normalized Haar function on a dyadic Interval I:
hr=-1p5., +11

right

i — 1
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Roth’s orthogonal function method

e Dyadic intervals in [0, 1]:

1
D:{I:[m,nﬂ_):m,neZ,n20,0§m<2”}.
2n°2n

o L*° normalized Haar function on a dyadic Interval I:
hr=-1p5., +11

right

o Orthogonality:

1
<h1’7h1”> - / hI’(l’)'hF’("L‘) dr = 0, 1/7]” €D, I # I”a
0
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Roth’s orthogonal function method

e Dyadic intervals in [0, 1]:
1
D:{I: [m)m%—) : m,neZ,n20,0§m<2”}.
2n’  2n
o L*° normalized Haar function on a dyadic Interval I:
hr=-1p5., +11

right

Y S

o Orthogonality:

1
<h1’7h1”> - / h[/(l’)'h[//(l‘) dr = 0, 1/7]” €D, I # I”a
0

o f e L*([0,1]) can be written as f =, <f|’?|1>h1
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Roth’s orthogonal function method

o L™ normalized Haar function on a dyadic Interval I:
hr=-1p,,, +1;1

right

i -—-+1
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Roth’s orthogonal function method

o L™ normalized Haar function on a dyadic Interval I:
hr=-1p,,, +1;1

right

e For a dyadic rectangle R = I; x ... x I; C [0,1]?
hr(z) == hr, (1) - ... - by, (2q)
hR
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Roth’s orthogonal function method

o L™ normalized Haar function on a dyadic Interval I:
hr=-1p,,, +1;1

right

e For a dyadic rectangle R = I; x ... x I; C [0,1]?
hr(z) == hr, (1) - ... - by, (2q)
hR

-1 +1

+1 -1

o fELX0,1%): =Y peps Lifhr

Dmitriy Bilyk
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Roth’s orthogonal function method

e Main idea:

_ (Dn, hr)
R|R\:%
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Roth’s orthogonal function method

@ Define the collection
HY = {i7= (r1,...,ra) € Z%4 : |7y = n},

where the /1 norm is defined as ||7]|y = |r1| + -+ - + |r4]-
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Roth’s orthogonal function method

@ Define the collection
HY = {i7= (r1,...,ra) € Z%4 : |7y = n},

where the /1 norm is defined as |||}y = |r1| + -+ + |ral-

@ These vectors will specify the shape of the dyadic
rectangles in the following sense: for R € D, we say that
ReDl if |[Rj| =27 for j=1,...,d.
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Roth’s orthogonal function method

@ Define the collection
HY = {i7= (r1,...,ra) € Z%4 : |7y = n},

where the /1 norm is defined as |||}y = |r1| + -+ + |ral-

@ These vectors will specify the shape of the dyadic
rectangles in the following sense: for R € D, we say that
ReDl if |[Rj| =27 for j=1,...,d.

o Obviously, if R € D2 and 7 € H, then |R| = 27"
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Roth’s orthogonal function method

@ Define the collection
HY = {i7= (r1,...,ra) € Z%4 : |7y = n},

where the /1 norm is defined as ||7]|y = |r1| + -+ - + |r4]-

@ These vectors will specify the shape of the dyadic
rectangles in the following sense: for R € D, we say that
ReDl if |[Rj| =27 for j=1,...,d.

o Obviously, if R € D2 and 7 € H, then |R| = 27"

o For a fixed 7, all the rectangles R € Dq‘i are disjoint.
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Roth’s orthogonal function method

Define the collection
HZ = {'F': (7’1,. . .,T’d) S Zi : HFHl = n},

where the /1 norm is defined as |||}y = |r1| + -+ + |ral-

These vectors will specify the shape of the dyadic
rectangles in the following sense: for R € D, we say that
ReDl if |[Rj| =27 for j=1,...,d.

Obviously, if R € D2 and 7 € H%, then |R| = 27"

For a fixed 7, all the rectangles R € Dq‘i are disjoint.

#HZ _ <n+d— 1) %nd_lj

d—1
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Roth’s orthogonal function method

o A function f on [0,1]¢ is an r-function with parameter
e Zi if f is of the form

flz) = erhr(x),

ReDg
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Roth’s orthogonal function method

o A function f on [0,1]¢ is an r-function with parameter
e Zi if f is of the form

flz) = erhr(x),

ReDg

e Generalized Rademacher functions (if the signs eg = 1, one
obtains Rademacher functions)
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Roth’s orthogonal function method

o A function f on [0,1]¢ is an r-function with parameter
e Zi if f is of the form

flz) = erhr(x),

ReDg

e Generalized Rademacher functions (if the signs eg = 1, one
obtains Rademacher functions)

e For an r-function f2 =1 and thus ||f]2 =1
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Roth’s orthogonal function method

o A function f on [0,1]¢ is an r-function with parameter
e Zi if f is of the form

flz) = erhr(x),

ReDg

e Generalized Rademacher functions (if the signs eg = 1, one
obtains Rademacher functions)

e For an r-function f2 =1 and thus ||f]2 =1

@ Orthogonal for different r.
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Haar coefficients of Dy: counting part

Dy(x) = Z 1[p’f](x) —N-xqy----- z4,
PEPN

o In dimension d = 1: [ 11 4)(z) - hy(z) dz = fql hi(z)dz =0
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Haar coefficients of Dy: counting part

Dy(x) = Z 1[p’f](x) —N-xqy----- z4,
PEPN

o In dimension d = 1: [ 11 4)(z) - hy(z) dz = fql hi(z)dz =0
e For p € [0,1)¢

d 1
/ 1,1(@) - hale) do = H/ hi, (a;) dj = 0
[Ovl]d i D

]:1 3
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Haar coefficients of Dy: counting part

x) — Z 1[p7f](‘,r) — N B AT x4,
PEPN
o In dimension d = 1: [ 11 4)(z) - hy(z) dz = f hi(z)dz =0
e For p € [0,1)¢

d 1
/ 1,1(@) - hale) do = H/ hi, (a;) dj = 0
[Ovl]d i D

]:1 3

when p € R.
o If R € D4 is empty, i.e. RN Py = 0:

< Z 1,1, hR> =0.

PEPN
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Haar coefficients of Dy: linear part

DN(ac) = Z 1[p,f](x) — N - o IR Td,
PEPN

e Easy to compute

d

(Nay...zg,hg) = N [[(xj, he,(2;)) = N -~
j=1
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Haar coefficients of Dy: linear part

DN(ac) = Z 1[p,f](x) — N - o IR Td,
PEPN

e Easy to compute

d

(Nay...xg,hg) = N [[(2j, hr, (z))) = N
j=1

IRP?
o

e If a rectangle R € D? does not contain points of Py

(Dn,hg) = —N|R|*47%.
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Haar coefficients of Dy: linear part (intuition)

e Let R C [0,1]? be an arbitrary dyadic rectangle of
dimensions 2h; x 2ho which does not contain any points of
PN
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Haar coefficients of Dy: linear part (intuition)

e Let R C [0,1]? be an arbitrary dyadic rectangle of

dimensions 2h; x 2ho which does not contain any points of
PN

o Let R’ C R be the lower left quarter of R.
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Haar coefficients of Dy: linear part (intuition)

e Let R C [0,1]? be an arbitrary dyadic rectangle of
dimensions 2h; x 2ho which does not contain any points of
PN

o Let R’ C R be the lower left quarter of R.

e For any point z = (z1,22) € R’

DN(J}) - DN(x + (hl,O)) + DN($ + (hl, hg)) - DN(J} + (0, hQ))
|B]

— N -hihy = —N - 1
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Haar coefficients of Dy: linear part (intuition)

e Let R C [0,1]? be an arbitrary dyadic rectangle of

dimensions 2h; x 2ho which does not contain any points of
PN

o Let R’ C R be the lower left quarter of R.

e For any point z = (z1,22) € R’

DN(J}) - DN(x + (hl,O)) + DN($ + (hl, hg)) - DN(J} + (0, hQ))
15|

— N -hihy = —N - 1

e Integrate over R’ to get (Dn,hg).
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Roth’s orthogonal function method

Let Px C [0,1]¢ and let n € N be such that 2"~2 < N < 2"~1L.
Then, for any 7 € Hfll, there exists an r-function fz

(DN, fr) > cq > 0.
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Roth’s orthogonal function method

Let Px C [0,1]¢ and let n € N be such that 2"~2 < N < 2"~1L.
Then, for any 7 € Hfll, there exists an r-function fz

(DN, fr) > cq > 0.
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Roth’s orthogonal function method

Let Px C [0,1]¢ and let n € N be such that 2"~2 < N < 2"~1L.
Then, for any 7 € Hfll, there exists an r-function fz

(DN, fr) > cq > 0.

fr= Z (=1)-hr+ Z sgn((DN,hR>) -hp

ReDd: RNPy=0 ReDd: RPN #)
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Roth’s orthogonal function method

Let Px C [0,1]¢ and let n € N be such that 2"~2 < N < 2"~1L.
Then, for any 7 € Hfll, there exists an r-function fz

(DN, fr) > cq > 0.

fr= Z (=1)-hr+ Z sgn((DN,hR>) -hp

ReDd: RNPy=0 ReDd: RPN #)

<DN;fF> Z — Z <DN,hR> = Z <N{L‘1 .. ..ZL'd,hR>

RNPN=0 RNPx=0
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Roth’s theorem: Proof 1 (Duality)

o “Test function”

F=)> fr

FeHY
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Roth’s theorem: Proof 1 (Duality)

o “Test function”

F=)> fr

FeHY
@ Orthogonality:

1/2 .
1Flls ( ) Hffua) — (HHD)Y2

reHg
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Roth’s theorem: Proof 1 (Duality)

o “Test function”

F=)> fr

FeHY
@ Orthogonality:
/2 d\1/2 =1
1Fl2=( > 1503) " = D2 e
FeHd

@ Previous lemma:

(Dn, F) > (#Hj) - cg ~ "
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Roth’s theorem: Proof 1 (Duality)

o “Test function”

F=)> fr

FeHY
@ Orthogonality:
2 1/ dy\1/2 a1
1Pl = (3 158) = )2 = s
FeHd
@ Previous lemma:
(DN, F) > (#H3) - cg = n® ",

o Cauchy— Schwarz:
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Roth’s theorem: Proof 1 (Orthogonality)

(D, hr)|®
IDN 13 > >
|R|=2—", R\Pn=0 ||
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Roth’s theorem: Proof 1 (Orthogonality)

(D, hi)|®
IDN5 > >
|R|=2—", RNPn=0 ‘R|
2—4n

=2 2 NMiam

FEH{ ReDE: RPN =0
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Roth’s theorem:

IDN 13 >

Proof 1 (Orthogonality)

.y lower

|R|=2—", RNPn=0 ‘R|

2—4n

=2 2 N

FEH{ ReDE: RPN =0
> (#Hﬁ) . 2n71 . 22117427371
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Roth’s theorem:

IDn |3

Proof 1 (Orthogonality)

(D, hi)|®
> >
|R‘=2_",RH'PN=® ‘R|
2—4n

Z Z N2 ’ 92—n . 42d

FEH{ ReDE: RPN =0
> (#Hﬁ) . 2n71 . 22117427371
~n? Tl x (logN)d_l.
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L™ estimates

Conjecture

d—1
2

|Dnlloo > (log N)
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L™ estimates

Conjecture

d—1
2

|Dnlloo > (log N)

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N
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L™ estimates

Conjecture

d—1
2

|Dnlloo > (log N)

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N

d = 2: Lerch, 1904; van der Corput, 1934

There exist Py C [0, 1]? with || Dy|leo &~ log N
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Low discrepancy sets

The van der Corput set with N = 2!2 points
(O.mlxg...a:n, O.xnmn,l...xgml), zr =0 or 1.
Discrepancy = log N




Low discrepancy sets

0.2 0.4 0.6 08 1.0
The irrational (o = v/2) lattice with N = 2'2 points
(n/N, {na}), n=0,1,....N — 1.
Discrepancy ~ log N
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Low discrepancy sets

06

Random set with N = 2'2 points

Discrepancy ~ v N




L™ estimates

Conjecture

d—1
2

[Dnlloo > (log N)

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N

d = 2: Lerch, 1904; van der Corput, 1934

There exist Py C [0, 1]? with || Dy|

0o ~ log N
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L™ estimates

Conjecture

d—1
DN loc > (log N) =

Theorem (Schmidt, 1972; Halasz, 1981)
2 log N

~

In dimension d = 2 we have || Dy||co

d = 2: Lerch, 1904; van der Corput, 1934
There exist Py C [0, 1]? with || Dy|

0o ~ log N

d > 3, Halton, Hammersley (1960):

There exist Py C [0,1]? with | Dyl < (log N)3—1
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Conjectures and results

Conjecture 1

1Dyl 2 (log N)4~*
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Conjectures and results

Conjecture 1

1Dyl 2 (log N)4~*

d
2

DNl 2 (log N)
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Conjectures and results

Conjecture 1

1Dyl 2 (log N)4~*

d
2

DNl 2 (log N)

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d > 3 there exists n > 0 such that the following estimate
holds for all N-point distributions Py C [0,1]%:

d—1
IDNlloo 2 (log N) = 7.
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"

o d = 2: Talagrand, '94; Temlyakov, '95; DB, Feldheim ’15.
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"

o d = 2: Talagrand, '94; Temlyakov, '95; DB, Feldheim ’15.

e Sharpness: random signs/Gaussians.
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"

o d = 2: Talagrand, '94; Temlyakov, '95; DB, Feldheim ’15.
e Sharpness: random signs/Gaussians.

° % follows from an L2 estimate.
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"

o d = 2: Talagrand, '94; Temlyakov, '95; DB, Feldheim ’15.
e Sharpness: random signs/Gaussians.

° % follows from an L? estimate.
°

Connected to probability, approximation, discrepancy.
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The small ball inequality

Instead of studying Dy we shall look at Z arhgr
|R|=2—"

Small Ball Conjecture

For dimensions d > 2, we have

> OéRhRHOOEQ_" > lag]

|RI=2-" |RI=2-"

o d = 2: Talagrand, '94; Temlyakov, '95; DB, Feldheim ’15.
Sharpness: random signs/Gaussians.
% follows from an L? estimate.

Connected to probability, approximation, discrepancy.

Known: 4% +n(d) for d > 3
(DB, Lacey, Vagharshakyan, 2008)

e 6 o o

Dmitriy Bilyk Discrepancy & harmonic analysis



The L? estimate

2
> agrhg| =| D lerl27"
ReDI: |R|=2-n 2 |R|=2—"
—n/2
> Z|R|:2—” \OéR|l2
~ (nd-12n)2
= n_% .o Z ‘OéR|.
|R=2"
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The ‘signed’ version small ball inequality

Small Ball Conjecture

For dimensions d > 2, if all eg = £1, we have
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The ‘signed’ version small ball inequality

Small Ball Conjecture

For dimensions d > 2, if all eg = £1, we have
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The ‘signed’ version small ball inequality

Small Ball Conjecture

For dimensions d > 2, if all eg = £1, we have

o HY ={(r1,72,...,7a) €ZL : 11+ - +714=n}
o #HI ~ nd—!
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The ‘signed’ version small ball inequality

Small Ball Conjecture

For dimensions d > 2, if all eg = £1, we have

o HY ={(r1,72,...,7a) €ZL : 11+ - +714=n}
o #HI ~ nd—!

e By orthogonality

S eatf, = (X ||ff||%)1/2 N

|R|=2—" FeHd
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The small ball conjecture and discrepancy

Small Ball Conjecture

For dimensions d > 2, we have for all choices of ar
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The small ball conjecture and discrepancy

Small Ball Conjecture

For dimensions d > 2, we have for all choices of ar

n%(d*Q)H Z OthRH ZQin Z |OZR’

(o.)
|R|=2—n |R|=2—n

Conjecture 2

d
[ Dnllos Z (log V)2
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The small ball conjecture and discrepancy

Small Ball Conjecture

For dimensions d > 2, we have for all choices of ar

n%(d*Q)H Z OthRH ZQin Z |OZR’

(o.)
|R|=2—n |R|=2—n

Conjecture 2

d
[ Dnllos Z (log V)2

e In both conjectures one gains a square root over the L?
estimate.
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The small ball conjecture and discrepancy

Signed Small Ball Conjecture

For dimensions d > 2, we have for all choices of agp = £1

Conjecture 2

d
[ Dnllos Z (log V)2

e In both conjectures one gains a square root over the L?
estimate.
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Discrepancy estimates | Small Ball inequality (signed)

Dimension d = 2

> erhr

|R[=2-"
(Schmidt, ’72; Haldsz, '81) | (Talagrand, '94; Temlyakov, '95)

Higher dimensions, L? bounds

>n

~
(oo}

DN loo Z log N

D2 Z (log N)@=1/2 > erhr| zZnlTH?
|R|=2—" 2
Higher dimensions, conjecture
IDnlloo 2 (log N)4/2 > erhg|| 2 n?
|R|=2"" *
Higher dimensions, known results
| Dillso 2 (log N) 77 > enhr|| znT

|Rl=2""
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d = 2: proof (V. Temlyakov, '95)
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d = 2: proof (V. Temlyakov, '95)
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

e Set fr = Z arhr, k=1,...,n
R: |R1 ‘:27]‘7
e Construct a test function as a Riesz product:

v [Ta+5m

k=1
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

e Set fr = Z arhr, k=1,...,n
R: |R1 ‘:27]‘7
e Construct a test function as a Riesz product:

v [Ta+5m

k=1
e U >0
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

e Set fr = Z arhr, k=1,...,n
R: |R1‘:27k
e Construct a test function as a Riesz product:
n
def
vE [+ 5)

k=1
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

e Set fr = Z arhr, k=1,...,n
R: |R1 ‘:27]‘7
e Construct a test function as a Riesz product:

n

v J[a+ )
k=1
e U >0
of\I/:I
o [l7, =1
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d = 2: proof (V. Temlyakov, '95)

Hy = Z arhg, arp = =*1

R:|R|=2—"
OSetka Z aRhR, k=1,...,n
R: |R1‘:2_k
o Construct a test function as a Riesz product:
n
def
vE T+ f)
k=1
eV >0
° f\I/ =1
o o], =1
o Thus
[Holl o > @)= > aklhg, hr)
R:|R|=2—"
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

Set fu= > aghg, k=1,...,n
R: |R1 ‘:27]‘7
e Construct a test function as a Riesz product:

n

v J[a+ )
k=1
o U >0
° f\I/:I
o [l =1
o Thus
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d = 2: proof (V. Temlyakov, '95)

Hp = Z arhg, arp = =*1
R:|R|=2—"

Set fu= > aghg, k=1,...,n
R: |R1 ‘:27]‘7
e Construct a test function as a Riesz product:

n

v [Ta+5m

k=1

)
iS]
V
o

®
<
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Structure of the Riesz product

def T- ontl if £ = +1 for all k,
H ( Je) {0 otherwise.
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Structure of the Riesz product

ontlif £ = +1 for all k,

0 otherwise.

(1+fk)={

o Assume that eg = +1 for all R.
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Structure of the Riesz product

def T- ontl if £ = +1 for all k,
vEJ[a+ ) =
0 1+ fi) {0 otherwise.

o Assume that eg = +1 for all R.

o fk(.%'l,xg) = +1iff
(k + 1)t binary digit of z1 = (n — k + 1)** digit of 5.

Dmitriy Bilyk Discrepancy & harmonic analysis



Structure of the Riesz product

ontlif £ = +1 for all k,

0 otherwise.

(1+fk)={

k=0

o Assume that eg = +1 for all R.

o fr(xy,me) = +1iff
(k + 1)t binary digit of z1 = (n — k + 1)** digit of 5.

o if this holds for all kK = 0,1, ..., n:
Van der Corput set with N = 2"*! points, i.e. the set of all
points of the form

(O.x(l)x(g) .. .:L'("):E("H), 0.2t 3:(2),@(1)).
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Riesz product

Small ball inequality (d=2)

For d = 2, we have

| 5 ew] 22 5 fon

|R|=2-" |RI=2—"
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Riesz product

Small ball inequality (d=2)

For d = 2, we have

| 5 ew] 22 5 fon

|R|=2-" |RI=2—"

e Riesz product: ¥(x) = []r_;(1+ fr)
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Riesz product

Small ball inequality (d=2)

For d = 2, we have

H > OéRhRHOOZQ_n > laxl

|R|=2-" |RI=2—"

e Riesz product: ¥(x) = []r_;(1+ fr)

Sidon’s theorem

If a bounded 27-periodic function f has lacunary Fourier series

o
Zakemkx, ngt1/nk > A > 1, then

k=1 00
1£lle 2 > lasl
k=1
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Riesz product

Small ball inequality (d=2)

For d = 2, we have

H > OéRhRHOOZQ_n > laxl

|R|=2-" |RI=2—"

e Riesz product: ¥(x) = []r_;(1+ fr)

Sidon’s theorem

If a bounded 27-periodic function f has lacunary Fourier series

o
Zakemkx, ngt1/nk > A > 1, then

k=1 00
1£lle 2 > lasl
k=1

e Riesz product: Pg(x) = Hszl(l + ek cos i)
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Discrepancy function

Dn(z) = #{P~vN[0,2)} — Nz122

Lacunary Fourier series

flx) ~> 0 crsinngz,
NE41
T: >A>1

|Dn|l2 2 vIog N
(Roth, '54)

1fll2 = /> lex]?

HDNHOC Z IOgN
(Schmidt, *72; Haldsz, '81)

Riesz product: [] (1 + cfy)

1flloe 2 22 ekl
(Sidon, 27)
Riesz product:
11 (1 + cos(nix + ¢k))

DNl 2 Vieg N
(Haldsz, ’81)

Riesz product: [] (1 +- ﬁfk)

£l 2 1 f1l2
(Sidon, ’30)
Riesz product:
[T+ cos(ngz + 0y,))

Jer|

1712

Table: Discrepancy function and lacunary Fourier series
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d = 2 proof (DB, Feldheim, '15)

Dmitriy Bilyk Discrepancy & harmonic analysis



A new proof in d = 2: signed case

o Let Dk = {R = Rl X R2 : ‘R1| = 2_k7 |R2’ = 2_('”_'%)}

Dmitriy Bilyk Discrepancy & harmonic analysis



A new proof in d = 2: signed case

o Let Dk = {R = Rl X R2 : ‘R1| = 2_k7 |R2’ = 2_('”_'%)}

e For each k = ”TH,..., n—1,n,

Fk(a:): Z erhpr(x) + Z erhgr(x)

ReD; ReD?_,
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A new proof in d = 2: signed case

o Let Dk = {R = Rl X R2 : ‘R1| = 2_k7 |R2’ = 2_('”_'%)}

e For each k = ”TH,..., n—1,n,

Fk(a:): Z erhpr(x) + Z erhgr(x)
ReD; ReD?_,

e Start with k = "T‘H (if n is odd)
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A new proof in d = 2: signed case

o Let D, ={R=Ry x Ry: |Ri| =27%, |Ry| =2-(»—F)}
e For each k = ”’51,..., n—1,n,
Fk(a:) = Z ERhR(.T) + Z €RhR(a:)
ReD} ReD?_,
o Start with k = 2L (if n is odd)
e In each of the 2! cubes of size 2_%1 X 2_% choose a

subcube, on which Fj, = +2.
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A new proof in d = 2: signed case

o Let D, ={R=Ry x Ry: |Ri| =27%, |Ry| =2-(»—F)}
e For each k = ”TH,..., n—1,n,
Fk(a:): Z erhpr(x) + Z erhgr(x)
ReD} ReD?_,
o Start with k = 2L (if n is odd)

In each of the 27t! cubes of size 2_%1 % 2~ choose a
subcube, on which Fj, = +2.

“Zoom in” into these cubes and iterate k — k + 1.

(]
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A new proof in d = 2: signed case

o Let D), = {R: Ry X Ry : ‘R1| = 2_k7 |R2’ — 2_('”_'%)}

e For each k = ”TH,..., n—1,n,

Fp(x) = Y eghr(z)+ > crhr(x)
ReD} ReD?_,
Start with k = “EL (if n is odd)

In each of the 27t! cubes of size 2_% % 2~ choose a
subcube, on which Fj, = +2.

e “Zoom in” into these cubes and iterate k — k + 1.

o In the end we have 2"*! cubes Q; of size 2~ ("+1) x 2=(n+1),
on which all F}, = +2. Then on each Q;
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A new proof in d = 2: signed case
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A new proof in d = 2: signed case

o At the initial step each rectangle contains exactly two
chosen squares.
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A new proof in d = 2: signed case

o At the initial step each rectangle contains exactly two
chosen squares.

o They lie in the opposite quarters of the rectangle, since
9 Rh R(a:) > 0
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A new proof in d = 2: signed case

o At the initial step each rectangle contains exactly two
chosen squares.

o They lie in the opposite quarters of the rectangle, since
IS Rh R(l‘) > 0

o At each following step every rectangle R will contain
exactly two previously chosen squares.
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A new proof in d = 2: signed case

o At the initial step each rectangle contains exactly two
chosen squares.

o They lie in the opposite quarters of the rectangle, since
IS Rh R(l‘) > 0

At each following step every rectangle R will contain
exactly two previously chosen squares.

We further choose a sub square in each of those and they
have to lie in the opposite quarters of R.
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Connection to binary (¢, m,d)-nets

Definition

A set P of N = b™ points in [0,1)? is called a (t,m,d)-net in
base b if every b-adic box of volume b~ contains exactly b’
points of P.
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Connection to binary (¢, m,d)-nets

Definition

A set P of N = b™ points in [0,1)? is called a (t,m,d)-net in
base b if every b-adic box of volume b~ contains exactly b’
points of P.

e Since every dyadic R with |R| = 27" contains exactly two
of the 2" chosen squares, the extremal set is a
(1I,m 4+ 1,2)-net in base b = 2.
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Connection to binary (¢, m,d)-nets

Definition

A set P of N = b™ points in [0,1)? is called a (t,m,d)-net in
base b if every b-adic box of volume b~ contains exactly b’
points of P.

e Since every dyadic R with |R| = 27" contains exactly two
of the 2" chosen squares, the extremal set is a
(1I,m 4+ 1,2)-net in base b = 2.

@ Since in every such R these points lie in opposite quarters,
it is actually a (0,n + 1,2)-net in base b = 2.
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Examples of two-dimensional nets

o When e = +1 for all R € D? with |R| =27
Van der Corput set with N = 2”1 points.
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Examples of two-dimensional nets

o When e = +1 for all R € D? with |R| =27
Van der Corput set with N = 2”1 points.

o If ep depends only on the geometry of R, i.e.
er = &(|Rul, [Ral):
digit-shifted Van der Corput set.
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Examples of two-dimensional nets

o When e = +1 for all R € D? with |R| =27
Van der Corput set with N = 2”1 points.
o If ep depends only on the geometry of R, i.e.
er = e(|R1l, [Ra|):
digit-shifted Van der Corput set.
o If the coefficients have product structure, i.e. for
R = R; X Ry we have €, - €R,:
so-called Owen’s scrambling of Van der Corput set.
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Examples of two-dimensional nets

o When e = +1 for all R € D? with |R| =27
Van der Corput set with N = 2”1 points.
o If ep depends only on the geometry of R, i.e.
er = e(|R1l, [Ra|):
digit-shifted Van der Corput set.
o If the coefficients have product structure, i.e. for
R = R; X Ry we have €, - €R,:
so-called Owen’s scrambling of Van der Corput set.

e Each dyadic (0,m,2)-net P may be obtained this way
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Examples of two-dimensional nets

(]

When ez = +1 for all R € D? with |R| =27
Van der Corput set with N = 2”1 points.

If e depends only on the geometry of R, i.e.
er = e(|R1l, [Ra|):
digit-shifted Van der Corput set.

If the coefficients have product structure, i.e. for
R = Ry X Ry we have g, - €R,:
so-called Owen’s scrambling of Van der Corput set.

Each dyadic (0,m,2)-net P may be obtained this way
The total number of different binary (0, m, 2)-nets is

2m2m_1

(Xiao, 1996)
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A new proof in d = 2: general case

o At each step choose the subcube, where

Fi(z) = |og |+ |agy|.
Then

Z arhgr

R]=2-n

= max E ’Oé ’
2n+1 R
[e%¢}

RDQ)j;
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A new proof in d = 2: general case

o At each step choose the subcube, where

Fi(z) = |og |+ |agy|.

Then
Z arhgr = HlaXn+1 Z ’ozR’
|Rj=2—n o0 2" RSQ;
1
> 5t 2. D lonl
Q; RDQj;
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A new proof in d = 2: general case

o At each step choose the subcube, where

Fi(z) = |og |+ |agy|.

Then
Z arhgr = HlaXn+1 Z ’ozR’
|R=2-n o0 2" RSQ,
1
= ﬁz > lox]
Q; RDQj;
- 2n+1 Z |og| Z 1
|R|=2—"n Q;CR
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A new proof in d = 2: general case

o At each step choose the subcube, where

Fi(z) = |og |+ |agy|.
Then

Z arhgr

R]=2-n

= max E ’Oé ’
2n+1 R
[e%¢}

RDQ)j;

1
Zﬁz > lox]

Qj RDQ;

- 2n+1 > lem| X201

|R|=2—"n Q;CR

=27 > os|

|R[=2""
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Extension to b-adic nets

e Abox R € Dg of dimensions b~™! x b~™2 is a union of a

b x b array of b-adic boxes of dimensions
p—(mit+l) o p—(ma2+1)
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Extension to b-adic nets

o Abox R e Dg of dimensions b~ x b~"2 is a union of a
b x b array of b-adic boxes of dimensions
p—(mit+l) o p—(ma2+1)

@ Define the family of functions Hr . The function ¢r € Hp
iff
e ¢p takes values =1 on R and vanishes outside R.
e ¢p is constant on b-adic subboxes of R of dimensions
p—(mi+1) o p—(ma+1)
e In each row and in each column of the b x b array of
b-adic subboxes of R of dimensions b~ (m1+1) x p=(ma+1),
there is exactly one subbox, on which ¢ = +1.
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Extension to b-adic nets

o Abox R e Dg of dimensions b~ x b~"2 is a union of a
b x b array of b-adic boxes of dimensions
p—(mit+l) o p—(ma2+1)

@ Define the family of functions Hr . The function ¢r € Hp
iff
e ¢p takes values =1 on R and vanishes outside R.
e ¢p is constant on b-adic subboxes of R of dimensions
p—(mi+1) o p—(ma+1)
e In each row and in each column of the b x b array of
b-adic subboxes of R of dimensions b~ (m1+1) x p=(ma+1),
there is exactly one subbox, on which ¢ = +1.

o #Hp =0l
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Extension to b-adic nets

o Abox R e Dg of dimensions b~ x b~"2 is a union of a
b x b array of b-adic boxes of dimensions
p—(mit+l) o p—(ma2+1)

@ Define the family of functions Hr . The function ¢r € Hp
iff
e ¢p takes values =1 on R and vanishes outside R.
e ¢p is constant on b-adic subboxes of R of dimensions
p—(mi+1) o p—(ma+1)
e In each row and in each column of the b x b array of
b-adic subboxes of R of dimensions b~ (m1+1) x p=(ma+1),

there is exactly one subbox, on which ¢ = +1.
H#Hr = 0bl.
If b =2, then Hr = {xhg} and #Hpr = 2.

(]

(]
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Small ball inequality and b-adic nets

Theorem

Fiz the scale m € N and an integer base b > 2. For each b-adic box
R € D? with |R| = b=(m~Y | choose a function ¢r € Hp.

(i) A b-adic analogue of the signed small ball inequality holds:

max E ) =m.
z€[0,1)? ¢R( )
|R|=b—(m—1)

(ii) The set on which the mazimum above is achieved has the form

P+ [0,6)%

where P is a standard (0, m,2)-net in base b.

(iii) Each (0,m,2)-net P in base b may be obtained this way.

mbm—l

(iv) The number of different (0,m,2)-nets in base b is (b!)
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