METHODS OF HARMONIC ANALYSIS IN DISCREPANCY THEORY.

Lecture 3b.

Dmitriy Bilyk University of Minnesota

SFB Winter Schoool on Complexity and Discrepancy Traunkirchen, Austria December 2, 2015

The small ball inequality

Small Ball Conjecture

For dimensions $d \geq 2$, we have

$$n^{\frac{d-2}{2}} \left\| \sum_{|R|=2^{-n}} \alpha_R h_R \right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}} |\alpha_R|$$

The small ball inequality

Small Ball Conjecture

For dimensions $d \geq 2$, we have

$$n^{\frac{d-2}{2}} \left\| \sum_{|R|=2^{-n}} \alpha_R h_R \right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}} |\alpha_R|$$

Signed Small Ball Conjecture

For dimensions $d \geq 2$, if all $\varepsilon_R = \pm 1$, we have

$$\left\| \sum_{|R|=2^{-n}} \varepsilon_R h_R \right\|_{\infty} \gtrsim n^{\frac{d}{2}}$$

Let $B: [0,1]^d \longrightarrow \mathbb{R}$ be the Brownian Sheet, i.e. a centered Gaussian process with covariance $\mathbb{E}B(s)B(t) = \prod_{k=1}^d \min\{s_k, t_k\}$.

Let $B:[0,1]^d \longrightarrow \mathbb{R}$ be the Brownian Sheet, i.e. a centered Gaussian process with covariance $\mathbb{E}B(s)B(t) = \prod_{k=1}^d \min\{s_k, t_k\}$.

Small Ball Problem

In dimensions $d \geq 2$, we have

$$-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{2d-1}$$

Let $B:[0,1]^d \longrightarrow \mathbb{R}$ be the Brownian Sheet, i.e. a centered Gaussian process with covariance $\mathbb{E}B(s)B(t) = \prod_{k=1}^d \min\{s_k, t_k\}$.

Small Ball Problem

In dimensions $d \ge 2$, we have

$$-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{2d-1}$$

• Upper bound is known (Dunker, Kühn, Lifshits, Linde)

Let $B:[0,1]^d \longrightarrow \mathbb{R}$ be the Brownian Sheet, i.e. a centered Gaussian process with covariance $\mathbb{E}B(s)B(t) = \prod_{k=1}^d \min\{s_k, t_k\}$.

Small Ball Problem

In dimensions $d \ge 2$, we have

$$-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{2d-1}$$

- Upper bound is known (Dunker, Kühn, Lifshits, Linde)
- The L^2 estimate is $\epsilon^{-2} \left(\log \frac{1}{\epsilon} \right)^{2d-2}$

Let $B:[0,1]^d \longrightarrow \mathbb{R}$ be the Brownian Sheet, i.e. a centered Gaussian process with covariance $\mathbb{E}B(s)B(t) = \prod_{k=1}^d \min\{s_k, t_k\}$.

Small Ball Problem

In dimensions $d \geq 2$, we have $-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{2d-1}$

- $\log \mathbb{F}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon (\log \frac{\epsilon}{\epsilon})$
- Upper bound is known (Dunker, Kühn, Lifshits, Linde)
- The L^2 estimate is $e^{-2} \left(\log \frac{1}{\epsilon} \right)^{2d-2}$
- Lower bound is known in d = 2 (Talagrand)

• Let $\{u_k\}$ be an orthonormal basis of $L^2([0,1]^d)$.

- Let $\{u_k\}$ be an orthonormal basis of $L^2([0,1]^d)$.
- $\bullet B(x) = \sum_{k=1}^{\infty} g_k \eta_k(x),$

- Let $\{u_k\}$ be an orthonormal basis of $L^2([0,1]^d)$.
- $B(x) = \sum_{k=1}^{\infty} g_k \eta_k(x)$,
- where $\eta_k(x) = \int_0^{x_1} \dots \int_0^{x_d} u_k(y) dy$ and g_k i.i.d. $\mathcal{N}(0,1)$.

- Let $\{u_k\}$ be an orthonormal basis of $L^2([0,1]^d)$.
- $B(x) = \sum_{k=1}^{\infty} g_k \eta_k(x)$,
- where $\eta_k(x) = \int_0^{x_1} \dots \int_0^{x_d} u_k(y) dy$ and g_k i.i.d. $\mathcal{N}(0,1)$.
- Assume

$$2^{-3n/2} \sum_{|R|=2^{-n}} |\alpha_R| \lesssim n^{\frac{1}{2}(d-2)} \left\| \sum_{|R|=2^{-n}} \alpha_R \eta_R \right\|_{\infty}$$

- Let $\{u_k\}$ be an orthonormal basis of $L^2([0,1]^d)$.
- $B(x) = \sum_{k=1}^{\infty} g_k \eta_k(x)$,
- where $\eta_k(x) = \int_0^{x_1} ... \int_0^{x_d} u_k(y) dy$ and g_k i.i.d. $\mathcal{N}(0,1)$.
- Assume

$$2^{-3n/2} \sum_{|R|=2^{-n}} |\alpha_R| \lesssim n^{\frac{1}{2}(d-2)} \left\| \sum_{|R|=2^{-n}} \alpha_R \eta_R \right\|_{\infty}$$

• Then

$$\mathbb{P}(\|B\|_{\infty} < \epsilon) \le \mathbb{P}\left(\left\|\sum_{|R|=2^{-n}} g_R \eta_R\right\|_{\infty} < \epsilon\right)$$

$$\le \mathbb{P}\left(2^{-3n/2} n^{-\frac{1}{2}(d-2)} \sum_{|R|=2^{-n}} |g_R| < \epsilon\right)$$

• Let $T: L^p([0,1]^d) \to C([0,1]^d)$ be the integration operator: $(Tf)(x) = \int_0^{x_1} \dots \int_0^{x_d} f(y) dy$.

- Let $T: L^p([0,1]^d) \to C([0,1]^d)$ be the integration operator: $(Tf)(x) = \int_0^{x_1} \dots \int_0^{x_d} f(y) dy$.
- Define $M_p \stackrel{\text{def}}{=} T(B(L^p([0,1]^d)))$

- Let $T: L^p([0,1]^d) \to C([0,1]^d)$ be the integration operator: $(Tf)(x) = \int_0^{x_1} \dots \int_0^{x_d} f(y) dy$.
- Define $M_p \stackrel{\text{def}}{=} T(B(L^p([0,1]^d)))$
- $N_p(\epsilon) := \min\{N : \exists x_1, ..., x_N \text{ s.t. } M_p \subset \bigcup_{k=0}^N (x_k + \epsilon B_\infty)\}$ - least number of L^∞ balls of radius ϵ needed to cover M_p

- Let $T: L^p([0,1]^d) \to C([0,1]^d)$ be the integration operator: $(Tf)(x) = \int_0^{x_1} \dots \int_0^{x_d} f(y) dy$.
- Define $M_p \stackrel{\text{def}}{=} T(B(L^p([0,1]^d)))$
- $N_p(\epsilon) := \min\{N : \exists x_1, ..., x_N \text{ s.t. } M_p \subset \bigcup_{k=0}^N (x_k + \epsilon B_\infty)\}$ - least number of L^∞ balls of radius ϵ needed to cover M_p

Theorem (Kuelbs, Li)

$$-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{\beta} \quad iff$$
$$\log N_2(\epsilon) \approx \epsilon^{-1} \left(\log \frac{1}{\epsilon}\right)^{\beta/2}$$

- Let $T: L^p([0,1]^d) \to C([0,1]^d)$ be the integration operator: $(Tf)(x) = \int_0^{x_1} \dots \int_0^{x_d} f(y) dy$.
- Define $M_p \stackrel{\text{def}}{=} T(B(L^p([0,1]^d)))$
- $N_p(\epsilon) := \min\{N : \exists x_1, ..., x_N \text{ s.t. } M_p \subset \bigcup_{k=0}^N (x_k + \epsilon B_\infty)\}$ - least number of L^∞ balls of radius ϵ needed to cover M_p

Theorem (Kuelbs, Li)

 $-\log \mathbb{P}(\|B\|_{C[0,1]^d} < \epsilon) \approx \epsilon^{-2} \left(\log \frac{1}{\epsilon}\right)^{\beta} \quad iff$ $\log N_2(\epsilon) \approx \epsilon^{-1} \left(\log \frac{1}{\epsilon}\right)^{\beta/2}$

Conjecture

For $d \geq 2$, one has the estimate $\log N_2(\epsilon) \gtrsim \frac{1}{\epsilon} \left(\log \frac{1}{\epsilon}\right)^{d-1/2}$

• Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$
- Construct $F_{\sigma} = \frac{1}{2^{n/2} n^{(d-1)/2}} \sum_{R: |R| = 2^{-n}} \sigma_R \eta_R$

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$
- Construct $F_{\sigma} = \frac{1}{2^{n/2} n^{(d-1)/2}} \sum_{R: |R| = 2^{-n}} \sigma_R \eta_R \in \mathcal{M}_2$

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$
- Construct $F_{\sigma} = \frac{1}{2^{n/2} n^{(d-1)/2}} \sum_{R: |R| = 2^{-n}} \sigma_R \eta_R \in \mathcal{M}_2$
- Assume

$$2^{-3n/2} \sum_{|R|=2^{-n}} |\alpha_R| \lesssim n^{\frac{1}{2}(d-2)} \left\| \sum_{|R|=2^{-n}} \alpha_R \eta_R \right\|_{\infty}$$

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$
- Construct $F_{\sigma} = \frac{1}{2^{n/2} n^{(d-1)/2}} \sum_{R: |R| = 2^{-n}} \sigma_R \eta_R \in \mathcal{M}_2$
- Assume

$$2^{-3n/2} \sum_{|R|=2^{-n}} |\alpha_R| \lesssim n^{\frac{1}{2}(d-2)} \left\| \sum_{|R|=2^{-n}} \alpha_R \eta_R \right\|_{\infty}$$

• Then

$$||F_{\sigma} - F_{\sigma'}||_{\infty} \gtrsim n^{-d+3/2} 2^{-2n} \sum_{|R|=2^{-n}} |\sigma_R - \sigma'_R|$$

- Let u_R be an orthonormal basis of $L^2([0,1]^d)$ and $\eta_R = T(u_R)$.
- Take a distribution of signs $\sigma: \{R: |R| = 2^{-n}\} \to \pm 1$
- Construct $F_{\sigma} = \frac{1}{2^{n/2} n^{(d-1)/2}} \sum_{R: |R| = 2^{-n}} \sigma_R \eta_R \in \mathcal{M}_2$
- Assume

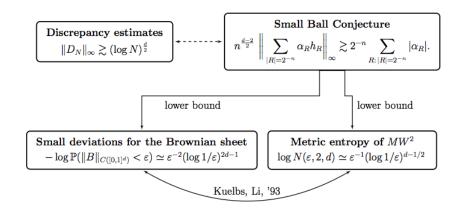
$$2^{-3n/2} \sum_{|R|=2^{-n}} |\alpha_R| \lesssim n^{\frac{1}{2}(d-2)} \left\| \sum_{|R|=2^{-n}} \alpha_R \eta_R \right\|_{\infty}$$

• Then

$$||F_{\sigma} - F_{\sigma'}||_{\infty} \gtrsim n^{-d+3/2} 2^{-2n} \sum_{|R|=2^{-n}} |\sigma_R - \sigma'_R|$$

• One can choose $many \sigma$'s for which this sum is large (Varshamov-Gilbert bound)

Connections between problems



Near L^{∞} : BMO and $\exp(L^{\alpha})$ estimates

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)

• For any N-point set $\mathcal{P}_N \subset [0,1]^2$ we have

$$||D_N||_{\text{BMO}} \gtrsim \sqrt{\log N}$$

• The van der Corput set satisfies

$$||D_N||_{\text{BMO}} \lesssim \sqrt{\log N}$$

Near L^{∞} : BMO and $\exp(L^{\alpha})$ estimates

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)

• For any N-point set $\mathcal{P}_N \subset [0,1]^2$ we have

$$||D_N||_{\text{BMO}} \gtrsim \sqrt{\log N}$$

• The van der Corput set satisfies

$$||D_N||_{\text{BMO}} \lesssim \sqrt{\log N}$$

Theorem (DB, Lacey, Parissis, Vagharshakyan, 2009)

• For any N-point set $\mathcal{P}_N \subset [0,1]^2$ we have

$$||D_N||_{\exp(L^{\alpha})} \gtrsim (\log N)^{1-1/\alpha}, \qquad 2 \le \alpha < \infty.$$

• The digit-scrambled van der Corput set satisfies

$$||D_N||_{\exp(L^{\alpha})} \lesssim (\log N)^{1-1/\alpha}, \qquad 2 \leq \alpha < \infty.$$

Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))

There exist sets $\mathcal{P}_N \subset [0,1]^d$ (averages of "linear digital nets") for which

$$||D_N||_{\exp\left(L^{\frac{2}{d-1}}\right)} \lesssim (\log N)^{\frac{d-1}{2}}$$

Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))

There exist sets $\mathcal{P}_N \subset [0,1]^d$ (averages of "linear digital nets") for which

$$||D_N||_{\exp\left(L^{\frac{2}{d-1}}\right)} \lesssim (\log N)^{\frac{d-1}{2}}$$

• Bold conjecture:

$$\inf_{\mathcal{P}_N} \|D_N\|_{\exp(L^2)} \lesssim (\log N)^{\frac{d-1}{2}}$$

Exponential estimates in higher dimensions

Theorem (DB, Markhasin (2014))

There exist sets $\mathcal{P}_N \subset [0,1]^d$ (averages of "linear digital nets") for which

$$||D_N||_{\exp\left(L^{\frac{2}{d-1}}\right)} \lesssim (\log N)^{\frac{d-1}{2}}$$

• Bold conjecture:

$$\inf_{\mathcal{P}_N} \|D_N\|_{\exp(L^2)} \lesssim (\log N)^{\frac{d-1}{2}}$$

• This would imply that

$$\mu\{x: D_N(x) \ge (\log N)^{d/2}\} \lesssim N^{-c}.$$

Estimates "near" L^1

Theorem (Lacey, 2010)

$$||D_N||_{L(\log L)^{\frac{d-2}{2}}} \gtrsim (\log N)^{\frac{d-1}{2}}.$$

• $L(\log L)^{\frac{d-1}{2}}$ is "easy"

Theorem (Lacey, 2010)

For 0 we have the estimate in the (dyadic) d-parameter Hardy space

$$||D_N||_{H^p} \gtrsim (\log N)^{\frac{d-1}{2}}.$$

Other endpoint: L^1

Theorem (Halász, 1981)

In dimension d=2 for any collection of N points $\mathcal{P}_N \subset [0,1]^2$

$$||D_N||_1 \gtrsim \sqrt{\log N}.$$

- $C_1 \ge 0.00854...$ (Vagharshakyan, 2013)
- This continues to hold for $d \geq 3$: $||D_N||_1 \gtrsim \sqrt{\log N}$
- ... nothing better is known in higher dimensions!
- Conjecture:

$$||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$$

• Known: $L(\log L)^{\frac{d-2}{2}}$ and $H^p, \ 0 , norms satisfy this estimate$

• Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$

- Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$
- Known: $||D_N||_1 \gtrsim \sqrt{\log N}$.

- Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$
- Known: $||D_N||_1 \gtrsim \sqrt{\log N}$.

Theorem (Amirkhanyan, DB, Lacey, 2013)

- Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$
- Known: $||D_N||_1 \gtrsim \sqrt{\log N}$.

Theorem (Amirkhanyan, DB, Lacey, 2013)

• If $\mathcal{P}_N \subset [0,1]^d$ satisfies $||D_N||_p \lesssim (\log N)^{\frac{d-1}{2}}$ for some 1 , then

$$||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$$

- Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$
- Known: $||D_N||_1 \gtrsim \sqrt{\log N}$.

Theorem (Amirkhanyan, DB, Lacey, 2013)

• If $\mathcal{P}_N \subset [0,1]^d$ satisfies $||D_N||_p \lesssim (\log N)^{\frac{d-1}{2}}$ for some 1 , then

$$||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$$

• Every $\mathcal{P}_N \subset [0,1]^d$ satisfies either

$$||D_N||_1 \gtrsim (\log N)^{(d-1)/2-\epsilon}$$
 or $||D_N||_2 \gtrsim \exp(c(\log N)^{\epsilon})$.

- Conjecture: $||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$
- Known: $||D_N||_1 \gtrsim \sqrt{\log N}$.

Theorem (Amirkhanyan, DB, Lacey, 2013)

• If $\mathcal{P}_N \subset [0,1]^d$ satisfies $||D_N||_p \lesssim (\log N)^{\frac{d-1}{2}}$ for some 1 , then

$$||D_N||_1 \gtrsim (\log N)^{\frac{d-1}{2}}$$

• Every $\mathcal{P}_N \subset [0,1]^d$ satisfies either

$$||D_N||_1 \gtrsim (\log N)^{(d-1)/2-\epsilon}$$
 or $||D_N||_2 \gtrsim \exp(c(\log N)^{\epsilon})$.

• For $d \geq 3$, if $\mathcal{P}_N \subset [0,1]^d$ satisfies $||D_N||_1 \lesssim \sqrt{\log N}$, then $||D_N||_2 \geq N^C$.

"Beck Gain" lemma: preservation of orthogonality

Lemma

Beck Gain: We have the estimate

$$\left\| \sum_{\substack{\vec{r} \neq \vec{s} \in \mathbb{H}_n^d \\ r_1 = s_1}} f_{\vec{r}} \cdot f_{\vec{s}} \right\|_p \lesssim p^{(2d-1)/2} n^{(2d-3)/2}$$

Number of parameters

