



DOI: 10.2478/udt-2019-0004 Unif. Distrib. Theory **14** (2019), no.1, 43-52

A COMPLETE CLASSIFICATION OF DIGITAL (0, m, 3)-NETS AND DIGITAL (0, 2)-SEQUENCES IN BASE 2

Roswitha Hofer¹ — Kosuke Suzuki²

ABSTRACT. We give a complete classification of all matrices $C_1, C_2, C_3 \in \mathbb{F}_2^{m \times m}$ which generate a digital (0, m, 3)-net in base 2 and a complete classification of all matrices $C_1, C_2 \in \mathbb{F}_2^{\mathbb{N} \times \mathbb{N}}$ which generate a digital (0, 2)-sequence in base 2.

Communicated by Friedrich Pillichshammer

1. Introduction and main results

The algorithms for constructing digital (t, m, s)-nets and (t, s)-sequences, which were introduced by Niederreiter [7], are well-established methods to obtain low-discrepancy point sets and low-discrepancy sequences. Low-discrepancy point sets and sequences are the main ingredients of quasi-Monte Carlo quadrature rules for numerical integration (see for example [1, 8] for details). The purpose of this paper is to characterize digital nets and sequences in base 2 with best possible quality parameter t. We start the paper with introducing the algorithm for digital (t, m, s)-nets and digital (t, s)-sequences in base b and defining the quality parameter t.

¹Johannes Kepler University Linz, Linz, AUSTRIA

²Hiroshima University, Higashi-Hiroshima, JAPAN

²⁰¹⁰ Mathematics Subject Classification: 11K16, 11K38.

Keywords: digital nets, digital sequences, classification of generating matrices.

The first author is supported by the Austrian Science Fund (FWF): Project F5505-N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications". The second author is supported by Grant-in-Aid for JSPS Fellows (No. 17J00466).

Let \mathbb{N} be the set of all positive integers, \mathbb{F}_b be the field of b elements with a prime power b, and $\mathbf{Z}_b := \{0, 1, \dots, b-1\}$. For $m \in \mathbb{N}$, $\mathbb{F}_b^{m \times m}$ denotes the set of all $m \times m$ matrices over \mathbb{F}_b . For $n \in \mathbb{N} \cup \{0\}$, we write the b-adic expansion of n as $n = \sum_{i=1}^{\infty} z_i(n)b^{i-1}$ with $z_i(n) \in \mathbf{Z}_b$, where all but finitely many $z_i(n)$ equal zero. Let $s, m \in \mathbb{N}$.

The definition of the digital net over \mathbb{F}_b needs the following data:

- (A) bijections $\psi_r \colon \mathbf{Z}_b \to \mathbb{F}_b$ for integers $1 \le r \le m$ with $\psi_r(0) = 0$,
- **(B)** matrices $C_1, \ldots, C_s \in \mathbb{F}_b^{m \times m}$
- (C) bijections $\lambda_{i,j} \colon \mathbb{F}_b \to \mathbf{Z}_b$ for integers $1 \le i \le m$ and $1 \le j \le s$.

For $1 \leq j \leq s$ and $k \in \mathbb{N} \cup \{\infty\}$, we define the function $\phi_{k,j} : \mathbb{F}_b^k \to [0,1]$ as

$$\phi_{k,j}((y_1,\ldots,y_k)^{\mathsf{T}}) := \sum_{i=1}^k \frac{\lambda_{i,j}(y_i)}{b^i}.$$

The digital net generated by (C_1, \ldots, C_s) is a set of b^m points in $[0, 1)^s$ that is constructed as follows. We define

$$\boldsymbol{y}_{n,j} \in \mathbb{F}_b^m$$
 for $0 \le n < b^m$ and $1 \le j \le s$

as

$$\boldsymbol{y}_{n,j} := C_j \cdot \left(\psi_1(z_1(n)), \dots, \psi_m(z_m(n))\right)^{\mathsf{T}} \in \mathbb{F}_b^m.$$

Then we obtain the *n*-th point x_n by applying $\phi_{m,j}$ componentwise to the $y_{n,j}$, i.e.,

$$\boldsymbol{x}_n := (\phi_{m,1}(\boldsymbol{y}_{n,1}), \dots, \phi_{m,s}(\boldsymbol{y}_{n,s})).$$

Finally letting n range between 0 and $b^m - 1$ we obtain the point set

$$\{\boldsymbol{x}_0,\ldots,\boldsymbol{x}_{b^m-1}\}\subset [0,1)^s$$

that is called the digital net generated by (C_1, \ldots, C_s) .

In a similar way, to define digital sequences we choose data of

- (A') bijections $\psi_r \colon \mathbf{Z}_b \to \mathbb{F}_b$ for all integers $r \geq 1$ with $\psi_r(0) = 0$,
- (B') infinite matrices $C_1, \ldots, C_s \in \mathbb{F}_b^{\mathbb{N} \times \mathbb{N}}$,
- (C') bijections $\lambda_{i,j} \colon \mathbb{F}_b \to \mathbf{Z}_b$ for all integers $i \geq 1$ and $1 \leq j \leq s$.

Then the digital sequence generated by (C_1, \ldots, C_s) is the sequence of points in $[0, 1]^s$ that is constructed as follows. We define

$$\boldsymbol{y}_{n,j} \in \mathbb{F}_b^{\mathbb{N}} \quad \text{for } n \in \mathbb{N} \cup \{0\}$$

and

$$1 \le j \le s$$
 as $\boldsymbol{y}_{n,j} := C_j \cdot (\psi_1(z_1(n)), \psi_2(z_2(n)), \ldots)^{\mathsf{T}} \in \mathbb{F}_b^{\mathbb{N}}$.

A CLASSIFICATION OF DIGITAL NETS AND SEQUENCES

This matrix-vector multiplication is well-defined since almost all $z_i(n)$ equal zero. Then we obtain the *n*-th point x_n by setting

$$\boldsymbol{x}_n := (\phi_{\infty,1}(\boldsymbol{y}_{n,1}), \dots, \phi_{\infty,s}(\boldsymbol{y}_{n,s})).$$

The digital sequence generated by (C_1, \ldots, C_s) is the sequence of points $\{x_0, x_1, \ldots\} \subset [0, 1]^s$.

The nonnegative integer t in the notions of (t, m, s)-nets and (t, s)-sequences quantifies in a certain sense the uniformity of digital nets and sequences. Let $b \in \mathbb{N} \setminus \{1\}$. A set \mathcal{P} of b^m points in $[0, 1)^s$ is said to be a (t, m, s)-net in base b if every subinterval of the form

$$\prod_{i=1}^{s} \left[a_i / b^{c_i}, (a_i + 1) / b^{c_i} \right) \quad \text{with integers} \quad c_i \ge 0 \quad \text{and} \quad 0 \le a_i < b^{c_i}$$

and of volume b^{t-m} contains exactly b^t points from \mathcal{P} . For the definition of (t,s)-sequences in base b, we need to introduce the truncation operator. For $x \in [0,1]$ with the prescribed b-adic expansion $x = \sum_{i=1}^{\infty} x_i/b^i$ (where the case $x_i = b-1$ for almost all i is allowed), we define the m-digit truncation

$$[x]_m := \sum_{i=1}^m x_i/b^i.$$

For $\boldsymbol{x}=(x_1,\ldots,x_s)\in[0,1]^s$, the coordinate-wise m-digit truncation of \boldsymbol{x} is defined as

$$[\boldsymbol{x}]_m := ([x_1]_m, \dots, [x_s]_m).$$

A sequence $S = \{x_0, x_1, \dots\}$ of points in $[0, 1]^s$ with prescribed b-adic expansions is said to be a (t, s)-sequence in base b if, for all nonnegative integers k and m, the set

$$\{[x_{kb^m}]_m,\ldots,[x_{(k+1)b^m-1}]_m\}$$

is a (t, m, s)-net in base b.

By the definitions of (t, m, s)-nets and (t, s)-sequences, a smaller t implies more conditions on the uniformity of the points and of the sequences. Indeed a smaller t corresponds with a smaller discrepancy bound (cf. [7]). Hence smaller t would be appreciated and t=0 is the best possible. Having lowest possible value 0 for t has another merit: the randomized quasi-Monte Carlo estimator of a scrambled (0, m, s)-net in base b is asymptotically normal [6]. However, t=0 cannot be attained when s is large. It is well known that (0, m, s)-nets in any base b exist only if $s \leq b+1$ and (0, s)-sequences in base b exist only if $s \leq b$ [8, Corollary 4.24]. On the other hand, there are many known digital (0, b)-sequences in prime base b, including the two-dimensional Sobol' sequence for b=2 [9], Faure sequences [2], generalized Faure sequences [10], and its

reorderings [3]. From these sequences we can construct digital (0, m, b + 1)-nets in base b, see [8, Lemma 4.22] or Lemma 2.3.

A characterization of (0, m, 3)-net in base 2 generated by (I, C, C^2) with some $C \in \mathbb{F}_2^{m \times m}$ was given in [5] and a characterization of (0, 2)-sequences in base 2 generated by non-singular upper-triangular matrices (C_1, C_2) was given in [4]. Our contribution in this note is to classify all generating matrices of digital (0, m, 3)-nets and digital (0, 2)-sequences in base 2.

For the statements of our results, we introduce some notation. We fix a prime power b and consider digital nets over \mathbb{F}_b . Let I_m be the $m \times m$ identity matrix in $\mathbb{F}_b^{m \times m}$. Let J_m be the $m \times m$ anti-diagonal matrix in $\mathbb{F}_b^{m \times m}$ whose anti-diagonal entries are all 1, and P_m be the $m \times m$ upper-triangular Pascal matrix in $\mathbb{F}_2^{m \times m}$ (note that for P_m we only consider the case b = 2), i.e.,

$$J_{m} = \begin{pmatrix} 0 & 1 \\ . & \ddots & \\ 1 & 0 \end{pmatrix}, \qquad P_{m} = \left(\begin{pmatrix} j-1 \\ i-1 \end{pmatrix} \right)_{i,j=1}^{m} = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \dots & \begin{pmatrix} m-1 \\ 0 \end{pmatrix} \\ & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & & \vdots \\ & & \ddots & \vdots \\ & & & \begin{pmatrix} m-1 \\ m-1 \end{pmatrix} \end{pmatrix},$$

where the latter is considered modulo 2. If there is no confusion, we omit the subscripts and simply write I, J, and P. Let \mathcal{L}_m (resp. \mathcal{U}_m) be the set of non-singular lower- (resp. upper-) triangular $m \times m$ matrices over \mathbb{F}_b . Let \mathcal{L}_{∞} (resp. \mathcal{U}_{∞}) be the set of non-singular lower- (resp. upper-) triangular infinite matrices over \mathbb{F}_b . Let

$$P_{\infty} \in \mathbb{F}_2^{\mathbb{N} \times \mathbb{N}}$$

be the infinite matrix whose $m \times m$ upper left submatrix is P_m for all $m \geq 1$. Note that for $C \in \mathbb{F}_b^{\mathbb{N} \times \mathbb{N}}$ and $L \in \mathcal{L}_{\infty}$, $U \in \mathcal{U}_{\infty}$ the products LC and CU are well defined and (LC)U = L(CU). For $C \in \mathbb{F}_b^{m \times m}$ with $m \in \mathbb{N} \cup \{\infty\}$ and for $k \in \mathbb{N}$ with $k \leq m$ we write $C^{(k)} \in \mathbb{F}_b^{k \times k}$ for the upper left $k \times k$ submatrix of C.

We are now ready to state our main results.

THEOREM 1.1. Let b=2, $m\geq 1$ be an integer, and $C_1,C_2,C_3\in \mathbb{F}_2^{m\times m}$. Then the following statements are equivalent:

- (i) (C_1, C_2, C_3) generates a digital (0, m, 3)-net in base 2;
- (ii) There exist $L_1, L_2 \in \mathcal{L}_m$, $U \in \mathcal{U}_m$, and non-singular $M \in \mathbb{F}_2^{m \times m}$ such that

$$(C_1, C_2, C_3) = (JM, L_1UM, L_2PUM).$$

THEOREM 1.2. Let b=2 and $C_1, C_2 \in \mathbb{F}_2^{\mathbb{N} \times \mathbb{N}}$. Then the following statements are equivalent:

- (i) (C_1, C_2) generates a digital (0, 2)-sequence in base 2;
- (ii) There exist $L_1, L_2 \in \mathcal{L}_{\infty}$ and $U \in \mathcal{U}_{\infty}$ such that $(C_1, C_2) = (L_1 U, L_2 P_{\infty} U).$

Well-known generating matrices of the digital (0,2)-sequences over \mathbb{F}_2 are the following: (I,P) for two-dimensional Sobol' sequence and the Faure sequence over \mathbb{F}_2 , (L_1,L_2P) with any $L_1,L_2\in\mathcal{L}_{\infty}$ for generalized Faure sequences over \mathbb{F}_2 . We also know good reorderings of digital (0,2)-sequences in the sense that we have that (G_1U,G_2U) with any $U\in\mathcal{U}_{\infty}$ generates a (0,2)-sequence if (G_1,G_2) generates (0,2)-sequence. Thus Theorem 1.2 states that every digital (0,2)-sequence over \mathbb{F}_2 is a reordering of a generalized Faure sequence.

In the rest of the paper, we give auxiliary results in Section 2 and prove the above theorems in Section 3.

2. Auxiliary results

In this section, we fix a prime power b and consider digital nets and digital sequences over \mathbb{F}_b . We start with t-value-preserving operations.

Lemma 2.1 ([5, Lemma 2.2]). Let

$$C_1, \dots, C_s \in \mathbb{F}_b^{m \times m}$$
 and $L_1, \dots, L_s \in \mathcal{L}_m$.

Let $G \in \mathbb{F}_b^{m \times m}$ be non-singular. Then the following are equivalent.

- (i) (C_1, \ldots, C_s) generates a digital (t, m, s)-net in base b.
- (ii) $(L_1C_1G, \ldots, L_sC_sG)$ generates a digital (t, m, s)-net in base b.

Lemma 2.2. *Let*

$$C_1, \ldots, C_s \in \mathbb{F}_b^{\mathbb{N} \times \mathbb{N}}, \qquad L_1, \ldots, L_s \in \mathcal{L}_{\infty} \quad and \quad U \in \mathcal{U}_{\infty}.$$

Then the following are equivalent.

- (i) (C_1, \ldots, C_s) generates a digital (t, s)-sequence in base b.
- (ii) $(L_1C_1U, \ldots, L_sC_sU)$ generates a digital (t, s)-sequence in base b.

Proof. A slight adaption of the proof of [3, Proposition 1] (resp. [10, Theorem 1]) shows that multiplying L_i from left (resp. multiplying U from right) does not change the t-value. Note that here we used that L_i^{-1} exists in \mathcal{L}_{∞} and U^{-1} exists in \mathcal{U}_{∞} .

The following results point out relations between digital nets and sequences.

Lemma 2.3 ([8, Lemma 4.22]). Let $\{x_i\}_{i\geq 0}$ be a (t,s)-sequence in base b. Then $\{(x_i,ib^{-m})\}_{i=0}^{b^m-1}$ is a (t,m,s+1)-net in base b.

LEMMA 2.4. Let

$$C_1, \ldots, C_s \in \mathbb{F}_b^{\mathbb{N} \times \mathbb{N}}$$
.

Then the following are equivalent.

- (i) (C_1, \ldots, C_s) generates a digital (t, s)-sequence in base b.
- (ii) $(C_1^{(m)}, \ldots, C_s^{(m)})$ generates a digital (t, m, s)-net in base b for every $m \in \mathbb{N}$.
- (iii) $(J_m, C_1^{(m)}, \dots, C_s^{(m)})$ generates a digital (t, m, s+1)-net in base b for every $m \in \mathbb{N}$.

Proof. (ii) implies (i) by [8, Theorem 4.36]. Clearly (iii) shows (ii). (i) implies (iii) by Lemma 2.3. \Box

Having t=0 is related to LU decomposability. In particular, we have a characterization of digital (0,1)-sequences and digital (0,m,2)-nets in base b.

LEMMA 2.5. Let b be a prime power. Let $B \in \mathbb{F}_b^{m \times m}$. Then (J_m, B) generates a digital (0, m, 2)-net in base b if and only if there exist $L \in \mathcal{L}_m$ and $U \in \mathcal{U}_m$ such that B = LU.

Proof. This is essentially proved in [5, Lemma 3.1] for b=2, and the proof therein can be applied to the general case. However, for its importance, we give a brief proof. It can be shown that (J_m, B) generates a digital (0, m, 2)-net in base b if and only if all leading principal minors of B are different from zero, which is equivalent to the LU decomposability of B.

Lemma 2.6. Let $m \geq 1$ be an integer and $C_1, C_2 \in \mathbb{F}_b^{m \times m}$. Then (C_1, C_2) generates a (0, m, 2)-net in base b if and only if there exist $L \in \mathcal{L}_m$, $U \in \mathcal{U}_m$ and non-singular $M \in \mathbb{F}_b^{m \times m}$ such that $(C_1, C_2) = (JM, LUM)$.

Proof. Let $M = JC_1$. By putting $C'_2 = C_2M^{-1}$, $t(C_1, C_2) = 0$ is equivalent to $t(JM, C'_2M) = 0$, which is equivalent to $t(J, C'_2) = 0$ by Lemma 2.1. Hence Lemma 2.6 reduces to the case $C_1 = J$, i.e., Lemma 2.5.

Lemma 2.7. Let $B \in \mathbb{F}_b^{\mathbb{N} \times \mathbb{N}}$. Then B generates a digital (0,1)-sequence in base b if and only if there exist $L \in \mathcal{L}_{\infty}$ and $U \in \mathcal{U}_{\infty}$ such that B = LU.

A CLASSIFICATION OF DIGITAL NETS AND SEQUENCES

Proof. First we assume that B generates a digital (0,1)-sequence in base b. Then it follows from Lemma 2.4 that $(J_m, B^{(m)})$ generates (0, m, 2)-net for every $m \in \mathbb{N}$. Thus by Lemma 2.5 there exist unique $L_m \in \mathcal{L}_m$ whose diagonal entries are one and $U_m \in \mathcal{U}_m$ such that $B^{(m)} = L_m U_m$. By comparing the upper left $n \times n$ submatrix of this equation for $n \leq m$, we have $L_m^{(n)} = L_n$ and $U_m^{(n)} = U_n$ for all $n \leq m$. This implies that there exists unique $L \in \mathcal{L}_\infty$ and $U \in \mathcal{U}_\infty$ such that $L^{(m)} = L_m$ and $U^{(m)} = U_m$ holds for all m, and hence we have B = LU. This shows the "only if" part. The converse holds from Lemma 2.2 and the fact that I generates a digital (0,1)-sequence in base b.

In the rest of the section, we focus on digital nets over \mathbb{F}_2 . The first author and Larcher essentially determined all digital (0,2)-sequences in base 2 generated by non-singular infinite upper-triangular matrices [4, Proposition 4]. The following two auxiliary results are mainly based on this result, whose proof essentially needs the restriction to a finite field with just two elements. Thus a generalization of our theorems in this paper to a more arbitrary finite field would need a generalization of [4, Proposition 4]. We would like to keep this task for future research.

Lemma 2.8. Let $U_1, U_2 \in \mathcal{U}_m$. Then (J_m, U_1, U_2) generates (0, m, 3)-net in base 2 if and only if $U_2 = P_m U_1$ holds.

Proof. The "only if" part is essentially derived in the proof of [4, Proposition 4]. Now we assume $U_2 = P_m U_1$. From the construction in [2] and Lemma 2.3, (J, I, P) generates a (0, m, 3)-net. Then it follows from Lemma 2.1 with

$$(L_1, L_2, L_3) = (JU_1^{-1}J, I, I)$$
 and $G = U_1$

that

$$((JU_1^{-1}J)JU_1, IU_1, PU_1) = (J, U_1, PU_1)$$

also generates a (0, m, 3)-net. Thus we have proved the converse.

PROPOSITION 2.9. Let $U_1, U_2 \in \mathcal{U}_{\infty}$. Then the following are equivalent:

- (i) (U_1, U_2) generates a digital (0, 2)-sequence in base 2.
- (ii) $U_2 = P_{\infty}U_1$ holds.

Proof. (i) implies (ii) by [4, Proposition 4]. The converse follows from Lemma 2.2 and the construction in [2]. \Box

3. Proofs of Theorem 1.1 and 1.2

Having all the auxiliary results of the previous section at hand, the proofs of our theorems are rather short. In the proofs, for matrices

$$Q,R,S\in\mathbb{F}_2^{m\times m}$$

let t(Q, R, S) be the t-value of the digital net generated by (Q, R, S).

Proof of Theorem 1.1. Let $M=JC_1$. By putting

$$C_2' = C_2 M^{-1}$$
 and $C_3' = C_3 M^{-1}$,

$$t(C_1, C_2, C_3) = 0$$
 is equivalent to $t(JM, C_2'M, C_3'M) = 0$,

which is equivalent to

$$t(J, C_2', C_3') = 0$$

by Lemma 2.1. Hence Theorem 1.1 reduces to the case $C_1 = J$, i.e., it suffices to show the following claim.

Proposition 3.1. Let $m \ge 1$ be an integer and

$$C_1, C_2 \in \mathbb{F}_2^{m \times m}$$
.

Then the following are equivalent.

- (i) (J, C_1, C_2) generates a (0, m, 3)-net in base 2.
- (ii) There exist

$$L_1, L_2 \in \mathcal{L}_m$$
 and $U \in \mathcal{U}_m$

such that

$$C_1 = L_1 U$$
 and $C_2 = L_2 P U$.

We now prove Proposition 3.1. First we assume (ii). By Lemma 2.1 with

$$(L_1, L_2, L_3) = (I, L_1^{-1}, L_2^{-1})$$
 and $G = I$

we have

$$t(J, C_1, C_2) = t(J, L_1U, L_2PU)$$

= $t(J, U, PU) = 0$,

where the last equality follows from Lemma 2.8. Thus we have (i).

We now assume (i). By Lemma 2.5, there exist

$$L_1, L_2 \in \mathcal{L}_m$$
 and $U_1, U_2 \in \mathcal{U}_m$

such that

$$C_1 = L_1 U_1$$
 and $C_2 = L_2 U_2$.

A CLASSIFICATION OF DIGITAL NETS AND SEQUENCES

Hence, by Lemma 2.1 with

$$(L_1, L_2, L_3) = (I, L_1, L_2)$$
 and $G = I$

we have

$$t(J, U_1, U_2) = t(J, L_1U_1, L_2U_2)$$
$$= t(J, C_1, C_2) = 0.$$

Finally, Lemma 2.8 implies $U_2 = PU_1$, which shows (ii).

Proof of Theorem 1.2. (ii) implies (i) by Lemma 2.2 and Proposition 2.9. Let us now assume (i). Then by Lemma 2.7 there exist

$$L_1, L_2 \in \mathcal{L}_{\infty}$$
 and $U_1, U_2 \in \mathcal{U}_{\infty}$

such that

$$C_1 = L_1 U_1$$
 and $C_2 = L_2 U_2$.

We apply Lemma 2.2 and obtain that (U_1, U_2) generates a (0, 2)-sequence in base 2. Finally Proposition 2.9 brings

$$U_2 = P_{\infty}U_1$$

and the result follows.

REFERENCES

- [1] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.
- [2] FAURE, H.: Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337–351.
- [3] FAURE, H.—TEZUKA, S.: Another random scrambling of digital (t, s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, (K. T. Fang et. al, eds.), Springer-Verlag, Berlin, 2002, pp. 242–256.
- [4] HOFER, R.—LARCHER, G.: On existence and discrepancy of certain digital Nieder-reiter-Halton sequences, Acta Arith. 141 (2010), 369–394.
- KAJIURA, H.—MATSUMOTO, M.—SUZUKI, K.: Characterization of matrices B such that (I, B, B²) generates a digital net with t-value zero, Finite Fields Appl. 52 (2018), 289–300.
- [6] LOH, W. L.: On the asymptotic distribution of scrambled net quadrature, Ann. Statist. 31 (2003), 1282–1324.

- [7] NIEDERREITER, H.: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.
- [8] _____Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Regional Conference Series, Applied Mathematics Vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
- [9] SOBOE, I. M.: Distribution of points in a cube and approximate evaluation of integrals,
 Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802. (In Russian)
- [10] TEZUKA, S.: A Generalization of Faure Sequences and its Efficient Implementation, Research Report IBM RT0105 (1994), 1-10. Retrieved as a preprint 2nd of August 2018 from https://www.researchgate.net/publication/311808492_A_generalization _of_Faure_sequences_and_its_efficient_implementation

Received June 11, 2018 Accepted August 22, 2018

Roswitha Hofer

Institute of Financial Mathematics and Applied Number Theory Johannes Kepler University Linz Altenbergerstr. 69, 4040 Linz AUSTRIA

E-mail: roswitha.hofer@jku.at

Kosuke Suzuki

Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima, 739-8526 JAPAN

JSPS Research Fellow
E-mail: kosuke-suzuki@hiroshima-u.ac.jp