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Abstract

Finite groups with an automorphism mapping a sufficiently large proportion of
elements to their inverses resp. squares resp. cubes have been studied for a long time,
and the gist of the results on them is that they are “close to being abelian”. In this
paper, we consider finite groups G such that, for a fixed but arbitrary ρ ∈ (0, 1],
some automorphism of G maps at least ρ|G| many elements of G to their inverses
resp. squares resp. cubes. We will relate these conditions to some parameters that
measure, intuitively speaking, how far the group G is from being solvable, nilpotent
or abelian; most prominently the commuting probability of G, i.e., the probability
that two independently uniformly randomly chosen elements of G commute. To this
end, we will use various counting arguments, the classification of the finite simple
groups and some of its consequences, as well as a classical result from character
theory.

1 Introduction

1.1 Background and main results

In the literature, there are various results on “quantitative” conditions on finite
groups G that imply commutativity or a weaker property, such as nilpotency or solv-
ability. We mention the following examples (and remark that all rational constants
appearing in these results are optimal):
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1. For e ∈ Z, denote by Le(G) the maximum number of elements of G that are
mapped to their e-th power by a single automorphism of G. Then either of the
following implies that G is abelian: L−1(G) > 3

4 |G| (this is already mentioned as
“known” by Miller in 1929 (see [24, first paragraph]); we will review a short proof
of this at the beginning of Subsection 2.1), L2(G) > 1

2 |G| [21, Theorem 3.5],
L3(G) > 3

4 |G| [23, Theorem 4.1]. On the other hand, for all e ∈ Z\{−1, 0, 2, 3},
there exists a finite nonabelian group Ge such that the map Ge → Ge, g 7→ ge, is
an automorphism of Ge [25]. Furthermore, either of the following implies that
G is solvable: L−1(G) > 4

15 |G| [27, Corollary 3.2], L2(G) > 7
60 |G| [10, Theorem

C], L3(G) > 4
15 |G| [12, Theorem 4.1]. Finally, it is known that for solvable G

and fixed ρ ∈ (0, 1], a condition of the form L−1(G) ≥ ρ|G| implies that the
derived length of G is bounded from above [11, Theorems 1.1 and 2.6].

2. Denote by k(G) the number of conjugacy classes of G. The quotient cp(G) :=
k(G)/|G| equals the commuting probability of G, i.e., the probability that two
independently uniformly randomly chosen elements of G commute [9]. Fur-
thermore, the following is known: If cp(G) > 5

8 , then G is abelian [9], if
cp(G) > 1

2 , then G is nilpotent [17, Théorème 7] (see also [20, Corollary 3.2]),
and if cp(G) > 1

12 , thenG is solvable [18, 19] (see also the stronger result [8, The-
orem 11]). More generally, Guralnick and Robinson showed that if cp(G) ≥ ρ
for some fixed ρ ∈ (0, 1], then both the index of the Fitting subgroup of G and
the derived length of the solvable radical of G are bounded in terms of ρ [8,
Theorem 10(ii) and Theorem 12 in combination with Lemma 2(iii)]; since we
will need them, we will later review those bounds in more detail, see Theorem
2.3.1.

3. Denote by mao(G) the maximum automorphism order of G. If G is nontrivial,
then mao(G) ≤ |G|−1, and the bound is attained if and only if G is elementary
abelian [13, Theorem 2]. Moreover, if mao(G) > 1

2 |G|, then G is abelian [1,
Theorem1.1.1(1)], if mao(G) > 1

10 |G|, then G is solvable [1, Theorem 1.1.1(2)],
and if mao(G) ≥ ρ|G| for any fixed ρ ∈ (0, 1], then the index of the solvable
radical of G is bounded [1, Theorem 1.1.1(3)].

The uniting “philosophy” behind all the results above is that a finite group G
for which the parameter in question (Le, k or mao respectively) is large enough, i.e.,
larger than ρ|G| for a fixed (large enough) ρ ∈ (0, 1], must be abelian or at least “not
too far from being abelian”. Whereas, as mentioned above, results on consequences
of such conditions for general, arbitrarily small ρ ∈ (0, 1] exist for the functions k
and mao, there are, to the author’s knowledge, no such results for the functions
Le except for Hegarty’s bound on the derived length for solvable G and e = −1
mentioned above.

The purpose of this paper is to study finite groups G in which Le(G) ≥ ρ|G| (i.e.,
with an automorphism mapping at least a fraction of ρ of the elements of G to their
e-th power) for a fixed, but arbitrary ρ ∈ (0, 1] and e ∈ {−1, 2, 3}. The aim is to
generalize the known results by bounding, in terms of ρ, some parameters related to
“how far” the group is from being abelian, nilpotent resp. solvable. More precisely:

• For e = −1, 2, we will show that the commuting probability of a finite group

2



Alexander Bors Inverting, squaring, cubing

G can be explicitly bounded away from 0 in terms of the quotient le(G) :=
Le(G)/|G|. By Guralnick and Robinson’s results mentioned above, this also
gives explicit upper bounds on two other interesting parameters, namely the
index of the Fitting subgroup and the derived length of the solvable radical, in
finite groups G satisfying a condition of the form le(G) ≥ ρ with e = −1, 2 and
ρ ∈ (0, 1] fixed. For more details, see Theorem 1.1.2(1,2) below.

• The case e = 3 is more difficult; this is partly due to the fact (already observed
by Hegarty in [12]) that for elements x, y of a group, the assumption xeye =
(xy)e does not imply that x and y commute for e = 3 as opposed to e = −1, 2.
Still, we will bound cp(G) in terms of l3(G) if G is of odd order (Theorem
1.1.2(3a)), and without this assumption on the order, we will show that at least
the index of the solvable radical of G can be explicitly bounded in terms of
l3(G), see Theorem 1.1.2(4).

Before giving our main result, Theorem 1.1.2, with the explicit bounds referred
to above, we fix some more notation:

Notation 1.1.1. Let G be a finite group.

1. The solvable radical of G is denoted by Rad(G).

2. The Fitting subgroup of G is denoted by Fit(G).

3. If G is solvable, then the derived length of G is denoted by length(G).

Theorem 1.1.2. Let ρ ∈ (0, 1] be fixed, G a finite group. Then:

1. If G has an automorphism inverting at least ρ|G| many elements in G, then the
following hold:

(a) cp(G) ≥ 1
12ρ

5,

(b) [G : Fit(G)] ≤ 144ρ−10,

(c) length(Rad(G)) ≤ max(2, log3/4(2ρ) + 3),

2. If G has an automorphism squaring at least ρ|G| many elements in G, then the
following hold:

(a) cp(G) ≥ ρ2,

(b) [G : Fit(G)] ≤ ρ−4,

(c) length(Rad(G)) ≤ max({4} ∪ {l ∈ Z | l ≥ 0, 2l+1 ≤ 4l−7
ρ2
}),

3. If G is of odd order and G has an automorphism cubing at least ρ|G| many
elements of G, then the following hold:

(a) cp(G) ≥ ρ2,

(b) [G : Fit(G)] ≤ ρ−4,

(c) length(Rad(G)) ≤ max({4} ∪ {l ∈ Z | l ≥ 0, 2l+1 ≤ 4l−7
ρ2
}),

4. If G has an automorphism cubing at least ρ|G| many elements of G, then [G :
Rad(G)] ≤ g(ρ), where g : (0, 1]→ [1,∞) is given by Notation 5.4.4.

We postpone the definition of the function g in point (4) because it requires an
auxiliary result proved later.
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1.2 Overview of the paper

We will establish Theorem 1.1.2(1a,2a,3a) by means of counting arguments in finite
groups which, in spite of their elementary nature, yield some surprising connections
between different parameters (such as the fraction of elements squared by a finite
group automorphism and its number of fixed points, see Lemma 3.1.6). The rest of
Theorem 1.1.2(1,2,3) then follows from results of Hegarty as well as Guralnick and
Robinson. As already remarked, the proof of Theorem 1.1.2(4) will be more involved
and use the CFSG together with some heavy counting arguments in finite groups
with trivial solvable radical.

Each of the next three sections of the paper will be dedicated to the proof of one
of the points of Theorem 1.1.2:

1. In Section 2, we will prove Theorem 1.1.2(1). More precisely:

• In Subsection 2.1, we show how to obtain Theorem 1.1.2(1a) by generalizing
from the argument that a finite group G with l−1(G) > 3

4 must be abelian,
using an elementary observation on intersection sizes in families of “non-
negligible” subsets of finite sets, Lemma 2.1.2.

• Subsection 2.2 is dedicated to some general theory on functions f mapping
finite groups to non-negative real numbers. Inter alia, we briefly review a
simple result, Lemma 2.2.4, from another paper of the author allowing us
to bound [G : Rad(G)] under an assumption of the form f(G) ≥ ρ > 0
when f satisfies some assumptions.

• Some of the observations from Subsection 2.2 together with results of Gu-
ralnick and Robinson will be applied in Subsection 2.3 to prove Theorem
1.1.2(1b,1c).

2. Section 3 is dedicated to the proof of Theorem 1.1.2(2).

• We first prove two inequalities (given in Lemmata 3.1.2 and 3.1.6), each of
them relating the number of elements squared by a finite group automor-
phism with the number of fixed points of that automorphism, in Subsection
3.1.

• Theorem 1.1.2(2) will then be proved in Subsection 3.2, using the bounds
from the last subsection together with some results from Subsection 2.2
and another result of Guralnick and Robinson.

3. The rather short Section 4 deals with Theorem 1.1.2(3).

• In Subsection 4.1, we discuss briefly the proof of all subpoints of Theorem
1.1.2(3).

• Subsection 4.2 serves as a conclusion to Sections 2 to 4 of the paper; it
discusses to what extent the CFSG was used in the results proved so far.

4. The most involved part, Theorem 1.1.2(4), will be established in Section 5.

• In Subsection 5.1, we will also relate the number of elements cubed by a
finite group automorphism with its number of fixed points.
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• Subsection 5.2 summarizes some known results (and easy consequences
thereof) on conjugacy class numbers and outer automorphism group orders
of nonabelian finite simple groups which we will need later.

• In Subsection 5.3, we establish an inequality of the form L−1(Aut(S)) ≤
|S|E for some constant E < 1 and all nonabelian finite simple groups S;
this will serve as an auxiliary result in the proof of Theorem 1.1.2(4). In
principle, we could use Theorem 1.1.2(1a) together with some bounds from
Subsection 5.2 for this. However, said bounds are too crude for small S,
which one would have to check separately, resulting in a rather unelegant
approach. Instead, we will use a classical result from character theory
about the number of square roots of finite group elements to give, modulo
the results of Subsection 5.2, a rather short proof that L−1(Aut(S)) ≤
|S|0.8817....

• In Subsection 5.4, we will show that L3(Aut(S)) ≤ |S|0.947 for all large
enough nonabelian finite simple groups S, another important auxiliary re-
sult. Having established this, we can also finally give the definition of the
function g appearing in Theorem 1.1.2(4).

• Subsection 5.5 will elaborate on another auxiliary result, which bounds
the number of elements cubed by automorphisms of certain finite groups
H with trivial solvable radical coset-wise (for a certain subgroup K of H).

• In Subsection 5.6, we present a proof of Theorem 1.1.2(4) based on the
auxiliary results from the previous subsections.

Finally, we will give some concluding remarks in Section 6.

1.3 Notation and terminology

We denote by N the set of natural numbers (including 0) and by N+ the set of
positive integers. The image of a set M under a function f is denoted by f [M ],
and the restriction of f to M by f|M . The image of f , i.e., the image of the entire
domain of f under f , is denoted by im(f). If, for i = 1, . . . , n, fi is a function
Xi → Yi, we denote by f1 × · · · × fn the function

∏n
i=1Xi →

∏n
i=1 Yi mapping

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)).
For functions f, g mapping from an unbounded set D of non-negative real numbers

into [0,∞), we use the Bachmann-Landau notation “f(x) = Θ(g(x)) as x → ∞”,
meaning that there exist positive constants C1 and C2 such that for all x ∈ D,
C1f(x) ≤ g(x) ≤ C2f(x).

For n ∈ N, we denote the symmetric group and alternating group on {1, . . . , n} by
Sn andAn respectively. For a groupG and an element g ∈ G, τg : G→ G, x 7→ gxg−1,
denotes the inner automorphism of G with respect to g, and ord(g) denotes the order
of g. The centralizer in G of an element g ∈ G is denoted by CG(g), and the center
of G by ζG. We write H ≤ G for “H is a subgroup of G” and N charG for “N is a
characteristic subgroup of G”.

Introducing some more notation related to the problems with which we will deal
in this paper, we set, for an automorphism α of a finite group G and e ∈ Z, Pe(α) :=
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{g ∈ G | α(g) = ge}, Le(α) := |Pe(α)| and le(α) := 1
|G|Le(α). Hence Le(G) =

maxα∈Aut(G) Le(α) and le(G) = 1
|G|Le(G) = maxα∈Aut(G) le(α).

For a nonzero polynomial P (X) over some field K, we denote by deg(P (X)) the
degree of P (X) and by mindeg(P (X)) the minimum degree of a nonzero monomial
of P (X).

The rest of our notation is either defined at some point in the text or standard.

1.4 Finite semisimple groups

For the readers’ convenience, we now briefly recall the basic theory of finite groups
with trivial solvable radical. We call such groups semisimple, in accordance with the
terminology of [28, pp. 89ff.], where one can find most of the theory mentioned below
in detail.

Let H be a finite semisimple group. Then the socle of H, Soc(H), is a finite
centerless completely reducible group, i.e., it can be written as follows: Soc(H) =
Sn1

1 × · · · × Snrr , where the Si are pairwise nonisomorphic nonabelian finite simple
groups, the ni are positive integers, and r ∈ N (with r = 0 if and only if H is trivial).
One can show that the conjugation action of H on Soc(H) is faithful, yielding an
embedding H ↪→ Aut(Soc(H)) whose image contains Inn(Soc(H)) ∼= Soc(H).

Conversely, if R is a finite centerless completely reducible group, and H is such
that Inn(R) ≤ H ≤ Aut(R), then H is semisimple with Soc(H) = Inn(R) ∼= R.
Hence the finite semisimple groups are just the groups occurring in between the
inner and the full automorphism group of a finite centerless completely reducible
group.

Fortunately for the study of finite semisimple groups, the structure of the au-
tomorphism groups of finite centerless completely reducible groups is known: We
have Aut(Sn1

1 × · · · × Snrr ) = Aut(Sn1
1 )× · · · ×Aut(Snrr ), and for a nonabelian finite

simple group S and n ∈ N+, we have Aut(Sn) = Aut(S) o Sn (permutational wreath
product).

Furthermore, it follows from a result of Rose (see [29, Lemma 1.1]) that for
any finite semisimple group H, viewing H as a subgroup of Aut(Soc(H)) via the
embedding mentioned above, the automorphism group of H is naturally isomorphic
with the normalizer of H in Aut(Soc(H)). In particular, the automorphism group of
a finite centerless completely reducible group is always complete.

We remark that the results of the previous paragraph imply in particular that
every automorphism of a finite semisimple group H extends naturally to an (inner)
automorphism of Aut(Soc(H)). In particular, if S is a nonabelian finite simple group,
then for all e ∈ Z, Le(S) ≤ Le(Aut(S)).
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2 Dealing with l−1

2.1 Intersection of translates of the set of elements in-
verted by a finite group automorphism

Our argument builds up on a part of a proof of the following well-known fact, which
we review first:

Proposition 2.1.1. A finite group G with l−1(G) > 3
4 is abelian.

Proof (see [7]). Fix an automorphism α of G inverting more than 3
4 |G| many el-

ements, and set S := P−1(α). For s ∈ S, since both S and its translate sS
are subsets of G size more than 3

4 |G|, it follows that |sS ∩ S| > 1
2 |G|. Hence

for more than 1
2 |G| many t ∈ S, we have that st ∈ S as well. It follows that

t−1s−1 = (st)−1 = α(st) = α(s)α(t) = s−1t−1, or equivalently t ∈ CG(s). Therefore,
|CG(s)| > 1

2 |G|, and thus CG(s) = G, i.e., s ∈ ζG, by Lagrange’s theorem. We just
showed that S ⊆ ζG, whence ζG = G by another application of Lagrange’s theorem,
and so G is abelian.

The gist of this argument is that because S := P−1(α) is so large, the intersection
of S with the translate sS by any element s ∈ S is also large (first inference), and
therefore, all s ∈ S have large centralizers (second inference). Both inferences have
analogues under the weaker assumption that l−1(α) ≥ ρ for some fixed ρ ∈ (0, 1].
The following elementary lemma generalizes the first inference:

Lemma 2.1.2. Let ρ ∈ (0, 1], M a finite set, (Si)i∈I a nonempty family of subsets of
M such that |Si| ≥ ρ|M | for all i ∈ I. Set k(ρ) := dρ−1e+ 1 (so that k(ρ) ·ρ ≥ 1 +ρ)
and t(ρ) := ρ/∆k(ρ)−1 = ρ/∆dρ−1e, where ∆n := 1

2n(n+ 1) denotes the n-th triangle
number. Then the following hold:

1. If J ⊆ I with |J | ≥ k(ρ), then there exist distinct i, j ∈ I such that |Si ∩ Sj | ≥
t(ρ)|M |.

2. There exists i ∈ I such that for at least |I|−(k(ρ)−1)
k(ρ)−1 many j ∈ I \ {i}, we have

|Si ∩ Sj | ≥ t(ρ)|M |.
3. If |I| ≥ 2(k(ρ) − 1), then there exists i ∈ I such that for at least 1

2(k(ρ)−1) |I|
many j ∈ I \ {i}, we have |Si ∩ Sj | ≥ t(ρ)|M |.

Proof. For (1): We may of course assume w.l.o.g. that |J | = k(ρ), and we will show
the assertion for such J by contradiction; assume that |Si ∩ Sj | < t(ρ)|M | for all

distinct i, j ∈ J . Say J = {j1, . . . , jk(ρ)}, and set, for l = 1, . . . , k(ρ), Ul :=
⋃l
t=1 Sjt .

We show by induction on l that

|Ul| > (l · ρ−∆l−1t(ρ))|M | (1)

for l = 2, . . . , k(ρ). Indeed, we find that

|U2| = |Sj1∪Sj2 | ≥ |Sj1 |+ |Sj2 |−|Sj1∩Sj2 | > ρ|M |+ρ|M |−t(ρ)|M | = (2ρ−t(ρ))|M |,
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and if the assertion has been verified up to l − 1, it follows that

|Ul| = |Ul−1 ∪ Sjl | ≥ |Ul−1|+ |Sjl | − |Ul−1 ∩ Sjl |

≥ ((l − 1)ρ−∆l−2t(ρ))|M |+ ρ|M | − |
l−1⋃
i=1

Sji ∩ Sjl |

> (lρ−∆l−2t(ρ))|M | − (l − 1)t(ρ)|M | = (lρ−∆l−1t(ρ))|M |,

as required. However, by setting l := k(ρ) in Equation (1), we get that

|Uk(ρ)| > (k(ρ)ρ−∆k(ρ)−1t(ρ))|M | ≥ (1 + ρ− ρ)|M | = |M |,

a contradiction.
For (2): If |I| ≤ k(ρ) − 1, there is nothing to show, so assume that |I| ≥ k(ρ).

Let J ⊆ I be maximal such that for all distinct i, j ∈ J , we have |Si ∩Sj | < t(ρ)|M |.
By (1), |J | ≤ k(ρ) − 1. Set K := I \ J ; then |K| ≥ |I| − (k(ρ) − 1). Furthermore,
by maximality of J , there exists a function ι : K → J such that for all j ∈ K,
|Sι(j) ∩ Sj | ≥ t(ρ)|M |. For at least one i ∈ J , the fiber ι−1[{i}] has size at least
|K|
|J | ≥

|I|−(k(ρ)−1)
k(ρ)−1 , and any such i “does the job”.

For (3): This follows from (2), since by assumption,

|I| − (k(ρ)− 1)

k(ρ)− 1
=

|I|
k(ρ)− 1

− 1 ≥ |I|
k(ρ)− 1

− 1

2

|I|
k(ρ)− 1

=
1

2(k(ρ)− 1)
|I|.

The second inference has the following generalization:

Lemma 2.1.3. Let ε ∈ (0, 1], G a finite group, α an automorphism of G, S :=
P−1(α). Assume that s, t ∈ S are such that |sS∩tS| ≥ ε|G|. Then |CG(st−1)| ≥ ε|G|.

Proof. By assumption, we have |S ∩ s−1tS| = |s−1(sS ∩ tS)| = |sS ∩ tS| ≥ ε|G|. In
other words, for at least ε|G| many u ∈ S, we have that s−1tu ∈ S as well. It follows
that u−1t−1s = (s−1tu)−1 = α(s−1tu) = α(s)−1α(t)α(u) = st−1u−1, or equivalently
τs−1(st−1) = t−1s = τu(st−1), whence for all such u, we have su ∈ CG(st−1), and the
assertion follows.

We can now prove Theorem 1.1.2(1a):

Proof of Theorem 1.1.2(1a). First, assume that |G| < 2(k(ρ)−1)ρ−1 = 2dρ−1eρ−1 ≤
2 · 2ρ−1 · ρ−1 = 4ρ−2. Then if we had cp(G) < 1

12ρ
5, we would get the contradictory

chain of inequalities 1
12ρ

5 > cp(G) ≥ |G|−1 > 1
4ρ

2. Therefore, we may assume that
|G| ≥ 2(k(ρ) − 1)ρ−1. Let α be an automorphism of G with l−1(α) ≥ ρ, and set
S := P−1(α). Note that by assumption, |S| ≥ ρ|G| ≥ 2(k(ρ)−1). Hence by applying
Lemma 2.1.2(3) to the family (sS)s∈S of subsets of G, we get that there exists s ∈ S
such that for at least |S|

2(k(ρ)−1) ≥
ρ

2(k(ρ)−1) |G|many elements t ∈ S, |sS∩tS| ≥ t(ρ)|G|.
By Lemma 2.1.3, this yields that for all such t, |CG(st−1)| ≥ t(ρ)|G|. Hence
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cp(G) ≥ ρ

2(k(ρ)− 1)
· t(ρ) =

ρ

2dρ−1e
· ρ

∆dρ−1e
=

ρ2

dρ−1e2(dρ−1e+ 1)

≥ ρ2

(ρ−1 + 1)2(ρ−1 + 2)
≥ ρ2

(2ρ−1)2 · 3ρ−1
=

1

12
ρ5.

2.2 Group-theoretic functions

Consider a function f from the class Gfin of finite groups into the set of non-negative
real numbers. In this subsection, we provide a simple result on when a condition of
the form f(G) ≥ ρ > 0, ρ fixed, implies that [G : Rad(G)] is bounded. We note that
Definition 2.2.1 and Lemma 2.2.4 were already included in another manuscript of the
author which is currently under review for journal publication, and we refrain from
giving the (very simple) proof of Lemma 2.2.4 again here; however, see the preprint
version of the manuscript at hand (arXiv:1601.04311) for the proof and some more
of this theory.

We will require that f satisfy certain inequalities relating f(G) to values of f
on subgroups and quotients of G. More precisely, we will work with the following
concepts:

Definition 2.2.1. A function f : Gfin → [0,∞) is called group-theoretic if and only
if f(G1) = f(G2) whenever G1 and G2 are isomorphic finite groups. Henceforth,
assume that f is a group-theoretic function.

1. f is called relative if and only if im(f) ⊆ [0, 1].

2. We define frel, the relativization of f , to be the function Gfin → [0,∞) , G 7→
f(G)/|G|.

3. f is called increasing on characteristic quotients ( CQ-increasing) if and only if
for all finite groups G and all N charG, we have f(G) ≤ f(G/N).

4. f is called increasing on characteristic subgroups ( CS-increasing) if and only
if for all finite groups G and all N charG, we have f(G) ≤ f(N).

5. f is called characteristically submultiplicative ( C-submultiplicative) if and only
if for all finite groups G and all N charG, we have f(G) ≤ f(N) · f(G/N).

As for Definition 2.2.1(2), observe that frel is of course not relative in general, but
many “natural” group-theoretic functions f (such as the ones from the introductory
examples in Subsection 1.1) satisfy f(G) ≤ |G| for all G ∈ Gfin, and for such f , frel

is relative.

Remark 2.2.2. We note the following facts following immediately from the definitions
of the concepts involved:

1. A relative and C-submultiplicative group-theoretic function is CS-increasing
and CQ-increasing.

9
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2. For a group-theoretic function F , Frel is CQ-increasing if and only if for all
finite groups G and all N charG, we have F (G) ≤ |N | · F (G/N).

3. A group-theoretic function F is C-submultiplicative if and only if Frel is C-
submultiplicative.

We now illustrate the concepts introduced in Definition 2.2.1 by means of several
examples, some of which will also be of relevance later.

Example 2.2.3. Consider the following examples of group-theoretic functions and
their properties:

1. All the functions le, e ∈ Z, are CQ-increasing, by the following coset-wise
counting argument (which may be seen as a generalization of the argument in
[27, proof of Lemma 2.2] with t := 1): Fix an automorphism α of G such that
Le(α) = Le(G). Denoting by α̃ the automorphism of G/N induced by α and
by π the canonical projection G → G/N , we find that g ∈ Pe(α) implies that
π(g) ∈ Pe(α̃). Hence Pe(α) is contained in the union of the Le(α̃) ≤ Le(G/N)
many cosets of N in G that correspond to elements from Pe(α̃) ⊆ G/N . This
shows that Le(G) = Le(α) ≤ |N | · Le(G/N), as required.

2. The function L−1 (and thus l−1 too) is C-submultiplicative, see [11, Lemma
1.2].

3. The function L2 is not C-submultiplicative, since l2 is not even CS-increasing:
l2((Z/2Z)2) = 1/4 < 5/12 = l2(A4), although A4 contains a characteristic
subgroup isomorphic with (Z/2Z)2.

4. The function k (and thus krel = cp too) is C-submultiplicative; actually, it even
satisfies the stronger property that k(G) ≤ k(N) · k(G/N) for all finite groups
G and all normal subgroups N of G, see [5].

5. It is readily verified that for all finite groups G and all normal subgroups N of
G, we have exp(G) | exp(N)·exp(G/N), where exp denotes the group exponent.
In particular, exp is C-submultiplicative.

6. The function maorel is relative and CQ-increasing, see [13, Theorem 2] and [1,
Corollary 5.2.9(2)].

The following lemma will be used in the proof of Theorem 1.1.2(4) in Section 5;
it allows us to restrict our attention to semisimple groups when trying to bound the
index of Rad(G) under a condition of the form f(G) ≥ ρ for CQ-increasing f :

Lemma 2.2.4. Let f be a CQ-increasing group-theoretic function. Assume that, for
finite semisimple groups H, we have f(H) → 0 as |H| → ∞. More explicitly, fix a
function g : (0,∞) → (0,∞) such that for all ρ ∈ (0,∞) and all finite semisimple
groups H such that f(H) ≥ ρ, we have |H| ≤ g(ρ).

Then if G is a finite group such that f(G) ≥ ρ, then [G : Rad(G)] ≤ g(ρ).

10



Alexander Bors Inverting, squaring, cubing

2.3 Proof of Theorem 1.1.2(1b,1c)

Let us first note the following two bounds by Guralnick and Robinson, see [8, Theo-
rems 10(ii) and 12(i)]:

Theorem 2.3.1. Let G be a finite group. Then:

1. cp(G) ≤ cp(Fit(G))1/2[G : Fit(G)]−1/2.

2. If G is solvable and length(G) ≥ 4, then cp(G) ≤ (4 length(G)−7)/2length(G)+1.

Proof of Theorem 1.1.2(1b,1c). For (1b): We already know by Theorem 1.1.2(1a)
that cp(G) ≥ 1

12ρ
5. Therefore, using Theorem 2.3.1(1), we conclude that [G :

Fit(G)] ≤ cp(G)−2 ≤ ( 1
12ρ

5)−2 = 144ρ−10, as required.
For (1c): It is easy to see that [11, Theorem 2.6] is equivalent to the follow-

ing: “For a finite solvable group G with l−1(G) ≥ ρ, we have that length(G) ≤
max(2, log3/4(2ρ)+3).”. This implies that, more generally, we have length(Rad(G)) ≤
max(2, log3/4(2ρ) + 3) for a finite group G with l−1(G) ≥ ρ, since l−1(Rad(G)) ≥
l−1(G) as l−1 is CS-increasing (see Example 2.2.3(2) and Remark 2.2.2(1)).

3 Dealing with l2

3.1 Fixed points and elements squared by a finite group
automorphism

In this subsection, we establish bounds on L2-values of finite group automorphisms
that involve the number of fixed points of the automorphism. This is basically due
to the appearance of functions of the following type in our arguments:

Notation 3.1.1. Let G be a group, α an automorphism of G. We denote by Tα the
function G→ G mapping g 7→ g−1α(g).

It is well-known that the fibers of Tα are just the right cosets of fix(α), the
subgroup of G consisting of the fixed points of α.

We begin with the following general bound for Le(α), which is obtained by count-
ing conjugacy-class-wise and is a generalization of [21, Lemma 3.3]:

Lemma 3.1.2. Let G be a finite group, α an automorphism of G and e ∈ Z. Then
Le(α) ≤ k(G) · | fix(α)|

Proof. It is sufficient to show that Pe(α) contains at most | fix(α)| many elements
from each conjugacy class in G. Hence we fix g ∈ Pe(α) and show that the number of
conjugates tgt−1, t ∈ G, that are also in Pe(α) is at most | fix(α)|. This is equivalent
to showing that the number of t ∈ G such that tgt−1 ∈ Pe(α) is at most | fix(α)| ·
|CG(g)|. Now if tgt−1 ∈ Pe(α), it follows that tget−1 = α(tgt−1) = α(t)geα(t)−1,
or equivalently t−1α(t) ∈ CG(ge). Note that since α(g) = ge, e and ord(g) must be
coprime, and so CG(ge) = CG(g). Hence a necessary (and sufficient) condition for
tgt−1 ∈ Pe(α) to hold is that t is in the preimage of CG(g) under the function Tα.

11
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Since this preimage has size at most |CG(g)| · |fix(α)| by the fiber structure of Tα,
we are done.

Note that the upper bound on Le(α) from Lemma 3.1.2 is good by trend if the
number of fixed points of α is small. In the rest of this subsection, we derive another
upper bound on L2-values of finite group automorphisms, which has a tendency to
be good if the number of fixed points is large. This bound is obtained by counting
N -coset-wise for a characteristic subgroup N ; the following result is the basis for our
argument:

Proposition 3.1.3. Let G be a group, e ∈ N+, N charG, and α, β1, . . . , βe auto-
morphisms of G. Set Pe(α | β1, . . . , βe) := {g ∈ G | α(g) = β1(g) · · ·βe(g)}. Fix
g ∈ Pe(α | β1, . . . , βe). Then for n ∈ N , we have ng ∈ Pe(α | β1, . . . , βe) if and only
if

n ∈ Pe(α|N | (β1)|N , (τβ1(g)◦β2)|N , (τβ1(g)◦τβ2(g)◦β3)|N , . . . , (τβ1(g)◦· · ·◦τβe−1(g)◦βe)|N ).

Proof. Under the assumptions, we have that ng ∈ Pe(α | β1, . . . , βe) if and only if
(expressing α(ng) in two different ways)

β1(n)β1(g)β2(n)β2(g) · · ·βe(n)βe(g) = α(n)β1(g)β2(g) · · ·βe(g),

which is equivalent to

α(n) = β1(n)β1(g)β2(n)β2(g) · · ·βe−1(n)βe−1(g)βe(n)βe−1(g)−1 · · ·β1(g)−1

= β1(n) · (τβ1(g) ◦ β2)(n) · · · (τβ1(g) ◦ · · · ◦ τβe−1(g) ◦ βe)(n).

We will need Proposition 3.1.3 several times in this paper. At the moment, we
only require a special case of it, which can be formulated more concisely using the
following notation from [1, Definition 3.1.2]:

Notation 3.1.4. For a group G, an automorphism α of G and e ∈ N, we define a

function sh
(e)
α : G → G via sh

(e)
α (g) := gα(g)α2(g) · · ·αe−1(g) (called the e-th shift

of g under α).

Corollary 3.1.5. Let G be a group, e ∈ N+, N charG and α an automorphism of G.

Fix g ∈ Pe(α). Then for n ∈ N , we have ng ∈ Pe(α) if and only if α(n) = sh
(e)
τg (n).

Proof. Set βi := id for i = 1, . . . , e in Proposition 3.1.3.

We can use Corollary 3.1.5 to prove the following upper bound on L2-values of
finite group automorphisms:

Lemma 3.1.6. Let G be a finite group, N charG, let α be an automorphism of G, and
denote by α̃ the induced automorphism of G/N . Then L2(α) ≤ [N : fix(α|N )] ·L2(α̃),
or equivalently, l2(α) ≤ |fix(α|N )|−1 · l2(α̃).

12
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Observe that with N := G, this implies that an automorphism of a finite group
G with at least m fixed points can only square at most 1

m |G| elements of G.

Proof of Lemma 3.1.6. By the argument in Example 2.2.3(1), P2(α) can only contain
elements from L2(α̃) many cosets of N in G. Hence it suffices to show that the
intersection of any coset of N in G with P2(α) has size at most [N : fix(α|N )]. To
this end, assume that the intersection is nonempty, say containing g. Then upon
setting e := 2 in Corollary 3.1.5, we find that the elements of C = Ng squared by α

are in bijective correspondence with the n ∈ N such that α(n) = sh
(2)
τg (n) = nτg(n),

or equivalently Tα(n) = τg(n). Since τg is bijective, by the fiber structure of Tα, this
equality can only hold for at most one n from each right coset of fix(α|N ). Hence the
total number of such n is bounded from above by the number of such cosets, i.e., by
[N : fix(α|N )], which proves the assertion.

3.2 Proof of Theorem 1.1.2(2)

For (2a): Let G be a finite group with l2(G) ≥ ρ. Fix an automorphism α of G
squaring at least ρ|G| many elements of G. In view of Lemma 3.1.6, this implies
that |fix(α)| ≤ ρ−1. Now an application of Lemma 3.1.2 yields ρ ≤ l2(G) = l2(α) ≤
cp(G) · ρ−1, and the asserted inequality, cp(G) ≥ ρ2, follows.

For (2b): This follows from subpoint (2a) using Theorem 2.3.1(1).
For (2c): We know already that l2(G) ≥ ρ implies cp(G) ≥ ρ2. By [8, Lemma

2(iii)], this, in turn, implies cp(Rad(G)) ≥ ρ2, and we can conclude with an applica-
tion of Theorem 2.3.1(2).

4 Dealing with l3 under odd group order

4.1 Proof of Theorem 1.1.2(3)

We start with subpoint (3a). Set ρ := l3(G), and fix an automorphism α of G cubing
ρ|G| many elements of G. Then we have

ρ|G| = |P3(α)| = |{g ∈ G | α(g) = g3}| = |{g ∈ G | g−1α(g) = g2}| ≤ [G : fix(α)],

where the last inequality holds since the map Tα : g 7→ g−1α(g) is constant on
right cosets of fix(α), whereas the map g 7→ g2 is injective on G. This implies that
|fix(α)| ≤ ρ−1, and so we can conclude as in the proof of Theorem 1.1.2(2a). This
completes the proof of Theorem 1.1.2(3a).

The other two subpoints now follow easily. (3b) is again by Theorem 2.3.1(1),
and (3c) follows, just like (2c) did, from Theorem 2.3.1(2).

4.2 On the use of the CFSG for our results

Let us take a moment to look back. By showing that cp(G) can be bounded from
below in terms of both l−1(G) and l2(G) (and l3(G) when |G| is odd), we could

13
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also bound [G : Fit(G)] due to a result of Guralnick and Robinson, [8, Theorem
10(ii)], which we gave in this paper as Theorem 2.3.1(1). Our arguments leading
to the lower bounds of the form cp(G) ≥ f1(l−1(G)) and cp(G) ≥ f2(l2(G)) (and
cp(G) ≥ f3(l3(G)) when 2 - |G|) are elementary and do not require the CFSG;
neither do the proofs of Theorem 1.1.2(1c,2c,3c)).

However, we note that Theorem 2.3.1(1) does require the CFSG. More precisely,
it depends on two other results from the same paper:

• [8, Theorem 4(ii)], stating that in a finite solvable group G, we have cp(G) ≤
cp(Fit(G))1/2[G : Fit(G)]−1/2, and

• [8, Theorem 9], which says that cp(G) ≤ [G : Rad(G)]−1/2 in all finite groups.

The proof of [8, Theorem 4(ii)] does not require the CFSG (though it does require
quite a bit of character theory, more precisely one of the main results of [15]), but the
CFSG is used for [8, Theorem 9]. However, just to show CFSG-freely that cp(G) ≥ ρ
implies that [G : Fit(G)] is bounded per se (without the explicit bound established
with the CFSG), it would suffice to show CFSG-freely that cp(G) ≥ ρ implies that
[G : Rad(G)] is bounded in terms of ρ (and combine this with the CFSG-free [8,
Theorem 4(ii)] just as Guralnick and Robinson did). And this is indeed possible:

Proposition 4.2.1. (CFSG-free) For finite groups G, cp(G)→ 0 as [G : Rad(G)]→
∞.

Proof. Fix ρ ∈ (0, 1], and assume that G is a finite group with cp(G) ≥ ρ. We will
show that [G : Rad(G)] is bounded. By [8, Lemma 2(iv)] and the fact that cp(G) ≤ 5

8
when G is nonabelian [9], we get that the number of non-abelian composition factors
of G, counting with multiplicities, is bounded. Furthermore, the order of each such
composition factor S is also bounded, in view of cp(S) ≥ ρ (which follows from [8,
Lemma 2(iii)]). This is because by simplicity of S, the minimum index of a proper
subgroup of S is bounded from below by the smallest positive integer r(S) such that

r(S)! ≥ |S|, and r(S)→∞ as |S| → ∞. Hence cp(S) ≤ 1−1/|S|
r(S) + 1

|S| → 0 as |S| → ∞,
because centralizers of nontrivial elements of S are proper subgroups.

However, writing Soc(G/Rad(G)) = Sn1
1 × · · · × Snrr , where the Si are pairwise

nonisomorphic nonabelian finite simple groups, it is clear that each Si, i = 1, . . . , r,
is a composition factor of G with multiplicity at least ni. Hence in view of the last
paragraph, | Soc(G/Rad(G))| is bounded in terms of ρ, and thus [G : Rad(G)] =
|G/Rad(G)| is also bounded, since G/Rad(G) embeds into Aut(Soc(G/Rad(G))).

5 Dealing with l3 in general

5.1 Fixed points once again

The aim of this subsection is to establish an upper bound on the number of elements
cubed by a finite group automorphism analogous to the one in Lemma 3.1.6. We first
need the following auxiliary result concerning the fiber structure of a certain class of
functions on groups:

14
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Proposition 5.1.1. Let G be a group, α an automorphism of G, and fix c ∈ G.
Consider the map fc,α : G→ G, g 7→ gcα(g). Then for g1, g2 ∈ G, we have fc,α(g1) =
fc,α(g2) if and only if g2 ∈ P−1(τg1 ◦ τc ◦ α)g1. In other words, the fibers of fc,α are
just the subsets of G of the form P−1(τg ◦ τc ◦ α)g, g ∈ G.

Proof. Write g2 = g1x = yg1 with x, y ∈ G (so that x = τg−1
1

(y)). Then

fc,α(g1) = fc,α(g2)⇔ g1cα(g1) = g2cα(g2) = g1xcα(y)α(g1)

⇔ α(y) = c−1x−1c = (τc−1 ◦ τg−1
1

)(y−1)

⇔ (τg1 ◦ τc ◦ α)(y) = y−1 ⇔ y ∈ P−1(τg1 ◦ τc ◦ α).

Before formulating and proving the aforementioned analogue to Lemma 3.1.6, we
note the following consequence of Proposition 5.1.1, which will also be needed later:

Lemma 5.1.2. Let G be a finite centerless nonsolvable group. Let α, β, γ be au-
tomorphisms of G. Then there exists g ∈ G such that α(g) 6= gβ(g)γ(g) (i.e.,
g /∈ P3(α | id, β, γ) in the notation of Proposition 3.1.3).

Proof. Assume otherwise. Then Tα = β ◦ sh
(2)
β−1◦γ , or equivalently, β−1 ◦ Tα =

sh
(2)
β−1◦γ =: f . Now let g ∈ G be arbitrary, but fixed. Since the function β−1 ◦ Tα

assumes the value f(g) precisely on the set fix(α)g, and the function sh
(2)
β−1◦γ by

Proposition 5.1.1 assumes this value precisely on the set P−1(τg ◦ β−1 ◦ γ)g, we
conclude that for all g ∈ G, fix(α) = P−1(τg ◦ β−1 ◦ γ). In particular, setting
g := 1, we find that β−1 ◦ γ inverts all fixed points of α. Since G is nonsolv-
able, we can fix, by [30, Theorem], a nontrivial fixed point x of α, and since G is
centerless, there is an element g ∈ G such that τg(x

−1) 6= x−1. Hence we have
x−1 = (τg ◦ β−1 ◦ γ)(x) = τg(x

−1) 6= x−1, a contradiction.

We note that the statement of Lemma 5.1.2 applies in particular to all nonabelian
finite simple groups G. Coming back to our goal of bounding L3(α) in terms of
|fix(α)|, we will now prove the following:

Lemma 5.1.3. Let G be a finite group, N charG, let α be an automorphism of G
and denote by α̃ the induced automorphism of G/N . Then L3(α) ≤ [N : fix(α|N )] ·
L−1(N) · L3(α̃), or equivalently l3(α) ≤ L−1(N)

fix(α|N ) · l3(α̃).

Proof. Counting coset-wise just as in the proof of Lemma 3.1.6, we see that it suffices
to show that for all cosets C of N in G, we have |C∩P3(α)| ≤ [N : fix(α|N )] ·L−1(N).
To this end, assume that C = Ng with g ∈ P3(α). Setting e := 3 in Corollary 3.1.5,
we find that the elements of C that are also in P3(α) are in bijective correspondence

with the n ∈ N such that α(n) = sh
(3)
τg (n) = nτg(n)τ2

g (n), or equivalently (using the
notation from Proposition 5.1.1):

(τg−1 ◦ Tα)(n) = sh(2)
τg (n) = f1,τg(n). (2)

15
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Denote by K the set of n ∈ N such that (2) holds, and note that at least one of

the [N : fix(α|N )] many right cosets of fix(α|N ) in N must contain at least |K|
[N :fix(α|N )]

many elements of K. Let D be such a coset, and fix n ∈ D ∩ K. Then for all
m ∈ D ∩K, we have Tα(n) = Tα(m), and hence by (2), f1,τg(n) = f1,τg(m). It now

follows by Proposition 5.1.1 that L−1(N) ≥ L−1((τn ◦ τg)|N ) ≥ |K|
[N :fix(α|N )] , which

concludes the proof.

Note that compared to the upper bound from Lemma 3.1.6, unfortunately, we
have an additional factor L−1(N) here, which prevents us from treating l3 just like
l2 in Section 3.

5.2 Some facts on nonabelian finite simple groups

We now cite three results on nonabelian finite simple groups from the literature
and derive some easy consequences. The first result is a consequence of bounds on
conjugacy class numbers due to Fulman and Guralnick [4] and is mentioned and used
in [8, proof of Theorem 9]:

Theorem 5.2.1. Let T be a finite almost simple group. Then k(T ) ≤ |T |0.41.

The second result involves nice uniform bounds for conjugacy class numbers in
subgroups of finite symmetric groups and in finite simple groups of Lie type, both
due to Liebeck and Pyber, see [22, Theorems 1 and 2].

Theorem 5.2.2. The following hold:

1. Let n ∈ N+ and H ≤ Sn. Then k(H) ≤ 2n−1.

2. Let S be a finite simple group of Lie type. Denote by l the untwisted Lie rank
and by q the field parameter of S. Then k(S) ≤ (6q)l.

Whereas the bound from Theorem 5.2.1 yields in particular an upper bound
k(S) ≤ |S|0.41 holding for all nonabelian finite simple groups S, we can use those
from Theorem 5.2.2 to deduce the following asymptotic result:

Corollary 5.2.3. Let the variable S range over all nonabelian finite simple groups
not isomorphic with any A1(q) for q a prime power. Then lim sup|S|→∞ log|S|k(S) =
1/4.

Proof. To see that said limit superior is at least 1/4, it suffices to observe that by [4,
Theorem 1.1(1)], k(A2(q)) = Θ(q2) as q →∞, whereas |A2(q)| = Θ(q8) as q →∞.

The reverse inequality follows easily from Theorem 5.2.2 and the CFSG.

The third result was proved by Kohl in [16]:

Theorem 5.2.4. For all nonabelian finite simple groups S, we have |Out(S)| <
log2(|S|).

This implies the following, which we will use in the next subsection:
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Corollary 5.2.5. The following hold:

1. For nonabelian finite simple groups S, log|S| |Out(S)| → 0 as |S| → ∞.

2. For all nonabelian finite simple groups S, log|S| |Out(S)| ≤ log20160(12), with
equality if and only if S = A2(4) = PSL3(4).

Proof. Point (1) follows immediately from Theorem 5.2.4. Theorem 5.2.4 also implies
that the inequality asserted in point (2) holds for all S but possibly those of order
up to an explicit constant. For such “small” S, one can check the validity of the
assertion directly, using the CFSG and the known formulas for outer automorphism
group orders of nonabelian finite simple groups of the various types (alternating,
sporadic, and the various classes of Lie type groups).

5.3 On L−1-values of (almost) simple groups

In this subsection, we will prove the following:

Theorem 5.3.1. Set E := 0.705(1 + log20160(12)) = 0.8817 . . . .. For all nonabelian
finite simple groups S, we have L−1(Aut(S)) ≤ |S|E.

Let us first reinterpret the maximum number of elements which an inner auto-
morphism of a finite group G can invert as the maximum number of square roots that
an element of G has in G (see Proposition 5.3.3(2) below); of course, for complete
G (such as automorphism groups of nonabelian finite simple groups), this number
coincides with L−1(G).

Notation 5.3.2. We introduce the following notation:

1. For a group G and an element g ∈ G, set
√
g := {f ∈ G | f2 = g} ⊆ G.

2. For a finite group G, set maxsqrt(G) := maxg∈G |
√
g|, the maximum number of

square roots in G of an element of G.

Proposition 5.3.3. Let G be a finite group.

1. For any g ∈ G, we have P−1(τg) =
√
g−2 · g = {rg | r ∈ G, r2 = g−2}.

2. The maximum number of elements of G inverted by an inner automorphism of
G is equal to maxsqrt(G).

3. If G is complete, then L−1(G) = maxsqrt(G).

Proof. Clearly, (2) follows from (1), and (3) follows from (2). Hence it suffices to
prove (1), which follows from [26, Proposition 2.22, equivalence of (i) and (iii)].

Proposition 5.3.3(3) allows us to establish a connection to character theory, due
to the following classical result:

Theorem 5.3.4. For a finite group G and an irreducible C-character χ of G, denote
the Frobenius-Schur indicator of χ by ν2(χ). Then for an element g ∈ G, we have
|√g| =

∑
χ ν2(χ)χ(g), where χ runs through the irreducible C-characters of G.
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Proof. See, for example, [14, pp. 49ff.].

Notation 5.3.5. Let G be a finite group.

1. Denote by Irr(G) the set of irreducible C-characters of G.

2. Set degsum(G) :=
∑

χ∈Irr(G) χ(1).

Corollary 5.3.6. Let G be a finite complete group. Then L−1(G) ≤ degsum(G) ≤√
k(G) · |G|.

Proof. Fix g ∈ G such that |√g| = maxsqrt(G), and note that by Proposition 5.3.3
and Theorem 5.3.4, we have

L−1(G) = maxsqrt(G) = |√g| = ||√g|| = |
∑

χ∈Irr(G)

ν2(χ)χ(g)|

≤
∑

χ∈Irr(G)

|ν2(χ)| · |χ(g)| ≤
∑

χ∈Irr(G)

1 · χ(1) = degsum(G).

The inequality degsum(G) ≤
√

k(G) · |G| is a well-known application of the
Cauchy-Schwarz inequality (using that

∑
χ∈Irr(G) χ(1)2 = |G|).

We are now ready to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. Since Aut(S) is complete, we have, by Corollary 5.3.6 and
Theorem 5.2.1,

L−1(Aut(S)) ≤
√

k(Aut(S)) · |Aut(S)| ≤
√
|Aut(S)|0.41 · |Aut(S)| = |Aut(S)|0.705,

which in view of Corollary 5.2.5 implies the assertion.

5.4 On L3-values of (almost) simple groups

This subsection is dedicated to the proof of the following theorem:

Theorem 5.4.1. For all large enough nonabelian finite simple groups S, we have
L3(Aut(S))/|S| ≤ |S|−0.053. In particular, L3(Aut(S))/|S| → 0 as |S| → ∞.

This implies that l3(T )→ 0 as |T | → ∞ for finite almost simple groups T , which
in view of Lemma 2.2.4 is a weaker form of Theorem 1.1.2(4). We will see that using
what we know so far, the inequality L3(Aut(S))/|S| ≤ |S|−0.053 can be verified with a
rather short argument for all large enough S except for those from the infinite family
A1(q), q a prime power, which are settled in the following theorem:

Theorem 5.4.2. Fix ε ∈ (0, 1/4). Then for all large enough prime powers q, we
have L3(Aut(A1(q))) ≤ q11/4+ε.
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For proving Theorem 5.4.2, we require the following technical lemma, which gives,
for polynomials P (X) ∈ Fq[X] satisfying a lacunarity condition of a special kind, an
upper bound on the number of roots of P (X) in Fq which is better than the trivial
bound, deg(P (X)).

Lemma 5.4.3. Let q = pK be a prime power, L ∈ Z with 3
4K ≤ L < K, and

0 < ε < 1
4 . Furthermore, let P (X) ∈ Fq[X], and assume that P (X) = P1(X) +

P2(X), where deg(P1(X)) ≤ q1/2+ε, and deg(P2(X)) ≤ qL/K + q1/2+ε − 1 < q, but
mindeg(P2(X)) ≥ pL = qL/K . Then there exists a nonzero polynomial Q(X) ∈ Fq[X]
of degree at most q3/4+ε such that for all x ∈ Fq, x is a root of P (X) if and only if
it is a root of Q(X). In particular, P (X) has at most q3/4+ε roots in Fq.

Proof. Denote by Frob the Frobenius endomorphism of the ring Fq[X]. Set P̃i(X) :=
FrobK−L(Pi(X)) for i = 1, 2, and let P̃ (X) := P̃1(X) + P̃2(X) = FrobK−L(P (X)).
Observe that for all x ∈ Fq, P (x) = 0 if and only if P̃ (x) = 0. Furthermore, we
have deg(P̃1(X)) ≤ q1/2+ε · q(K−L)/K ≤ q3/4+ε, and since the degrees of the nonzero
monomials of P2(X) are of the form qL/K + e with e ∈

[
0, q1/2+ε − 1

]
, we find

that the degrees of the nonzero monomials of P̃2(X) are of the form q + ẽ with
ẽ ∈

[
0, q3/4+ε − q(K−L)/K

]
. Let T (X) ∈ Fq[X] be the polynomial obtained from

P̃2(X) by reducing the exponent of X in each monomial modulo q − 1 (i.e., by
subtracting q − 1). Then deg(T (X)) ≤ 1 + (q3/4+ε − q(K−L)/K) < q3/4+ε, and since
the identity xq = x holds in Fq, we have T (x) = P̃2(X) for all x ∈ Fq. Hence, setting
Q(X) := P̃1(X) + T (X), we find that Q(X) has the required properties; note that
Q(X) is nonzero since it has only deg(P (X)) < q many roots in Fq.

Proof of Theorem 5.4.2. Write q = pK , where p is a prime and K ∈ N+. Denote
by Frob the Frobenius automorphism of the field Fq. We know that Aut(A1(q)) =
Aut(PSL2(q)) = PGL2(q)oGal(Fq/Fp), and that it is a complete group. We think of
the elements of PGL2(q) as represented by (2× 2)-matrices over Fq such that either
the bottom right entry is 1 or the bottom right entry is 0 and the top right entry is
1 (“normalized form”). For U ∈ GL2(q) (not necessarily normalized), we denote by
U the image of U under the canonical projection GL2(q)→ PGL2(q).

Fix an (inner) automorphism α of Aut(A1(q)), say the conjugation by the element(
a b
c d

)
σ, where σ = FrobL with L ∈ {0, 1, . . . ,K − 1} and the coefficients a, b, c, d

are such that the matrix is normalized. We want to show that for large enough

q, the number of elements β = β(e, f, g, h, ψ) =

(
e f
g h

)
ψ ∈ Aut(A1(q)), say with

ψ = FrobM and e, f, g, h such that the matrix is normalized, that are cubed by α
(call such elements “good”) is bounded from above by q11/4+ε.

Observe first that by considering the equation α(β(e, f, g, h, ψ)) = β(e, f, g, h, ψ)3

in Aut(A1(q)) modulo the characteristic subgroup PGL2(q), we find that a necessary
condition for goodness of β is that ψ3 = ψ, or equivalently ψ2 = id. This leaves at
most two possibilities for ψ: The identity automorphism of Fq, and if 2 | K (i.e., if q

is a square) the unique element of order 2 in Gal(Fq/Fp), FrobK/2. Henceforth, we
will always assume that ψ2 = id.
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Easy computations reveal that

β3 =

(
e2ψ(e) + efψ(g) + egψ(f) + fgψ(h)
egψ(e) + ehψ(g) + g2ψ(f) + ghψ(h)

efψ(e) + f2ψ(g) + ehψ(f) + fhψ(h)
fgψ(e) + fhψ(g) + ghψ(f) + h2ψ(h)

)
ψ (3)

(note that the matrix is broken over two lines, with the first column in the first
line and the second column in the second line) and

α(β) =

(
aσ(e)ψ(d) + bσ(g)ψ(d)− aσ(f)ψ(c)− bσ(h)ψ(c)
cσ(e)ψ(d) + dσ(g)ψ(d)− cσ(f)ψ(c)− dσ(h)ψ(c)

−aσ(a)ψ(b)− bσ(g)ψ(b) + aσ(f)ψ(a) + bσ(h)ψ(a)
−cσ(e)ψ(b)− dσ(g)ψ(b) + cσ(f)ψ(a) + dσ(h)ψ(a)

)
ψ. (4)

Note that the matrices appearing under the overlines on the right-hand sides of
Equations (3) and (4) are in general not normalized. In order to bound the number
of good elements, we partition the elements β(e, f, g, h, ψ) of Aut(A1(q)) such that
ψ2 = id into several types (the idea being to exclude some non-generic cases from
the main argument):

1. Type: f = 0 or g = 0. By our concept of normalized form, the assumption
implies that h = 1, so there are at most 4q2 such elements in total (at most 2q2

for each of the two cases f = 0 resp. g = 0, where the factor 2 comes from the
two choices for ψ, and the factor q2 is an upper bound for the number of choices
for (e, g) resp. (e, f)). In particular, there are at most 4q2 good elements of that
type.

2. Type: f, g 6= 0 and fgψ(e) + fhψ(g) + ghψ(f) + h2ψ(h) = 0. Thinking of
f, g, h, ψ as fixed, the last assumption becomes a nonzero polynomial equation
in e of degree pM ≤ q1/2, so for at most q1/2 values of e, the resulting element
β is of this type. Hence there are at most 2(q2 + q)q1/2 elements of that type
in total, in particular at most that many good elements of that type.

3. Type: f, g 6= 0 and fgψ(e) + fhψ(g) + ghψ(f) + h2ψ(h) 6= 0. Note that if β
is to be a good element of that type, it follows that −cσ(e)ψ(b)− dσ(g)ψ(b) +
cσ(f)ψ(a) + dσ(h)ψ(a) 6= 0 as well. This allows us to normalize the matrices
occurring on the right-hand sides of Equations (3) and (4) by dividing through
the bottom right entry. We may then compare the top left entries of the nor-
malized matrices to obtain the following necessary condition for goodness of
β:

(e2ψ(e) + efψ(g) + egψ(f) + fgψ(h))

· (−cσ(e)ψ(b)− dσ(g)ψ(b) + cσ(f)ψ(a) + dσ(h)ψ(a))

= (fgψ(e) + fhψ(g) + ghψ(f) + h2ψ(h))

· (aσ(e)ψ(d) + bσ(g)ψ(d)− aσ(f)ψ(c)− bσ(h)ψ(c)). (5)

20



Alexander Bors Inverting, squaring, cubing

We will now bound the number of elements β such that Equation (5) holds. To
this end, we make a case distinction:

(a) Case: b, c 6= 0. View f, g, h, ψ as fixed. We want to bound the number of e ∈
Fq such that Equation (5) holds. It is easy to check by the assumptions that
Equation (5) is a polynomial equation in e of degree precisely pL + pM + 2.
We distinguish two subcases:

• Subcase: L ≤ 3
4K. Then Equation (5) is a nonzero polynomial equa-

tion in e of degree at most q3/4 +q1/2 +2 ≤ q3/4+ε/3 for q large enough.
Hence the number of good elements of Type 3 is bounded from above
by 2(q2 + q)q3/4+ε/3 ≤ q11/4+ε/2 for q large enough, and so the total
number of good elements is, still for large enough q, bounded from
above by 4q2 + 2(q2 + q)q1/2 + q11/4+ε/2 ≤ q11/4+ε, as required.

• Subcase: L > 3
4K. Note that the nonzero e-monomials occurring in the

polynomial Equation (5) have degrees among the following numbers:
pL + pM + 2, pL + pM , pL + 1, pL, pM + 2, pM , 1 and 0. Hence for
large enough q, we find that Equation (5) is equivalent to a condition
of the form P (e) = 0, where P (X) ∈ Fq[X] depends on f, g, h, ψ and
satisfies the lacunarity assumptions of Lemma 5.4.3 with ε replaced by
ε/3. Hence by an application of Lemma 5.4.3, we can conclude just as
in the first subcase.

(b) Case: b = 0 or c = 0. We note that by our concept of normalization,
the case assumption implies that a 6= 0 and d = 1. Observe also that
it implies that the first summand −cσ(e)ψ(b) of the second factor on the
left-hand side of Equation (5) vanishes, turning the factor into a constant
e-polynomial distinct from 0, so that the e-polynomial on the left-hand
side of Equation (5) now only has degree pM + 2, whereas the polynomial
on the right-hand side has degree pM + pL. Hence if L > 1, and thus
pM + pL > pM + 2, then Equation (5) is equivalent to a condition of the
form P (e) = 0, where P (X) ∈ Fq[X] is of degree pM + pL, and we can
conclude as in Case (a) (distinguishing between the subcases L ≤ 3

4K and
L > 3

4K).
It remains to discuss the two cases L = 0 and L = 1. Note that we are
done once we have shown that for each choice of f, g, h, ψ, there are, for
large enough q, at most q3/4+ε/3 many choices of e such that Equation (5)
holds. For L = 0, Equation (5) is a polynomial equation in e of degree
pM + 2 ≤ q1/2+ε/2 for q large enough, whence we are done. For L = 1,
which implies that K ≥ 2, and assuming p > 2, Equation (5) is polynomial
in e of degree pM + p ≤ 2q1/2 ≤ q1/2+ε/3 for q large enough, whence we are
also done.
Let us now discuss the final case, L = 1 and p = 2. Then both sides of
Equation (5) are polynomials in e of degree 2M + 2 ≤ q1/2+ε/3 for q =
2K large enough, so all that we need to show is that for each choice of
f, g, h, ψ, there always is at least one e-monomial that does not cancel when
subtracting the monomials of one side of Equation (5) from the other. This
is certainly true when the leading coefficients are distinct, so we assume that
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they are equal. Furthermore, note that if fhψ(g) + ghψ(f) + h2ψ(h) 6= 0,
then the RHS of Equation (5) has an e-monomial of degree 2, which the
LHS does not have, and we are done. Hence assume fhψ(g) + ghψ(f) +
h2ψ(h) = 0. Then if h 6= 0, the LHS has a constant e-monomial, but
the RHS does not have such a monomial, whence we may even assume
that h = 0. Henceforth, we assume additionally that b = 0; the case
c = 0 works analogously. Note that under this additional assumption,
by comparing the leading coefficients of the two sides of Equation (5), we

obtain cf2a2M = fga, which implies that c 6= 0. Moreover, we know that
M ∈ {0, K2 }, but if M = K

2 , then the LHS of Equation (5), in contrast to
the RHS, does not have an e-monomial of degree 2M . Therefore, we may
assume M = 0 from now on. Then the coefficient of the e-monomial of
degree 1 on the LHS of Equation (5) equals (fg+ gf) · cσ(f)ψ(a) = 0, and
so the e-monomial of degree 1 on the RHS does not cancel, which concludes
the proof.

Proof of Theorem 5.4.1. By Theorem 5.4.2 and observing that |A1(q)| = Θ(q3) as
q → ∞, we may assume that S is not isomorphic with any A1(q), q a prime power.
Then by Corollary 5.2.5 and Corollary 5.2.3, we have |Out(S)| ≤ |S|0.001 and k(S) ≤
|S|0.26, provided that S is large enough. Fix an automorphism α of Aut(S) such that
L3(α) = L3(Aut(S)). Distinguish two cases:

1. Case: |fix(α|S)| ≥ |S|0.685. Then we have

L3(Aut(S))

|S|
=

L3(α)

|S|
≤ L3(Out(S)) · L−1(S)

|fix(α|S)|
≤ |Out(S)|
|fix(α|S)|

· L−1(Aut(S))

≤ |Out(S)|
|fix(α|S)|

·
√

k(Aut(S)) · |Aut(S)|

≤ |Out(S)|
|fix(α|S)|

·
√

k(S) · |Out(S)| ·
√
|S|

≤ |S|0.001+0.13+0.001+0.5−0.685 = |S|−0.053.

2. Case: |fix(α|S)| < |S|0.685. Then |fix(α)| ≤ |fix(α|S)| · |Out(S)| < |S|0.686. It
follows that

L3(Aut(S)) ≤ k(Aut(S)) · | fix(α)| ≤ k(S) · |Out(S)| · | fix(α)|
< |S|0.26+0.001+0.686 = |S|0.947,

and so L3(Aut(S))/|S| < |S|−0.053.
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As mentioned in the Overview (Subsection 1.2), we can now define the function
g and thus fill Theorem 1.1.2(4) with meaning:

Notation 5.4.4. We define a function g : (0, 1]→ [1,∞) as follows:
Let C be the minimal positive constant such that for all nonabelian finite simple

groups S with |S| > C, the inequality L3(Aut(S))/|S| ≤ |S|−0.053 holds. Then for ρ ∈
(0, 1], let O(ρ) denote the maximum outer automorphism group order of a nonabelian

finite simple group of order at most max(C, ρ−1/0.053), and set n(ρ) := b16 · log60(ρ)
−0.053 +

log(1− 1

max(C,ρ−1/0.053)
)(

ρ

O(ρ)
16· log60(ρ)−0.053

)c.

We define g(ρ) := |Aut(
∏
S S

n(ρ))|, where S runs through all nonabelian finite
simple groups of order at most max(C, ρ−1/0.053).

5.5 Coset-wise counting of elements cubed by an auto-
morphism in finite semisimple groups with characteristi-
cally simple socle

We begin by fixing the meaning of some variables. Let H be a finite semisimple group
with characteristically simple socle, say Soc(H) = Sn for a nonabelian finite simple
group S. Viewing H as a subgroup of Aut(Soc(H)) = Aut(S)n o Sn, we set K :=
H ∩ Aut(S)n. Note that Soc(H) ≤ K, and that elements of H lie in the same coset
of K if and only if their images under the canonical projection π : Aut(Soc(H)) →
Sn are equal. Fix an automorphism α of H, which is already determined by its
restriction to Soc(H) = Sn, so that we can write (identifying α with that restriction)
α = (α1 × · · · × αn) ◦ σα, where αi is an automorphism of S for i = 1, . . . , n, and σα
is a coordinate permutation on Sn identified with an element of Sn.

Now assume that β ∈ H is cubed by α. Just like α, write β = (β1×· · ·×βn)◦σβ.
Our goal in this subsection is to establish an upper bound on the number of elements
in the coset Kβ that are cubed by α based on the cycle structures of σα and σβ. This
will be used in the proof of Theorem 1.1.2(4) in a K-coset-wise counting argument.

To this end, set Kβ := {k ∈ K | α(kβ) = (kβ)3}. An application of Corollary
3.1.5 with e := 3 yields:

Proposition 5.5.1. Let k = (k1, . . . , kn) ∈ K ⊆ Aut(S)n. Then k ∈ Kβ if and only
if α(k) = kβ(k)β2(k), i.e., if and only if for all i = 1, . . . , n, we have

αi(kσ−1
α (i)) = ki · βi(kσ−1

β (i)) · (βi ◦ βσβ−1(i)
)(kσ−2

β (i)). (6)

The idea now is to derive dependencies between certain coordinates of elements
k = (k1, . . . , kn) ∈ Kβ based on Equation (6). More precisely, we will work with
the following concept (defining, or i = 1, . . . , n, πi as the i-th coordinate projection
Aut(S)n → Aut(S)):

Definition 5.5.2. Let I ⊆ {1, . . . , n}, say I = {i1, . . . , ij} with i1 < i2 < · · · < ij,
and let F ⊆ K and C > 0. We say that F is C-determined by I if and only if for
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all ki1 , . . . , kij ∈ Aut(S), there are at most C elements f ∈ F such that πil(f) = kil
for all l = 1, . . . , j.

Proposition 5.5.3. Let I ⊆ {1, . . . , n}, C > 0, and assume that F ⊆ K is C-
determined by I. Then |F | ≤ C

|S|n−|I| · |K|.

Proof. Say I = {i1, . . . , ij}, i1 < i2 < · · · < ij . For proving the assertion, it is
sufficient to give exact covers (F~k)~k∈Aut(S)j

and (K~k
)~k∈Aut(S)j

of F and K respectively

such that for all ~k ∈ Aut(S)j , |F~k| ≤
C

|S|n−|I| |K~k
|. To this end, define, for X ∈ {F,K}

and ~k = (ki1 , . . . , kij ) ∈ Aut(S)j , X~k as the set of those x ∈ X such that πil(x) = kil
for l = 1, . . . , j.

Clearly, (X~k)~k∈Aut(S)j
is an exact cover of X for X = F,K, and F~k ⊆ K~k

for all

~k ∈ Aut(S)j . Hence the asserted inequality concerning the cardinalities of F~k and
K~k

is trivial if K~k
= ∅. On the other hand, if K~k

6= ∅, the inequality follows by
observing that |F~k| ≤ C by assumption, whereas |K~k

| ≥ |S|n−j , since if k ∈ K~k
, we

also have kt ∈ K~k
for all t ∈ Sn with πil(t) = 1 for l = 1, . . . , j.

In order to apply Proposition 5.5.3 for our problem of bounding |Kβ|, we introduce
the following notions:

Definition 5.5.4. (1) We call an index i ∈ {1, . . . , n} opportune if and only if i is
not a common fixed point of σα and σβ.

(2) For an opportune index i ∈ {1, . . . , n}, we call the set Oi := {i, σ−1
α (i), σ−1

β (i),

σ−2
β (i)} an opportune index set.

The next lemma provides the aforementioned bound on |Kβ| based on the cycle
structures of σα and σβ:

Lemma 5.5.5. (1) Let M ∈ N. If there are at least M opportune i ∈ {1, . . . , n},
then there exists a family of dM16e pairwise disjoint opportune index sets.

(2) If O1, . . . , Ot are t pairwise disjoint opportune index sets, then there exist
oi ∈ Oi, i = 1, . . . , t, such that Kβ is |S|0.882t-determined by {1, . . . , n} \ {o1, . . . , ot}.

(3) Let M ∈ N, M ≥ 1. If there are at least M opportune i ∈ {1, . . . , n}, then
|Kβ |
|K| ≤ |S|

−0.118dM/16e ≤ min(|S|−0.118, 60−0.118dM/16e).

Proof. (3) follows from (1) and (2) via Proposition 5.5.3.
For (1): This is clear if M ≤ 16, so assume that M > 16. Define O0 as the set

of opportune indices i ∈ {1, . . . , n}. Note that |O0| ≥ M by assumption, fix any
i0 ∈ O0, and set Ω0 := Oi0 . Assume now that, for some k ∈ {0, . . . , dM/16e − 2},
we have already defined a decreasing chain of k + 1 sets of opportune indices O0 ⊇
O1 ⊇ · · · ⊇ Ok such that |Ok| ≥ M − 16k. Assume further that we have defined
k+ 1 pairwise disjoint opportune index sets Ω0, . . . ,Ωk such that for l = 0, . . . , k− 1,
(Ωl ∪ σα[Ωl] ∪ σβ[Ωl] ∪ σ2

β[Ωl]) ∩ Ol+1 = ∅. Then set Ok+1 := Ok \ (Ωk ∪ σα[Ωk] ∪
σβ[Ωk] ∪ σ2

β[Ωk]). Noting that |Ok+1| ≥ |Ok| − 16 ≥ M − 16(k + 1) > 0, fix any
ik+1 ∈ Ok+1 and set Ωk+1 := Oik+1

. It is easy to check that with these definitions,
the recursive construction is continued, and we can use this to construct dM/16e
pairwise disjoint opportune index sets Ω0,Ω1, . . . ,ΩdM/16e−1, as required.
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For (2): By Theorem 5.3.1, it suffices to show that for any opportune index
i, there exists r ∈ Oi = {i, σ−1

α (i), σ−1
β (i), σ−2

β (i)} such that upon fixing, for each
t ∈ Oi \{r}, an element kt ∈ Aut(S), there exists a subset R ⊆ Aut(S) of size at
most L−1(Aut(S)) such that for all k ∈ Kβ with πt(k) = kt for all t ∈ Oi \{r}, we
have πr(k) ∈ R. We prove the existence of such an R in a case distinction. Write
k = (k1, . . . , kn).

1. Case: σ−1
α (i) /∈ {i, σ−1

β (i), σ−2
β (i)}. Then by Equation (6), we see that the

σ−1
α (i)-th coordinate of k is fully determined by the i-th, σ−1

β (i)-th and σ−2
β (i)-th

coordinates of k. In particular, we can choose R of cardinality 1 ≤ L−1(Aut(S))
in this case.

2. Case: σ−1
α (i) ∈ {i, σ−1

β (i), σ−2
β (i)}. We distinguish further according to the

length l of the cycle of i under σβ.

• Subcase: l ≥ 3. Then it is not difficult to see that one can always isolate
one of the three distinct coordinates of k appearing in Equation (6), so
that one can again choose R of cardinality 1. For example, if σ−1

α (i) = i,
Equation (6) is equivalent to

kσ−2
β (i) = (β−1

σ−1
β (i)

◦ β−1
i )(βi(kσ−1

β (i))
−1k−1

i αi(ki)).

• Subcase: l = 2. Then σ−2
β (i) = i, so there are only two distinct coordinates

in Equation (6) now, ki and kσ−1
β (i). If σ−1

α (i) = i, one can isolate kσ−1
β (i),

and if σ−1
α (i) = σ−1

β (i) =: j, Equation (6) turns into

αi(kj) = ki · βi(kj) · (βi ◦ βj)(ki).

Hence upon fixing the value of the coordinate kj , the terms αi(kj) =: C1

and βi(kj) =: C2 become constants, and we see that a possible choice for R
is the fiber of C1 under the function fC2,βi◦βj : Aut(S)→ Aut(S) (notation
as in Proposition 5.1.1). By Proposition 5.1.1, this fiber has cardinality
bounded from above by L−1(Aut(S)), as required.

• Subcase: l = 1. This subcase cannot occur, since i is opportune.

5.6 Proof of Theorem 1.1.2(4)

Fix ρ ∈ (0, 1]. We would like to show that the orders of finite semisimple groups H
such that l3(H) ≥ ρ are bounded by g(ρ). In this proof, we will concentrate on just
showing that |H| is bounded (without paying attention to proving the given explicit
bound), but the reader can check without difficulty that the bound on |H| that our
argument gives is just g(ρ).

Note that it suffices to bound | Soc(H)|, since H embeds into Aut(Soc(H)). Write
Soc(H) = Sn1

1 ×· · ·×Snrr , where the Si are pairwise nonisomorphic nonabelian finite
simple groups and ni ∈ N+ for i = 1, . . . , r. The task of bounding |Soc(H)| can be
split up into the following two subtasks:
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1. Prove that max(|S1|, . . . , |Sr|) is bounded (“order bound”).

2. Prove that max(n1, . . . , nr) is bounded (“exponent bound”).

We will tackle these two tasks one after the other, but first, we make the following
observation to ease notation: View H as a subgroup of Aut(Soc(H)) = Aut(Sn1

1 ) ×
· · · × Aut(Snrr ). For i = 1, . . . , r, denote by Pi ≤ Aut(Soc(H)) the product of the
direct factors Aut(S

nj
j ) of Aut(Soc(H)) for j 6= i. Set Ci := H ∩ Pi. Then Ci is

characteristic in H; set Hi := H/Ci. By one of the isomorphism theorems, Hi can
be identified with a subgroup of Aut(Soc(H))/Pi = Aut(Snii ) containing Snii . Since
l3 is CQ-increasing, we conclude that l3(Hi) ≥ l3(H) ≥ ρ, and so in carrying out the
two subtasks above, we may assume w.l.o.g. that r = 1.

Assume thus henceforth that H is a finite semisimple group with characteristically
simple socle, say Soc(H) = Sn for a nonabelian finite simple group S and n ∈ N+,
and assume that l3(H) ≥ ρ. Just as in Notation 5.4.4, denote by C the smallest
positive constant such that for all nonabelian finite simple groups S with |S| ≥ C,

we have L3(Aut(S))
|S| ≤ |S|−0.053 (C exists by Theorem 5.4.1), and, just as in Notation

5.4.4, denote by O(ρ) the maximum outer automorphism group order of a nonabelian
finite simple group of order at most max(C, ρ−1/0.053). We will show that

|S| ≤ max(C, ρ−1/0.053) (7)

and that

n ≤ 16 · log60(ρ)

−0.053
+ log(1− 1

max(C,ρ−1/0.053)
)(

ρ

O(ρ)16· log60(ρ)−0.053

). (8)

Using henceforth the notation of Subsection 5.5 throughout, fix an automorphism
α of H.

For establishing Equation (7), assume that |S| > max(C, ρ−1/0.053). Then |S| >
ρ−1/0.118, and so by Lemma 5.5.5(3), cosets Kβ of K in H (where, if Kβ contains
any elements cubed by α, β is chosen to be such an element) that are distinct from
K contain less than ρ|K| many elements cubed by α (this is because for such cosets,
σβ 6= id, whence there exists at least one opportune i ∈ {1, . . . , n}). Hence if we can
also show that the number of elements of K that are cubed by α is less than ρ|K|,
we have a contradiction. Note that if σα 6= id, then even under σβ = id, there still
exist opportune indices i, and we are done. On the other hand, if σα = id, and thus
α = α1×· · ·×αn, then since |S| > C, the unique extension of α|K to an automorphism

of Aut(S)n only cubes at most |S|(1−0.053)·n elements in all of Aut(S)n, and so α only
cubes at most a fraction of |S|−0.053·n ≤ |S|−0.053 < ρ of the elements of K, as we
wanted to show.

We will also establish Equation (8) by contradiction, so assume that n is larger
than the right-hand side of Equation (8). Again, we will reach a contradiction by
showing that for each coset Kβ of K in H, the number of elements of Kβ that
are cubed by α (i.e., the cardinality of the set Kβ) is less than ρ|K|. We do so
in a case distinction according to the value of the number M of opportune indices
i ∈ {1, . . . , n}:
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1. Case: M > 16· log60(ρ)
−0.053 . Then dM16e >

log60(ρ)
−0.118 , or equivalently, 60−0.118dM/16e < ρ,

so in view of Lemma 5.5.5(3), we are done.

2. Case: M ≤ 16 · log60(ρ)
−0.053 . Note that by assumption, we then have

(1− 1

max(C, ρ−1/0.053)
)n−M ·O(ρ)M < ρ. (9)

Assume w.l.o.g. that the set of common fixed points of σα and σβ is {1, . . . , n−
M}. Let π : Aut(S)n → Aut(S)n−M be the projection onto the first n −M
coordinates. Since we may of course assume that Kβ contains at least one
element cubed by α, we have α(β) = β3 by the above convention on the choice
of β. Hence by Equation (6), we have, for each k = (k1, . . . , kn) ∈ Kβ, that

αi(ki) = kiβi(ki)β
2
i (ki) (10)

for all i = 1, . . . , n−M . We use this to prove that

|π[Kβ]| ≤ (1− 1

max(C, ρ−1/0.053)
)n−M · |π[K]|. (11)

To see that Equation (11) holds, we count π[Sn]-coset-wise in π[K]. Fix such
a coset π[Sn]κ with κ = (κ1, . . . , κn−M ), assuming w.l.o.g. that κ ∈ π[Kβ]
and thus by Equation (10), αi(κi) = κiβi(κi)β

2
i (κi), i.e., κi ∈ P3(αi | id, βi, β2

i )
(notation from Proposition 3.1.3), for i = 1, . . . , n −M . Analogously, for s =
(s1, . . . , sn−M ) ∈ Sn−M = π[Sn], we have sκ ∈ π[Kβ] only if siκi ∈ P3(αi |
id, βi, β

2
i ) for all i = 1, . . . , n − M . Hence by Proposition 3.1.3, a necessary

condition on s ∈ Sn−M for sκ ∈ π[Kβ] to hold is that for i = 1, . . . , n−M ,

αi(si) = si · (τκi ◦ βi)(si) · (τκiβi(κi) ◦ β
2
i )(si). (12)

By Lemma 5.1.2, for each i = 1, . . . , n −M , Equation (12) holds for at most
|S| − 1 many values of si ∈ S, and so π[Sn]-coset-wise (and thus as a whole),
the fraction of elements of π[K] that lie in π[Kβ] is bounded from above by

( |S|−1
|S| )n−M = (1− 1

|S|)
n−M . Using that |S| ≤ max(C, ρ−1/0.053), Equation (11)

follows.

Observing that |S|M ≤ | kerπ| ≤ |Aut(S)|M and using Equations (9) and (11),
we conclude that

|Kβ|
|K|

≤
(1− 1

max(C,ρ−1/0.053)
)n−M · |π[K]| · |Aut(S)|M

|π[K]| · |S|M

≤ (1− 1

max(C, ρ−1/0.053)
)n−M ·O(ρ)M < ρ,

as we wanted to show.
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6 Concluding remarks

In retrospect, we proved several results that can be used for a general investigation
of the functions Le with e ∈ Z (such as Lemma 3.1.2, Proposition 3.1.3 and Lemma
2.2.4). Still, the techniques used in the proofs of some of our results (such as Lemma
3.1.6 as well as Lemma 5.1.3 and Theorem 5.4.1, whose proof by Lemma 5.1.3 was
basically reduced to the case S = A1(q)) were tailored for a particular exponent e ∈
{−1, 2, 3}, and we do not expect those results to have a straightforward generalization
to other exponents.

C-submultiplicative group-theoretic functions, such as L−1, allow for a particu-
larly nice treatment. However, we note that a group-theoretic function f need not be
C-submultiplicative itself in order to make use of the respective results of Subsection
2.2 for the investigation of f ; it suffices to find a C-submultiplicative group-theoretic
function f0 that “majorizes” f (i.e., such that f(G) ≤ f0(G) for all finite groups G)
and to be able to apply the techniques for C-submultiplicative functions to f0. In
view of this, it might be interesting to note that, as is easy to see with a coset-wise
counting argument and using Proposition 3.1.3, for each e ∈ N+, the group-theoretic
function Le, defined by G 7→ maxα,β1,...,βe∈Aut(G)(|Pe(α | β1, . . . , βe)|) (for the nota-
tion, see Proposition 3.1.3), majorizes Le and is C-submultiplicative. In particular,
in order to show, for instance, that under a condition of the form l3(G) ≥ ρ for some
ρ ∈ (0, 1], length(Rad(G)) is bounded, it would suffice to prove that for large enough
numbers ρ0 ∈ (0, 1) and k ∈ N+, all finite solvable groups H with length(H) ≥ k
satisfy L3(H) ≤ ρ0|H|.

While hoping that these ideas will lead to extensions of our main results to other
exponents e ∈ Z, we do note that analoga of our main results do not exist for
all e ∈ Z. For example, if there exists a nonabelian finite simple group S such
that e ≡ 1 (mod exp(S)) (the smallest such e > 1 being 31), then for all n ∈ N,
le(S

n) = l1(Sn) = 1, and so then not even demanding that le(G) = 1 is enough to
ensure that [G : Rad(G)] is bounded.
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[13] M. V. Horoševskĭı, On automorphisms of finite groups, Math. USSR Sb. 22(4)
(1974) 584–594.

[14] I. M. Isaacs, Character theory of finite groups (Academic Press, 1976).
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