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The small ball inequality

Small Ball Conjecture

For dimensions d > 2, we have

Z OéRhRHOOZQ_n Z ||

|R|=2" |R|=2"n
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Small Ball Problem for the Brownian Sheet

Let B :[0,1] — R be the Brownian Sheet, i.e. a centered

d
Gaussian process with covariance EB(s)B(t) = H min{sg, t}.
k=1
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e Upper bound is known (Dunker, Kiihn, Lifshits, Linde)
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e Upper bound is known (Dunker, Kiihn, Lifshits, Linde)
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Small Ball Problem for the Brownian Sheet

Let B :[0,1] — R be the Brownian Sheet, i.e. a centered

d
Gaussian process with covariance EB(s)B(t) = H min{sg, tx}.
k=1

Small Ball Problem

In dimensions d > 2, we have
—log P(|| Bllcpo,1¢ < €) ~ e 2 (log

e Upper bound is known (Dunker, Kiihn, Lifshits, Linde)

e The L? estimate is € (log 1)2d_2

€

e Lower bound is known in d = 2 (Talagrand)
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Connection to the Brownian Sheet

o Let {u;} be an orthonormal basis of L2([0,1]9).
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Connection to the Brownian Sheet

o Let {u;} be an orthonormal basis of L2([0,1]9).

o B(x) =2, gemi(),

o where ni(x) = [ ... [ ur(y)dy and gi - 1id. N(0,1).
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Connection to the Brownian Sheet

o Let {u;} be an orthonormal basis of L2([0,1]9).

o B(x) =312 grw(@),

o where ni(x) = [ ... [ ur(y)dy and gi - 1id. N(0,1).
e Assume
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(Rj=2-n (Rj=2-n
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Connection to the Brownian Sheet

o Let {u;} be an orthonormal basis of L2([0,1]9).

o B(x) =2, gemi(),

where ng(z) = [ ... [o " ur(y)dy and g - i.i.d. N(0,1).

(]

Assume
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P<2_3”/2n_é(d_2) Z |gR|<e>

|Rj=2-n
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Metric entropy of mixed smoothness classes

o Let T : LP([0,1]%) — C([0,1]¢) be the integration operator:
(TH) = Jg" - Jo" fy)dy.
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Metric entropy of mixed smoothness classes

o Let T : LP([0,1]%) — C([0,1]¢) be the integration operator:
(T @)= J5" - Jo* fly)dy.
o Define M, “ 7(B(£7(0,1])))
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o Let T : LP([0,1]%) — C([0,1]¢) be the integration operator:
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o Define M, “ 7(B(£7(0,1])))
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Metric entropy of mixed smoothness classes

o Let T : LP([0,1]%) — C([0,1]¢) be the integration operator:
(T @)= J5" - Jo* fly)dy.
o Define M, “ 7(B(£7(0,1])))

o Ny(e) :==min{N : 3z1,...,zn s.t. M C U (71 + €Bwo)}
— least number of L balls of radius € needed to cover M,

Theorem (Kuelbs, Li)

—logP(|Bllope < ) ~ e % (log 1)’ iff
log Na(€) ~ ¢! (log %)'8/2
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Metric entropy of mixed smoothness classes

o Let T: Lp([(], 119 —> C([0,1]%) be the integration operator:
(T @)= J5" - Jo* fly)dy.
o Define M, def T(B(Lp([o, 1))

o Ny(e) :==min{N : 3z1,...,zn s.t. M C U (71 + €Bwo)}

— least number of L balls of radius € needed to cover M,

Theorem (Kuelbs, Li)

—log P(|| Bllcpo m <eme?(logl)’ iff
log No(€) ~ (log )'8/2

| \

Conjecture

For d > 2, one has the estimate log Na(€) > X (log )d 12
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
MR = T(UR).
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
nr = T(ug).
o Take a distribution of signs o : {R: |R| =2""} — +£1
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
MR = T(UR).
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
nr = T(ug).
o Take a distribution of signs o : {R: |R| =2""} — +£1

1
o Construct F, = eI CE e Z orNMr € M
R:|R|=2—"
o Assume
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Connection to the Brownian Sheet

e Let up be an orthonormal basis of L2([0,1]%) and
nr = T(ug).
Take a distribution of signs 0 : {R: |R| =2""} — £1

1
o Construct F, = eI CE e Z orNMr € M
R:|R|=2—"

o Assume
2792 N ag| S n%(d_Q)H > OéR’ORHOO
|R[=2"" |R[=2""
@ Then
|Fo = Folloo 207322720 S Jop — o
|R[=2""

@ One can choose many o’s for which this sum is large
(Varshamov-Gilbert bound)
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Connections between problems

N N Small Ball Conjecture
Discrepancy estimates
. e d=z | n
Dyl 2 (log M) SN DY ufefm‘z 227 3 sl
=27 oo R:|R|=2""
lower bound lower bound

Small deviations for the Brownian sheet Metric entropy of MW?
— 10g]F’(||BHO(:[]:1_-d_\_, <e) ~e2(log1/e)? log N(g,2,d) = e (log1/e)?1/?

Kuelbs, Li, 93
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Near L>*: BMO and exp(L®) estimates

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)
e For any N-point set Py C [0,1]? we have

|Dnl|lBMO 2 V/1log N

o The van der Corput set satisfies

|DnllBMO S v/log N
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Near L>*: BMO and exp(L®) estimates

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)

e For any N-point set Py C [0,1]? we have

|Dnl|lBMO 2 V/1log N

o The van der Corput set satisfies

|DnllBMO S v/log N

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)

o For any N-point set Py C [0,1]? we have
”DN”exp(L"‘) Z (log N)l_l/a , 2<a<o0.

o The digit-scrambled van der Corput set satisfies

IDN llexp(zey S (log N)I =1/, 2< a<o00.
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Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))

There exist sets Py C [0,1]? (averages of “linear digital nets”)
for which

d—1
D < N
| NHeXp (Lﬁ) S (log N) ™2
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Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))

There exist sets Py C [0,1]? (averages of “linear digital nets”)
for which

d—1
D < N
| NHeXp (Lﬁ) S (log N) ™2

o Bold conjecture:

d—1
2

inf | DN ||expz2) S (log V)
PN
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Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))
There exist sets Py C [0,1]? (averages of “linear digital nets”)
for which

d—1
D < N
| NHeXp (Lﬁ) S (log N) ™2

o Bold conjecture:
. d—1
inf | D [lexp(z2) S (log V) 2
Pn

o This would imply that

p{z: Dy(z) > (logN)d/Q} SN
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Estimates “near” L1

Theorem (Lacey, 2010)

d—1
L, >
DNl 452 2 (og NS,

e L(log L)% is “easy”

Theorem (Lacey, 2010)

For 0 < p <1 we have the estimate in the (dyadic) d-parameter
Hardy space

d—1
DN lar 2 2.

~

(log N)
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Other endpoint: L!

Theorem (Haldsz, 1981)

In dimension d = 2 for any collection of N points Py C [0, 1]?
HDNH1 z \/logN.

Cy > 0.00854... (Vagharshakyan, 2013)
This continues to hold for d > 3: || Dy||1 2 v/log N

@ ... nothing better is known in higher dimensions!

(]

(]

o Conjecture:
d—1
DN 1 2 (log N) 2
o Known: s
L(logL) 2 and HP, 0 < p < 1, norms satisfy this estimate
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L' “dichotomy” results

d—1
2

e Conjecture: ||[Dy|l1 2 (log N)
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L' “dichotomy” results
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e Conjecture: ||[Dy|l1 2 (log N)
e Known: ||Dy||1 2 v1og N.
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L' “dichotomy” results

d—1
2

e Conjecture: ||[Dy|l1 2 (log N)
e Known: ||Dy||1 2 v1og N.

Theorem (Amirkhanyan, DB, Lacey, 2013)
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L' “dichotomy” results

e Conjecture: ||Dy|1 2 (logN)
e Known: ||Dy||1 2 v1og N.

Theorem (Amirkhanyan, DB, Lacey, 2013)

o If Py C [0,1]¢ satisfies | Dyl < (log N) for some
1< p < oo, then

|Dnll1 2 (IOgN)
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L' “dichotomy” results

e Conjecture: |Dyl1 2 (logN)
e Known: ||Dy||1 2 v1og N.

Theorem (Amirkhanyan, DB, Lacey, 2013)

o If Py C [0,1]¢ satisfies | Dyl < (log N) for some
1< p < oo, then

IDwll 2 (log N)F
o Every Py C [0,1]? satisfies either

IDN 11 % (log N)D/27¢ or ||Dy|l2 % exp(c(log N)©) .
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L' “dichotomy” results

e Conjecture: |Dyl1 2 (logN)
e Known: ||Dy||1 2 v1og N.

Theorem (Amirkhanyan, DB, Lacey, 2013)

o If Py C [0,1]¢ satisfies | Dyl < (log N) for some
1< p < oo, then

IDwll 2 (log N)F
o Every Py C [0,1]? satisfies either
IDN 11 % (log N)D/27¢ or ||Dy|l2 % exp(c(log N)©) .
o Ford >3, if Py C [0,1]¢ satisfies || Dy||1 < +/Iog N, then

IDxllz 2 N€.
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“Beck Gain” lemma: preservation of orthogonality

Beck Gain: We have the estimate

H ) f;-ng < pl2d-1)/2,(2d-3)/2
p

FASEHE
T1=51
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Number of parameters

=
Wy

Q «— a coincidence

Number of parameters

2d boxes =2d—-1-1-1

Q Q «—— hyperbolicity

Dmitriy Bilyk Small ball inequalities & discrepancy



