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Abstract
In this thesis we study the problem of finding explicit constructions for low-dimensional
finite point sets and infinite sequences in the unit interval with the optimal order of Lp
discrepancy for 1 ≤ p <∞. The Lp discrepancy - defined as the Lp norm of the so-called
discrepancy function - is a quantitative measure for the irregularities of distribution of
point sets and has strong connections to uniform distribution modulo 1 of sequences,
which is a branch of number theory.
Our constructions are based on the Hammersley point set and the van der Corput se-
quence, which both have a long history in discrepancy theory. While it is well known
that the L∞ norm of their discrepancy function (better known as the star discrepancy)
is of best possible order, respectively, the same is not the case for the Lp discrepancy
when 1 ≤ p <∞.
It is the aim of this thesis to consider slightly modified versions of the Hammersley point
set and the van der Corput sequence whose Lp discrepancy is of optimal order, respect-
ively. First we try to tackle this problem directly and prove very precise formulas on the
L2 and L4 discrepancy. In particular, we find an exact formula for the L4 discrepancy of
digitally shifted Hammersley point sets and compute the L2 discrepancy of symmetrized
Hammersley point sets and van der Corput sequences precisely.
To obtain results for all parameters 1 ≤ p < ∞, we employ methods from harmonic
analysis, namely Haar functions and Littlewood-Paley theory. These tools enable us to
find a large class of point sets and sequences with the optimal order of Lp discrepancy.
Furthermore, the approach via Haar functions allows us to study the norm of the dis-
crepancy function in other functions spaces such as Besov spaces of dominating mixed
smoothness also, and we will pursue this aim in this thesis.
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Kurzfassung
In dieser Dissertation behandeln wir das Problem niedrigdimensionale endliche Punkt-
mengen sowie unendliche Folgen im Einheitsintervall zu konstruieren, deren Lp-Diskre-
panz für 1 ≤ p < ∞ die optimale Ordnung aufweist. Die Lp-Diskrepanz - definiert als
die Lp-Norm der sogenannten Diskrepanzfunktion - ist ein quantitatives Maß für die Un-
regelmäßigkeiten einer Punktverteilung und ist stark verknüpft mit der Gleichverteilung
modulo 1 von Folgen, welche ein Teilgebiet der Zahlentheorie ist.
Unsere Konstruktionen basieren auf der Hammersley-Punktmenge sowie der van der
Corput-Folge, die beide schon sehr lange im Rahmen der Diskrepanztheorie untersucht
werden. Während es eine bekannte Tatsache ist, dass die L∞-Norm der entsprechenden
Diskrepanzfunktion (besser bekannt als Sterndiskrepanz) jeweils die optimale Ordnung
hat, ist das für die Lp-Norm für 1 ≤ p <∞ nicht der Fall.
Ziel dieser Dissertation ist es, modifizierte Varianten der Hammersley-Punktmenge und
der van der Corput-Folge zu finden, deren Lp-Diskrepanz jeweils von optimaler Ordnung
ist. Zuerst versuchen wir dieses Problem direkt anzugehen und beweisen sehr präzise
Formeln für die L2- und die L4-Diskrepanz. Konkret finden wir eine exakte Formel
für die L4-Diskrepanz von verallgemeinerten Hammersley-Punktmengen und berechnen
die L2-Diskrepanz von symmetrisierten Hammersley-Punktmengen und van der Corput-
Folgen sehr genau.
Um für alle Parameter 1 ≤ p < ∞ Resultate zu erhalten, machen wir Gebrauch von
Methoden aus der harmonischen Analysis, nämlich Haarfunktionen und Littlewood-
Paley-Theorie. Diese Mittel ermöglichen es uns, eine große Klasse von Punktmengen
und Folgen mit einer Lp-Diskrepanz von optimaler Ordnung zu erhalten. Zudem erlaubt
der Zugang über Haarfunktionen auch das Behandeln der Norm der Diskrepanzfunktion
in anderen Funktionenräumen, wie etwa den Besov-Räumen, weshalb wir dieses Ziel
ebenfalls in dieser Dissertation verfolgen werden.
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4.2.2. Optimal discrepancy rate of Ṽσb in several other norms . . . . . . 115

4.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A. Appendix - Some arithmetics concerning cσb 121

Bibliography 137
ix





Preface
Discrepancy theory is a part of number theory and deals with the irregularities of point
distributions on certain domains. In this thesis we follow the classical case and consider
point sets and sequences in the s-dimensional unit interval [0, 1)s. For a given set of
N points {x0,x1, . . . ,xN−1} the discrepancy function is defined as the difference of the
actual number of points in a subinterval I ⊆ [0, 1)s (where I is often anchored in the
origin) and the expected value under the assumption of hypothetic uniform distribution.
By taking some norm of the discrepancy function, e.g. the Lp norm for any p ∈ [1,∞],
one obtains a quantitative measure for the irregularity of distribution of this point set.
We speak of the Lp discrepancy and of the star discrepancy (for p = ∞), respectively.
For infinite sequences, we consider the discrepancy of its first N elements and observe
its behaviour as N increases. It is clear that studying the discrepancy of finite point
sets and infinite sequences are two different issues, as for infinite sequences we have
to assure that the discrepancy of all initial segments {x0}, {x0,x1}, {x0,x1,x2} . . . ,
{x0,x1, . . . ,xN−1} for N ≥ 2 is low, whereas N is fixed for finite point sets and only the
behaviour of {x0,x1, . . . ,xN−1} is relevant. It is often observed that the discrepancy
of point sets in dimension s + 1 is related to the discrepancy of infinite sequences in
dimension s. We will find however that this is not necessarily the case for all norms
taken of the discrepancy function. Discrepancy theory is not only interesting for itself,
but has relations to numerical integration using quasi-Monte Carlo algorithms and to
uniform distribution modulo 1.

In this thesis we will investigate the Lp discrepancy of finite point sets in [0, 1)2 and
infinite sequences in [0, 1). Our explicit constructions are modified variants of the well
known Hammersley point sets and the van der Corput sequences. These are prominent
examples of point sets in [0, 1)2 and sequences in [0, 1) with the best possible order of
star discrepancy in N , which is logN according to a result of Schmidt (1980). However,
it is well known that this rate is not optimal for the Lp discrepancy if p ∈ [1,∞),
where

√
logN is best possible. This is known from famous results by Roth (1954) and

Schmidt (1972), where especially Roth’s lower bound on the L2 discrepancy established
discrepancy theory as an interesting and well-studied subject. However, the mentioned
constructions fail to achieve the optimal Lp discrepancy rate. To this end, we need to
apply certain modifications to these point sets and sequences, among which are digital
shifts and symmetrization. These modified variants are known to have the optimal order
of L2 discrepancy. It is an important aim of this thesis to extend these results to the Lp
discrepancy.

The problems treated in this thesis are twofold:

• We would like to find exact formulas for the Lp discrepancy of point sets achieving
the optimal rate of this quantity. Such formulas are rare, since they are difficult
to obtain. Results of this kind have previously been found, among others, by
Halton, Zaremba, Faure, Kritzer and Pillichshammer, who considered generalized
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Hammersley point sets in base 2 or arbitrary bases. All these authors provide exact
formulas only for the L2 discrepancy. For the first time, we will also find an exact
formula for p 6= 2, namely for the L4 discrepancy of digit shifted Hammersley point
sets. Further, we will study the L2 discrepancy of symmetrized Hammersley point
sets and van der Corput sequences in arbitrary bases thoroughly. The aim of all
these results is to compute the leading coefficients of the leading

√
logN -term. The

methods to find such exact formulas are of elementary, number-theoretic nature
and require dealing carefully with digit expansions of numbers.

• It will turn out that a precise computation of the Lp discrepancy of modified Ham-
mersley point sets or van der Corput sequences would be extremely difficult and
technical for p /∈ {2, 4}. We will therefore exploit other techniques to show the
optimal Lp discrepancy rate for certain point sets and sequences, which however
will not provide exact constants of the leading term. The necessary tools come
from harmonic analysis and involve Haar functions, Littlewood-Paley theory and
function spaces of dominating mixed smoothness, which have previously been used
for example in works of Triebel, Hinrichs, Markhasin, Dick, Pillichshammer and
others. These methods are strong enough to classify those variants of the Ham-
mersley point sets and the van der Corput sequences which achieve the optimal
order of Lp discrepancy for all p ∈ [1,∞). In particular, this thesis contains the
first explicit constructions of infinite sequences in [0, 1) with an Lp discrepancy of
order

√
logN for all N ≥ 2 and all p ∈ [1,∞), namely symmetrized van der Corput

sequences. Further, the approach via Haar functions opens the door to consider
the norm of the discrepancy function in spaces of dominating mixed smoothness
and further function spaces, and we will do so for our point sets and sequences
in interest. The most surprising result which we will obtain is the fact that for
positive smoothness parameters infinite sequences in the unit interval [0, 1) can
achieve the same optimal discrepancy rate in Besov spaces of dominating mixed
smoothness as finite point sets in [0, 1).

The structure of this work is as follows: In the first chapter we give a definition of
discrepancy and present several simple examples. We further comment on its relations
to uniform distribution modulo 1 and numerical integration and state known facts on
general bounds on the discrepancy. In Chapter 2 we introduce several variants of the
Hammersley point set and the van der Corput sequence, give a survey on known results
and explain the basic tools for our proofs. These tools are exact formulas for the discrep-
ancy function of Hammersley point sets, as well as the basic information on harmonic
analysis. Chapter 3 is dedicated to our precise study of discrepancy, as explained in the
first point above, whereas Chapter 4 deals with the estimation of Lp discrepancy and
beyond via the harmonic analysis approach, as explained in the second point.

xii



Basic notation We briefly introduce the basic notation used throughout this thesis.

We denote by N the set of positive integers {1, 2, 3, . . . } and write N0 if we also include
zero. The set of all integers {. . . ,−2,−1, 0, 1, 2, 3, . . . } is denoted by Z. By Q and R
we mean the set of rational and real numbers, respectively.

We will use the basic notation from set theory. For two sets A and B we write their
union and intersection as A ∪ B and A ∩ B, respectively, and A \ B is the set of all
elements, which are contained in A but not in B. We write x ∈ A if x is an element of
the set A. We write ∅ for the empty set, which does not contain any elements. Let M
be a universe and A ⊆ M . The function 1A : M → {0, 1} defined through 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x /∈ A is the indicator function of the set A. The cardesian
product of two sets is given by

A×B := {(a, b) : a ∈ A, b ∈ B}.

For s ∈ N we write As := A × A × · · · × A. We will mainly consider intervals of the
form [a, b) := {x ∈ R : a ≤ x < b} for a, b ∈ R with a ≤ b. For a = (a1, a2, . . . , as) ∈ Rs

and b = (b1, b2, . . . , bs) ∈ Rs, where ai ≤ bi for all i ∈ {1, 2, . . . , s}, we set

[a,b) = [a1, b1)× [a2, b2)× · · · × [as, bs).

For a finite set P we mean by |P| the number of its elements. For a Lebesgue measurable
set A we denote by |A| its Lebesgue measure, e.g. we have |[a, b)| = b− a.

The function logb is the logarithm in base b. If we omit the lower index b, then we always
mean the natural logarithm in base e, where e is Euler’s number. We will sometimes
consider exponential functions of the form e2πi·, where π is the perimeter of a circle with
diameter 1 and where i :=

√
−1.

Let x ∈ R. By |x| we denote its absolute value. Then bxc is the largest integer z
such that z ≤ x, and dxe is the smallest integer z such that z ≥ x. We speak of
{x} = x − bxc as the fractional part of x. The distance of x to its nearest integer is
denoted by ‖x‖, which can also be defined via ‖x‖ := min({x}, 1−{x}). For a complexe
number z = a+ bi, where a, b ∈ R, its absolute value is given by |z| :=

√
a2 + b2.

For functions f, g : N→ R+, we write g(N) . f(N) and g(N) & f(N), if there exists a
C > 0 such that g(N) ≤ Cf(N) or g(N) ≥ Cf(N) for all N ∈ N, N ≥ 2, respectively.
This constant C is independent of N , but might depend on several other parameters
α1, . . . , αi, which we sometimes emphasize by writing .α1,...,αi and &α1,...,αi , respectively.
Further, we write f(N) � g(N) if the relations g(N) . f(N) and g(N) & f(N) hold
simultaneously. We write f(N) = O(g(N)) if there exists a constant C > 0 such that
f(N) ≤ Cg(N) for all N ∈ N.

Finally, we will make extensive use of the fact that for an integer base b ≥ 2 every
number n ∈ N has a unique representation of the form

n = nkb
k + · · ·+ n1b+ n0,

where ni ∈ {0, 1, . . . , b− 1} for all i ∈ {0, . . . , k} and nk 6= 0. We speak of the b-adic (or
dyadic, if b = 2) expansion of n.
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1. Discrepancy of point sets and
sequences

1.1. Definition of discrepancy and general facts
1.1.1. Discrepancy and uniform distribution modulo 1
The notion of discrepancy describes the irregularity of point distributions on certain
sets. The most studied case deals with points in the multi-dimensional unit interval
[0, 1]s. The two central questions are:
• For a given integer N ≥ 1: How can we distribute an N -element set of points
P = {x0, . . . ,xN−1} in [0, 1)s as uniformly as possible?

• How can we construct infinite sequences S = {x0,x1, . . . } in [0, 1)s such that for
every integer N ≥ 1 the first N elements of S are well distributed in the unit
interval?

To answer these questions, we should first define an adequate measure for the irregularity
of point distributions in the unit interval. Intuitively, one would probably consider a
set of points P = {x0, . . . ,xN−1} to be well distributed in the unit interval, if each
measurable subset U of [0, 1]s contains a number of elements in P which is proportial to
the Lebesgue measure of U . However, it turns out that it is too restrictive if we demand
this for every arbitrary subset U . In this thesis, we will follow the classical approach
and measure the irregularity of point distributions with respect to intervals of the form
[0, t). Here, for t = (t1, t2, . . . , ts) ∈ [0, 1]s, we mean by [0, t) the s-dimensional interval

[0, t) = [0, t1)× [0, t2)× · · · × [0, ts).

We need the following essential notation.
Definition 1.1. For a given N -element point set P = {x0, . . . ,xN−1} in [0, 1)s, the
expression

∆N(t,P) := AN([0, t),P)−Nt1t2 . . . ts
is called the discrepancy function of P , where AN([0, t),P) := |P ∩ [0, t)|. Note that we
can also write AN([0, t),P) = ∑N−1

n=0 1[0,t)(xn), where 1I denotes the indicator function
of the interval I. We will do so in appropriate parts of this thesis. We will speak of
AN([0, t),P) as the counting part of the discrepancy function and of Nt1t2 . . . ts as its
volume part.
The discrepancy function describes the difference of the actual number of elements in P
which lie in [0, t) and the expected value N |[0, t)| = Nt1t2 . . . ts. This difference should
be as small as possible for all intervals [0, t) ⊂ [0, 1]s. In other words, the supremum
supt∈[0,1]s |∆N(t,P)|, i.e. the supremum norm of the discrepancy function, should be
small. It is therefore reasonable to consider a norm of the discrepancy function. This
leads us to the central definition of this thesis.
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Definition 1.2. Let P = {x0, . . . ,xN−1} be a set of N points in the unit interval [0, 1)s.
Then the star discrepancy of P is the supremum norm of the discrepancy function, i.e.

L∞,N(P) := sup
t∈[0,1]s

|∆N(t,P)|. (1.1)

For p ∈ [1,∞), we define the Lp discrepancy to be the Lp norm of the discrepancy
function, which is given by

Lp,N(P) :=
(∫

[0,1]s
|∆N(t,P)|p dt

) 1
p

. (1.2)

We will often omit the lower index N in the notion of Lp and star discrepancy for
concrete point sets and simply write Lp(P) and L∞(P), respectively, since the number
of elements is fixed and in most cases known from the context. We continue with several
discrepancy results on simple point sets.

Example 1.3. We consider the centred regular grid in the one-dimensional unit interval
[0, 1), which for N ∈ N is defined as

ΓcN :=
{

2k + 1
2N : k ∈ {0, 1, . . . , N − 1}

}
.

Our aim is to calculate the Lp discrepancy of this point set. To this end, we consider the
absolute value of its discrepancy function. It is easy to convince oneself that |∆N(t,ΓcN)|
is given as shown in the following image:

1
2

1
2N

3
2N

2N−1
2N

. . .

We see from this image that ‖∆N(·,ΓcN)‖∞ = 1
2 ; thus we have

L∞(ΓcN) = 1
2 .

For 1 ≤ p <∞, we compute∫ 1

0
|∆N(t,ΓcN)|p dt = 2N

∫ 1
2N

0
(Nt)p dt =

(
1
2

)p 1
p+ 1

and therefore

Lp(ΓcN) = 1
2

(
1

p+ 1

) 1
p

.

We have limp→∞ Lp(ΓcN) = L∞(ΓcN); a relation which must of course be true for any
point set P .

2



Note that there exists an explicit formula for the L2 discrepancy of point sets in [0, 1)s.
Let P = {x0, . . . ,xN−1} with xk = (xk,1, . . . , xk,s) for k = 0, . . . , N − 1. Then we have

(L2,N(P))2 =
∫

[0,1)s

(
N−1∑
k=0

1[0,t)(xk)−N |[0, t)|
)2

dt

=N2
s∏
i=1

∫ 1

0
t2i dti − 2N

N−1∑
k=0

s∏
i=1

∫ 1

0
ti1[0,ti)(xk,i) dti

+
N−1∑
k,l=0

s∏
i=1

∫ 1

0
1[0,ti)(xk,i)1[0,ti)(xl,i) dti

=N
2

3s − 2N
N−1∑
k=0

s∏
i=1

∫ 1

xk,i

ti dti +
N−1∑
k,l=0

s∏
i=1

∫ 1

max{xk,i,xl,i}
1 dti

=N
2

3s −
N

2s−1

N−1∑
k=0

s∏
i=1

(1− x2
k,i) +

N−1∑
k,l=0

s∏
i=1

(1−max{xk,i, xl,i}) . (1.3)

This formula is due to Warnock [77].

A central problem in discrepancy theory is to find for a given cardinality N the point set
with the lowest discrepancy of all N -element point sets. The following theorem offers
a solution to this problem for the L1, L2 and the star discrepancy of point sets in the
one-dimensional unit interval [0, 1).

Theorem 1.4. Let N ∈ N. We have

inf
|P|=N

L1,N(P) = 1
4 , inf

|P|=N
L2,N(P) = 1√

12
and inf

|P|=N
L∞,N(P) = 1

2 ,

where the infimum is extended over all N-element point sets in [0, 1) and where this
infimum is attained only for ΓcN in all three cases, respectively.

Proof. Throughout the whole proof, let P = {x0, x1, . . . , xN−1} ⊂ [0, 1) be an arbitrary
N -element point set in the unit interval, where we assume that x0 ≤ x1 ≤ · · · ≤ xN−1.

We show the claim on the L1 discrepancy. We have

L1,N(P) =
∫ x0

0
| −Nt| dt+

N−1∑
k=1

∫ xk

xk−1
|k −Nt| dt+

∫ 1

xN−1
|N −Nt| dt

=N2 x
2
0 + N

2 (1− xN−1)2 +N
N−1∑
k=1

∫ xk

xk−1

∣∣∣∣∣ kN − t
∣∣∣∣∣ dt. (1.4)

We show that
∫ xk
xk−1

∣∣∣ k
N
− t

∣∣∣ dt ≥ 1
4(xk − xk−1)2 for all k ∈ {1, . . . , N − 1}. If k

N
∈

(xk−1, xk), then with εk = 1
2(xk + xk−1)− k

N
we have

∫ xk

xk−1

∣∣∣∣∣ kN − t
∣∣∣∣∣ dt =

∫ k/N

xk−1

(
k

N
− t

)
dt+

∫ xk

k/N

(
t− k

N

)
dt

=1
2

(
k

N
− xk−1

)2

+ 1
2

(
xk −

k

N

)2

3



=1
2

{(1
2(xk − xk−1)− εk

)2
+
(1

2(xk − xk−1) + εk
)2
}

=1
2

(1
2(xk − xk−1)2 + 2ε2k

)
≥ 1

4(xk − xk−1)2.

In a similar manner one can check that we even have
∫ xk
xk−1

∣∣∣ k
N
− t

∣∣∣ dt ≥ 1
2(xk − xk−1)2 if

k
N
≥ xk or k

N
≤ xk−1. Since

∑N−1
k=1 (xk − xk−1) = xN−1 − x0, we conclude from (1.4)

L1,N(P) ≥N2

((
x0 −

1
2N

)
+ 1

2N

)2
+ N

2

((
1− xN−1 −

1
2N

)
+ 1

2N

)2

+ N

4

N−1∑
k=1

((
xk+1 − xk −

1
N

)
+ 1
N

)2

≥N2

( 1
N

(
x0 −

1
2N

)
+ 1

4N2

)
+ N

2

( 1
N

(
1− xN−1 −

1
2N

)
+ 1

4N2

)

+ N

4

N−1∑
k=1

( 2
N

(
xk − xk−1 −

1
N

)
+ 1
N2

)

=1
2
(
x0 −

1
2N

)
+ 1

8N + 1
2
(
1− xN−1 −

1
2N

)
+ 1

8N
+ 1

2

(
xN−1 − x0 −

N − 1
N

)
+ N − 1

4N = 1
4 .

Since P was chosen arbitrarily and since L1(ΓcN) = 1
4 , we have shown inf |P|=N L1,N(P) =

1
4 as claimed. Additionally, it follows from the proof that we have equality if and only
if x0 = 1

2N , xN−1 = 1− 1
2N , xk − xk−1 = 1

N
as well as εk = 0, i.e. xk−1 + xk = 2k

N
, for all

k ∈ {1, . . . , N−1}. It is easy to see that all these conditions are satisfied simultaneously
if and only if xk = 2k+1

2N for all k ∈ {0, . . . , N − 1}, i.e. if P = ΓcN .

In order to verify the result on the L2 discrepancy, we prove an explicit formula for
L2,N(P). From (1.3) for s = 1 we already know that

(L2,N(P))2 =N
2

3 −N
N−1∑
k=0

(1− x2
k) +

N−1∑
k,l=0

(1−max{xk, xl})

=− 2N2

3 +N
N−1∑
k=0

x2
k +

N−1∑
k=0

k∑
l=0

(1− xk) +
N−1∑
l=1

l−1∑
k=0

(1− xl).

Applying some elementary algebra, one finds that the L2 discrepancy of P is given by
the formula

L2,N(P) =
N N−1∑

k=0

(
xk −

2k + 1
2N

)2

+ 1
12

 1
2

.

It follows that L2,N(P) ≥ 1/
√

12 with equality if and only if xk = (2k + 1)/(2N) for all
k ∈ {0, 1, . . . , N − 1}, i.e. if P = ΓcN .

We prove now that ΓcN is the best distributed N -element point set in [0, 1) with respect
to the star discrepancy. We first assume that x0 6= x1. We choose ε > 0 such that
ε < min{1/N, x1 − x0}. Then we have
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2L∞,N(P) =L∞,N(P) + L∞,N(P) ≥ |∆N(x0 + ε,P)|+ |∆N(x0,P)|
≥|∆N(x0 + ε,P)−∆N(x0,P)| = |1−N(x0 + ε)− (−Nx0)|
=|1−Nε| = 1−Nε.

We can choose ε arbitrarily close to zero; hence we have 2L∞,N(P) ≥ 1. If x0 = x1, the
above argumentation yields even 2L∞,N(P) ≥ 2, and therefore we have L∞,N(P) ≥ 1/2
in any case. Since P was an arbitrary point set, we have shown that the star discrepancy
of any N -element point set in [0, 1) is bounded from below by 1/2. This value is achieved
for ΓcN as observed in Example 1.3. The result on the star discrepancy follows also from
the formula

L∞,N(P) = N max
k=0,1,...,N−1

∣∣∣∣∣xk − 2k + 1
2N

∣∣∣∣∣+ 1
2 ,

which has been shown by Niederreiter (see [55, Theorem 2.6]). Considering this formula,
it is clear that the infimum of the L∞ discrepancy is attained only for the centred regular
grid.

Theorem 1.4 confirms that in the one-dimensional case the point set one would intuitively
consider as the best distributed has indeed minimal L1, L2 and star discrepancy for a
given number of points. One would hope that a multidimensional version of the centred
regular grid achieves the same in higher dimensions.

Example 1.5. Let m ∈ N. Then the centred regular grid with N = ms points in the
unit interval [0, 1)s is the point set

Γcm,s :=
{(

2k1 + 1
2m ,

2k2 + 1
2m , . . . ,

2ks + 1
2m

)
: k1, . . . , ks ∈ {0, 1, . . . ,m− 1}

}
.

This point set is illustrated for s = 2 and m = 4 in the following:

1
2m

1
2m

1− 1
2m

1− 1
2m

As a warm-up for what to come in the main parts of this thesis, we compute the L2
discrepancy of Γcm,s exactly. We therefore employ Warnock’s formula (1.3) once again
to find

(L2(Γcm,s))2 =m
2s

3s − 2
(
m

2

)s m−1∑
k1,...,ks=0

s∏
i=1

1−
(

2ki + 1
2m

)2


+
m−1∑

k1,...,ks=0
l1,...,ls=0

s∏
i=1

(
1−max

{
2ki + 1

2m ,
2li + 1

2m

})
.
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We interchange products and sums and obtain

(L2(Γcm,s))2 =m
2s

3s − 2
(
m

2

)s s∏
i=1

m−1∑
ki=0

1−
(

2ki + 1
2m

)2


+
s∏
i=1

m−1∑
ki,li=0

(
1−max

{
2ki + 1

2m ,
2li + 1

2m

})

=m
2s

3s − 2
(
m

2

)s (8m2 + 1
12m

)s
+
(

2m2 + 1
6

)s

=m
2s

3s −
2
3s
(
m2 + 1

8

)s
+ 1

3s
(
m2 + 1

2

)s
.

To see the order of magnitude in N of this expression, we apply the binomial theorem
and compute

(L2(Γcm,s))2 =m
2s

3s −
2
3s

s∑
k=0

(
s

k

)
(m2)k

(1
8

)s−k
+ 1

3s
s∑

k=0

(
s

k

)
(m2)k

(1
2

)s−k

=m
2s

3s −
2
3s
(
m2s + s

8m
2s−2 +O(m2s−4)

)
+ 1

3s
(
m2s + s

2m
2s−2 +O(m2s−4)

)
= s

4 · 3sm
2s−2 +O(m2s−4).

We obtain
lim
N→∞

L2(Γcm,s)
N1− 1

s

= 1
2

√
s

3s .

The L2 discrepancy is of order N1− 1
s , which seems to be unsatisfactory large. The star

discrepancy of Γcm,s shows a similar behaviour. It is known that

L∞(Γcm,s) = ms −
(
m− 1

2

)s
.

The fact that L∞(Γcm,s) ≥ ms −
(
m− 1

2

)s
follows from the fact that all points of Γcm,s

lie in [0, 1 − 1/(2m)]s. The proof of L∞(Γcm,s) ≤ ms −
(
m− 1

2

)s
can be found in [48,

Theorem 2.19]. It follows from this formula that

L∞(Γcm,s) =ms −
(
m− 1

2

)s
= ms −

s∑
k=0

(
s

k

)
mk

(
−1

2

)s−k

=s

2m
s−1 −

s−2∑
k=0

(
s

k

)
mk

(
−1

2

)s−k
= s

2m
s−1 +O(ms−2);

i.e. L∞(Γcm,s) � N1− 1
s . This convergence rate is extremely bad as the dimension gets lar-

ger. As we will see in the next Section 1.2, it is already very bad in the two-dimensional
case.

Let us now consider infinite sequences. In Theorem 1.4, we completely solved the prob-
lem to find the N -element point set in [0, 1) with the minimal L1, L2 and star discrep-
ancy. Therefore discrepancy theory for point sets in [0, 1) is almost trivial and not very
interesting. This changes completely, if we wish to construct a sequence S = {x0, x1, . . . }
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of points in [0, 1), where the set of the first N elements of S shall have a small discrep-
ancy for all N ∈ N. This is not a trivial task at all. The construction of such well
distributed sequences has strong connections to the theory of distribution modulo 1.
We call a sequence S = (xn)n≥0 in [0, 1)s uniformly distributed modulo 1, if

lim
N→∞

AN([a,b),S)
N

= |[a,b)| (1.5)

for all intervals [a,b) ∈ Rs. In this definition, for a = (a1, . . . , as) and b = (b1, . . . , bs)
with ai ≤ bi for all i ∈ {1, . . . , s} we set [a,b) = [a1, b1) × · · · × [as, bs). Further we
define

AN([a,b),S) := |{n ∈ N0 : 0 ≤ n ≤ N − 1 and xn ∈ [a,b)}|.
Finally, |[a,b)| = ∏s

i=1(bi− ai) denotes the Lebesgue measure of [a,b). Roughly speak-
ing, uniform distribution modulo 1 means that for N tending to infinity, the relative
number of elements in any interval [a,b) equals the measure of this interval. Uniform
distribution modulo 1 can also be defined for sequences in Rs, but then one has to take
the component-wise fractional part of each element of the sequence. We show that it
suffices to demand (1.5) only for intervals of the form [0, t) with t = (t1, . . . , ts) ∈ [0, 1]s.
This is trivial for one-dimensional intervals, for which we have [a, b) = [0, b) \ [0, a). We
also consider the two-dimensional case and observe that

lim
N→∞

AN([a,b),S)
N

= lim
N→∞

AN([0,b),S)
N

− lim
N→∞

AN([0, (a1, b2)),S)
N

− lim
N→∞

AN([0, (b1, a2)),S)
N

+ lim
N→∞

AN([0, a),S)
N

=b1b2 − a1b2 − b1a2 + a1a2 = (b1 − a1)(b2 − a2) = |[a,b)|.

The case s > 2 can be shown similarly. We observe further that the definition of uniform
distribution modulo 1 may also be written in the equivalent form

lim
N→∞

∆N([0, t),S)
N

= 0

for all t ∈ [0, 1]s, where ∆N([0, t),S) is the discrepancy function of the first N elements
of S.

Definition 1.6. Let S = {x0,x1, . . . } be a sequence of points in [0, 1)s. Then the dis-
crepancy function ∆N(t,S) is defined as the discrepancy function of its first N elements.
The Lp discrepancy Lp,N(S) of S for 1 ≤ p ≤ ∞ and N ∈ N is then defined analogously
to the case of finite point sets.

A criterion for uniform distribution modulo 1 is then

lim
N→∞

Lp,N(S)
N

= 0. (1.6)

for any 1 ≤ p ≤ ∞. For further information on the equivalence of uniform distribution
and (1.6) we refer to [48, Theorem 2.15, Corollary 2.23]. Note that we will not omit
the lower index N if we deal with the Lp discrepancy of infinite sequences, since in
this case the number N is not fixed. The Lp discrepancy quantifies the convergence
rate of the limit in the definition of uniform distribution modulo 1. It is therefore a
quantitative measure for how well a sequence is distributed in the unit interval. There
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exist further criteria for uniform distribution modulo 1. As a qualitative measure for
distribution modulo 1 we state the famous criterion due to Weyl, who initiated the
study of uniform distribution in his celebrated paper [78] from 1916. He showed that a
sequence S = {x0,x1, . . . } ⊂ [0, 1)s is uniformly distributed modulo 1 if and only if for
all h ∈ Zs \ {0} we have

lim
N→∞

1
N

N−1∑
n=0

e2πih·xn = 0.

Here x · y denotes the usual inner product of two elements x,y ∈ Rs.

Example 1.7. For α ∈ R we consider the sequence S = ({nα})n≥0 in the unit interval
[0, 1). We use Weyl’s criterion to decide whether this sequence is uniformly distributed
modulo 1 or not. Let h ∈ Z \ {0} be arbitrary. Since x 7→ e2πihx is a one-periodic
function, we have

1
N

N−1∑
n=0

e2πih{nα} = 1
N

N−1∑
n=0

e2πihnα = 1
N

N−1∑
n=0

(
e2πihα

)n
.

We assume that α is irrational. Then hα /∈ Q and consequently e2πihα 6= 1. Hence we
can apply the formula for geometric sums to obtain∣∣∣∣∣ 1

N

N−1∑
n=0

e2πih{nα}
∣∣∣∣∣ = 1

N

∣∣∣∣∣e2πiNhα − 1
e2πihα − 1

∣∣∣∣∣ ≤ 1
N

2
|e2πihα − 1| → 0

for N →∞. Since this holds for any h ∈ Z\{0}, the sequence S is uniformly distributed
modulo 1 if α /∈ Q. Let now α ∈ Q, i.e. α = p

q
for some p ∈ Z, q ∈ N. Then we can find

a non-zero integer, for instance h∗ = q, for which h∗α ∈ Z. For h∗ we have

1
N

N−1∑
n=0

e2πih∗{nα} = 1
N

N−1∑
n=0

e2πinh∗α = 1
N

N−1∑
n=0

1 = 1;

hence Weyl’s criterion is violated. As a result we have that S is uniformly distributed if
and only if α is irrational. A higher-dimensional version of such sequences can be found
in [21, Example 3.6] or [48, Proposition 2.6].

1.1.2. Numerical integration
We consider a function f which is defined on the s-dimensional unit cube [0, 1]s. We
would like to compute the integral

I(f) :=
∫

[0,1]s
f(t) dt. (1.7)

For most integrands this integral can not be evaluated exactly. Either it is not possible
to find an anti-derivative of f or the function values are only partially available. This is
why one usually employs numerical methods to find good approximations for I(f). We
intend to approximate I(f) by an algorithm of the form

QN(P , f) := 1
N

N−1∑
k=0

f(xk), (1.8)
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where the set {x0, . . . ,xN−1} of sample points consists of elements of [0, 1)s. The es-
sential question is to find sample points such that QN(P , f) requires only few function
evaluations (i.e. N is small), but delivers a reasonably good approximation to the in-
tegral of f . For P = {x0, . . . ,xN−1} we consider the integration error

e(f,P) := I(f)−QN(P , f) (1.9)

as a quality measure for P to approximate I(f).
The concept of Monte Carlo methods is to choose the set of sample points P independ-
ently and identically distributed in [0, 1)s. If f ∈ L2([0, 1)s), it can be shown that the
expected value of the integration error of a Monte Carlo rule satisfies

E[|e(f, ·)|] ≤ σ[f ]√
N

(see e.g. [48, p. 5]), where σ[f ] denotes the standard derivation of f . The Monte Carlo
method requires the generation of random sample points, which is not an easy task.
Furthermore, it is desirable to reduce the somewhat slow convergence rate of 1/

√
N .

Let us first consider the one-dimensional case. For f : [0, 1] → R with continuous first
derivative the fundamental theorem of calculus delivers

f(x) = f(1)−
∫ 1

x
f ′(t) dt,

which we insert into (1.9). Our algorithm QN(P , f) shall use the sample points P =
{x0, . . . , xN−1} in [0,1). Hence, with the arguments in [48, Section 3.1] we find

e(f,P) = 1
N

N−1∑
n=0

∫ 1

xn
f ′(t) dt−

∫ 1

0

∫ 1

x
f ′(t) dt dx

=
∫ 1

0

1
N

N−1∑
n=0

1(xn,1](t)f ′(t) dt−
∫ 1

0

∫ t

0
f ′(t) dx dt

=
∫ 1

0
f ′(t)

(
1
N

N−1∑
n=0

1(xn,1](t)− t
)

dt.

At this point we note that the expression in the large brackets is exactly the discrepancy
function of P divided byN . We use the triangle inequality and Hölder’s inequality, which
states that for functions F,G ∈ L1([0, 1]s) and parameters 1 ≤ p, q ≤ ∞ satisfying
1/p+ 1/q = 1 (where p = 1 for q =∞ and p =∞ for q = 1) we have

‖FG‖L1([0,1]s) ≤ ‖F‖Lp([0,1]s)‖G‖Lq([0,1]s), (1.10)

to obtain

|e(f,P)| ≤ 1
N

∫ 1

0
|f ′(t)∆N(P , t)| dt ≤ 1

N
‖f ′‖Lq([0,1])Lp,N(P). (1.11)

We remark that (1.11) separates the influence of the integrand f and the sample points
P on the integration error. Additionally, we see that the smaller the Lp discrepancy of
P , the smaller the integration error. If we choose P = ΓcN , then we have

|e(f,ΓcN)| ≤ 1
2N

(
1

p+ 1

) 1
p

‖f ′‖Lq([0,1)),
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if f has a continuous first derivative. We achieve a convergence rate of 1/N , which is
much better than using Monte Carlo methods. We see that it is possible to achieve a
considerably better convergence rate by using deterministic sample points. We therefore
speak of quasi-Monte Carlo algorithms. For completeness, we state a higher-dimensional,
much more sophisticated version of inequality (1.11), which is known as the famous
Koksma-Hlawka inequality.

Theorem 1.8 (Koksma-Hlawka inequality). Let P be an N-element point set in the
unit cube [0, 1)s. Then for all functions on [0, 1]s with bounded variation V (f) in the
sense of Hardy and Krause we have

|e(f,P)| ≤ V (f)L∞,N(P).

A proof and a definition of V (f) can be found in [41, 49]. Note that V (f) is a quantitative
measure for the fluctuation of f . We close this section by mentioning that the choice of
good sample points does not only depend on their discrepancy, but it is also important
to consider properties of the integrands f . For instance, so-called lattice point sets
work well for functions in the Korobov space (see [48, Section 4.4]), where a higher
smoothness of the integrands leads to a better convergence rate of the integration error.
Nonetheless, the results presented in this section demonstrate that the study of the
discrepancy of point sets is not only of theoretic interest, but also has applications in
numerical integration.

1.2. Bounds on the Lp and star discrepancy
This section is dedicated to the best known upper and lower bounds on the Lp discrep-
ancy of point sets in [0, 1)s for all 1 ≤ p ≤ ∞. Clearly, a trivial upper bound is given
by N , since |∆N(t,P)| ≤ N for all t ∈ [0, 1]s and therefore

Lp,N(P) ≤ L∞,N(P) = sup
t∈[0,1]s

|∆N(t,P)| ≤ N.

for all 1 ≤ p ≤ ∞. In this argumentation we considered the monotonicity of the Lp
norms, which yields Lp,N(P) ≤ Lq,N(P) for 1 ≤ p < q ≤ ∞. For s = 1 we also know a
sharp lower bound on the L1 discrepancy and hence on the Lp discrepancy for all p ≥ 1
(see Theorem 1.4), which is constant.

The situation for s ≥ 2 is by far more complex and difficult. In 1954 Roth [63] showed
his celebrated lower bound on the L2 discrepancy, which is probably the best-known
result in discrepancy theory. It says that the L2 discrepancy of any N -element point set
P in the unit cube [0, 1)s satisfies the bound

L2,N(P) &s (logN) s−1
2 . (1.12)

Roth’s bound demonstrates in particular that in higher dimensions the L2 discrepancy
cannot be bounded in N , as it is the case for s = 1. The upper bound holds also for the
Lp discrepancy for p > 2 due to the monotonicity of Lp norms as explained above. It
took more than 20 years until the same lower bound has also been shown for 1 < p < 2
by Schmidt; i.e. the Lp discrepancy of any N -element point set P in the unit cube [0, 1)s
satisfies the bound

Lp,N(P) &p,s (logN) s−1
2 (1.13)
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for all 1 < p ≤ ∞ (see [65]). We will present a proof of Schmidt’s result in Section 2.3.4.
It turns out that lower bounds for the L1 discrepancy are much harder to prove. Halász
could show that the L1 discrepancy of any N -element point set P in the unit square
[0, 1)2 satisfies

L1,N(P) &
√

logN. (1.14)

This convergence rate matches Roth’s and Schmidt’s lower bounds on the Lp discrep-
ancy. However, for s ≥ 3 no better bound than the one of Halász is known.
It is natural to ask whether the given lower bounds are sharp in the order of magnitude
in N ; i.e. if there exist point sets which match these bounds. The first break-through
in this direction came in 1956, when Davenport [16] presented an explicit construction
of a point set in the unit square [0, 1)2 with an L2 discrepancy of order

√
logN .

Example 1.9. Let α ∈ R \ Q with continued fraction expansion α = [a0; a1, a2, . . . ]
such that the sequence of partial quotients (ak)k≥1 is bounded. We consider the point
set

LN(α) :=
{(
{nα}, n

N

)
: n ∈ {0, 1, . . . , N − 1}

}

and a symmetrized version

L̃N(α) := LN(α) ∪ {(1− x, y) : (x, y) ∈ LN(α)} , (1.15)

which has 2N elements. Then we have

L2(L̃N(α)) .α

√
logN.

The symmetrization of point sets will also play a major role in this thesis. It turns
out that symmetrization is often a useful method to construct point sets with the best
possible rate of L2 and Lp discrepancy. A thorough discussion of Davenport’s principle,
applied to the Hammersley point set, can be found in [13]. Note however that the
symmetrization is not always necessary in the above example. Bilyk [4] could show
that the non-symmetrized point set LN(α) has the optimal order of L2 discrepancy, i.e.
L2(LN(α)) .α

√
logN , if and only if the bounded partial quotients of α = [a0; a1, a2, . . . ]

satisfy ∣∣∣∣∣
n∑
k=0

(−1)kak
∣∣∣∣∣ . √n

for all n ∈ N.

There exist point sets in every dimension s with the order (logN) s−1
2 of Lp-discrepancy

for all p ∈ (1,∞) (see [12] for the first existence result), which shows that the lower
bound given in (1.13) is sharp. Further existence results for point sets with optimal
order of Lp-discrepancy can be found in [15, 20, 67]. However, all these results for
dimension 3 and higher are only existence results obtained by averaging arguments.
Chen and Skriganov [14] gave for the first time for every integer N ≥ 2 and every
dimension s ∈ N, explicit constructions of finite N -element point sets in [0, 1)s whose
L2 discrepancy achieves an order of convergence of (logN) s−1

2 . The result in [14] was
extended to the Lp-discrepancy for p ∈ (1,∞) by Skriganov [66]. Further explicit
constructions can be found in [21, 51, 52, 53].
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There exist similar lower and upper bounds on the Lp discrepancy of infinite sequences.
From the results of Roth and Schmidt Proinov [59] was able to show that for a sequence
S = {x0,x1, . . . } in [0, 1)s we have

Lp,N(S) &p,s (logN) s2 for infinitely many N ∈ N. (1.16)

This is true for all p ∈ (1,∞). Regarding Halász’ result we obtain from Proinov’s
arguments that the bound holds also for the L1 discrepancy of sequences in [0, 1); i.e.
for a sequence S = {x0, x1, . . . } in [0, 1) we have

L1,N(S) &
√

logN for infinitely many N ∈ N. (1.17)

Again we ask whether these bounds are sharp. Proinov could prove in [60] that sym-
metrized van der Corput sequences as introduced in Section 2.1 have an L2 discrepancy
of order

√
logN for all N ∈ N. Based on higher order digital sequences, this result on

the L2 discrepancy was extended to arbitrary dimensions several years later by Dick
and Pillichshammer (see [22, 23]), whereas the problem for the Lp discrepancy remained
still open. In a joint work [45] with Pillichshammer the author could prove that the
symmetrized van der Corput sequence achieves even the optimal order of Lp discepancy
for every 1 ≤ p < ∞, thereby showing that Proinov’s lower bound is sharp in the
one-dimensional case. This result is part of this thesis and will be presented in a more
general form in Section 4.2. A short time later, Dick, Hinrichs, Markhasin and Pillichs-
hammer [17] could show that higher order digital sequences achieve the optimal order
of Lp discrepancy for all 1 < p <∞ and in all dimensions.

Apart from sharp bounds on the Lp discrepancy in the order of magnitude in N , one is
also interested in the coefficients of the leading term (logN) s−1

2 . In dimension two and
for p = 2, much effort has been put into the investigation of such constants. To be more
precise, we are interested in the infimum

inf
|P|=N

L2,N(P)√
logN ,

which is extended over all N -element point sets in the unit square. Borda [9] could show
by considering the lattices L̃(α) from Example 1.9 for α = (

√
5 + 1)/2 that

lim inf
N→∞

inf
|P|=N

L2,N(P)√
logN ≤ 0.176006 . . . , (1.18)

a constant which was previously discovered in [8] by numerical experiments on symmet-
riced Fibonacci lattices. The currently best known lower bounds were found in [40] by
Hinrichs and Larcher, who showed

inf
N≥2

inf
|P|=N

L2,N(P)√
logN ≥ 0.051559 . . .

and
lim sup
N→∞

inf
|P|=N

L2,N(P)√
logN ≥ 0.061073 . . .

The best implied constants for the L1 discrepancy of point sets in the unit square are
due to Vagharshakyan [73], who improved Halász’ proof and showed that

lim inf
N→∞

inf
|P|=N

L1,N(P)√
logN ≥ 0.00854 . . . and
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lim sup
N→∞

inf
|P|=N

L1,N(P)√
logN ≥ 0.01137 . . . (1.19)

We close this section with remarks on the L1 and L∞ discrepancy of point sets in [0, 1)s
for s ≥ 3. The sharp order of the L1 discrepancy is known for point sets in the unit
square and sequences in the one-dimensional unit interval by the result of Halász. The
problem to find sharp bounds also for s ≥ 3 is wide open. It is conjectured that the right
order should be (logN) s−1

2 and hence matching Roth’s and Schmidt’s bounds on the
Lp discrepancy. It has been shown in [2] that whenever we have Lp,N(P) . (logN) s−1

2

for an N element point set P in [0, 1)s and a p ∈ (1,∞), then we also have L1,N(P) &
(logN) s−1

2 . This means that if one tries to find a point set whose L1 discrepancy is of
lower order than (logN) s−1

2 , then one has to choose a point which does not have the
optimal order of Lp discrepancy.

The best known open problem in discrepancy theory is probably the determination of
the exact order of the star discrepancy. This problem is solved for one-dimensional point
sets (see Theorem 1.4) and also for two-dimensional point sets. Let P an N -element
point set in the unit square. Then we have

L∞,N(P) & logN. (1.20)

This bound has been shown by Schmidt [64] in 1980. By Bilyk, Lacey and Vaghar-
shakyan [6] we know that for every dimension s there exists a constant η(s) ∈

(
0, 1

2

)
such that for every N -element point set in [0, 1)s we have

L∞,N(P) & (logN) s−1
2 +η(s).

This is the best known lower bound in dimension 3 and higher. Note that for s = 3 the
lower bound holds for all η(3) < 0.017357 . . . as shown in [62]. The exact exponent θ(s)
of logN is unknown, but it is conjectured to be either θ(s) = s − 1 or θ(s) = s

2 . The
situation for the star discrepancy of infinite sequences in [0, 1)s for s ≥ 2 is unclear as
well. Only for sequences in [0, 1) we know that the optimal order of star discrepancy
is O(logN) for infinitely many N . The lower bound has been shown by Proinov based
on Schmidt’s corresponding bound for two-dimensional point sets, and the upper bound
comes from explicit constructions (e.g. van der Corput sequences or the nα-sequences
we considered in Example 1.7).

It is in general much harder to find point sets in the unit square with the optimal order
O(
√

logN) of Lp discrepancy for p ∈ [1,∞) than to construct such with the best possible
star discrepancy rate O(logN). There are several results concerning the L2 discrepancy
like Davenport’s theorem or the results on Hammersley point sets in the next chapter,
but for arbitrary p the results are much sparser. It is an important aim of this thesis
to bring light into this problem and find a large number of point sets in the unit square
and sequences in the unit interval which achieve the optimal order of Lp discrepancy.
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2. Preliminaries

2.1. Hammersley point sets and van der Corput
sequences

2.1.1. Generalized and symmetrized Hammersley point sets
A prominent example of a point set in the unit square with the optimal order of star
discrepancy O(logN) is the Hammersley point set. For n ∈ N the Hammersley point
set in base b ≥ 2, where b is an integer, with N = bn elements is defined as the point set

Hb,n :=
{(

an
b

+ · · ·+ a1

bn
,
a1

b
+ · · ·+ an

bn

)
: a1, . . . , an ∈ {0, 1, . . . , b− 1}

}
. (2.1)

Note that n � logN ; a fact we shall often consider throughout this thesis. However, the
Hammersley point set has a major drawback. It does not achieve the optimal order of
Lp discrepancy for any p ∈ [1,∞). This follows for instance from exact formulas for the
L1 discrepancy of this point set, see (2.3). For this reason, several modifications have
been applied to the Hammersley point set in history. Among these are digit shifting,
digit scrambling and symmetrization. In the following, we will explain these variants of
Hb,n.
Let us first consider the dyadic case. For an n-tuple σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n,
where n ∈ N, we define the point set

H2,n(σ) :
{(

an ⊕ σn
2 + · · ·+ a1 ⊕ σ1

2n ,
a1

2 + · · ·+ an
2n
)

: a1, . . . , an ∈ {0, 1}
}
,

where the operation ⊕ denotes addition modulo 2. We obtain the classical Hammersley
point set H2,n with 2n points by choosing σ = (0, 0, . . . , 0). We speak of H2,n(σ) as a
digit shifted Hammersley point set.
We would like to generalize the definition of digitally shifted Hammersley point sets to
arbitrary bases. To this end, we observe that we can define H2,n(σ) also in the following
way: Instead of a tuple σ ∈ {0, 1}n we consider a tuple of permutations Σ ∈ {id, τ2}n,
where id shall denote the identity on {0, 1} and τ2 the permutation on {0, 1} given by
τ2(k) = 1 − k for k ∈ {0, 1}. Then we identify a tuple σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n
with Σ = (σ1, σ2, . . . , σn) ∈ {id, τ2}n, where we replace every zero digit in σ by id and
every one digit by τ2. It is then obvious that

H2,n(σ) = HΣ
2,n :=

{(
σn(an)

2 + · · ·+ σ1(a1)
2n ,

a1

2 + · · ·+ an
2n

)
: a1, . . . , an ∈ {0, 1}

}
.

This definition can be easily transferred to other bases. By Sb we mean the set of
all permutations on the set {0, 1, . . . , b − 1} of b-adic digits. A particular element in
Sb is the so-called swapping permutation τb, which is given by τb(k) = b − 1 − k.
While in the dyadic case we only had the permutations id and τ2, there are far more
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permutations in other bases. We fix a permutation σ ∈ Sb and set σ = τb ◦ σ. For a
tuple Σ = (σ1, . . . , σn) ∈ {σ, σ}n we define the point set

HΣ
b,n :=

{(
σn(an)
b

+ · · ·+ σ1(a1)
bn

,
a1

b
+ · · ·+ an

bn

)
: a1, . . . , an ∈ {0, 1, . . . , b− 1}

}
.

We call HΣ
b,n a generalized Hammersley point set. The choice Σ = (id, . . . , id) leads

back to the classical Hammersley point set. Of course it would also be possible to apply
more than two different permutations to the digits in the definition of the generalized
Hammersley point set, but the case Σ ∈ {σ, σ}n suffices for our purposes and is easier
to handle than a more general tuple Σ.
Finally, we introduce the symmetrized Hammersley point set. In base 2 we fix σ =
(σ1, σ2, . . . , σn) ∈ {0, 1}n and set σ∗ = (σ∗1, σ∗2, . . . , σ∗n) such that σ∗j = σj ⊕ 1 for all
j ∈ {1, . . . , n}. The symmetrized Hammersley point set H̃2,n(σ) is then defined as

H̃2,n(σ) := H2,n(σ) ∪H2,n(σ∗).

This point set has 2n+1 elements. For arbitrary bases, we consider a tuple Σ = (σi)ni=1 ∈
{σ, σ}n and set Σ∗ = (σ∗i )ni=1 ∈ {σ, σ}n, where σ∗i = τb ◦ σi for all i ∈ {1, . . . , n}. The
symmetrized Hammersley point set (associated to Σ) consisting of 2bn elements is then
defined as

H̃Σ
b,n = HΣ

b,n ∪HΣ∗
b,n.

We speak of a symmetrized point set, because H̃Σ
b,n can also be written as

H̃Σ
b,n = HΣ

b,n ∪
{(

1− 1
bn
− x, y

)
: (x, y) ∈ HΣ

b,n

}
. (2.2)

Again we have H̃2,n(σ) = H̃Σ
2,n. The reader might wonder why we use a special notation

for the dyadic case. The reason is that it allows us to use a simpler apparatus to study
the Lp discrepancy of H2,n(σ) and H̃2,n(σ), respectively (see Theorem 2.5 in the next
subsection).

We survey several known results on the Lp discrepancy point sets that we have defined
above. Let us first have a look at the classical Hammersley point set according to (2.1).
We have

L1(Hb,n) = n
b2 − 1

12b + 1
2 + 1

4bn , (2.3)

(L2(Hb,n))2 =

n2
(
b2 − 1

12b

)2

+ n

(
3b4 + 10b2 − 13

720b2 + b2 − 1
12b

(
1− 1

2bn
))

+ 3
8 + 1

4bn −
1

72b2n ,

(2.4)

and for every p ∈ N we have

(Lp(Hb,n))p = np
(
b2 − 1

12b

)p
+O(np−1) (2.5)

for p ∈ N. The result on the L2 discrepancy for b = 2 has been shown in [75], [34]
and [58]. The results on the L1 and the Lp discrepancy for p ≥ 3 in the dyadic case
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have been proven in [58]. The generalizations to arbitrary bases can be found in [29]. A
new proof of the result on the L1 discrepancy is provided in Remark 4.9. The formula
(2.3) tells us that the classical Hammersley point set does not achieve the optimal order
of Lp discrepancy for any p ∈ [1,∞). This is why the generalized versions have been
introduced. The first authors who studied digit shifted Hammersley point sets in base 2
(although they did not use this name) were Halton and Zaremba in [34]. They considered
special shifts σ, namely

σ =
(1, 0, 1, 0, . . . , 1, 0) if n is even,

(1, 0, 1, 0, . . . , 1, 0, 1) if n is odd.

They obtained

(L2(H2,n(σ)))2 = 5n
192 + 3

8 −
7εn
64 + 1

4 · 2n + εn
16 · 2n −

1
72 · 22n ,

where εn = 0 for even n and εn = 1 for odd n. A result for arbitrary σ ∈ {0, 1}n
has been shown by Kritzer and Pillichshammer. To state their formula, we need to
introduce the parameter l = l(σ) := |{i ∈ {1, . . . , n} : σi = 0}|, i. e. l is the number of
components of σ which are equal to zero. Then we have the following result:
Theorem 2.1 (Kritzer and Pillichshammer). Let n ∈ N, σ ∈ {0, 1}n and l as above.
Then we have

(L2(H2,n(σ)))2 = n2

64 −
19n
192 −

ln

16 + l2

16 + l

4 + 3
8 + n

16 · 2n −
l

8 · 2n + 1
4 · 2n −

1
72 · 4n .

A remarkable aspect of this result is that the L2 discrepancy depends only on the number
of zero digits in σ and not at all on their position. We can write this formula as

(L2(H2,n(σ)))2 = 1
64 (n− 2l)2 +O(n). (2.6)

Now it is easy to see that the point set H2,n(σ) achieves the optimal order of L2 dis-
crepancy if and only if |n − 2l| = O(

√
n). Roughly speaking, the number of zero and

one digits in σ should be quite balanced to achieve a low L2 discrepancy. To be more
precise, it follows from Theorem 2.1 that the optimal choice for l is

⌈
n−5

2 + 1
2n
⌉
(see also

[43, Corollary 1]), which leads to

(L2(H2,n(σ)))2 = 5n
192 +O(1). (2.7)

The situation of general p is even harder. For even integers p Kritzer and Pillichshammer
could at least prove the existence of a shift σ such that

(Lp(H2,n(σ)))p ≤ 2S(p, p/2)
4p n

p
2 +O(n

p
2−1) (2.8)

by considering the mean over all possible shifts (see [42, Theorem 1]). The number
S(p, p/2) is a Stirling number of second kind. This relation means that for even integers
p it is always possible to find a shift σ such thatH2,n(σ) achieves the optimal order of Lp
discrepancy. Generalizations of these results to the point sets HΣ

b,n, where Σ ∈ {id, τb}n,
can be found in [29].
The L2 discrepancy of HΣ

b,n for the general case Σ ∈ {σ, σ}n has been calculated in [31].
We define l = l(Σ) := |{i ∈ {1, . . . , n} : σi = σ}| and Ab(τ) = {σ ∈ Sb : σ ◦ τb = τb ◦σ}.
The numbers Φσ

b and Φσ,(2)
b , which appear in the following formula, will be explained in

Section 2.2 and depend only on b and σ.
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Theorem 2.2 (Faure, Pillichshammer, Pirsic, Schmid). Let σ ∈ Sb and Σ ∈ {σ, σ}n.
Then we have

(L2(HΣ
b,n))2 =

(
Φσ
b

)2
((n− 2l)2 − n) +O(n).

For σ ∈ Ab(τ) we have the exact formula

(L2(HΣ
b,n))2 =

(
Φσ
b

)2
((n− 2l)2 − n) + Φσ

b

(
1− 1

2bn
)

(2l − n)

+ nΦσ,(2)
b + 3

8 + 1
4bn −

1
72b2n .

It follows immediately that L2(HΣ
b,n) = O(

√
n) if and only if either |n − 2l| = O(

√
n)

for any σ or if we choose σ such that Φσ
b = 0. By [31, Lemma 5] we have

Φσ
b = 1

b2

b−1∑
a=0

σ(a)a− 1
b

(
b− 1

2

)2

.

Thus, Φσ
b = 0 is equivalent to

1
b

b−1∑
a=0

σ(a)a =
(
b− 1

2

)2

. (2.9)

We give examples for permutations σ fulfilling (2.9) that were discovered in [30]. We
choose σ = idr for r ∈ {0, 1, . . . , b− 1}, where idr(a) := a⊕b r for a ∈ {0, 1, . . . , b− 1}
(⊕b denotes addition modulo b). Then we have

b−1∑
a=0

idr(a)a =
b−1∑
a=0

(a⊕b r)a =
b−r−1∑
a=0

(a+ r)a+
b−1∑
a=b−r

(a+ r − b)a

=
b−1∑
a=0

(a+ r)a− b
b−1∑
a=b−r

a = b

6(1 + 2b2 + 3r2 − 3b(1 + r)).

Hence, (2.9) is fulfilled if and only if

b2 − 1
12 = r(b− r)

2 .

The pairs (b, r) for which this equality is satisfied were given in [30, Corollary 1]. One
could for instance choose b = 5 and r = 1 or r = 4. In [31], further explicit examples
and constructions for permutations which fulfil (2.9) were presented.

Previous results on the symmetrized Hammersley point sets are sparser. However, it is
known that H̃Σ

b,n achieves the optimal order of L2 discrepancy for all Σ ∈ {σ, σ}n. This
has been shown by Proinov [60] in a very general form. He proved the bound

(L2,N(H̃Σ
b,n))2 ≤ b2 − 1

3 log b logN (2.10)

for all bases b ≥ 2 and all tuples Σ ∈ {σ, σ}n and hence gave also an explicit bound for
the leading constant.
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Note that the kind of symmetrization given in (2.2) is due to technical issues. Dav-
enport’s construction from Example 1.9 would rather suggest to investigate the point
set

ĤΣ
b,n = HΣ

b,n ∪
{

(1− x, y) : (x, y) ∈ HΣ
b,n

}
.

However, we will show in the following lemma that the Lp discrepancies of H̃Σ
b,n and

ĤΣ
b,n differ only by a small margin.

Lemma 2.3. Let b ≥ 2, n ∈ N and N = 2bn. Then for all p ∈ [1,∞] we have

|Lp(ĤΣ
b,n)− Lp(H̃Σ

b,n)| ≤ 1.

Proof. At first we note that

AN([0, t) , ĤΣ
b,n) ≤ AN([0, t) , H̃Σ

b,n) ≤ AN([0, t) , ĤΣ
b,n) + 1. (2.11)

For the proof of this claim we consider an arbitrary interval [0, t) ⊆ [0, 1]2. It is evident
that the point set ĤΣ

b,n results from H̃Σ
b,n if the points in{

(1− 1/bn − x, y) : (x, y) ∈ HΣ
b,n

}
are shifted 1/bn in the positive x-direction and the remaining points (which are the
elements of HΣ

b,n) do not move. Since the x-coordinates of two distinctive elements in{
(1− 1/bn − x, y) : (x, y) ∈ HΣ

b,n

}
differ at least by 1/bn, there is at most one element

in H̃Σ
b,n that might leave the interval [0, t) by shifting these points in the described way,

whereas we cannot get additional points in this interval. Regarding these observations
the above inequalities (2.11) are clear. Therefore we obtain

|∆N(t, H̃Σ
b,n)−∆N(t, ĤΣ

b,n)| ≤ |AN([0, t) , H̃Σ
b,n)− AN([0, t) , ĤΣ

b,n)| ≤ 1.

From ||x| − |y|| ≤ |x− y| for all x, y ∈ R we get∣∣∣|∆N(t, H̃Σ
b,n)| − |∆N(t, ĤΣ

b,n)|
∣∣∣ ≤ 1.

Hence we have
|∆N(t, H̃Σ

b,n)| ≤ |∆N(t, ĤΣ
b,n)|+ 1 (2.12)

and
|∆N(t, ĤΣ

b,n)| ≤ |∆N(t, H̃Σ
b,n)|+ 1. (2.13)

Now we take the Lp-norm on both sides of inequality (2.12) and get by applying the
triangle inequality

Lp(H̃Σ
b,n) =

∥∥∥∆N(·, H̃Σ
b,n)

∥∥∥
Lp

≤ ‖∆N(·, ĤΣ
b,n)‖Lp + ‖1‖Lp

= Lp(ĤΣ
b,n) + 1.

From inequality (2.13) we derive in an analogue way

Lp(ĤΣ
b,n) ≤ Lp(H̃Σ

b,n) + 1,

which finally yields the desired result concerning the Lp discrepancy of the generalized
and symmetrized Hammersley point sets.
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This lemma demonstrates that it is not necessary to treat the point set ĤΣ
b,n separately,

since all results on H̃Σ
b,n we show in this thesis basically apply also to ĤΣ

b,n.
In this thesis we would like to solve the following problems:

• We present two different shifts σ for which the digit shifted Hammersley point set
H2,n(σ) achieves the best possible order of L4 discrepancy. We do so by proving
exact formulas for this quantity. We use a method which is very effective to obtain
precise discrepancy results, but is ineffective to classify all shifts σ which lead to
the best possible order of L4 or even Lp discrepancy.

• We will find exact formulas for the L2 discrepancy of the symmetrized Hammersley
point sets. We will first consider the dyadic point sets H̃2,n(σ). Our results will
show the surprising fact that L2(H̃2,n(σ)) does not depend on σ at all. We will
generalize these exact formulas to arbitrary bases and permutations Σ ∈ {σ, σ}n
with σ ∈ Ab(τ) and thereby determine the exact constants of the leading term√

logN , respectvely.

• We use Littlewood-Paley theory to fully classify for any p ∈ [1,∞) the tuples
Σ ∈ {σ, σ}n such that the Lp discrepancy of HΣ

b,n has the optimal order.

• By similar means we prove that for any p ∈ [1,∞) the symmetrized Hammersley
point sets H̃Σ

b,n achieve the optimal order of Lp discrepancy for all possible tuples
Σ ∈ {σ, σ}n with σ ∈ Sb.

2.1.2. Generalized and symmetrized van der Corput sequences
Every nonnegative integer n has a unique b-adic representation of the form

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0,

where the digits a0, a1, . . . , ak−1, ak are elements of the set {0, 1, . . . , b− 1}. Recall that
Sb is the set of all permutations of the set {0, 1, . . . , b− 1}. Let us here further assume
that σ(0) = 0. Then we define the function ϕσb : N0 → [0, 1) by setting

ϕσb (n) := σ(a0)
b

+ σ(a1)
b2 + · · ·+ σ(ak−1)

bk
+ σ(ak)

bk+1 .

We speak of ϕσb as a (generalized) radical inverse function. Instead of ϕidb we simply
write ϕb.

Definition 2.4. The (classical) van der Corput sequence in base b is defined as Vb :=
(ϕb(n))n≥0. The generalized van der Corput sequence (with respect to σ) is the sequence
Vσb := (ϕσb (n))n≥0. For every sequence S = {x0, x1, . . . } in [0, 1) we understand under
its symmetrized version the sequence

S̃ := {x0, 1− x0, x1, 1− x1, . . . }.

For the symmetrized van der Corput sequences we write consequently Ṽb and Ṽσb , re-
spectively.
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We survey several previous results on the Lp discrepancy of the class of van der Corput
sequences which are relevant in our thesis. A more detailed introduction to these se-
quences is provided in form of the recommendable survey paper [28]. The van der Corput
sequences are prominent examples of so-called low-discrepancy sequences, which have
star discrepancy of order logN for all N ∈ N. Recall that this order is optimal according
to the result of Schmidt, see (1.20). This has been shown for V2 by van der Corput in
his paper [74] from 1935, where he introduced these sequences. More precisely, we have
for b = 2 by Béjian and Faure

lim sup
N→∞

(
L∞,N(V2)− logN

3 log 2

)
= 4

9 + log 3
3 log 2 (2.14)

(see [3]). However, the classical van der Corput sequence does not achieve the optimal
order of Lp discrepancy. Pillichshammer showed in [58] that

lim sup
N→∞

Lp,N(V2)
logN = 1

6 log 2 (2.15)

for p ≥ 1 (see also [61] for the case p = 2). Since we also have

lim sup
N→∞

L2,N(Vσb )
logN = βb,σ

b log b (2.16)

for a positive constant βb,σ depending only on the base b and the permutation σ (see [11]),
the whole large class of generalized van der Corput sequences fails to have the optimal
order of L2 discrepancy and therefore does not achieve the optimal order of Lp discrep-
ancy for p > 2 either. For σ = id, it is also known from the work of Chaix and Faure [11]
that L1,N(Vb) &b logN for infinitely many N , and therefore the classical van der Corput
sequence has an Lp discrepancy of exact order logN for infinitely many N and all p ≥ 1.

However, Proinov [60] could show that the whole class of symmetrized van der Corput
sequences Ṽσb achieves the optimal order of L2 discrepancy. He proved for all N ≥ 2 the
upper bound

(L2,N(Ṽσb ))2 ≤ b2 − 1
3 log b logN

for any base b and any σ ∈ Sb.

We are now interested in the constants which appear as the coefficients of
√

logN in
the L2 discrepancy of Ṽσb . In other words, we are interested in the value of

l2(Ṽσb ) := lim sup
N→∞

L2,N(Ṽσb )√
logN .

It turns out that the exact computation of l2(Ṽσb ) is very complicated. In previous
research, two different approaches to provide good estimates for l2(Ṽσb ) have been em-
ployed.

1. The diaphony of a sequence S = {x0, x1, . . . } in [0, 1) is given by

FN(S) :=
2

∞∑
m=1

1
m2

∣∣∣∣∣
N−1∑
n=0

e2πimxn
∣∣∣∣∣
2

1
2
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for its first N elements. The diaphony provides a further criterion to decide
whether a sequence S is uniformly distributed modulo 1, as S has this property if
and only if

lim
N→∞

FN(S)
N

= 0.

The diaphony of Vσb is well known by the work of Chaix and Faure, who presented
an exact formula for this quantity in their paper [11], from which they could deduce
very precise values for

f(Vσb ) := lim sup
N→∞

FN(Vσb )√
logN .

From the relation
l2(Ṽσb ) ≤ 1

π
f(Vσb ) (2.17)

one can further derive upper bounds on l2(Ṽσb ) from the results on the diaphony
of Vσb . The best constants found by this approach are the following:
• Chaix, Faure ([11], 1993): f(Vσ19) = 1.14706 . . . ,
• Pausinger, Schmid ([56], 2010): f(Vσ57) = 1.06674 . . .

for particular permutations σ in S19 and S57, respectively. With (2.17) this yields
l2(Ṽσ19) ≤ 0.36511... and l2(Ṽσ57) ≤ 0.33955 . . . , respectively.

2. Faure developed a more precise method to find bounds on l2(Ṽ2) by proving an
exact formula for the L2 discrepancy of Ṽ2. He found

(L2,N(Ṽ2))2 =
n∑
j=1

(
1− ‖2jϕ2(N)‖

) ∥∥∥∥N2j
∥∥∥∥2

+ N2

3 · 4n (2.18)

for 1 ≤ N < 2n. To find the exact value of l2(Ṽ2), we have to find for every n ∈ N
the maximum

max
1≤N<2n

 n∑
j=1

(
1− ‖2jϕ2(N)‖

) ∥∥∥∥N2j
∥∥∥∥2

+ N2

3 · 4n

 .
Unfortunately, this is a difficult task. For reasonably small integers n, the max-
imum can be searched for with the aid of the computer. It turns out that probably
the maximum is attained for N(n) ∈ N0 such that

N(n)
2n = 0.00010001 · · · 0001 (n digits after the comma)

in dyadic expansion, assuming that n is a multiple of 4. By inserting these N into
the formula for the L2 discrepancy of Ṽ2, we find

(L2,N(n)(Ṽ2))2 = 421
6750n+O(1).

Hence we have

l2(Ṽ2) ≥
(

421
6750 log 2

) 1
2

≈ 0.299969 . . . ,
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where it is strongly conjectured that this is the exact value of l2(Ṽ2). To find an
upper bound on l2(Ṽ2), Faure proved the following formula:

l2(Ṽ2) =
inf
n≥1

max
1≤N<2n

 1
n log 2

n∑
j=1

(
1− ‖2jϕ2(N)‖

) ∥∥∥∥N2j
∥∥∥∥2
 1

2

.

It therefore suffices to compute the above maximum for certain values of n to find
a desired upper bound. For n = 20 Faure found the value 0.319553 . . . However,
searching the minimum for n = 24 (which requires a long runtime) delivers a
slightly better bound, namely 0.316373 . . . Summarizing, we have

0.299969 · · · ≤ l2(Ṽ2) ≤ 0.316373 . . .

We have
inf

S∈[0,1)N
lim sup
N→∞

L2,N(S)√
logN ≤ 0.316373 . . . (2.19)

from Faure’s result. This is currently the best known upper bound for this infimum. It
would be desirable to improve upon this constant, and we will pursue this aim in this
thesis.

We will treat the following problems concerning the Lp discrepancy of the (symmetrized)
van der Corput sequences:

• We will prove an precise formula for the L2 discrepancy of the symmetrized van
der Corput sequences Ṽσb for any base b and any permutation σ and try to derive
some precise statements on l2(Ṽσb ).

• We will prove that the sequences Vσb do not have the optimal order of Lp dis-
crepancy for any p ∈ (1,∞), whereas the symmetrized sequences Ṽσb achieve the
optimal order for all p ∈ [1,∞) and all b and σ.

2.2. The discrepancy function of generalized
Hammersley point sets

The proofs in Section 3 will be based on exact formulas for the discrepancy function of
the point sets H2,n(σ) and HΣ

b,n.
In the dyadic case, such a formula was found by Larcher and Pillichshammer in [46]. The
proof is based on a thorough Walsh analysis of the discrepancy function. Walsh functions
have many applications in discrepancy theory. We refer to [21] for their definition and
their basic properties. Recall that ‖x‖ denotes the distance of a real number x to
the nearest integer and that ⊕ means addition modulo 2. Further, it is reasonable to
introduce the notion of n-bit numbers. We call a real number n-bit if and only if it
belongs to the set

Q(2n) :=
{
m

2n : m ∈ {0, 1, . . . , 2n − 1}
}
.

It is obvious that α ∈ Q(2n) if and only if it has a representation of the form α =
α1
2 + · · · + αn

2n , where α1, . . . , αn ∈ {0, 1}. The following theorem involves (σn, . . . , σ1)
instead of (σ1, . . . , σn), which is not a problem since our results will only depend on the
number of zeroes in σ.
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Theorem 2.5. For n-bit numbers α = α1
2 +· · ·+ αn

2n and β = β1
2 +· · ·+ βn

2n the discrepancy
function ∆(α, β) of H2,n(σ) with σ = (σn, . . . , σ1) satisfies

1. ∆(α, β) = ∑n−1
u=0 ‖2uβ‖(−1)σu+1(αn−u ⊕ αn+1−j(u)), where we set αn+1 := 0 and

where for 0 ≤ u ≤ n− 1 the numbers j(u) are defined as

j(u) =


0 if u = 0,
0 if αn+1−j = βj ⊕ σj for j = 1, . . . , u,
max{j ≤ u : αn+1−j 6= βj ⊕ σj} else.

2. ∆(α, 1) = 0 for n-bit α and ∆(t1, t2) = ∆(t1(n), t2(n)) + 2n(t1(n)t2(n)− t1t2) for
t1, t2 ∈ [0, 1], where t1(n) and t2(n) are the smallest n-bit numbers greater than or
equal t1 or t2, respectively. (For t1, t2 > 1 − 2−n we set t1(n) = 1 and t2(n) = 1,
respectively.)

In the following, we present a generalization of Theorem 2.5 to arbitrary bases b and
permutations σ ∈ Sb. To this end, we need some notation that was initially introduced
by Faure in [26].

Definition 2.6. Let σ ∈ Sb and let Zσb = (σ(0)/b, σ(1)/b, . . . , σ(b − 1)/b). For h ∈
{0, 1, . . . , b− 1} and x ∈ [(k − 1)/b, k/b), where k ∈ {1, . . . , b}, we define

ψσb,h(x) :=
A([0, h/b); k;Zσb )− hx if 0 ≤ h ≤ σ(k − 1),

(b− h)x− A([h/b, 1); k;Zσb ) if σ(k − 1) < h < b.

In this definition, for a sequence X = (xM), A([x, y);N ;X) denotes the number of
indices M with 1 ≤ M ≤ N such that xM ∈ [x, y). The function ψσb,h is extended to
the reals by periodicity, i.e. we have ψσb,h(x) = ψσb,h({x}) for all x ∈ R. We note that
ψσb,0 = 0 for any σ and that ψσb,h(0) = 0 for any σ and any h. We define several other
functions which are build of the functions ψσb,h and will appear in diverse parts of this
thesis. First, we put

ψσb :=
b−1∑
h=0

ψσb,h and ψ
σ,(2)
b :=

b−1∑
h=0

(ψσb,h)2.

We also set

ψ̃σb :=
b−1∑
h=0

ψσb,hψ
σ
b,h, ψ̃σb,1 :=

b−2∑
h=0

ψσb,h+1ψ
σ
b,h and ψ̃σb,2 :=

b−2∑
h=0

ψσb,hψ
σ
b,h+1.

Finally, we define Φσ
b := 1

b

∫ 1
0 ψ

σ
b (x) dx and analogously the numbers Φσ,(2)

b , Φ̃σ
b , Φ̃σ

b,1 and
Φ̃σ
b,2.

The following exact formula for the discrepancy function of HΣ
b,n goes back to the work

of Faure [26], where he studied generalized van der Corput sequences, and was first
explicitely stated in [29, Lemma 1].

Theorem 2.7. For integers 1 ≤ λ,M ≤ bn we have

∆N

(
λ

bn
,
M

bn
,HΣ

b,n

)
=

n∑
j=1

ψ
σj
b,εj(λ,M,Σ)

(
M

bj

)
.
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The numbers εj(λ,M,Σ) for j ∈ {1, 2, . . . , n} are given as follows: For 1 ≤ λ < bn with
b-adic expansion λ = λ1b

n−1 + · · ·+ λ2b
n−2 + · · ·+ λn−1b+ λn, we define

Λj−1 = Λj−1(λ) = λjb
n−j + · · ·+ λn.

Then, for 1 ≤M < bn with b-adic expansion M = Mnb
n−1 + · · ·+M1, we define

νj = νj(M,Σ) = σj+1(Mj+1)bn−j−1 + · · ·+ σn−1(Mn−1)b+ σn(Mn).
Now we set εn = λn and for fixed 1 ≤ j ≤ n− 1 we set

εj = εj(λ,M,Σ) =


0 if 0 ≤ Λj−1 ≤ νj,

h if νj + (h− 1)bn−j < Λj−1 ≤ νj + hbn−j for 1 ≤ h < b,

0 if νj + (b− 1)bn−j < Λj−1 < bn−j+1.

For λ = bn or M = bn we set εj(λ,M,Σ) = 0 for all 1 ≤ j ≤ n.
Remark 2.8. Since the components of all points in HΣ

b,n are of the form m/bn for some
m ∈ {0, . . . , bn − 1}, we have in analogy to the dyadic case

∆N(t1, t2,HΣ
b,n) = ∆N(t1(n), t2(n),HΣ

b,n) + bn(t1(n)t2(n)− t1t2)
for all t1, t2 ∈ (0, 1], where we set t1(n) := min{m/bn ≥ t1 : m ∈ {0, . . . , bn}} and
analogously t2(n) for an t1, t2 ∈ [0, 1). This relation has already been remarked in [29,
Remark 3].
It is not obvious that Theorem 2.7 is a generalization of Theorem 2.5. We will therefore
derive Theorem 2.5 from Theorem 2.7 in the following. We need to investigate

∆N

(
λ

2n ,
M

2n ,H
Σ
2,n

)
=

n∑
j=1

ψ
σj
2,εj(λ,M,Σ)

(
M

2j
)
.

We write λ
2n = α = α1

2 + · · · + αn
2n and M

2n = β = β1
2 + · · · + βn

2n . From the definition of
ψσb,h it is straightforward to convince oneself that ψid2,0 = ψτ22,0 = 0 and ψid2,1 = ‖ · ‖ as well
as ψτ22,1 = −‖ · ‖. We define the function ι : {id, τ2} → {0, 1} by setting ι(id) = 0 and
ι(τ2) = 1. Then we can write

ψσ2,1 = (−1)ι(σ)‖ · ‖
for σ ∈ {id, τ2}. Now we have

∆N

(
α, β,HΣ

2,n

)
=

n∑
j=1

ψ
σj
2,εj(α,β,Σ)

(
2nβ
2j

)
=

n−1∑
u=0

ψ
σn−u
2,εu+1(α,β,Σ)

(
2nβ
2n−u

)

=
n−1∑
u=0

εn−u(α,β,Σ)=1

(−1)ι(σu+1) ‖2uβ‖ .

In order to verify Theorem 2.5 it remains to show that εn−u(α, β,Σ) = 1 if and only if
αn−u ⊕ αn+1−j(u) = 1. From the definitions in Theorem 2.7 we find

Λn−u−1(α) = αn−u2u + · · ·+ αn

and
νn−u(α, β) = σu(βu)2u−1 + · · ·+ σ1(β1).

From the definition of εj(λ,M,Σ) we see that εn−u(α, β,Σ) = 1 if and only if
νn−u < Λn−u−1 ≤ 2u + νn−u.

We distinguish several cases.

25



1. Assume that αn−u = 0. Then we have Λn−u−1 ≤ 2u+νn−u for sure. The inequality
νn−u < Λn−u−1 yields the existence of the maximum j(u) := max{j ≤ u : αn+1−j 6=
σj(βj)}, since otherwise we would have equality. But then νn−u < Λn−u−1 can
only be the case if αn+1−j(u) = 1 and consequently σj(u)(βj(u)) = 0. This yields
αn−u ⊕ αn+1−j(u) = 1. Note that σj(βj) = βj ⊕ ι(σj), and hence the definition of
j(u) above matches the corresponding definition in Theorem 2.5.

2. Assume now that αn−u = 1. Then there are two possible cases:
• The case that Λn−u−1 = 2u + νn−u yields αn+1−j = βj ⊕ ι(σj) for all j ∈
{1, . . . , u} and hence j(u) = 0 (see Theorem 2.5). Then αn+1−j(u) = αn+1 = 0.
• The strict inequality Λn−u−1 < 2u + νn−u forces the existence of j(u) :=

max{j ≤ u : αn+1−j 6= σj(βj)} and further the fact that αn+1−j(u) = 0 and
consequently σj(u)(βj(u)) = 1.

In all cases we have αn−u ⊕ αn+1−j(u) = 1, which completes the proof.

For the symmetrized Hammersley point sets the following simple principle will prove
very useful.

Lemma 2.9. Given two point sets P1 and P2 in [0, 1)s with N1 and N2 elements,
respectively, and their union P = P1∪P2. Note that this multiset may contain identical
elements, which are all counted separately. Let N = N1 + N2. Then we have for all
t ∈ [0, 1]s

∆N(t,P) = ∆N1(t,P1) + ∆N2(t,P2).

Proof. We have

∆N(t,P) =AN1+N2([0, t) ,P)− (N1 +N2)|[0, t)|
=AN1([0, t) ,P1)−N1|[0, t)|+ AN2([0, t) ,P2)−N2|[0, t)|
=∆N1(t,P1) + ∆N2(t,P2)

for all t ∈ [0, 1]s.

In particular, it follow from Lemma 2.9 the important facts that

∆2n+1(t, H̃2,n(σ)) = ∆2n(t,H2,n(σ)) + ∆2n(t,H2,n(σ∗))

and
∆2bn(t, H̃Σ

b,n) = ∆bn(t,HΣ
b,n) + ∆bn(t,HΣ∗

b,n).

2.3. The Haar function system and several function
spaces

2.3.1. The Haar functions
A popular method to estimate the L2 discrepancy of given point sets or sequences is the
following: One takes an orthonormal basis of L2([0, 1)s), for instance harmonic functions
or Walsh functions, tries to find good upper bounds on the Fourier or Walsh coefficients,
respectively, and inserts them into Parseval’s identity. For our purposes, it is reasonable
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to work with Haar functions. We give first the dyadic definition of these functions. A
dyadic interval of length 2−j, j ∈ N0, in [0, 1) is an interval of the form

I = Ij,m :=
[
m

2j ,
m+ 1

2j
)

for m = 0, 1, . . . , 2j − 1.

We also define I−1,0 = [0, 1). The left and right half of Ij,m are the dyadic intervals
Ij+1,2m and Ij+1,2m+1, respectively. The Haar function hj,m is the function on [0, 1)
which is +1 on the left half of Ij,m, −1 on the right half of Ij,m and 0 outside of Ij,m.
The following image shows the Haar function hj,m for j = 2 and m = 1.

+1

−1

m
2j 1

m+1
2j

The L∞-normalized Haar system consists of all Haar functions hj,m with j ∈ N0 and
m = 0, 1, . . . , 2j − 1 together with the indicator function h−1,0 of [0, 1). Normalized in
L2([0, 1)) we obtain the orthonormal Haar basis of L2([0, 1)).
Let N−1 = N0 ∪ {−1} and define Dj = {0, 1, . . . , 2j − 1} for j ∈ N0 and D−1 = {0}. For
j = (j1, j2, . . . , js) ∈ Ns

−1 and m = (m1,m2, . . . ,ms) ∈ Dj := Dj1 × Dj2 × · · · × Djs , the
Haar function hj,m is given as the tensor product

hj,m(t) = hj1,m1(t1)hj2,m2(t2) . . . hjs,ms(ts) for t = (t1, t2, . . . , ts) ∈ [0, 1)2. (2.20)

We speak of Ij,m = Ij1,m1 × Ij2,m2 × · · · × Ijs,ms as dyadic boxes. We define

|j| = max{0, j1}+ max{0, j2}+ · · ·+ max{0, js}

and speak of it as the level of the dyadic box Ij,m.

We extend this definition to arbitrary bases b ≥ 2 in the following way: For j ∈ N0 we
define Dj := {0, 1, . . . , bj − 1} and Bj := {1, . . . , b− 1}. Additionally, we define the sets
D−1 := {0} and B−1 := {1}. For j ∈ N0 and m ∈ Dj we call the interval

Ij,m :=
[
m

bj
,
m+ 1
bj

)
them-th b-adic interval on level j. We also define I−1,0 = [0, 1), which is a b-adic interval
on level 0. For j ∈ N0, m ∈ Dj and any k ∈ {0, 1, . . . , b− 1} we introduce the interval

Ikj,m := Ij+1,bm+k =
[
m

bj
+ k

bj+1 ,
m

bj
+ k + 1

bj+1

)
.

It is easy to see that Ij,m = ⋃b−1
k=0 I

k
j,m and Ik1

j,m ∩ Ik2
j,m = ∅ whenever k1 6= k2. We also put

I1
−1,0 = I−1,0 = [0, 1).
For j ∈ N0, m ∈ Dj and ` ∈ Bj let hj,m,` be a function on [0, 1) with support in Ij,m and
the constant value e 2πi

b
k` on Ikj,m for k ∈ {0, 1, . . . , b− 1} and 0 outside of Ij,m. We call
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hj,m,` a b-adic Haar function on [0, 1). We also put h−1,0,1 = 1I−1,0 = 1[0,1) on [0, 1). It
has been shown in [50, Theorem 2.1] that the system{

b
max{0,j}

2 hj,m,` : j ∈ N−1,m ∈ Dj, ` ∈ Bj
}

is an orthonormal basis of L2([0, 1)) and an unconditional basis of Lp([0, 1)) for all
p ∈ (1,∞). We speak of an one-dimensional b-adic Haar basis. The extension to s-
dimensional Haar functions is again over tensor products as explained in (2.20).

2.3.2. Littlewood-Paley inequality for Haar functions
In this section we consider the dyadic Haar basis. Let f ∈ L2([0, 1)s). Then the Haar
coefficients of f are given by the inner product

µj,m := 〈f, hj,m〉 =
∫

[0,1)s
f(t)hj,m(t) dt.

Parseval’s identity states that

‖f‖L2([0,1)s) =
 ∑
j∈Ns−1,m∈Dj

2|j||µj,m|2
 1

2

. (2.21)

The factor 2|j| comes from the L2 normalization of the Haar functions. We would like
to have a similar relation between the Lp norm of a function f and its Haar coefficients.
It is provided by the Littlewood-Paley inequality. To this end, we introduce the square
function of f ∈ Lp([0, 1)s) as

S(f) :=
 ∑
j∈Ns−1,m∈Dj

22|j||µj,m|21Ij,m

 1
2

. (2.22)

Proposition 2.10 (Littlewood-Paley inequality). Let 1 < p < ∞. For a function
f : [0, 1]s → R we have

‖f‖Lp([0,1)s) �p ‖S(f)‖Lp([0,1)s) .

Proofs of these inequalities and further details also yielding the right asymptotic beha-
vior of the involved constants can be found in [10, 68, 76]. For p = 2 Proposition 2.10
holds with equality and the Littlewood-Paley inequality is nothing else than Parseval’s
equality, as we can see as follows. First we write

‖S(f)‖L2([0,1)s) =

∥∥∥∥∥∥∥
 ∑
j∈Ns−1,m∈Dj

22|j||µj,m|21Ij,m

 1
2
∥∥∥∥∥∥∥
L2([0,1)s)

=
∫

[0,1)s

( ∑
j∈Ns−1,m∈Dj

22|j||µj,m|21Ij,m
(t)
)

dt
 1

2

.

Since
∫

[0,1)s 1Ij,m
(t) dt = 2−|j|, we obtain

‖S(f)‖L2([0,1)s) =
 ∑
j∈Ns−1,m∈Dj

22|j||µj,m|2
∫

[0,1)s
1Ij,m

(t) dt
 1

2

=
 ∑
j∈Ns−1,m∈Dj

2|j||µj,m|2
 1

2

.
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2.3.3. Characterization of Besov spaces with Haar functions
We give a definition of the Besov spaces of dominating mixed smoothness. Let therefore
S(Rs) denote the Schwartz space and S ′(Rs) the space of tempered distributions on Rs.
For f ∈ S ′(Rs) we denote by Ff the Fourier transform of f and by F−1f its inverse.
Let φ0 ∈ S(R) satisfy φ0(t) = 1 for |t| ≤ 1 and φ0(t) = 0 for |t| > 3

2 . Let

φd(t) = φ0(2−dt)− φ0(2−d+1t),

where t ∈ R, d ∈ N, and φd(t) = φd1(t1) · · ·φds(ts), where d = (d1, . . . , ds) ∈ Ns
0,

t = (t1, . . . , ts) ∈ Rs. We note that ∑d∈Ns0 φd(t) = 1 for all t ∈ Rs, which can be seen
as follows. We have ∑d∈Ns0 φd(t) = ∏s

i=1
∑
di∈N0 φdi(ti), and therefore it suffices to show

that ∑d∈N0 φd(t) = 1. Define d̃ = min{d ∈ N0 | 2−d|t| ≤ 1}. Then we have

∑
d∈N0

φd(t) =
d̃∑
d=0

φd(t) +
∞∑

d=d̃+1
φd(t) = φ0(2−d̃t) +

∞∑
d=d̃+1

φd(t),

where we take into account that the sum ∑d̃
d=0 φd(t) is a telescoping sum. Further we

have φ0(2−d̃t) = 1 and, since |2−dt| ≤ 1 for all d ≥ d̃, we have φd(t) = 0 for d > d̃. This
yields the result.
The functions F−1(φdFf) are entire analytic functions for any f ∈ S ′(Rs). Let 0 <
p, q ≤ ∞ and r ∈ R. The dyadic Besov space Srp,qB(Rs) of dominating mixed smoothness
consists of all f ∈ S ′(Rs) with finite quasi-norm

‖f‖Srp,qB(Rs) =
∑
d∈Ns0

2r(d1+···+ds)q
∥∥∥F−1(φdFf)

∥∥∥q
Lp(Rs)

 1
q

,

with the usual modification if q = ∞. Let D([0, 1)s) be the set of all complex-valued
infinitely differentiable functions on Rs with compact support in the interior of [0, 1)s
and let D′([0, 1)s) be its dual space of all distributions in [0, 1)s. The Besov space
Srp,qB([0, 1)s) of dominating mixed smoothness on the domain [0, 1)s consists of all func-
tions f ∈ D′([0, 1)s) with finite quasi norm

‖f‖Srp,qB([0,1)s) = inf
{
‖g‖Srp,qB(Rs) : g ∈ Srp,qB(Rs), g|[0,1)s = f

}
.

However, this dyadic definition of the Besov space norm is not suitable to estimate
the discrepancy of point sets and sequences which are based on the b-adic expansion
of integers. To overcome this drawback, b-adic versions of the Besov spaces Srp,qBb(Rs)
and Srp,qB

b([0, 1)s) have been introduced by Markhasin in [50, 52]. We refer to these
papers for the definition of the b-adic Besov spaces. It has been shown in [50, Theorem
3.1] that the b-adic Besov space Srp,qBb([0, 1)s) is equivalent to the classical dyadic Besov
space Srp,qB([0, 1)s) and that we have the following useful characterization of functions
which are contained in this space (see also [69, Theorem 2.41] for the original proof of
the dyadic case):

Proposition 2.11. Let 0 < p, q ≤ ∞ and 1
p
− 1 < r < min

{
1
p
, 1
}
. Let f ∈ D′([0, 1)s).

Then f ∈ Srp,qBb([0, 1)s) if and only if it can be represented as

f =
∑
j∈Ns−1

∑
m∈Dj ,`∈Bj

µj,m,`b
|j|hj,m,`
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for some sequence (µj,m,`) satisfying
 ∑
j∈Ns−1

b(j1+···+js)(r− 1
p

+1)q
 ∑
m∈Dj ,`∈Bj

|µj,m,`|p


q
p


1
q

<∞,

where the convergence is unconditional in D′([0, 1)s) and in any SρpqBb([0, 1)s) with ρ < r.
This representation of f is unique with the b-adic Haar coefficients

µj,m,`(f) := 〈f, hj,m,`〉 =
∫

[0,1)s
f(t)hj,m,`(t) dt for j ∈ Ns

−1, m ∈ Dj and ` ∈ Bj .

(2.23)
The expression on the left-hand-side of the above inequality provides an equivalent quasi-
norm on Srp,qBb([0, 1)s), i.e.

‖f‖Srp,qBb([0,1)s) �

 ∑
j∈Ns−1

b(j1+···+js)(r− 1
p

+1)q
 ∑
m∈Dj ,`∈Bj

|µj,m,`|p


q
p


1
q

.

2.3.4. Triebel-Lizorkin spaces and embedding theorems
It is possible to deduce results on the Lp norm of a function from its Besov norm.
The link between these two norms are embedding theorems between Besov spaces and
Triebel-Lizorkin spaces with dominating mixed smoothness, where the latter contain
the Lp spaces as a special case.
Let 0 < p < ∞, 0 < q ≤ ∞ and r ∈ R. The Triebel-Lizorkin space Srp,qF (Rs) with
dominating mixed smoothness consists of all f ∈ S ′(Rs) with finite quasi-norm

‖f‖Srp,qF (Rs) =

∥∥∥∥∥∥∥∥
∑
k∈N2

0

2r(k1+k2)q|F−1(ΦkFf)(·)|q


1/q
∥∥∥∥∥∥∥∥
Lp(R2)

with the usual modification if q = ∞. The space Srp,qF ([0, 1)s) can be introduced
analogously to Srp,qB([0, 1)s). For 0 < p, q <∞ and r ∈ R we have the embeddings

Srmax{p,q},qB([0, 1)s) ↪→ Srp,qF ([0, 1)s) ↪→ Srmin{p,q},qB([0, 1)s), (2.24)

which were proven in [52, Corollary 1.13], based on other embedding theorems from
[69, Remark 6.28] and [35, Proposition 2.3.7]. Here, for two sets A and B the notation
A ↪→ B means that there exists an injective map f : A → B. For 1 < p < ∞
the spaces SrpH([0, 1)2) := Srp,2F ([0, 1)2) are called Sobolev spaces with dominating
mixed smoothness. Further, it is well known that S0

pH([0, 1)2) = Lp([0, 1)2). We obtain
the following Littlewood-Paley type inequalities, which provide an alternative way to
Proposition 2.10 to find bounds on the Lp norm of functions and also works for the
b-adic Haar function system.

Proposition 2.12. Let p ∈ (1,∞), f ∈ Lp([0, 1)s) and µj,m,` for j ∈ Ns
−1, m ∈ Dj and

` ∈ Bj its Haar coefficients. Then we have

‖f‖2
Lp([0,1)s) .

∑
j∈Ns−1

b2(j1+···+js)(1−1/p̄)

 ∑
m∈Dj ,`∈Bj

|µj,m,`(f)|p̄
2/p̄
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and

‖f‖2
Lp([0,1)s) &

∑
j∈Ns−1

b2(j1+···+js)(1−1/p′)

 ∑
m∈Dj ,`∈Bj

|µj,m,`(f)|p′
2/p′

,

where p̄ = max{p, 2} and p′ = min{p, 2}, respectively.

Proof. With the first embedding in (2.24) and Proposition 2.11 we find

‖f‖2
Lp([0,1)s) =‖f‖2

S0
p,2F ([0,1)s) . ‖f‖

2
S0

max{p,2},2B([0,1)s) . ‖f‖
2
S0

max{p,2},2B
b([0,1)s)

.
∑
j∈Ns−1

b2(j1+···+js)(1−1/p̄)

 ∑
m∈Dj ,`∈Bj

|µj,m,`(f)|p̄
2/p̄

.

The lower bound can be proven in an analogue way by applying the second embedding
in (2.24).

As an important application of Proposition 2.12 we give a simple proof of Schmidt’s
famous lower bound on the Lp discrepancy as stated in (1.13).

Proof of Schmidt’s lower bound (1.13) Let p ∈ (1,∞) and consider an arbitrary
N -element point set P in [0, 1)s. Let j ∈ Ns

0 and m ∈ Dj . We compute the Haar
coefficients of the volume part L(t) = Nt1 · · · ts of the discrepancy function. We find

〈L, hj,m〉 =N
s∏
i=1

∫ 1

0
tihji,mi(ti) dti = N

s∏
i=1

∫ 2mi+1
2ji+1

mi

2ji

t dt−
∫ mi+1

2ji

2mi+1
2ji+1

t dt


=N
s∏
i=1

(
−2−2ji−2

)
= (−1)sN2−2|j|−2s;

hence we have |〈L, hj,m〉| = N2−2|j|−2s. Now we prove 〈1[0,·)(z), hj,m〉 = 0 whenever
z = (z1, . . . , zs) ∈ [0, 1)s is not contained in the dyadic box Ij,m. Note that

〈1[0,·)(z), hj,m〉 =
s∏
i=1

∫ 1

0
1[0,ti)(zi)hji,mi(ti) dti. (2.25)

Since z is not contained in Ij,m, there is at least one component zi of z such that
zi /∈ Iji,mi . If zi < mi

2ji , then∫ 1

0
1[0,ti)(zi)hji,mi(ti) dti =

∫ zi

0
0 dti = 0.

If zi ≥ mi+1
2ji , then

∫ 1

0
1[0,ti)(zi)hji,mi(ti) dti =

∫ mi

2ji

0
0 dti +

∫ 2mi+1
2ji+1

mi

2ji

1 dti +
∫ mi+1

2ji

2mi+1
2ji+1

(−1) dti +
∫ zi

mi+1
2ji

0 dti = 0.

It follows that the product in (2.25) is zero. Choose a level ` such that 2`−1 < 2N ≤ 2`,
i.e. ` � logN , and let µj,m be the Haar coefficients of ∆N(·,P). From what we just
discussed we observe that |µj,m| = N2−2|j|−2s whenever Ij,m does not contain any points
of P , because then the counting part of the discrepancy function does not contribute to
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the Haar coefficient. Now we make use of the second Littlewood-Paley type inequality
in Proposition 2.12 and find

‖∆N(·,P)‖2
Lp([0,1)s) &p,s

∑
j∈Ns0

22|j|(1−1/p′)

 ∑
m∈Dj

|µj,m|p
′

2/p′

& 22`(1−1/p′) ∑
j∈Ns0
|j|=`

( ∑
m∈Dj

Ij,m∩P=∅

(N2−2`−2s)p′
)2/p′

= N222`(1−1/p′)2−4`−4s ∑
j∈Ns0
|j|=`

( ∑
m∈Dj

Ij,m∩P=∅

1
)2/p′

,

where we only sum over those boxes Ij,m, which are of level |j| = ` and do not contain
any points of P . Note that for a fixed j ∈ N0 the boxes Ij,m for m ∈ Dj are pairwise
disjunct. At most N of these 2` boxes can contain points of P , hence by our choice of
` we obtain ∑

m∈Dj

Ij,m∩P=∅

1 ≥ 2` −N ≥ 2`−1.

Basic combinatorics yields that the number of j ∈ Ns
0 with |j| = ` is given by

(
`+s−1
s−1

)
�

`s−1. Regarding the fact that N22−2` � 1 we conclude

‖∆N(·,P)‖2
Lp([0,1)s) &p,s N

222`(1−1/p′)2−4`−4s`s−1
(
2`−1

)2/p′

&p,s N
22−2``s−1 �p,s (logN)s−1,

and therefore
Lp,N(P) &p,s (logN) s−1

2 .

Since P was chosen arbitrarily, we have verified Schmidt’s theorem. (Instead of Propos-
ition 2.12 one can also use Proposition 2.10; see e.g. [19].)

2.3.5. BMO and exponential Orlicz norms
The bounded mean oscillation norm is for an integrable function f : [0, 1]s → R defined
as

‖f‖BMO([0,1)s) = sup
U⊂[0,1)s

|U |−1 ∑
j∈Ns0

2|j|
∑
m∈Dj

Ij,m⊂U

|〈f, hj,m〉|2


1
2

,

where the supremum is taken over all measureable subsets of [0, 1)s.

We introduce the Orlicz norms. Let therefore (Ω, P ) be a probability space and let E
denote the expectation over (Ω, P ). Let Ψ : [0,∞) → [0,∞) be a convex function,
such that Ψ(x) = 0 if and only if x = 0. For a (Ω, P )-measurable real valued function
f : [0, 1]s → R we define

‖f‖LΨ := inf{K > 0 : EΨ(|f |/K) ≤ 1},
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where inf ∅ = ∞. Let α > 0 and let Ψα be a convex function which equals exα − 1 for
x sufficiently large, then we denote exp(Lα) := LΨα . We note that for all 1 ≤ p < ∞
we have L∞([0, 1)s) ⊂ exp(Lα) ⊂ Lp([0, 1)s), i.e. every bounded function in L∞([0, 1)s)
is also contained in the exponential Orlicz space exp(Lα) and every function in exp(Lα)
is also an element of Lp([0, 1)s). The following propositions, which are also mentioned
in [7, Proposition 2.2, 2.3], provide tools to estimate the exponential Orlicz norm of a
function f .

Proposition 2.13. For any α > 0 and a (Ω, P )-measurable real valued function f :
[0, 1]s → R, the following equivalence holds:

‖f‖exp(Lα) ' sup
p>1

p−
1
α ‖f‖Lp([0,1)s) .

The next proposition follows directly from Proposition 2.10 and Proposition 2.13.

Proposition 2.14. For a (Ω, P )-measurable real valued function f : [0, 1]s → R we
have:

‖f‖exp(L2/s) . ‖S(f)‖L∞([0,1)s) .

2.4. Discrepancy bounds in several function spaces
For a long time, the only norms of the discrepancy function which have been considered
were the Lp norms for p ∈ [1,∞]. However, in recent years much progress has been
made for other norms.

Triebel initiated the study of the discrepancy function in other spaces such as the Besov
spaces and Triebel-Lizorkin spaces of dominating mixed smoothness in [69] and [70]. He
showed that for all 1 ≤ p, q ≤ ∞ and r ∈ R satisfying 1

p
− 1 < r < 1

p
and q <∞ if p = 1

and q > 1 if p =∞ and for all N ≥ 2 the discrepancy function of any N -element point
set P in [0, 1)s satisfies

‖∆N(·,P)‖Srp,qB([0,1)s) & N r(logN)
s−1
q (2.26)

This bound may be proven in a similar manner as Schmidt’s lower bound (see Sec-
tion 2.3.4) by employing Proposition 2.11. Also, for any N ≥ 2, there exists a point set
P in [0, 1)s with N points such that

‖∆N(·,P)‖Srp,qB([0,1)s) . N r(logN)(s−1)( 1
q

+1−r).

Hinrichs showed in [36] that in two dimensions the gap between the exponents of the
lower and the upper bounds can be closed for 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1

p
. For the

proof, he considered specific point sets, namely the digit shifted Hammersley point sets
H2,n(σ) for certain shifts σ, which achieve a Srp,qB-discrepancy of order in accordance
to the lower bound (2.26). Markhasin closed the gap in arbitrary dimensions under the
same conditions on p, q and r by considering Chen-Skriganov point sets in [51] and
higher order digital nets in [53]. Summarizing, for 1 ≤ p, q ≤ ∞ and r ≥ 0 there exist
point sets P in [0, 1)s with N points such that

‖∆N(·,P)‖Srp,qB([0,1)s) . N r(logN)
s−1
q ,
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which is best possible. It is interesting that the mentioned point sets do not achieve the
optimal order of Srp,qB discrepancy also for r < 0, i.e. for negative smoothness para-
meters. However, in two dimensions a simple symmetrisation trick of the Hammersley
point set can overcome this problem, as we outline in Section 4.1.3.

Until recently, there have not been any concrete results on the Besov norm of the
discrepancy function of infinite sequences. The one-dimensional case was first treated
in [44]. There we studied the symmetrized van der Corput sequence and showed that
for 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1

p
we have for all N ≥ 2 that

‖∆N(·, Ṽb)‖Srp,qB([0,1)) . (logN)
1
q (2.27)

if r = 0 and
‖∆N(·, Ṽb)‖Srp,qB([0,1)) . N r (2.28)

if 0 < r < 1/p. The surprising aspect of this result is that for positive smoothness
0 < r < 1/p sequences in the unit interval [0, 1) can achieve the same rate of Srp,qB
discrepancy as point sets in [0, 1), whereas the Lp and star discrepancy for sequences in
[0, 1)s is related to that of point sets in [0, 1)s+1. The proofs of (2.27) and (2.28) are
part of this thesis and will be given in Section 4.2.2. There exist also higher-dimensional
versions of (2.27) and (2.28), which were shown by Dick, Hinrichs, Markhasin and
Pillichshammer in [18]. Their result is based on higher order digital sequences S and
states that for 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1

p
we have for all N ≥ 2 that

‖∆N(·,S)‖Srp,qB([0,1)s) . (logN)
s
q (2.29)

if r = 0 and
‖∆N(·,S)‖Srp,qB([0,1)s) . N r(logN)

s−1
q (2.30)

if 0 < r < 1/p. We note that the above mentioned curiosity in the case of positive
smoothness r appears also in higher dimensions.
For the Triebel-Lizorkin norm of the discrepancy function of higher order digital se-
quences the authors of [18] obtained the same upper bounds, where the condition on r
in (2.30) must be changed to 0 < r < 1/max{p, q}.

It is convenient to study also the BMO and the exponential Orlicz norm of the discrep-
ancy function, since these norms are in some sense closer to the important L∞ case than
the Lp norms. For all N ≥ 2 there exist N element point sets in the unit interval [0, 1)s
such that

‖∆N(·,P)‖BMO([0,1)s) . (logN) s−1
2 ,

namely higher order digital nets. A two-dimensional version of this result based on digit
shifted Hammersley point sets can be found in [5]. This upper bound is complemented
by a matching lower bound. These results were shown in [7] and demonstrate that the
BMO norm of the discrepancy function behaves like the Lp discrepancy. For infinite
sequences S, the exact optimal order of magnitude in N of the BMO norm of the
discrepancy function is

‖∆N(·,S)‖BMO([0,1)s) . (logN) s2 ,

as shown in [18].
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Apart from the BMO norm, also the exponential Orlicz norm of the discrepancy function
has been thoroughly studied to gain insight into the behaviour of the star discrepancy.
From [7] we know that there exist point sets in [0, 1)s such that

‖∆N(·,P)‖
L

2
s−1

. (logN) s−1
2 ,

which is sharp. Moreover, for every 2/(s− 1) ≤ β <∞ we have

‖∆N(·,P)‖Lβ . (logN)(s−1)− 1
β ,

which is known to be sharp only in dimension 2, whereas this is not yet the case for
s ≥ 3. For every infinite sequence S in [0, 1)s, where s ≥ 2, we have

‖∆N(·,S)‖
L

2
s−1

. (logN) s2 ,

which is sharp and for every 2/(s− 1) ≤ β <∞ we have

‖∆N(·,S)‖Lβ . (logN)s−
1
β ,

This has been shown in [18]. There exists no matching lower bound so far. An one-
dimensional version of the last result can be found in Section 4.2.2 (Theorem 4.42).

We would like to close this section by listing all new results in this direction which we
will present in this thesis.

• We will investigate which conditions on Σ lead to the optimal order of Srp,qB and
Srp,qF discrepancy for the generalized Hammersley point sets HΣ

b,n and show that
the whole class of symmetrized Hammersley point set H̃Σ

b,n does so.

• We will prove that a certain symmetrization of digit shifted Hammersley point
sets leads to optimal bounds on its Srp,qB and Srp,qF discrepancy even for negative
smoothness parameters.

• We will study the Srp,qB and Srp,qF discrepancy of the van der Corput sequences
Vσb and its symmetrized versions Ṽσb and obtain best possible upper bounds (as
announced above).

• We will also show that the BMO and exponential Orlicz norms of the discrepancy
function of the sequences Ṽσb satisfy optimal upper bounds.
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3. Precise discrepancy results

3.1. Digit shifted Hammersley point sets in base 2

3.1.1. An exact formula for the L4 discrepancy of H2,n(σ)
Statement of the result As already mentioned in Section 2.1, it has been shown in
[42] that for every even p ∈ N there exists a shift σ such that

Lp(H2,n(σ)) = O
(√

logN
)
,

where N = 2n. The aim of this chapter is to find two shifts σ such that the L4
discrepancy of H2,n(σ) is of this best possible order and thereby proving exact formulas
for this quantity. We consider only even n and study the shifts σ1 = (σ1, . . . , σn), where
σj = 1 for j ∈ {1, . . . , n2} and σj = 0 otherwise and σ2 = (σ′1, . . . , σ′n), where σ′j = 1
for odd indices j and σ′j = 0 for even j. The following theorem shows that the L4
discrepancy of the point sets H2,n(σ1) and H2,n(σ2) is of the desired low order and that
in contrast to the L2 discrepancy it does not only depend on the number of zero digits
in the shift σ, but also on their position.

Theorem 3.1. For even n ∈ N we have

(L4(H2,n(σ1)))4 = 25
12288n

2 +
( 1739

30720 −
13
1442−n + 11

11522−2n
)
n

+
(2893

8640 + 89
4322−n − 145

17282−2n − 1
36002−4n

)
and

(L4(H2,n(σ2)))4 = 25
12288n

2 +
( 5281

92160 −
1
122−n + 11

11522−2n
)
n

+
(14221

43200 + 5
242−n − 3481

432002−2n − 1
36002−4n

)
.

Remark 3.2. From Theorem 3.1 we get

(L4(H2,n(σ2)))4 − (L4(H2,n(σ1)))4 =
( 1

1440 + 1
1442−n

)
n

−
( 61

10800 −
1

4322−n − 1
3002−2n

)
.

This difference is 0 for n = 2 (which is clear since in this case σ1 and σ2 are the same
tuple, namely (1, 0)) and greater than 0 for n ≥ 4. Hence, with respect to the L4
discrepancy the shift σ1 leads to slightly better results than σ2.
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Figure 3.1.: The digit shifted Hammersley point sets H2,10(σ1) and H2,10(σ2). While
the L2 discrepancy of these point sets has the same value of 0.797283 . . . ,
their L4 discrepancies differ slightly. We have L4(H2,10(σ1)) = 1.024971 . . .
and L4(H2,10(σ2)) = 1.025288 . . . .

Auxiliary results The proof of Theorem 3.1 relies strongly on Theorem 2.5 and uses
techniques developed and employed in the papers [42, 43, 46, 58]. To show Theorem 3.1,
we need various auxiliary results. Lemma 3.3 states that the discrepancy function
of H2,n(σ), for which we will simply write ∆(α, β) throughout this section, fulfils an
interesting relation, if the shift σ has a certain property. This lemma will simplify many
calculations later on in the proof of Theorem 3.1.
Lemma 3.3. If σ = (σ1, . . . , σn) fulfils the property

P : σn+1−j = σj ⊕ 1 for all j ∈ {1, . . . , n},

then the discrepancy function ∆ of the shifted Hammersley point set H2,n(σ) satisfies

∆(α, β) = −∆(1− β, α)

for all n-bit α and β.

Proof. For a point (c, d) ∈ [0, 1)2 with n-bit components c and d, we define the functions
T (c, d) = T 1(c, d) = (1− 1

2n − d, c) and T k+1(c, d) = T (T k(c, d)) for k ∈ N. The shift σ
shall fulfil property P. Then we have

1. T 4 = id, thus T 3 = T−1,

2. (c, d) ∈ H2,n(σ) if and only if T (c, d) ∈ H2,n(σ).
The first assertion is straightforward, since

T 4(c, d) =T 3
(

1− 1
2n − d, c

)
= T 2

(
1− 1

2n − c, 1−
1
2n − d

)
=T

(
d, 1− 1

2n − c
)

= (c, d).

We turn to the second assertion. From the definition of H2,n(σ) we derive that the point
(c, d) ∈ [0, 1)2 is an element of this point set if and only if the digits of c = c1

2 + · · ·+ cn
2n

and d = d1
2 + · · ·+ dn

2n satisfy the relations

dj = cn+1−j ⊕ σn+1−j for all j ∈ {1, . . . , n}.
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That leads to
cj = dn+1−j ⊕ σj for all j ∈ {1, . . . , n}.

Now we need the condition that σ fulfils property P, as it yields

cj = (dn+1−j ⊕ 1)⊕ (σj ⊕ 1) = (1− dn+1−j)⊕ σn+1−j for all j ∈ {1, . . . , n}.

From that we conclude that the point(
1− d1

2 + · · ·+ 1− dn
2n , c

)
=
(

1− 1
2n − d, c

)
= T (c, d)

is also an element of H2,n(σ). From 1. we obtain the other implication in 2.
The clue of the rest of the proof is to show

AN([0, α)× [0, β)) + AN([0, 1− β)× [0, α)) = Nα (3.1)

for all n-bit α and β, where AN refers to the point set H2,n(σ). Let therefore (c, d) be
an element of H2,n(σ) in [0, α)× [0, β). We consider the point T (c, d) =

(
1− 1

2n − d, c
)

which is also in H2,n(σ). From 0 ≤ d < β and the fact that β is n-bit, we get

1− 1
2n − β < 1− 1

2n − d ≤ 1− 1
2n , thus 1− β ≤ 1− 1

2n − d < 1.

We obtain T (c, d) ∈ [1− β, 1) × [0, α). On the other hand, for every point (e, f) of
H2,n(σ) in [1− β, 1) × [0, α) we have a point of H2,n(σ)) in [0, α) × [0, β), namely
T 3(e, f). We have found AN([0, α)× [0, β)) = AN([1− β, 1)× [0, α)). It is simple to see
that AN([0, 1)× [0, α)) = Nα. We conclude

AN([0, 1− β)× [0, α)) =AN([0, 1)× [0, α))− AN([1− β, 1)× [0, α))
=Nα− AN([0, α)× [0, β))

which results in (3.1). Now we can finish the proof since

∆(α, β) + ∆(1− β, α)
=AN([0, α)× [0, β)) + AN([0, 1− β)× [0, α))−Nαβ −N(1− β)α
=Nα−Nαβ −Nα +Nαβ = 0

as claimed.

We are able to derive several useful consequences from Lemma 3.3, which are stated in
the following corollary. Recall the definition of Q(2n) from the lines before Theorem 2.5.

Corollary 3.4. Let ∆(α, β) be the discrepancy function ofH2,n(σ) for n-bit α, β, where
σ fulfils property P. Then we have∑

α,β∈Q(2n)
αrβs∆(α, β)` = (−1)`

∑
α,β∈Q(2n)

(1− α)sβr∆(α, β)` (3.2)

for all r, s ∈ N0 and ` ∈ N. Especially, for s = 0 we have∑
α,β∈Q(2n)

αr∆(α, β)` = (−1)`
∑

α,β∈Q(2n)
βr∆(α, β)` (3.3)
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and for r = s = 0 and odd ` ∑
α,β∈Q(2n)

∆(α, β)` = 0. (3.4)

We also have ∑
α,β∈Q(2n)

β∆(α, β)` = 1
2

∑
α,β∈Q(2n)

∆(α, β)` (3.5)

for all ` ∈ N, especially ∑
α,β∈Q(2n)

β∆(α, β)` =
∑

α,β∈Q(2n)
α∆(α, β)` = 0 (3.6)

for odd ` ∈ N. Further we have∑
α,β∈Q(2n)

αβ∆(α, β)` = 1
4

∑
α,β∈Q(2n)

∆(α, β)` (3.7)

for even ` ∈ N and∑
α,β∈Q(2n)

αβ2∆(α, β)` +
∑

α,β∈Q(2n)
α2β∆(α, β)` = 2

∑
α,β∈Q(2n)

αβ∆(α, β)` (3.8)

for odd ` ∈ N.

Proof. We use Lemma 3.3 and obtain∑
α,β∈Q(2n)

αrβs∆(α, β)` =(−1)`
∑

α,β∈Q(2n)
αrβs∆(1− β, α)`

=(−1)`
∑

α,β∈Q(2n)
αr(1− β)s∆(β, α)`

=(−1)`
∑

α,β∈Q(2n)
(1− α)sβr∆(α, β)`

which yields (3.2), (3.3) and (3.4). To verify (3.5) and (3.6), we write in the case that
` is even ∑

α,β∈Q(2n)
β∆(α, β)` =

∑
α,β∈Q(2n)

(β − 1)∆(1− β, α)` +
∑

α,β∈Q(2n)
∆(α, β)`

=−
∑

α,β∈Q(2n)
β∆(β, α)` +

∑
α,β∈Q(2n)

∆(α, β)`

=−
∑

α,β∈Q(2n)
α∆(α, β)` +

∑
α,β∈Q(2n)

∆(α, β)`

=−
∑

α,β∈Q(2n)
β∆(α, β)` +

∑
α,β∈Q(2n)

∆(α, β)`

and we obtain (3.5) for even exponents `. In the case of odd exponents `, we have

0 =
∑

α,β∈Q(2n)
∆(α, β)` =

∑
α,β∈Q(2n)

β∆(α, β)` +
∑

α,β∈Q(2n)
(1− β)∆(α, β)`

=
∑

α,β∈Q(2n)
β∆(α, β)` +

∑
α,β∈Q(2n)

β∆(α, 1− β)`

=
∑

α,β∈Q(2n)
β∆(α, β)` −

∑
α,β∈Q(2n)

β∆(β, α)`
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=
∑

α,β∈Q(2n)
β∆(α, β)` −

∑
α,β∈Q(2n)

α∆(α, β)` = 2
∑

α,β∈Q(2n)
β∆(α, β)`,

which results in (3.6) together with (3.3). We turn to the last two claims in this corollary.
If ` is even, we have∑

α,β∈Q(2n)
αβ∆(α, β)` =

∑
α,β∈Q(2n)

αβ∆(1− β, α)` =
∑

α,β∈Q(2n)
α(1− β)∆(β, α)`

=
∑

α,β∈Q(2n)
β(1− α)∆(α, β)`

=
∑

α,β∈Q(2n)
β∆(α, β)` −

∑
α,β∈Q(2n)

αβ∆(α, β)`,

which yields
∑

α,β∈Q(2n)
αβ∆(α, β)` = 1

2
∑

α,β∈Q(2n)
β∆(α, β)` = 1

4
∑

α,β∈Q(2n)
∆(α, β)`

together with (3.5). If ` is odd, we can write∑
α,β∈Q(2n)

αβ2∆(α, β)` =−
∑

α,β∈Q(2n)
αβ2∆(1− β, α)` = −

∑
α,β∈Q(2n)

(1− α)2β∆(α, β)`

=−
∑

α,β∈Q(2n)
β∆(α, β)` + 2

∑
α,β∈Q(2n)

αβ∆(α, β)`

−
∑

α,β∈Q(2n)
α2β∆(α, β)`,

which yields (3.8) by regarding (3.6).

In the following, we study sums which involve the expressions which appear in The-
orem 2.5 and will be fundamental for our proof.

Lemma 3.5. With the definitions as in Theorem 2.5 we have

∑
α∈Q(2n)

α(αn−u ⊕ αn+1−j(u)) = 2n−2 + 2u−2 − 1
4 −

1
2

u∑
j=1

(βj ⊕ σj ⊕ 1)2j−1.

Let now 1 ≤ k ≤ n−1 and u1, . . . , uk ∈ {0, . . . , n−1} with ui 6= uj for 1 ≤ i 6= j ≤ n−1.
Then we have ∑

α∈Q(2n)

k∏
i=1

(αn−ui ⊕ αn+1−j(ui)) = 2n−k.

Proof: The first formula is [43, Lemma 1] and the second one is [42, Lemma 2].

Lemma 3.6. Choose an n-bit number β. Let 1 ≤ u ≤ n − 1 be an integer. Let
1 ≤ k ≤ n− 1 be an integer and u1 < u2 < · · · < uk ∈ {0, 1, . . . , n− 1}. Then we have

∑
β∈Q(2n)

k∏
j=1
‖2uiβ‖ = 2n

22k ,
∑

β∈Q(2n)
β‖2uβ‖ = 2n

8 ,
∑

β∈Q(2n)
‖2uβ‖2 = 22n + 22u+1

3 · 2n+2 ,

∑
β∈Q(2n)

‖2uβ‖4 = 1
16

(1
52n + 1

32−n+2u+2 − 1
152−3n+4u+3

)
,
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∑
β∈Q(2n)

‖2u1β‖3‖2u2β‖ = 1
128(2n − 2n+2u1−2u2 − 2−n+2u1+2),

∑
β∈Q(2n)

‖2u1β‖‖2u2β‖3 = 1
128(2n + 2−n+2u2+2),

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖2 = 1
1440(5 · 2n+1 + 5 · 2−n+2u2+2 − 7 · 2n+2u1−2u2−

− 5 · 2−n+2u1+2 − 3 · 2−3n+2u1+2u2+4),∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖‖2u3β‖ = 1
384(2n+2u1−2u3 + 2−n+2u1+2 + 2n+1 − 2n+2u1−2u2),

∑
β∈Q(2n)

‖2u1β‖‖2u2β‖2‖2u3β‖ = 1
384(2n+1 − 2n+2u2−2u3 − 2−n+2u2+2),

∑
β∈Q(2n)

‖2u1β‖‖2u2β‖‖2u3β‖2 = 1
192(2n + 2−n+2u3+1),

∑
β∈Q(2n)

β2‖2u1β‖‖2u2β‖ = 1
384(2n+3 + 2n−2u2 − 2n−2u1 + 2−n+2),

∑
β∈Q(2n)

β2‖2uβ‖2 = 1
45(5 · 22u−n−1 − 3 · 22u−3n−1 − 7 · 2−2u+n−5 + 5 · 2n−2 − 5 · 2−n−3).

Proof. The first formula is [58, Lemma 3 a)], the second one has already been shown in
the proof of [58, Theorem 2] and the third one is [58, Lemma 3 b)]. To verify the results
for the other sums, we show a formula for Σ := ∑

β∈Q(2n) β
q‖2u1β‖r‖2u2β‖s‖2u3β‖t,

where u1 < u2 < u3 < m and q, r, s, t ∈ N0. This formula is

Σ =
2u1−1∑
k=0

{ 2u2−u1−1−1∑
l=0

[ 2u3−u2−1−1∑
m=0

( 2n−u3−1−1∑
b=0

AqBrCsDt +
2n−u3−1∑
b=2n−u3−1

AqBrCs(1−D)t
)

+
2u3−u2−1∑

m=2u3−u2−1

( 2n−u3−1−1∑
b=0

AqBr(1− C)sDt +
2n−u3−1∑
b=2n−u3−1

AqBr(1− C)s(1−D)t
)]

+
2u2−u1−1∑
l=2u2−u1−1

[ 2u3−u2−1−1∑
m=0

( 2n−u3−1−1∑
b=0

Aq(1−B)rCsDt

+
2n−u3−1∑
b=2n−u3−1

Aq(1−B)rCs(1−D)t
)

+
2u3−u2−1∑

m=2u3−u2−1

( 2n−u3−1−1∑
b=0

Aq(1−B)r(1− C)sDt

+
2n−u3−1∑
b=2n−u3−1

Aq(1−B)r(1− C)s(1−D)t
)]}

,

where we use the abbreviations A := b
2n + k

2u1 + l
2u2 + m

2u3 , B := 2u1−nb+2u1−u2l+2u1−u3m,
C := 2u2−nb + 2u2−u3m and D := 2u3−nb. We can now prove all the formulas in this
lemma by calculating this term for suitable choices of the numbers q, r, s and t with
the aid of a computer algebra system. To show the idea how the formula above can be
found, we derive a similar formula for ∑β∈Q(2n) β

q‖2uβ‖r, u < n instead. To show the
above formula this method can be adapted easily. The proof however is quite lengthy.
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We can write ∑β∈Q(2n) β
q‖2uβ‖r = ∑2n−1

b=0

(
b

2n
)q
‖2u−nb‖r and thus

∑
β∈Q(2n)

βq‖2uβ‖r =
2u−1∑
k=0

{ (2k+1)2n−u−1−1∑
b=(2k)2n−u−1

(
b

2n

)q
‖2u−nb‖r

+
(2k+2)2n−u−1−1∑
b=(2k+1)2n−u−1

(
b

2n

)q
‖2u−nb‖r

}
.

If (2k)2n−u−1 ≤ b < (2k + 1)2n−u−1, then k ≤ 2u−nb < k + 1
2 , from which we derive

b2u−nbc = k and {2u−nb} = 2u−nb − k < 1
2 . But that implies ‖2u−nb‖ = 2u−nb − k in

this case. If (2k + 1)2n−u−1 ≤ b < (2k + 2)2n−u−1, we get k + 1
2 ≤ 2u−nb < k + 1, which

delivers b2u−nbc = k again, but since 1
2 ≤ {2

u−nb} < 1, we have ‖2u−nb‖ = 1−2u−nb+k
in this case. Therefore we have

∑
β∈Q(2n)

βq‖2uβ‖r =
2u−1∑
k=0


(2k+1)2n−u−1−1∑
b=(2k)2n−u−1

(
b

2n

)q
(2u−nb− k)r+

+
(2k+2)2n−u−1−1∑
b=(2k+1)2n−u−1

(
b

2n

)q
(1− 2u−nb+ k)r

 .
An index shift yields

∑
β∈Q(2n)

βq‖2uβ‖r =
2u−1∑
k=0


2n−u−1−1∑

b=0

(
b

2n + k

2u

)q
(2u−nb)r+

+
2n−u−1∑
b=2n−u−1

(
b

2n + k

2u

)q
(1− 2u−nb)r

 .
We note the similar structure as the above formula for Σ.

In the following lemmas, we restrict our calculations to the special shifts σ1 and σ2. It
is evident that σ1 and σ2 both have property P as explained in Lemma 3.3. Recall that
the number l = l(σ) is the number of zero digits in σ. Note that l(σ1) = l(σ2) = n

2 .

Lemma 3.7. Let ∆(α, β) be the discrepancy function of H2,n(σ1) or of H2,n(σ2). Then
we have

1
22n

∑
α,β∈Q(2n)

αβ∆(α, β) = − n

2n+7 .

Proof. We use Theorem 2.5 to write

∑
α,β∈Q(2n)

αβ∆(α, β) =
∑

α,β∈Q(2n)
αβ

n−1∑
u=0
‖2uβ‖(−1)σu+1(αn−u ⊕ αn+1−j(u))

=
n−1∑
u=0

σu+1=0

∑
β∈Q(2n)

β‖2uβ‖
∑

α∈Q(2n)
α(αn−u ⊕ αn+1−j(u))

−
n−1∑
u=0

σu+1=1

∑
β∈Q(2n)

β‖2uβ‖
∑

α∈Q(2n)
α(αn−u ⊕ αn+1−j(u)).
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By Lemma 3.5 and the second formula in Lemma 3.6 we find∑
β∈Q(2n)

β‖2uβ‖
∑

α∈Q(2n)
α(αn−u ⊕ αn+1−j(u))

=
∑

β∈Q(2n)
β‖2uβ‖

2n−2 + 2u−2 − 1
4 −

1
2

u∑
j=1

(βj ⊕ σj ⊕ 1)2j−1


=2n

8

(
2n−2 + 2u−2 − 1

4

)
− 1

2

u∑
j=1

2j−1 ∑
β∈Q(2n)

β‖2uβ‖(βj ⊕ σj ⊕ 1). (3.9)

In order to compute the last sum we use the short-hand Bu+i := βu+i
2i + · · · + βn

2n−u for
β = β1

2 + · · · + βn
2n . Then we obviously have ‖2uβ‖ = ‖Bu+1‖. Since Bu+2 <

1
2 , we also

have ‖Bu+2‖ = Bu+2 and
∥∥∥1

2 +Bu+2
∥∥∥ = 1

2 −Bu+2. That yields

1∑
βu+1,...,βn=0

‖Bu+1‖ =
1∑

βu+2,...,βn=0

(
‖Bu+2‖+

∥∥∥∥1
2 +Bu+2

∥∥∥∥) =
1∑

βu+2,...,βn=0

1
2 = 2n−u−2

and
1∑

βu+1,...,βn=0
Bu+1‖Bu+1‖ =

1∑
βu+2,...,βn=0

(
Bu+2‖Bu+2‖+

(1
2 +Bu+2

) ∥∥∥∥1
2 +Bu+2

∥∥∥∥)

=
1∑

βu+2,...,βn=0

1
4 = 2n−u−3.

From that we obtain
u∑
j=1

2j−1 ∑
β∈Q(2n)

β‖2uβ‖(βj ⊕ σj ⊕ 1)

=
u∑
j=1

2j−1
1∑

β1,...,βu=0
βj=σj

1∑
βu+1,...,βn=0

(
β1

2 + · · ·+ βu
2u + 1

2uBu+1

)
‖Bu+1‖

=
u∑
j=1

2j−1


1∑

β1,...,βu=0
βj=σj

(
β1

2 + · · ·+ σj
2j + · · ·+ βu

2u

) 1∑
βu+1,...,βn=0

‖Bu+1‖

+
1∑

β1,...,βu=0
βj=σj

 1
2u

1∑
βu+1,...,βn=0

Bu+1‖Bu+1‖




=
u∑
j=1

2j−1
{(

2u−1

2j σj + 1
4(2u − 2u−j − 1)

)
2n−u−2 + 2n−u−4

}

=
u∑
j=1

2j−1
{

2n−j−3σj + 2n−4 − 2n−j−4
}

= 2n−4
u∑
j=1

σj + 2n−5(2u+1 − u− 2).

We put this result into (3.9), which leads to

∑
β∈Q(2n)

β‖2uβ‖
∑

α∈Q(2n)
α(αn−u ⊕ αn+1−j(u)) = 22n−5 + 2n−5

u
2 −

u∑
j=1

σj


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and finally we see that

∑
α,β∈Q(2n)

αβ∆(α, β) = 22n−5(2l−n)+2n−5

 n−1∑
u=0

σu+1=0

u
2 −

u∑
j=1

σj

− n−1∑
u=0

σu+1=1

u
2 −

u∑
j=1

σj


 .

This formula is valid for any shift σ. In particular, for σ1 we find

∑
α,β∈Q(2n)

αβ∆(α, β) = 2n−5

n/2−1∑
u=0

u

2 −
n−1∑
u=n/2

(
u

2 −
(
u− n

2
)) = − n

1282n

and for σ2 we have

∑
α,β∈Q(2n)

αβ∆(α, β) = 2n−5

n/2−1∑
u=0

(2u+ 1
2 − (u+ 1)

)
−

n/2∑
u=1

(2u
2 − u

) = − n

1282n.

This yields the claimed result.

Lemma 3.8. Let ∆(α, β) be the discrepancy function of H2,n(σ1) or the discrepancy
function of H2,n(σ2). Then we have

1
22n

∑
α,β∈Q(2n)

∆(α, β)2 = 1
576(15n+ 16− 2−2n+4).

Proof. We put l = n
2 in [42, Lemma 6] and obtain the result.

Lemma 3.9. Let ∆1(α, β) and ∆2(α, β) be the discrepancy functions of H2,n(σ1) and
H2,n(σ2), respectively. Then we have

1
22n

∑
α,β∈Q(2n)

β2∆1(α, β)2 =
( 5

576 −
1

2882−n − 11
11522−2n

)
n

+ 77
8640 −

25
17282−2n + 1

1802−4n

and
1

22n

∑
α,β∈Q(2n)

β2∆2(α, β)2 =
( 5

576 −
11

11522−2n
)
n

+ 61
8640 −

109
86402−2n + 1

1802−4n.

Proof. Let first ∆(α, β) be the discrepancy function of H2,n(σ) for any shift σ. Consid-
ering Theorem 2.5, we can write

1
22n

∑
α,β∈Q(2n)

β2∆(α, β)2 = 1
22n

∑
α,β∈Q(2n)

β2
(

n−1∑
u=0

σu+1=0

‖2uβ‖(αn−u ⊕ αn+1−j(u))

−
n−1∑
u=0

σu+1=1

‖2uβ‖(αn−u ⊕ αn+1−j(u))
)2

= : 1
22n (A− 2B + C),
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where

A =
∑

α,β∈Q(2n)
β2
(

n−1∑
u=0

σu+1=0

‖2uβ‖(αn−u ⊕ αn+1−j(u))
)2

=2n
∑

β∈Q(2n)

{
1
2

n−1∑
u=0

σu+1=0

β2‖2uβ‖2 + 1
4

n−1∑
u1,u2=0

σu1+1=0,σu2+1=0
u1 6=u2

β2‖2u1β‖‖2u2β‖
}
,

B =
∑

α,β∈Q(2n)

{
β2
( n−1∑

u1=0
σu1+1=0

‖2u1β‖(αn−u1 ⊕ αn+1−j(u1))

×
n−1∑
u2=0

σu2+1=1

‖2u2β‖(αn−u2 ⊕ αn+1−j(u2))
)}

=2n
∑

β∈Q(2n)

{
1
4

n−1∑
u1=0,u2=0

σu1+1=0,σu2+1=1

β2‖2u1β‖‖2u2β‖
}

and
C = 2n

∑
β∈Q(2n)

{
1
2

n−1∑
u=0

σu+1=1

β2‖2uβ‖2 + 1
4

n−1∑
u1,u2=0

σu1+1=1,σu2+1=1
u1 6=u2

β2‖2u1β‖‖2u2β‖
}
.

Note that we used Lemma 3.5 to simplify these expressions. We put the results together
and obtain

1
22n

∑
α,β∈Q(2n)

β2∆(α, β)2 =2−n
∑

β∈Q(2n)

{
1
2

n−1∑
u=0

β2‖2uβ‖2 + 1
4

n−1∑
u1,u2=0
u1 6=u2

β2‖2u1β‖‖2u2β‖

−
n−1∑

u1,u2=0
σu1+1=1,σu2+1=0

β2‖2u1β‖‖2u2β‖
}
. (3.10)

The first two sums in the last expression can now be computed with aid of Lemma 3.6.
Therefore we define the functions

E(x) := 1
45
(
5 · 22x−n−1 − 3 · 22x−3n−1 − 7 · 2−2x+n−5 + 5 · 2n−2 − 5 · 2−n−3

)
and

F (x, y) := 1
384

(
2n+3 + 2n−2y − 2n−2x + 2−n+2

)
and have

∑
β∈Q(2n)

n−1∑
u=0

β2‖2uβ‖2 =
n−1∑
u=0

E(u) and

∑
β∈Q(2n)

n−1∑
u1,u2=0
u1 6=u2

β2‖2u1β‖‖2u2β‖ =
n−1∑

u1,u2=0
u1<u2

F (u1, u2) +
n−1∑

u1,u2=0
u1>u2

F (u2, u1).
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The third sum in (3.10) needs to be calculated individually for the shifts σ1 and σ2.
For σ1 we compute

n−1∑
u1,u2=0

σu1+1=1,σu2+1=0

∑
β∈Q(2n)

β2‖2u1β‖‖2u2β‖ =
n/2−1∑
u1=0

n−1∑
u2=n/2

F (u1, u2)

and for σ2 we have to evaluate the sum

n−1∑
u1,u2=0

σu1+1=1,σu2+1=0

∑
β∈Q(2n)

β2‖2u1β‖‖2u2β‖

=
n/2−1∑
u1=0

n/2−1∑
u2=u1

F (2u1, 2u2 + 1) +
n/2−1∑
u1=1

u1−1∑
u2=0

F (2u2 + 1, 2u1).

By calculating and combining all these expressions we obtain the claimed result.

Lemma 3.10. Let ∆1(α, β) and ∆2(α, β) be the discrepancy functions of H2,n(σ1) and
H2,n(σ2), respectively. Then we have

1
22n

∑
α,β∈Q(2n)

∆1(α, β)4 = 25
12288n

2 +
( 217

92160 + 1
1442−n + 11

11522−2n
)
n

+
(
− 31

43200 −
1

4322−n + 11
17282−2n − 1

3002−4n
)

and

1
22n

∑
α,β∈Q(2n)

∆2(α, β)4 = 25
12288n

2 +
( 281

92160 + 11
11522−2n

)
n

+
( 1

960 + 11
48002−2n − 1

3002−4n
)
.

Proof. Let first ∆(α, β) be the discrepancy function of H2,n(σ) for any shift σ. To avoid
too large expressions we use the short-hand An(u) = αn−u ⊕ αn+1−j(u) throughout this
proof. We can write

1
22n

∑
α,β∈Q(2n)

∆ (α, β)4 = 1
22n

∑
α,β∈Q(2n)

{
n−1∑
u=0
‖2uβ‖(−1)σu+1An(u)

}4

= 1
22n

∑
α,β∈Q(2n)


n−1∑
u=0

σu+1=0

‖2uβ‖An(u)−
n−1∑
u=0

σu+1=1

‖2uβ‖An(u)


4

=: 1
22n (A− 4B + 6C − 4D + E).

where

A :=
∑

α,β∈Q(2n)

 n−1∑
u=0

σu+1=0

‖2uβ‖An(u)


4

,
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B :=
∑

α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=0

‖2u1β‖An(u1)


3 n−1∑

u2=0
σu2+1=1

‖2u2β‖An(u2)

 ,

C :=
∑

α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=0

‖2u1β‖An(u1)


2 n−1∑

u2=0
σu2+1=1

‖2u2β‖An(u2)


2

,

D :=
∑

α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=0

‖2u1β‖An(u1)


 n−1∑

u2=0
σu2+1=1

‖2u2β‖An(u2)


3

and

E :=
∑

α,β∈Q(2n)

 n−1∑
u=0

σu+1=1

‖2uβ‖An(u)


4

.

In the following, the abbreviation (p.d.) shall always indicate that the indices of the
sum are pairwise distinct. We analyze the expression A and apply Lemma 3.5. We
obtain

A =2n
∑

β∈Q(2n)


1
2

n−1∑
u=0

σu+1=0

‖2uβ‖4 +
n−1∑

u1,u2=0 (p.d.)
σu1+1,σu2+1=0

‖2u1β‖3‖2u2β‖+

+ 3
4

n−1∑
u1,u2=0 (p.d.)
σu1+1,σu2+1=0

‖2u1β‖2‖2u2β‖2+

+ 3
4

n−1∑
u1,u2,u3=0 (p.d.)

σu1+1,σu2+1,σu3+1=0

‖2u1β‖2‖2u2β‖‖2u3β‖+

+ 1
16

n−1∑
u1,u2,u3,u4=0 (p.d.)

σu1+1,σu2+1,σu3+1,σu4+1=0

‖2u1β‖‖2u2β‖‖2u3β‖‖2u4β‖.


=:A1 + A2 + A3 + A4 + A5

Lemma 3.6 delivers

A1 =2n
32

n−1∑
u=0

σu+1=0

(1
52n + 1

32−n+2u+2 − 1
152−3n+4u+3

)

= l

16022n + 1
24

n−1∑
u=0

σu+1=0

22u − 1
602−2n

n−1∑
u=0

σu+1=0

24u

and

A5 = 2n
16

n−1∑
u1,u2,u3,u4=0 (p.d.)

σu1+1,σu2+1,σu3+1,σu4+1=0

2n
28 = 22n

212 l(l − 1)(l − 2)(l − 3).
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We get the analogue results for E, with the exception that σui+1 = 1 for i ∈ {1, 2, 3, 4}
and especially

E1 = n− l
160 22n + 1

24

n−1∑
u=0

σu+1=1

22u − 1
602−2n

n−1∑
u=0

σu+1=1

24u

and
E5 = 22n

212 (n− l)(n− l − 1)(n− l − 2)(n− l − 3).

We turn to the expression B and employ Lemma 3.5 to find

B =
∑

α,β∈Q(2n)




n−1∑
u1=0

σu1+1=0

‖2u1β‖3An(u1) + 3
n−1∑

u1,u2=0 (p.d.)
σu1+1,σu2+1=0

‖2u1β‖2‖2u2β‖An(u1)An(u2)+

+
n−1∑

u1,u2,u3=0 (p.d.)
σu1+1,σu2+1,σu3+1=0

3∏
i=1
‖2uiβ‖An(ui)


n−1∑
u4=0

σu4+1=1

‖2u4β‖An(u4)


=2n

∑
β∈Q(2n)


1
4

n−1∑
u1,u4=0

σu1+1=0,σu4+1=1

‖2u1β‖3‖2u4β‖

+ 3
8

n−1∑
u1,u2,u4=0 (p.d.)

σu1+1,σu2+1=0,σu4+1=1

‖2u1β‖2‖2u2β‖‖2u4β‖

+ 1
16

n−1∑
u1,u2,u3,u4=0 (p.d.)

σu1+1,σu2+1,σu3+1=0,σu4+1=1

‖2u1β‖‖2u2β‖‖2u3β‖‖2u4β‖

 =: B1 +B2 +B3,

where
B3 = 22n

212 l(l − 1)(l − 2)(n− l).

We obtain the same expressions for D, where we have to change the conditions for the
ui to σu1+1 = 0, σu2+1 = 1, σu3+1 = 1, σu4+1 = 1. Especially, we have

D3 = 22n

212 l(n− l)(n− l − 1)(n− l − 2).

It remains to examine C. In a similar manner as before we obtain

C =
∑

α,β∈Q(2n)




n−1∑
u1=0

σu1+1=0

‖2u1β‖2An(u1) +
n−1∑

u2,u3=0 (p.d.)
σu2+1,σu3+1=0

∏
i=2,3
‖2uiβ‖An(ui)

×

×


n−1∑
u4=0

σu4+1=1

‖2u4β‖2An(u4) +
n−1∑

u5,u6=0 (p.d.)
σu5+1,σu6+1=1

∏
i=5,6
‖2uiβ‖An(ui))



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=2n
∑

β∈Q(2n)


1
4

n−1∑
u1,u4=0

σu1+1=0,σu4+1=1

‖2u1β‖2‖2u4β‖2+

+ 1
8

n−1∑
u2,u3,u4=0 (p.d.)

σu2+1,σu3+1=0,σu4+1=1

‖2u2β‖‖2u3β‖‖2u4β‖2+

+ 1
8

n−1∑
u1,u5,u6=0 (p.d.)

σu1+1=0,σu5+1,σu6+1=1

‖2u1β‖2‖2u5β‖‖2u6β‖+

+ 1
16

n−1∑
u2,u3,u5,u6=0 (p.d.)

σu2+1,σu3+1=0,σu5+1,σu6+1=1

‖2u2β‖‖2u3β‖‖2u5β‖‖2u6β‖


=:C1 + C2 + C3 + C4.

We find C4 = 22n

212 l(l−1)(n− l)(n− l−1). Now we put all the results together. Obviously
we have

A1 + E1 = n

16022n + 1
24

n−1∑
u=0

22u + 2−2n

160

n−1∑
u=0

24u = n

16022n + 97
720022n − 1

72 + 1
24002−2n,

A5 − 4B3 + 6C4 − 4D3 + E5 = 22n

212 {l(l − 1)(l − 2)(l − 3)− 4l(l − 1)(l − 2)(n− l)

+ 6l(l − 1)(n− l)(n− l − 1)− 4l(n− l)(n− l − 1)(n− l − 2)

+ (n− l)(n− l − 1)(n− l − 2)(n− l − 3)} = 22n

212 3n(n− 2) for l = n

2 ,

A3 + 6C1 + E3 = 3
42n

n−1∑
u1,u2=0
u1 6=u2

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖2,

A2 − 4B1 − 4D1 + E2 = 2n
n−1∑

u1,u2=0
u1 6=u2

∑
β∈Q(2n)

‖2u1β‖3‖2u2β‖

− 2n+1


n−1∑

u1,u2=0
σu1+1=0,σu2+1=1

∑
β∈Q(2n)

‖2u1β‖3‖2u2β‖+
n−1∑

u1,u2=0
σu1+1=1,σu2+1=0

∑
β∈Q(2n)

‖2u1β‖3‖2u2β‖

 ,

A4 − 4B2 + 6C2 + 6C3 − 4D2 + E4 = 3
42n

n−1∑
u1,u2,u3=0

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖‖2u3β‖

− 3 · 2n


n−1∑

u1,u2,u3=0 (p.d.)
σu1+1=0,σu2+1=0,σu3+1=1

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖‖2u3β‖

+
n−1∑

u1,u2,u3=0 (p.d.)
σu1+1=1,σu2+1=0,σu3+1=1

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖‖2u3β‖

 .
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We compute the sums in the expression above. Therefore we introduce several functions:

f(x, y) := 1
1440(5 · 2n+1 + 5 · 2−n+2y+2 − 7 · 2n+2x−2y

− 5 · 2−n+2x+2 − 3 · 2−3n+2x+2y+4),

g1(x, y) := 1
128(2n − 2n+2x−2y − 2−n+2x+2),

g2(x) := 1
128(2n + 2−n+2x+2),

h1(x, y, z) := 1
384(2n+2x−2z + 2−n+2x+2 + 2n+1 − 2n+2x−2y),

h2(x, y) := 1
384(2n+1 − 2n+2x−2y − 2−n+2x+2) and

h3(x) := 1
192(2n + 2−n+2x+1).

Then Lemma 3.6 yields

n−1∑
u1,u2=0
u1 6=u2

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖2 =
n−1∑
u2=1

u2−1∑
u1=0

f(u1, u2) +
n−2∑
u2=0

n−1∑
u1=u2+1

f(u2, u1).

We also get

n−1∑
u1,u2=0
u1 6=u2

∑
β∈Q(2n)

‖2u1β‖3‖2u2β‖ =
n−1∑
u2=1

u2−1∑
u1=0

g1(u1, u2) +
n−2∑
u2=0

n−1∑
u1=u2+1

g2(u1)

and
n−1∑

u1,u2,u3=0 (p.d.)

∑
β∈Q(2n)

‖2u1β‖2‖2u2β‖‖2u3β‖

=
n−1∑

u1,u2,u3=0
u1<u2<u3

h1(u1, u2, u3) +
n−1∑

u1,u2,u3=0
u1<u3<u2

h1(u1, u3, u2)+

+
n−1∑

u1,u2,u3=0
u2<u1<u3

h2(u1, u3) +
n−1∑

u1,u2,u3=0
u3<u1<u2

h2(u1, u2)+

+
n−1∑

u1,u2,u3=0
u2<u3<u1

h1(u1) +
n−1∑

u1,u2,u3=0
u3<u2<u1

h1(u1).

All these sums can be computed straightforward. The remaining sums have to be
evaluated individually for the special shifts σ1 and σ2 in a similar way.

Proof of Theorem 3.1
Proof. We split the integral in the definition of the L4 discrepancy of H2,n(σ) into four
parts and write∫ 1

0

∫ 1

0
∆(t1, t2)4 dt1 dt2
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=
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1, t2)4 dt1 dt2 +

∫ 1−2−n

0

∫ 1

1−2−n
∆(t1, t2)4 dt1 dt2

+
∫ 1

1−2−n

∫ 1−2−n

0
∆(t1, t2)4 dt1 dt2 +

∫ 1

1−2−n

∫ 1

1−2−n
∆(t1, t2)4 dt1 dt2

=:I1 + I2 + I3 + I4.

Now we make use of the second part of Lemma 2.5. Then we can calculate I2, I3 and
I4 easily. We start with I2 and obtain

I2 =
∫ 1−2−n

0

∫ 1

1−2−n
∆(t1, t2)4 dt1 dt2

=
∫ 1−2−n

0

∫ 1

1−2−n
(∆(t1(n), 1) + 2n(t1(n)− t1t2))4 dt1 dt2

=
∫ 1−2−n

0

∫ 1

1−2−n
(2n(t1(n)− t1t2))4 dt1 dt2

=24n
2n−1∑
a=1

∫ a
2n

a−1
2n

∫ 1

1−2−n

(
a

2n − t1t2
)4

dt1 dt2

= 1
1800 · 26n

(
1507 · 25n − 4440 · 24n + 5060 · 23n − 2775 · 22n + 720 · 2n − 72

)
.

The integral I3 can be computed in the same way and has exactly the same value as I2.
We evaluate I4 and find

I4 =
∫ 1

1−2−n

∫ 1

1−2−n
∆(t1, t2)4 dt1 dt2

=
∫ 1

1−2−n

∫ 1

1−2−n
(∆(1, 1) + 2n(1− t1t2))4 dt1 dt2

=24n
∫ 1

1−2−n

∫ 1

1−2−n
(1− t1t2)4 dt1 dt2

= 1
300 · 26n

(
620 · 24n − 840 · 23n + 465 · 22n − 120 · 2n + 12

)
.

We turn to I1. Using the relation ∆(α, β) = ∆(t1(n), t2(n)) + 2n(t1(n)t2(n)− t1t2) again
yields

I1 =
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1, t2)4 dt1 dt2

=
∫ 1−2−n

0

∫ 1−2−n

0
(∆(t1(n), t2(n)) + 2n(t1(n)t2(n)− t1t2))4 dt1 dt2

=
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1(n), t2(n))4 dt1 dt2

+ 2n+2
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1(n), t2(n))3 · (t1(n)t2(n)− t1t2) dt1 dt2

+ 3 · 22n+1
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1(n), t2(n))2 · (t1(n)t2(n)− t1t2)2 dt1 dt2

+ 23n+2
∫ 1−2−n

0

∫ 1−2−n

0
∆(t1(n), t2(n)) · (t1(n)t2(n)− t1t2)3 dt1 dt2

+ 24n
∫ 1−2−n

0

∫ 1−2−n

0
(t1(n)t2(n)− t1t2)4 dt1 dt2
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=
2n−1∑
a,b=1

∆
(
a

2n ,
b

2n

)4 ∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

dt1 dt2

+ 2n+2
2n−1∑
a,b=1

∆
(
a

2n ,
b

2n

)3 ∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

(
ab

22n − t1t2
)

dt1 dt2

+ 3 · 22n+1
2n−1∑
a,b=1

∆
(
a

2n ,
b

2n

)2 ∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

(
ab

22n − t1t2
)2

dt1 dt2

+ 23n+2
2n−1∑
a,b=1

∆
(
a

2n ,
b

2n

)∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

(
ab

22n − t1t2
)3

dt1 dt2

+ 24n
2n−1∑
a,b=1

∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

(
ab

22n − t1t2
)4

dt1 dt2

=:Σ1 + Σ2 + Σ3 + Σ4 + Σ5.

The integrals can be computed easily. We get (by writing ∆ := ∆
(
a

2n ,
b

2n
)
)

Σ1 = 1
22n

2n−1∑
a,b=1

∆4,

Σ2 = 1
23n

2
2n−1∑
a,b=1

a∆3 + 2
2n−1∑
a,b=1

b∆3 −
2n−1∑
a,b=1

∆3

 ,
Σ3 = 1

32−4n

6
2n−1∑
a,b=1

a2∆2 + 6
2n−1∑
a,b=1

b2∆2 − 6
2n−1∑
a,b=1

a∆2

− 6
2n−1∑
a,b=1

b∆2 + 9
2n−1∑
a,b=1

ab∆2 + 2
2n−1∑
a,b=1

∆2

 and

Σ4 = 1
122−5n

12
2n−1∑
a,b=1

a3∆− 18
2n−1∑
a,b=1

a2∆ + 24
2n−1∑
a,b=1

a2b∆ + 12
2n−1∑
a,b=1

a∆− 32
2n−1∑
a,b=1

ab∆

+ 24
2n−1∑
a,b=1

ab2∆ + 12
2n−1∑
a,b=1

b3∆− 18
2n−1∑
a,b=1

b2∆ + 12
2n−1∑
a,b=1

b∆− 3
2n−1∑
a,b=1

∆
 .

The value of Σ5 can be found by a straightforward calculation and is

Σ5 = (2n − 1)2

10800 · 26n

(
3014 · 24n − 9206 · 23n + 9209 · 22n − 3456 · 2n + 432

)
.

Via the correspondences a = 2nα and b = 2nβ, Corollary 3.4 now comes to full effect.
The relations (3.4) and (3.6) deliver Σ2 = 0 immediately. In order to simplify Σ3 we
apply (3.3), (3.5) and (3.7) and obtain

Σ3 =2−2n+2 ∑
α,β∈Q(2n)

β2∆(α, β)2 +
(3

4 − 2−n+1 + 1
32−2n+1

)
2−2n ∑

α,β∈Q(2n)
∆(α, β)2.

Using (3.3), (3.4), (3.6), (3.8) and Lemma 3.7 allows us to transform the large expression
for Σ4 to

Σ4 = 4
32−2n(3 · 2n − 2)

∑
α,β∈Q(2n)

αβ∆(α, β) = − n

962−n(3− 2−n+1).

Putting all results together, Lemma 3.8, Lemma 3.9 and Lemma 3.10 lead to the formulas
in Theorem 3.1.
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Conclusions and open problems In Section 1.2 we answered the question on the best
known upper bounds on

lim inf
N→∞

inf
|P|=N

L2,N(P)√
logN

and stated several results concerning this expression. Although there are several precise
results on the L2 discrepancy, there are hardly any similar results on the Lp discrepancy
for other parameters p. From Theorem 3.1 however we can derive a new upper bound
on

lim inf
N→∞

inf
|P|=N

L4,N(P)√
logN .

Previously, the best upper bound was due to (2.8), which yields

lim inf
N→∞

inf
|P|=N

L4,N(P)√
logN ≤

1
4
√

log 2(2S(p, p/2))
1
p = 0.580844 . . .

for p = 4. This bound has been obtained in [42] by computing the mean of the Lp dis-
crepancy of H2,n(σ) over all possible digital shifts. However, from our exact discrepancy
results on the point sets H2,n(σ1) and H2,n(σ2) we derive the improved constant

lim inf
N→∞

inf
|P|=N

L4,N(P)√
logN ≤

1√
log 2

( 25
12288

) 1
4

= 0.255095 . . . ,

which is the best upper bound on the L4 discrepancy of point sets in the unit square
known so far. It can probably be further improved by considering generalized Hammers-
ley point sets for arbitrary bases b and permutations σ, but the computations would be
very technical.

It is natural to ask for corresponding results on the Lp discrepancy at least for even
integers p. However, the combinatorial complexity of the involved calculations explodes
fast as p increases. Already the L6 discrepancy is hard to handle. We propose an open
question:

Open Problem 3.11. For any even p ∈ N: Determine the exact value of the constant

c(p) := lim sup
N→∞

Lp,N(H2,n(σ))√
logN

for a suitable shift σ, e.g. σ1 or σ2. Note that the existence of c(p) is confirmed for
these shifts by Theorem 4.2 in Section 4.1.1. Prove or disprove that in order to find c(p)
it suffices to consider only the sum

1
22n

∑
α,β∈Q(2n)

∆(α, β)p,

as it was the case for the L2 and L4 discrepancy, and provide precise results on this sum.
We conjecture that maybe c(p) = 5p/2

3·8p , which would be in accordance to the results for
the L2 and the L4 discrepancy.
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3.1.2. Bounds on the L1 discrepancy of H2,n(σ)
An exact computation of the L1 discrepancy of the digit shifted Hammersley point set
is very difficult, since one has to determine for which intervals [0, t) the discrepancy
function of H2,n(σ) is positive and for which it is negative. This fact makes things far
more complicated as it was the case for the L2 or the L4 discrepancy, where it was not
necessary to take care of the sign of the local discrepancy. As a trivial upper bound
on the L1 discrepancy we can take the result for the L2 discrepancy. The result of
Vagharshakyan (1.19) gives us an unsatisfactory general lower bound. Surprisingly, it is
easily possible to find an improved lower bound on the L1 discrepancy of H2,n(σ1) and
H2,n(σ2) by applying Hölder’s inequality (1.10). We set F = |f |2/3 and G = |f |4/3 for a
function f ∈ L1([0, 1)2) with ‖f‖L1([0,1)2) 6= 0 and choose p = 3/2 and q = 3. Then we
have

∫
[0,1)2
|f(t)|2 dt =

∫
[0,1)2
|F (t)G(t)| dt ≤

(∫
[0,1)2
|F (t)| 32 dt

) 2
3
(∫

[0,1)2
|G(t)|3 dt

) 1
3

=
(∫

[0,1)2
|f(t)| dt

) 2
3
(∫

[0,1)2
|f(t)|4 dt

) 1
3

.

We have shown ‖f‖2
L2([0,1)2) ≤ ‖f‖

2
3
L1([0,1)2)‖f‖

4
3
L4([0,1)2) and hence

‖f‖L1([0,1)2) ≥
‖f‖3

L2([0,1)2)

‖f‖2
L4([0,1)2)

.

This relation between the L1, L2 and L4 norms has proven to be useful in the context
of uniform distribution and discrepancy theory before, e.g. in [1] or [2]. We set f =
∆N(·,P) for a point set P , which yields the following interesting relation between its
L1, L2 and L4 discrepancy:

L1,N(P) ≥ (L2,N(P))3

(L4,N(P))2 .

We combine (2.7) and Theorem 3.1 to obtain

L1,N(P) ≥ (5/192) 3
2

(25/12288) 1
2

√
n+ o (1) = (0.111902 . . . )

√
logN + o (1)

for P = H2,n(σ1) or P = H2,n(σ2), where o(1) denotes an expression of order 1 or of
lower order. Altogether, we have

0.111902 · · · ≤ lim inf
N→∞

L1(H2,n(σ))√
logN ≤ lim sup

N→∞

L1(H2,n(σ))√
logN ≤ 0.1938 . . .

for σ = σ1 or σ = σ2, where the upper bound stems from the L2 discrepancy.

Open Problem 3.12. Improve the upper bound on L1(H2,n(σ1)) or L1(H2,n(σ2)) or
find even the exact value of

lim sup
N→∞

L1(H2,n(σ))√
logN .

This result would probably lead to an improved upper bound on the L1 discrepancy of
point sets in the unit square, since the currently best known upper bound is the same
as for the L2 discrepancy according to (1.18).
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3.2. Symmetrized Hammersley point sets
3.2.1. An exact formula for the L2 discrepancy of H̃2,n(σ)
Statement of the result In this subsection we consider the symmetrized (digit shifted)
Hammersley point sets in base 2. We show an exact formula for the L2 discrepancy
of H̃2,n(σ), which gives not only a concrete constant for the leading term, but also
demonstrates that L2(H̃2,n(σ)) solely depends on the number of elements N = 2n+1 of
H̃2,n(σ) and not on the shift σ whatsoever.
Theorem 3.13. Let n ∈ N and σ ∈ {0, 1}n. Then we have

(L2(H̃2,n(σ)))2 = n

24 + 11
8 + 1

2n −
1

9 · 22n+1 ,

which can be displayed in terms of the number of elements N = 2n+1 as

L2(H̃2,n(σ)) =
(

logN
24 log 2 + 4

3 + 2
N
− 2

9N2

) 1
2

.

Figure 3.2.: The symmetrized Hammersley point sets H̃2,9(σI) and H̃2,9(σII), where
σI = (0, 0, 0, 0, 0, 0, 0, 0, 0) and σII = (0, 1, 0, 1, 0, 1, 0, 1, 0). The L2 dis-
crepancies of these two point sets have the same value of 1.323613 . . .

The proof of Theorem 3.13 relies again strongly on the methods in the papers [42, 43,
46, 58]. The fact that we can write the symmetrized Hammersley point set as a union of
two shifted Hammersley point sets allows us to employ the same techniques for H̃2,n(σ)
by employing Lemma 2.9.
Remark 3.14. Theorem 3.13 shows that the effect of the digital shift σ on the L2
discrepancy of H̃2,n(σ) cancels out completely. We can therefore simply symmetrize
the classical Hammersley point set itself. This is a remarkably easy construction of a
point set with very low L2 discrepancy. However, the coefficient of the leading term√

logN of L2(H̃2,n(σ)) is
√

1/(24 log 2) ≈ 0.2451 . . . , which is slightly higher than for
the shifted Hammersley point set H2,n(σ) under the condition that the number of ones
and zeros in σ is more or less balanced. In this case H2,n(σ) achieves an L2 discrepancy
of optimal order of magnitude in N (see Theorem 2.1). The coefficient of the leading
term of L2(H2,n(σ)) is then

√
5/(192 log 2) ≈ 0.1938 . . . (see (2.7)).
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Auxiliary results In the following, we collect several auxiliary results which will be
required in order to prove Theorem 3.13. Like in Section 3.1.1, we must again study sums
involving the terms ‖2uβ‖ as well as αn−u⊕αn+1−j(u), which stem from Theorem 2.5. We
write ∆1(α, β) for the discrepancy function of H2,n(σ) and ∆2(α, β) for the discrepancy
function of H2,n(σ∗).
Throughout the next lemma, we always write j1(u) if the function j(u) appearing in the
first part of Theorem 2.5 refers to ∆1(α, β) and j2(u) if it refers to ∆2(α, β).

Lemma 3.15. Let α = α1
2 + · · ·+ αn

2n and β = β1
2 + · · ·+ βn

2n be n-bit.

1. For u1, u2 ∈ {0, . . . , n− 1} with u1 6= u2 we have∑
α∈Q(2n)

(αn−u1 ⊕ αn+1−j1(u1))(αn−u2 ⊕ αn+1−j2(u2)) = 2n−2.

2. For u ∈ {0, . . . , n− 1} we have∑
α∈Q(2n)

(αn−u ⊕ αn+1−j1(u))(αn−u ⊕ αn+1−j2(u))

=
2n−u−1 if u ∈ {0, 1},

2n−u−1
(
1 +∑u−1

j=1 2j((γj ⊕ 1)γu + γj(γu ⊕ 1))
)

if u ∈ {2, . . . , n− 1}.

In the last expression, we define γj := βj ⊕ σj for all j ∈ {1, . . . , n− 1}.

Proof. We show the first assertion. W.l.o.g. we may assume that u1 < u2. Since
j1(u1) does only depend on the digits αn−u1+1, . . . , αn and j2(u2) only on the digits
αn−u2+1, . . . , αn, we have∑

α∈Q(2n)
(αn−u1 ⊕ αn+1−j1(u1))(αn−u2 ⊕ αn+1−j2(u2))

=
1∑

α1,...,αn−u2−1=0

1∑
αn−u2+1,...,αn=0

αn−u1 ⊕ αn+1−j1(u1)

=
1∑

α1,...,αn−u2−1=0

1∑
αn−u2+1,...,αn−u1−1=0

1∑
αn−u1+1,...,αn=0

1 = 2n−2.

We show the second claim. For u = 0 we have j1(u) = 0 and j2(u) = 0 by definition
and hence

∑
α∈Q(2n)

(αn ⊕ αn+1)(αn ⊕ αn+1) =
1∑

α1,...,αn=0
αn =

1∑
α1,...,αn−1=0

1 = 2n−1 = 2n−u−1.

If u = 1, we use the fact that j1(1) and j2(1) only depend on αn and write∑
α∈Q(2n)

(αn−1 ⊕ αn+1−j1(1))(αn−1 ⊕ αn+1−j2(1))

=
1∑

αn=0

 1∑
α1,...,αn−1=0

(αn−1 ⊕ αn+1−j1(1))(αn−1 ⊕ αn+1−j2(1))


=2n−2
1∑

αn=0

(
αn+1−j1(1)αn+1−j2(1) + (αn+1−j1(1) ⊕ 1)(αn+1−j2(1) ⊕ 1)

)
.
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We have to distinguish between the cases αn = γ1 and αn = γ1 ⊕ 1. In the first case we
obviously have j1(1) = 0 and j2(1) = 1 whereas in the second case we have j1(1) = 1
and j2(1) = 0. We conclude

2n−2
1∑

αn=0

(
αn+1−j1(1)αn+1−j2(1) + (αn+1−j1(1) ⊕ 1)(αn+1−j2(1) ⊕ 1)

)
=2n−2 ∑

αn=γ1

(αn ⊕ 1) + 2n−2 ∑
αn=γ1⊕1

(αn ⊕ 1)

=2n−2(γ1 ⊕ 1) + 2n−2γ1 = 2n−2 = 2n−u−1.

We turn to the case u ∈ {2, . . . , n− 1}. Since j1(u) and j2(u) only depend on the digits
αn+1−u, . . . , αn but not on α1, . . . , αn−u, we observe that∑

α∈Q(2n)
(αn−u ⊕ αn+1−j1(u))(αn−u ⊕ αn+1−j2(u))

=
1∑

αn+1−u,...,αn=0

 1∑
α1,...,αn−u=0

(αn−u ⊕ αn+1−j1(u))(αn−u ⊕ αn+1−j2(u))


=2n−u−1
1∑

αn+1−u,...,αn=0

(
αn+1−j1(u)αn+1−j2(u) + (αn+1−j1(u) ⊕ 1)(αn+1−j2(u) ⊕ 1)

)

=2n−u−1
u−1∑
j1=0

1∑
αn+1−u,...,αn=0

j1(u)=j1

(
αn+1−j1αn+1−j2(u) + (αn+1−j1 ⊕ 1)(αn+1−j2(u) ⊕ 1)

)

+ 2n−u−1
u−1∑
j2=0

1∑
αn+1−u,...,αn=0

j2(u)=j2

(
αn+1−j1(u)αn+1−j2 + (αn+1−j1(u) ⊕ 1)(αn+1−j2 ⊕ 1)

)

=:T1 + T2.

One might wonder why the sums over j1 and j2 end in u− 1 instead of u and why they
do not coincide. The reason is that j1(u) ∈ {0, . . . , u− 1} implies j2(u) = u and j2(u) ∈
{0, . . . , u − 1} implies j1(u) = u. This can be seen as follows: j1(u) ∈ {0, . . . , u − 1}
implies an+1−u = γu, because otherwise we would have j1(u) = u. But from the fact
that an+1−u = γu 6= γu ⊕ 1, we immediately derive j2(u) = u. The other way round can
be explained analogously. This means that the case j2(u) = u is actually contained in
the sum over j1 and reversely. We find

T1 =2n−u−1 ∑
αn+1−u=γu

...
αn−1=γ2
αn=γ1

(
αn+1αn+1−j2(u) + (αn+1 ⊕ 1)(αn+1−j2(u) ⊕ 1)

)

+ 2n−u−1
u−1∑
j1=1

1∑
αn+2−j1 ,...,αn=0∑

αn+1−u=γu
...

αn−j1=γj1+1
αn+1−j1=γj1⊕1

(
αn+1−j1αn+1−j2(u) + (αn+1−j1 ⊕ 1)(αn+1−j2(u) ⊕ 1)

)

=2n−u−1 (γu ⊕ 1) + 2n−u−1
u−1∑
j1=1

2j1−1 ((γj1 ⊕ 1)γu + γj1(γu ⊕ 1)) .
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Similarly we argue that

T2 = 2n−u−1γu + 2n−u−1
u−1∑
j2=1

2j2−1 ((γj2 ⊕ 1)γu + γj2(γu ⊕ 1)) .

Adding T1 and T2 completes the proof of the second item of this lemma.

The next lemma involves again the parameter l = l(σ) := |{i ∈ {1, . . . , n} : σi = 0}|.
Lemma 3.16. We have

1
22n

∑
α,β∈Q(2n)

∆1(α, β)∆2(α, β) = −n
2

64 −
l2

16 + ln

16 −
n

192 −
5

144 −
1

9 · 22n+2 .

Proof. In this proof we write for the sake of simplicity A(α, β,σ, u) := αn−u⊕αn+1−j(u),
where we emphasize the dependence of j(u) on α, β and σ. With the first part of
Theorem 2.5 we get

1
22n

∑
α,β∈Q(2n)

∆1(α, β)∆2(α, β)

= 1
22n

∑
α,β∈Q(2n)

 n−1∑
u1=0
‖2u1β‖(−1)σu1+1A(α, β,σ, u1)


×

 n−1∑
u2=0
‖2u2β‖(−1)σ

∗
u2+1A(α, β,σ∗, u2)


=− 1

22n

∑
α,β∈Q(2n)

 n−1∑
u1=0
‖2u1β‖(−1)σu1+1A(α, β,σ, u1)


×

 n−1∑
u2=0
‖2u2β‖(−1)σu2+1A(α, β,σ∗, u2)



=− 1
22n

∑
α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=0

‖2u1β‖A(α, β,σ, u1)


 n−1∑

u2=0
σu2+1=0

‖2u2β‖A(α, β,σ∗, u2)



+ 1
22n

∑
α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=0

‖2u1β‖A(α, β,σ, u1)


 n−1∑

u2=0
σu2+1=1

‖2u2β‖A(α, β,σ∗, u2)



+ 1
22n

∑
α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=1

‖2u1β‖A(α, β,σ, u1)


 n−1∑

u2=0
σu2+1=0

‖2u2β‖A(α, β,σ∗, u2)



− 1
22n

∑
α,β∈Q(2n)

 n−1∑
u1=0

σu1+1=1

‖2u1β‖A(α, β,σ, u1)


 n−1∑

u2=0
σu2+1=1

‖2u2β‖A(α, β,σ∗, u2)


=:−R1 +R2 +R3 −R4.

With the first part of Lemma 3.15 and the first formula in Lemma 3.6, respectively, we
obtain

R2 = 1
22n

n−1∑
u1=0

σu1+1=0

n−1∑
u2=0

σu2+1=1

∑
β∈Q(2n)

‖2u1β‖‖2u2β‖
∑

α∈Q(2n)
A(α, β,σ, u1)A(α, β,σ∗, u2)
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= 1
22n

n−1∑
u1=0

σu1+1=0

n−1∑
u2=0

σu2+1=1

2n
24 2n−2 = 1

64 l(n− l).

In the same way we show R3 = 1
64 l(n−l). To calculate R1 and R4, we need to distinguish

between the cases where u1 = u2 and where u1 6= u2. This leads to

R1 = 1
22n

n−1∑
u1=0

σu1+1=0

n−1∑
u2=0

σu2+1=0︸ ︷︷ ︸
u1 6=u2

2n
24 2n−2

+ 1
22n

n−1∑
u=0

σu+1=0

∑
β∈Q(2n)

‖2uβ‖2 ∑
α∈Q(2n)

A(α, β,σ, u)A(α, β,σ∗, u)

= 1
64 l(l − 1) + 1

22n

n−1∑
u=0

σu+1=0

∑
β∈Q(2n)

‖2uβ‖2 ∑
α∈Q(2n)

A(α, β,σ, u)A(α, β,σ∗, u).

Similarly, we obtain

R4 = 1
64(n− l)(n− l − 1) + 1

22n

n−1∑
u=0

σu+1=1

∑
β∈Q(2n)

‖2uβ‖2 ∑
α∈Q(2n)

A(α, β,σ, u)A(α, β,σ∗, u).

Our results for R1, R2, R3 and R4 yield
1

22n

∑
α,β∈Q(2n)

∆1(α, β)∆2(α, β)

=− 1
64(n2 + 4l2 − 4ln− n)

− 1
22n

n−1∑
u=0

∑
β∈Q(2n)

‖2uβ‖2 ∑
α∈Q(2n)

A(α, β,σ, u)A(α, β,σ∗, u).

Hence, our final task is to compute the last expression in the above line. We employ the
second part of Lemma 3.15 and the third formula in Lemma 3.6, respectively, to obtain

1
22n

n−1∑
u=0

∑
β∈Q(2n)

‖2uβ‖2 ∑
α∈Q(2n)

A(α, β,σ, u)A(α, β,σ∗, u)

= 1
22n

n−1∑
u=0

2n−u−1 ∑
β∈Q(2n)

‖2uβ‖2

+ 1
22n

n−1∑
u=2

2n−u−1 ∑
β∈Q(2n)

‖2uβ‖2
u−1∑
j=1

2j((γj ⊕ 1)γu + γj(γu ⊕ 1))

= 1
2n+1

n−1∑
u=0

2−u22n + 22u+1

3 · 2n+2

+ 1
2n+1

n−1∑
u=2

2−u
u−1∑
j=1

2j
∑

β∈Q(2n)
‖2uβ‖2(βj ⊕ σj ⊕ 1)(βu ⊕ σu)

+ 1
2n+1

n−1∑
u=2

2−u
u−1∑
j=1

2j
∑

β∈Q(2n)
‖2uβ‖2(βj ⊕ σj)(βu ⊕ σu ⊕ 1) =: Σ1 + Σ2 + Σ3.
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Finding the value of Σ1 is a matter of straightforward calculation. We have

Σ1 = 1
12

(
1− 1

22n

)
.

For Σ2 we find

Σ2 = 1
2n+1

n−1∑
u=2

2−u
u−1∑
j=1

2j
1∑

β1,...,βj−1,βj+1,...,βu−1=0
βj=σj

βu=σu⊕1

1∑
βu+1,...,βn=0

‖2uβ‖2.

We remark at this point that ‖2uβ‖2 depends only on βu+1, . . . , βn. Hence,

1∑
βu+1,...,βn=0

‖2uβ‖2 = 2−u
1∑

β1,...,βn=0
‖2uβ‖2 = 2−u

∑
β∈Q(2n)

‖2uβ‖2 = 2−u22n + 22u+1

3 · 2n+2 .

We arrive at

Σ2 = 1
2n+1

n−1∑
u=2

2−u
u−1∑
j=1

2j2u−22−u22n + 22u+1

3 · 2n+2

= 1
2n+1

n−1∑
u=2

2−u(2u − 2)2u−22−u22n + 22u+1

3 · 2n+2

= n

96 −
7

288 + 1
9 · 22n+1 .

It is clear that Σ3 = Σ2. Thus, after adding all the results the proof of the lemma is
finally complete.

Proof of Theorem 3.13 We apply Lemma 2.9 to write

(L2(H̃2,n(σ)))2 =
∫ 1

0

∫ 1

0
(∆(t1, t2, H̃2,n(σ)))2 dt1 dt2

=
∫ 1

0

∫ 1

0
(∆1(t1, t2))2 dt1 dt2 +

∫ 1

0

∫ 1

0
(∆2(t1, t2))2 dt1 dt2

+ 2
∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2

=(L2(H2,n(σ)))2 + (L2(H2,n(σ∗)))2

+ 2
∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2. (3.11)

We know the values of (L2(H2,n(σ)))2 and (L2(H2,n(σ∗)))2 already from Theorem 2.1
(where in the latter case we have to insert n− l instead of l in this formula). This yields

(L2(H2,n(σ)))2 + (L2(H2,n(σ∗)))2 = n2

32 + l2

8 −
ln

8 + 5n
96 + 3

4 + 1
2n+1 −

1
9 · 22n+2 .

We split the integrals in (3.11) in four parts:
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∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2 =

∫ 1−2−n

0

∫ 1−2−n

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2

+
∫ 1−2−n

0

∫ 1

1−2−n
∆1(t1, t2)∆2(t1, t2) dt1 dt2

+
∫ 1

1−2−n

∫ 1−2−n

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2

+
∫ 1

1−2−n

∫ 1

1−2−n
∆1(t1, t2)∆2(t1, t2) dt1 dt2

=:I1 + I2 + I3 + I4.

We can calculate I2, I3 and I4 with aid of the second part of Lemma 2.5. Since this
proceeds analogously as in the proof of [42, Theorem 1], we only give the results here.
We have

I2 = I3 = 25
36 · 2n −

5
9 · 4n −

25
36 · 4n + 2

3 · 8n −
1

9 · 16n
and

I4 = 7
6 · 4n + 1

9 · 16n −
2

3 · 8n .

It remains to evaluate I1. We use the second part of Lemma 2.5 to obtain

I1 =
∫ 1−2−n

0

∫ 1−2−n

0
(∆1(t1(n), t2(n)) + 2n(t1(n)t2(n)− t1t2))

× (∆2(t1(n), t2(n)) + 2n(t1(n)t2(n)− t1t2)) dt1 dt2

=
∫ 1−2−n

0

∫ 1−2−n

0
∆1(t1(n), t2(n))∆2(t1(n), t2(n)) dt1 dt2

+ 2n
∫ 1−2−n

0

∫ 1−2−n

0
∆1(t1(n), t2(n))(t1(n)t2(n)− t1t2) dt1 dt2

+ 2n
∫ 1−2−n

0

∫ 1−2−n

0
∆2(t1(n), t2(n))(t1(n)t2(n)− t1t2) dt1 dt2

+ 22n
∫ 1−2−n

0

∫ 1−2−n

0
(t1(n)t2(n)− t1t2)2 dt1 dt2 = S1 + S2 + S3 + S4.

The value of S4 can be calculated in a straightforward way and is

S4 = 1
72 · 16n (2n − 1)2(25 · 4n − 32 · 2n + 8).

The expression S2 was computed in the proof of [43, Theorem 1] and is given by

S2 = 2n−1 2n+1 − 1
4n

(
l(σ)

8 − n

16

)
.

Analogously, we have

S3 = 2n−1 2n+1 − 1
4n

(
l(σ∗)

8 − n

16

)
,

where l(σ∗) is the number of components in σ∗ which are equal to zero. Since we
obviously have l(σ∗) = n− l(σ), we find S2 + S3 = 0. So far we have

I1 = S1 + 1
72 · 16n (2n − 1)2(25 · 4n − 32 · 2n + 8).
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But since

S1 =
2n−1∑
a,b=1

∫ a
2n

a−1
2n

∫ b
2n

b−1
2n

∆1

(
a

2n ,
b

2n

)
∆2

(
a

2n ,
b

2n

)
dt1 dt2

= 1
22n

∑
α,β∈Q(2n)

∆1(α, β)∆2(α, β),

we also know the value of S1 from Lemma 3.16. Putting all results together, we obtain
the claimed formula in Theorem 3.13.

3.2.2. An exact formula for the L2 discrepancy of H̃Σ
b,n

Statement of the result The following theorem generalizes Theorem 3.13 to arbitrary
bases b ≥ 2 and permutations σ ∈ Ab(τ). Recall the notation from the lines before
Theorem 2.2 and from Definition 2.6. In particular, Ab(τ) is the set of all permutations
in Sb which commutate with τb.
Theorem 3.17. Let σ ∈ Ab(τ), n ∈ N and Σ ∈ {σ, σ}n. Then we have(

L2(H̃Σ
b,n)

)2
=ncσb + 11

8 + 1
bn

+ 1− 9 · (−1)b
144b2n ,

where cσb := 2Φσ,(2)
b + Φ̃σ

b + 1
2Φ̃σ

b,1 + 1
2Φ̃σ

b,2.

Remark 3.18. Theorem 3.17 demonstrates that L2(H̃Σ
b,n) does not depend on the po-

sitions of σ and σ in the tuple Σ ∈ {σ, σ}n at all, but only on the base b, on the
permutation σ ∈ Ab(τ) we choose and on the number of elements N = 2bn. Hence, for
a fixed σ ∈ Ab(τ) one should always choose Σ = (σ, σ, . . . , σ) and Σ∗ = (σ, σ, . . . , σ) if
one is only interested in a low L2 discrepancy of H̃Σ

b,n.
We would like to derive results for the simplest case σ = id. To this end, we need to
compute cidb . This is easily possible with aid of Proposition A.1 in the Appendix, which
yields cidb = b2

360 + 1
24 −

2
45b2 . This leads to the following corollary.

Corollary 3.19. Let Σ ∈ {id, τb}n for some n ∈ N. Then we have(
L2(H̃Σ

b,n)
)2

= n

(
b2

360 + 1
24 −

2
45b2

)
+ 11

8 + 1
bn

+ 1− 9 · (−1)b
144b2n .

Remark 3.20. We remark that for b = 2 the formula given in Corollary 3.19 recovers
Theorem 3.13. From [30, Corollary 4] we have

min
Σ∈{id,τb}n

(
L2(HΣ

b,n)
)2

= n

(
b2

240 + 1
72 −

13
720b2

)
+O(1).

This means that in the case Σ ∈ {id, τb}n, symmetrizing yields asymptotically a lower
L2 discrepancy than mere digit scrambling for b ≥ 5.
Our proof is based on techniques developed and employed in several papers such as [11,
26, 27, 29, 30, 31]. The formalism we use to verify Theorem 3.17 is rather complicated
and leads to several technical proofs. We therefore would like to proceed in the following
way: In the subsequent paragraph, we present the high level structure of the proof, where
we try to avoid as many technicalities as possible. This subsection gives the reader the
basic idea of the proof. The details of the proof can be find afterwards in an extra
paragraph.
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The basic steps of the proof Throughout this section, we write ∆1(t1, t2) for the
discrepancy function of HΣ

b,n and ∆2(t1, t2) for the discrepancy function of HΣ∗
b,n. The

first steps of the proof are similar to those of Theorem 3.13. With the definition of the
L2 discrepancy and Lemma 2.9 we obtain

(L2(H̃Σ
b,n))2 =

∫ 1

0

∫ 1

0
(∆(t1, t2, H̃Σ

b,n))2 dt1 dt2

=
∫ 1

0

∫ 1

0
(∆1(t1, t2))2 dt1 dt2 +

∫ 1

0

∫ 1

0
(∆2(t1, t2))2 dt1 dt2

+ 2
∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2

=(L2(HΣ
b,n))2 + (L2(HΣ∗

b,n))2 + 2
∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2)) dt1 dt2. (3.12)

At this point, we make use of Theorem 2.2, which yields

(L2(HΣ
b,n))2 + (L2(HΣ∗

b,n))2

=
(
Φσ
b

)2
(2n2 + 8l2 − 2n− 8ln) + 2nΦσ,(2)

b + 3
4 + 1

2bn −
1

36b2n .

Here we regarded the obvious fact that Σ∗ contains n − l entries equal to id whenever
Σ contains l of such entries. We examine the last integral in (3.12) and therefore regard
Remark 2.8 to write∫ 1

0

∫ 1

0
∆1(t1, t2)∆2(t1, t2) dt1 dt2

=
∫ 1

0

∫ 1

0
(∆1(t1(n), t2(n)) + bn(t1(n)t2(n)− t1t2))

× (∆2(t1(n), t2(n)) + bn(t1(n)t2(n)− t1t2)) dt1 dt2

=
∫ 1

0

∫ 1

0
∆1(t1(n), t2(n))∆2(t1(n), t2(n)) dt1 dt2

+ bn
∫ 1

0

∫ 1

0
∆1(t1(n), t2(n))(t1(n)t2(n)− t1t2) dt1 dt2

+ bn
∫ 1

0

∫ 1

0
∆2(t1(n), t2(n))(t1(n)t2(n)− t1t2) dt1 dt2

+ b2n
∫ 1

0

∫ 1

0
(t1(n)t2(n)− t1t2)2 dt1 dt2 =: Σ1 + Σ2 + Σ3 + Σ4.

From the proof of [31, Theorem 2] we already know that

Σ4 = 25
72 + 1

4bn + 1
72b2n

and
Σ2 = (2l − n)

(1
2 −

1
4bn

)
Φσ
b .

By replacing l by n− l in the result for Σ2 we obtain

Σ3 = (2(n− l)− n)
(1

2 −
1

4bn
)

Φσ
b

and therefore Σ2+Σ3 = 0. It remains to evaluate Σ1. In the following, we do nothing else
but inserting Theorem 2.7 for ∆1(λ/bn,M/bn) and ∆2(λ/bn,M/bn), and then separating
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those indices i ∈ {1, . . . , n} where σi = σ from those where σi = σ. We have

Σ1 = 1
b2n

bn∑
λ,M=1

∆1

(
λ

bn
,
M

bn

)
∆2

(
λ

bn
,
M

bn

)

= 1
b2n

bn∑
λ,M=1

(
n∑
i=1

ψσib,εi(λ,M,Σ)

(
M

bi

)) n∑
j=1

ψ
σ∗j
b,εj(λ,M,Σ∗)

(
M

bj

)

= 1
b2n

bn∑
λ,M=1

 n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)
+

n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)

×


n∑
j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)
+

n∑
j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)

= 1
b2n

bn∑
λ,M=1

 n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)
 n∑

j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)

+ 1
b2n

bn∑
λ,M=1

 n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)


n∑
j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)

+ 1
b2n

bn∑
λ,M=1

 n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)
 n∑

j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)

+ 1
b2n

bn∑
λ,M=1

 n∑
i=1
σi=σ

ψσb,εi(λ,M,Σ)

(
M

bi

)


n∑
j=1
σj=σ

ψσb,εj(λ,M,Σ∗)

(
M

bj

)
= : S1 + S2 + S3 + S4.

Now, for the first time in this proof, we have to deal with the functions ψσb,h which appear
in Theorem 2.7. First, we only need results that have already been proven in previous
papers. The proofs of the following auxiliary results can be found in [30, Lemma 2], [31,
Lemma 3] and [31, Lemma 4], respectively.
Lemma 3.21. Let 1 ≤ N ≤ bn, 1 ≤ i < j ≤ n and σ ∈ Sb. Then we have for
σi, σj ∈ {σ, σ}

bn∑
λ=1

ψσib,εi(λ,M,Σ1)

(
M

bi

)
ψ
σj
b,εj(λ,M,Σ2)

(
M

bj

)
= bn−2ψσib

(
M

bi

)
ψ
σj
b

(
M

bj

)
,

where Σ1,Σ2 ∈ {σ, σ}n may be different. Then, for 1 ≤ i < j ≤ n and an arbitrary
permutation σ ∈ Sb, we have

bn∑
N=1

ψσb

(
M

bi

)
ψσb

(
M

bj

)
= bn+2

(
Φσ
b

)2
.

Finally, for σ ∈ Sb, σ = τb ◦ σ and any h ∈ {0, . . . , b− 1}, we also have the relations

ψσb,h = −ψσb,b−h
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and, as a result from that, ψσb = −ψσb and ψσ,(2)
b = ψ

σ,(2)
b .

We change the summation order and use the statements of Lemma 3.21 to compute

S2 = 1
b2n

n∑
i,j=1
σi=σ
σj=σ

bn∑
N=1

bn−2ψσb

(
M

bi

)
ψσb

(
M

bj

)
= 1
b2n b

n−2
n∑

i,j=1
σi=σ
σj=σ

bn+2
(
Φσ
b

)2
= l(n− l)

(
Φσ
b

)2
.

Similarly, we show S3 = l(n− l)
(
Φσ
b

)2
= S2. To evaluate S1, we have to distinguish the

cases where i 6= j and where i = j. The first case can be treated analogously to S2 and
S3. Hence,

S1 = 1
b2n

n∑
i,j=1
σi,σj=σ
i 6=j

bn∑
N=1

bn−2ψσb

(
M

bi

)
ψσb

(
M

bj

)

+ 1
b2n

n∑
j=1
σj=σ

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=−
(
Φσ
b

)2
l(l − 1) + 1

b2n

n∑
j=1
σj=σ

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
.

In the same way we show

S4 = −
(
Φσ
b

)2
(n− l)(n− l − 1) + 1

b2n

n∑
j=1
σj=σ

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
.

From Lemma 3.22 and the proof of Lemma 3.25 we observe that
bn∑

λ,M=1
ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
=

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
.

Summarizing, we have

Σ1 =
(
Φσ
b

)2
(−n2 − 4l2 + n+ 4ln) + 1

b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
and thus, by putting all results together, we arrive at(

L2(H̃Σ
b,n)

)2
=2nΦσ,(2)

b + 13
9 + 1

bn

+ 2
b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
. (3.13)

We observe that the remaining step to finally prove Theorem 3.17 is the evaluation of
the expression

2
b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
. (3.14)

This is the most difficult and technical part of the proof, and all the lemmas we present
in the following paragraph aim at calculating this term. The final result is stated in
Lemma 3.25. Inserting the formula given in this lemma (and in Remark 3.26) into (3.13)
completes the proof of Theorem 3.17.
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The details of the proof To guide the reader through the proofs in this subsection, we
explain the basic ideas in a few lines preceeding the corresponding lemma, respectively.

Lemma 3.22 is the only lemma where we need the somewhat complicated definition
of the numbers εj(λ,M,Σ) appearing in Theorem 2.7. The proof of this lemma may
appear extremely technical on first look, but in fact we only apply basic combinatorial
considerations. The main concern is to investigate for which integers λ ∈ {1, . . . , bn}
the numbers εj(λ,M,Σ) and εj(λ,M,Σ∗) take certain values h, h + 1 ∈ {0, . . . , b − 1}
simultaneously.

Lemma 3.22. Let σ ∈ Sb. For all 1 ≤M ≤ bn and 1 ≤ j ≤ n− 1 we have
bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=



bn−1ψ̃σb
(
M
bj

)
+ bj−1(bn−j − 1− 2νj(M,Σ))

(
ψ̃σb,1

(
M
bj

)
− ψ̃σb

(
M
bj

))
if νj(M,Σ) < bn−j−1

2 ,

bn−1ψ̃σb
(
M
bj

)
+ bj−1(2νj(M,Σ) + 1− bn−j)

(
ψ̃σb,2

(
M
bj

)
− ψ̃σb

(
M
bj

))
if νj(M,Σ) ≥ bn−j−1

2 .

If j = n, then we have
bn∑
λ=1

ψσb,εn(λ,M,Σ)

(
M

bn

)
ψσb,εn(λ,M,Σ∗)

(
M

bn

)
= bn−1ψ̃σb

(
M

bn

)
.

Proof. The case M = bn is trivial since then the left- and the right-hand-sides of the
above equality are zero. We therefore assume 1 ≤M < bn now. We show the case j = n
first. Since εn(λ,M,Σ) = εn(λ,M,Σ∗) = λn by definition, we can write

bn∑
λ=1

ψσb,εn(λ,M,Σ)

(
M

bn

)
ψσb,εn(λ,M,Σ∗)

(
M

bn

)

=
b−1∑
h=0

ψσb,h

(
M

bn

)
ψσb,h

(
M

bn

) bn∑
λ=1
λn=h

1 = bn−1ψ̃σb

(
M

bn

)
.

We fix j ∈ {1, . . . , n− 1}, M ∈ {1, . . . , bn− 1} and Σ ∈ {σ, σ}n. We have to distinguish
between two cases. Let us first assume that νj(M,Σ) < νj(M,Σ∗). Then we can either
have

εj(λ,M,Σ) = εj(λ,M,Σ∗) or εj(λ,M,Σ) = εj(λ,M,Σ∗) + 1.
We count the number of Λj−1 such that εj(λ,M,Σ) = εj(λ,M,Σ∗) = h for any
h ∈ {0, . . . , b−1}. For h ∈ {1, . . . , b−1} these Λj−1 are given by νj(M,Σ)+(h−1)b+z
for z ∈ {νj(M,Σ∗) − νj(M,Σ) + 1, . . . , bn−j} and for h = 0 the corresponding Λj−1
are 0, . . . , νj(M,Σ) and νj(M,Σ∗) + (b − 1)bn−j + 1, . . . , bn−j+1 − 1. Hence for all
h ∈ {0, . . . , b − 1} we have bn−j − (νj(M,Σ∗) − νj(M,Σ)) values for Λj−1 such that
εj(λ,M,Σ) = εj(λ,M,Σ∗) = h. Since there are always bj−1 elements λ ∈ {1, . . . , bn}
with the same Λj−1 we have proven

bn∑
λ=1

{λ: εj(λ,M,Σ)=εj(λ,M,Σ∗)=h}

1 = bj−1(bn−j − (νj(M,Σ∗)− νj(M,Σ))). (3.15)
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For h ∈ {0, . . . , b − 2}, we have εj(λ,M,Σ) = h + 1 = εj(λ,M,Σ∗) + 1 for Λj−1 of the
form νj(M,Σ) + hb+ z for z ∈ {1, . . . , νj(M,Σ∗)− νj(M,Σ)}. Hence we have

bn∑
λ=1

{λ: εj(λ,M,Σ)=h+1, εj(λ,M,Σ∗)=h}

1 = bj−1(νj(M,Σ∗)− νj(M,Σ)) (3.16)

for all h ∈ {0, . . . , b − 2}. Here we simply neglect the also possible case εj(λ,M,Σ) =
0, εj(λ,M,Σ∗) = b− 1, since the corresponding summands in the sum

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

are zero anyway. In the second case νj(M,Σ) ≥ νj(M,Σ∗) we only have the possibilities

εj(λ,M,Σ) = εj(λ,M,Σ∗) or εj(λ,M,Σ) + 1 = εj(λ,M,Σ∗).

Apart from that, the situation is quite the same as in the first case and we have

bn∑
λ=1

{λ: εj(λ,M,Σ)=εj(λ,M,Σ∗)=h}

1 = bj−1(bn−j − (νj(M,Σ)− νj(M,Σ∗)))

for all h ∈ {0, . . . , b− 1} and

bn∑
λ=1

{λ: εj(λ,M,Σ)=h, εj(λ,M,Σ∗)=h+1}

1 = bj−1(νj(M,Σ)− νj(M,Σ∗))

for all h ∈ {0, . . . , b− 2}. Next we prove the relation νj(M,Σ∗) = bn−j − 1− νj(M,Σ).
From the definition of νj(M,Σ∗) we find

νj(M,Σ∗) =σ∗j+1(Mj+1)bn−j−1 + · · ·+ σ∗n−1(Mn−1)b+ σ∗n(Mn)
=(b− 1− σj+1(Mj+1))bn−j−1 + · · ·+ (b− 1− σn−1(Mn−1))b

+ (b− 1− σn(Mn))
=(b− 1)(bn−j−1 + · · ·+ b+ 1)− νj(M,Σ) = bn−j − 1− νj(M,Σ).

This identity yields the equivalence of νj(M,Σ) < νj(M,Σ∗) and νj(M,Σ) < bn−j−1
2 as

well as the equivalence of νj(M,Σ) ≥ νj(M,Σ∗) and νj(M,Σ) ≥ bn−j−1
2 . Now in the

case νj(M,Σ) < bn−j−1
2 we find

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=
b−1∑
h=0

ψσb,h

(
M

bj

)
ψσb,h

(
M

bj

) bn∑
λ=1

{λ: εj(λ,M,Σ)=εj(λ,M,Σ∗)=h}

1

+
b−2∑
h=0

ψσb,h+1

(
M

bj

)
ψσb,h

(
M

bj

) bn∑
λ=1

{λ: εj(λ,M,Σ)=h+1,εj(λ,M,Σ∗)=h}

1.
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Using (3.15), (3.16) and the definition of ψ̃σb and ψ̃σb,1, this leads to

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=bj−1(bn−j − (νj(M,Σ∗)− νj(M,Σ)))ψ̃σb
(
M

bj

)
+ bj−1(νj(M,Σ∗)− νj(M,Σ))ψ̃σb,1

(
M

bj

)
=bn−1ψ̃σb

(
M

bj

)
+ bj−1(νj(M,Σ∗)− νj(M,Σ))

(
ψ̃σb,1

(
M

bj

)
− ψ̃σb

(
M

bj

))
.

By applying the above relation between νj(M,Σ) and νj(M,Σ∗) we find

νj(M,Σ∗)− νj(M,Σ) = bn−j − 1− 2νj(M,Σ),

which yields the claim of this lemma in the case νj(M,Σ) < bn−j−1
2 . The other case can

be completed analogously.

We are now concerned with the task to compute sums of the form ∑bj

M=1 ψ̃
σ
b

(
M
bj

)
(and

analogous sums for ψ̃σb,1 and ψ̃σb,2). Let us first consider such sums for the special case
σ = id, since in this case the functions ψidb,h, which we introduced in Definition 2.6, can
be written down in a simple way. The rest of the proof of the subsequent Lemma 3.23
contains evaluations of elementary sums and integrals.

Lemma 3.23. For all j ∈ {1, . . . , n} we have

bj∑
M=1

ψ̃idb

(
M

bj

)
= bj

(∫ 1

0
ψ̃idb (x) dx+ Ab(j, id)

2

)
,

bj∑
M=1

ψ̃idb,1

(
M

bj

)
= bj

(∫ 1

0
ψ̃idb,1(x) dx+ Ab(j, id)

2

)
,

bj∑
M=1

ψ̃idb,2

(
M

bj

)
= bj

(∫ 1

0
ψ̃idb,2(x) dx+ Ab(j, id)

2

)
,

where we have

Ab(j, id) =
−

1
36b2j (b

3 + 2b) if b is even,
− 1

36b2j (b
3 − b) if b is odd.

and

Ab(j, id) =
−

1
36b2j (b

3 − 4b) if b is even,
− 1

36b2j (b
3 − b) if b is odd.

Proof. We use the fact that

ψidb,h(x) =
(b− h)x if x ∈

[
0, h

b

]
,

h(1− x) if x ∈
[
h
b
, 1
]
,

and

ψτbb,h(x) =
−hx if x ∈

[
0, b−h

b

]
,

(b− h)x− (b− h) if x ∈
[
b−h
b
, 1
]
,
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which was already mentioned in [30]. Let x ∈ [k/b, (k+1)/b]. Then we have x ∈ [0, h/b]
for h ∈ {k + 1, . . . , b− 1} and x ∈ [h/b, 1] for h ∈ {0, . . . , k}. We have x ∈ [0, (b− h)/b]
for h ∈ {0, . . . , b−k−1} and x ∈ [(b−h)/b, 1] for h ∈ {b−k, . . . , b−1}. We distinguish
two cases:

1. Let k ≤ (b− 1)/2. Then we have k ≤ b− k − 1 and therefore we can write

ψ̃idb (x) =
k∑

h=0
h(1− x)(−hx) +

b−k−1∑
h=k+1

(b− h)x · (−hx)

+
b−1∑

h=b−k
(b− h)x · ((b− h)x− (b− h))

=
(
bk2 + bk − b3

6 + b

6

)
x2 −

(
2k3

3 + k2 + k

3

)
x =: Pk(x).

2. Let k > (b− 1)/2. Then we have b− k − 1 < k and therefore we can write

ψ̃idb (x) =
b−k−1∑
h=0

h(1− x)(−hx) +
k∑

h=b−k
h(1− x) · ((b− h)x− (b− h))

+
b−1∑

h=k+1
(b− h)x · ((b− h)x− (b− h))

=
(
bk2 − 2b2k + bk + 5b3

6 − b
2 + b

6

)
x2

+
(

2b2k − 2k3

3 − k
2 − k

3 − b
3 + b2

)
x

+ 2k3

3 − bk
2 + k2 − bk + k

3 + b3

6 −
b

6 =: Qk(x).

Now we have to consider even and odd bases b separately. For even b we find

∫ 1

0
ψ̃idb (x) dx =

b
2−1∑
k=0

∫ k+1
b

k
b

Pk(x) dx+
b−1∑
k= b

2

∫ k+1
b

k
b

Qk(x) dx = − 1
90b −

7b3

720

and

bj∑
M=1

ψ̃idb

(
M

bj

)
=

b
2−1∑
k=0

(k+1)bj−1∑
M=kbj−1+1

Pk

(
M

bj

)
+

b−1∑
k= b

2

(k+1)bj−1∑
M=kbj−1+1

Qk

(
M

bj

)

=− 1
72bj (b3 + 2b) + bj

(
− 1

90b −
7b3

720

)

whereas for odd bases b we compute analogously

∫ 1

0
ψ̃idb (x) dx =

b−1
2∑

k=0

∫ k+1
b

k
b

Pk(x) dx+
b−1∑

k= b+1
2

∫ k+1
b

k
b

Qk(x) dx = 7
720b −

7b3

720
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and

bj∑
M=1

ψ̃idb

(
M

bj

)
=

b−1
2∑

k=0

(k+1)bj−1∑
M=kbj−1+1

Pk

(
M

bj

)
+

b−1∑
k= b+1

2

(k+1)bj−1∑
M=kbj−1+1

Qk

(
M

bj

)

=− 1
72bj (b3 − b) + bj

(
7

720b −
7b3

720

)
.

It is straightforward now to derive the claimed formula for ∑bj

M=1 ψ̃
id
b

(
M
bj

)
. Since the

proofs of the other two identities may be executed analogously, we omit them at this
point.

The next lemma generalizes Lemma 3.23 to arbitrary permutations σ ∈ Sb. The main
idea of the proof is to reduce the case of general permutations σ to the case where
σ = id. The latter case has been analyzed in the previous lemma already. We advise
the reader to consult also the proof of [31, Lemma 4], since we follow closely the ideas
there.

Lemma 3.24. Let σ ∈ Sb. For all j ∈ {1, . . . , n} we have

bj∑
M=1

ψ̃σb

(
M

bj

)
= bj

(∫ 1

0
ψ̃σb (x) dx+ Ab(j, id)

2

)
,

bj∑
M=1

ψ̃σb,1

(
M

bj

)
= bj

(∫ 1

0
ψ̃σb,1(x) dx+ Ab(j, id)

2

)
,

bj∑
M=1

ψ̃σb,2

(
M

bj

)
= bj

(∫ 1

0
ψ̃σb,2(x) dx+ Ab(j, id)

2

)
,

where Ab(j, id) and Ab(j, id) are as defined in Lemma 3.23.

Proof. It has been shown in the proof of [31, Lemma 4], by applying Simpson’s quad-
rature rule, that

bj∑
M=1

ψ
σ,(2)
b

(
M

bj

)
= bj

(∫ 1

0
ψ
σ,(2)
b (x) dx+ Ab(j, σ)

2

)

with
Ab(j, σ) = 1

6b2j

b∑
k=1

((
ψ
σ,(2)
b

)′ (k
b
− 0

)
−
(
ψ
σ,(2)
b

)′ (k
b

+ 0
))

,

where here and later on by f ′(x − 0) we mean the left-derivative and by f ′(x + 0) the
right-derivative of the function f at x . The only properties of ψσ,(2)

b the authors needed
to show this identity are the fact that ψσ,(2)

b is quadratic on intervals [k/b, (k + 1)/b) as
well as the 1-periodicity of this function. Since ψ̃σb has these two properties as well, an
analogous relation is also true for ψ̃σb . Now we need the definition ψ̃σb = ∑b−1

h=0 ψ
σ
b,hψ

σ
b,h

to deduce
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b∑
k=1

(
ψ̃σb
)′ (k

b
− 0

)
−
(
ψ̃σb
)′ (k

b
+ 0

)

=
b∑

k=1

b−1∑
h=0

{
ψσb,h

(
k

b

)(
ψσb,h

)′ (k
b
− 0

)
+ ψσb,h

(
k

b

)(
ψσb,h

)′ (k
b
− 0

)

− ψσb,h

(
k

b

)(
ψσb,h

)′ (k
b

+ 0
)
− ψσb,h

(
k

b

)(
ψσb,h

)′ (k
b

+ 0
)}

=
b−1∑
h=0

b∑
k=1

ψσb,h

(
k

b

)((
ψσb,h

)′ (k − 1
b

+ 0
)
−
(
ψσb,h

)′ (k
b

+ 0
))

+
b−1∑
h=0

b∑
k=1

ψσb,h

(
k

b

)((
ψσb,h

)′ (k − 1
b

+ 0
)
−
(
ψσb,h

)′ (k
b

+ 0
))

=
b−1∑
h=0

b∑
k=1

(S1 + S2).

We define fh,k :=
(
ψσb,h

)′ (
k
b

+ 0
)
and fh,k :=

(
ψσb,h

)′ (
k
b

+ 0
)
. From the linearity of ψσb,h

and ψσb,h on [k/b, (k+ 1)/b) we have ψσb,h(k/b) =
∫ k/b

0

(
ψσb,h

)′
(x) dx = 1

b

∑k−1
l=0 fh,l and also

ψσb,h(k/b) = 1
b

∑k−1
l=0 fh,l. For k = b, this yields ∑b−1

l=0 fh,l = ∑b−1
l=0 fh,l = 0. Hence for every

h ∈ {0, . . . , b− 1} we have

b∑
k=1

S1 = 1
b

b−1∑
l=0

fh,l
b∑

k=l+1
(fh,k−1 − fh,k) = 1

b

b−1∑
l=0

fh,lfh,l

and analogously

b∑
k=1

S2 = 1
b

b−1∑
l=0

fh,l

b∑
k=l+1

(fh,k−1 − fh,k) = 1
b

b−1∑
l=0

fh,lfh,l =
b∑

k=1
S1.

Finally we conclude

Ab(j, σ) = 1
3b2j+1

b−1∑
h=0

b−1∑
l=0

fh,lfh,l = 1
3b2j+1

b−1∑
h=0

b−1∑
l=0

((
ψσb,h

)′ ( l
b

+ 0
)(

ψσb,h
)′ ( l

b
+ 0

))

= 1
3b2j+1

b−1∑
h=0

b−1∑
l=0

((
ψidb,h

)′ (σ(l)
b

+ 0
)(

ψτbb,h
)′ (σ(l)

b
+ 0

))

= 1
3b2j+1

b−1∑
h=0

b−1∑
l=0

((
ψidb,h

)′ ( l
b

+ 0
)(

ψτbb,h
)′ ( l

b
+ 0

))
= Ab(j, id),

where we used the relations
(
ψσb,h

)′ ( l
b

+ 0
)

=
(
ψidb,h

)′ (σ(l)
b

+ 0
)

and (
ψσb,h

)′ ( l
b

+ 0
)

=
(
ψτbb,h

)′ (σ(l)
b

+ 0
)
.

They follow both directly from the definition of ψσb,h. The first relation has also been
used in [29, 31]. The proof of the first claim of this lemma is complete. Since the other
two identities may be proven completely analogously, we omit an explicit proof.
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Now we are ready to show the main lemma of this section. We will combine Lem-
mas 3.22, 3.23 and 3.24 to obtain this result.

Lemma 3.25. Let σ ∈ Sb. Then we have for even bases b

2
b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=n
(

Φ̃σ
b + 1

2Φ̃σ
b,1 + 1

2Φ̃σ
b,2

)
+
(

Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2

)
− 1

36 −
1

18b2n

and for odd bases b

2
b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=n
(

Φ̃σ
b + 1

2Φ̃σ
b,1 + 1

2Φ̃σ
b,2

)
+
(
− 1

36 + b2

b2 − 1

(
Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2

))(
1− 1

b2n

)
.

Proof. At first we remark that for M = Mnb
n−1 + · · · + M1 the number νj(M,Σ) de-

pends only on the digits Mj+1, . . . ,Mn, which follows directly from its definition in
Theorem 2.7. On the other hand, the values of ψ̃σb

(
M
bj

)
, ψ̃σb,1

(
M
bj

)
and ψ̃σb,2

(
M
bj

)
depend

only on the digitsM1, . . . ,Mj. This can be seen from the 1-periodicity of these functions,
since

ψ̃σb

(
M

bj

)
=ψ̃σb

({
M

bj

})
= ψ̃σb

({
Mnb

n−j−1 + · · ·+Mj+1 +Mjb
−1 + · · ·+M1b

−j
})

=ψ̃σb
(
Mjb

−1 + · · ·+M1b
−j
)

and analogously for ψ̃σb,1 and ψ̃σb,2. We set fb(j) := b(bn−j − 1)/2c. Lemma 3.22 leads to

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=
n−1∑
j=1


fb(j)∑
`=0

b−1∑
Mj+1,...,Mn=0
νj(M,Σ)=`

b−1∑
M1,...,Mj=0

bn−1ψ̃σb

(
M

bj

)

+ bj−1(bn−j − 1− 2`)
(
ψ̃σb,1

(
M

bj

)
− ψ̃σb

(
M

bj

))
+

bn−j−1∑
`=fb(j)+1

b−1∑
Mj+1,...,Mn=0
νj(M,Σ)=`

b−1∑
M1,...,Mj=0

bn−1ψ̃σb

(
M

bj

)

+ bj−1(2`+ 1− bn−j)
(
ψ̃σb,2

(
M

bj

)
− ψ̃σb

(
M

bj

))
+

bn∑
M=1

bn−1ψ̃σb

(
M

bn

)

=
n−1∑
j=1


fb(j)∑
`=0

bj∑
M=1

bn−1ψ̃σb

(
M

bj

)
+ bj−1(bn−j − 1− 2`)

(
ψ̃σb,1

(
M

bj

)
− ψ̃σb

(
M

bj

))
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+
bn−j−1∑
`=fb(j)+1

bj∑
M=1

bn−1ψ̃σb

(
M

bj

)
+ bj−1(2`+ 1− bn−j)

(
ψ̃σb,2

(
M

bj

)
− ψ̃σb

(
M

bj

))
+

bn∑
M=1

bn−1ψ̃σb

(
M

bn

)
.

At this point we need to treat the cases of even and odd bases b separately. Let us first
consider even bases. Then we have fb(j) = bn−j/2− 1. With Lemma 3.24 we get

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=
n−1∑
j=1

{
b2n−j−1bj

(
bΦ̃σ

b + Ab(j, id)
2

)

+ bj−1
bn−j/2−1∑

`=0
(bn−j − 1− 2`)bj

(
bΦ̃σ

b,1 + Ab(j, id)
2 − bΦ̃σ

b −
Ab(j, id)

2

)

+ bj−1
bn−j−1∑
`=bn−j/2

(2`+ 1− bn−j)bj
(
bΦ̃σ

b,2 + Ab(j, id)
2 − bΦ̃σ

b −
Ab(j, id)

2

)
+

bn∑
M=1

bn−1ψ̃σb

(
M

bn

)

=
n−1∑
j=1

{
b2n−1

(
bΦ̃σ

b −
1

72b2j (b3 + 2b)
)

+ 1
4b

2n−1
(
bΦ̃σ

b,1 − bΦ̃σ
b + 1

12b2j−1

)

+ 1
4b

2n−1
(
bΦ̃σ

b,2 − bΦ̃σ
b + 1

12b2j−1

)}
+ b2n−1

(
bΦ̃σ

b −
1

72b2n (b3 + 2b)
)
.

Now a straightforward calculation yields the claimed result for even bases b. For odd
bases b we have fb(j) = (bn−j − 1)/2 and hence we obtain similarly as above

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

=
n−1∑
j=1

b2n−j−1bj
(
bΦ̃σ

b + Ab(j, id)
2

)
+ bj−1

(bn−j−1)/2∑
`=0

(bn−j − 1− 2`)bj
(
bΦ̃σ

b,1 − bΦ̃σ
b )
)

+ bj−1
bn−j−1∑

`=(bn−j+1)/2
(2`+ 1− bn−j)bj

(
bΦ̃σ

b,2 − bΦ̃σ
b

)+
bn∑
N=1

bn−1ψ̃σb

(
M

bn

)

=
n−1∑
j=1

{
b2n−1

(
bΦ̃σ

b −
1

72b2j (b3 − b)
)

+ 1
4b(b2n − b2j)

(
bΦ̃σ

b,1 − bΦ̃σ
b

)
+ 1

4b(b2n − b2j)
(
bΦ̃σ

b,2 − bΦ̃σ
b

)}
+ b2n−1

(
bΦ̃σ

b −
1

72b2n (b3 − b)
)
.

The rest of the proof is again a matter of elementary calculations.

Remark 3.26. Proposition A.2 from the Appendix provides for σ ∈ Ab(τ) the relation

Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2 =
−

1
24 if b is even,
− 1

24
b2−1
b2

if b is odd.
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In this case, Lemma 3.25 can be displayed in a much simpler form, namely

2
b2n

n∑
j=1

bn∑
λ,M=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

= n
(

Φ̃σ
b + 1

2Φ̃σ
b,1 + 1

2Φ̃σ
b,2

)
− 5

72 + 1− 9 · (−1)b
144b2n .

Note that we have now completed the final task and found an expression for (3.14).
Inserting the formula discovered in Remark 3.26 into (3.13) completes the proof of
Theorem 3.17.

Numerical results We defer all the proofs in this section to the Appendix, since they
contain elementary, but very lengthy and technical calculations.
The constant cσb which appears in Theorem 3.17 is rather hard to compute. We therefore
present an alternative formula in the subsequent lemma, which is a consequence of
Theorem 3.17 and Proposition A.1 from the Appendix.

Lemma 3.27. Let n ∈ N, σ ∈ Ab(τ) and Σ ∈ {σ, σ}n. Then we have

lim
n→∞

L2(H̃Σ
b,n)√

log (2bn)
=
√

cσb
log b,

where

cσb =16− 12b− 111b2 + 228b3 − 112b4

72b2 − 1− (−1)b
16b3

+ 4
b3

b−1∑
k1,k2=0

max{σ(k1), σ(k2)}
(
b

2
(

max{k1, k2}+ max{k1 + k2, b− 1}
)
− k2

1 − k1

)
.

Now we would like to find for each base b the permutation σmin
b ∈ Ab(τ) for which the

constant cσb becomes minimal. We therefore employ computer search algorithms. Note
that the constant cσb is invariant with respect to switching two complementary elements
in the permutation σ. To be more precise, for a given permutation σ ∈ Ab(τ) the
following fact is true: Let d ∈ {0, . . . , b−1}. Then we define the permutation σ̂ ∈ Ab(τ)
in the following way: For k ∈ {0, . . . , b − 1} \ {d, b − 1 − d} we set σ̂(k) = σ(k) and
additionally we set σ̂(d) = σ(b− 1− d) and σ̂(b− 1− d) = σ(d). Then we have cσb = cσ̂b ,
which is the result given in Proposition A.3 from the Appendix. This rule allows us
to reduce the number of permutations which we have to check significantly. We do not
have to check every single permutation that is contained in Ab(τ), but only those which
are elements of the subset

Bb(τ) :=
{
σ ∈ Ab(τ) : σ(k) ∈

{
0, 1, . . . ,

⌊b− 1
2

⌋}
for all k ∈

{
0, 1, . . . ,

⌊b− 1
2

⌋}}
.

That means we have to check bb/2c! permutations instead of 2bb/2cbb/2c! to find the
minimal value for cσb . Our numerical investigations show that there are often several
permutations σ ∈ Bb(τ) where the minimal value for cσb is attained. Table 3.1 lists
for each base b ∈ {2, . . . , 27} one permutation σ ∈ Bb(τ) where cσb is minimal and the
number gb of permutations in Bb(τ) which give the minimal value for cσb . Then there are
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2bb/2cgb permutations in Ab(τ) which yield the lowest constant in each base. Of course,
we also present the corresponding values for cσb and

√
cσb / log b. Since the permutations in

Bb(τ) are completely determined by the permutation of the digits 0, 1, . . . , b(b−1)/2c, we
only give these partial permutations in Table 3.1. We use the usual cycle notation. For
instance, the permutation (0, 1, 2) ∈ B7(τ) on the set {0, 1, . . . , 6} is given by σ(0) = 1,
σ(1) = 2 and σ(2) = 0. The values of σ(3), σ(4), σ(5) and σ(6) can then be obtained
through the relation σ(6− k) = 6− σ(k) for k = 0, 1, 2, 3.

b σmin
b gb cσb

√
cσ
b

log b

2 id 1 1/24 0.245178
3 id 1 5/81 0.237039
4 id 2 1/12 0.245178
5 (0, 1) 1 29/375 0.219202
6 (0, 1) 4 67/648 0.240220
7 (0, 1, 2) 2 2/21 0.221229
8 (0, 2, 3, 1) 2 3/32 0.212330
9 (0, 1, 3) 4 26/243 0.220671
10 (0, 3, 4, 1) 2 111/1000 0.219560
11 (0, 2)(1, 4) 1 415/3993 0.208189
12 (0, 3)(2, 5) 2 35/324 0.208500
13 (0, 2)(1, 5)(3, 4) 1 55/507 0.205654
14 (0, 2)(1, 5)(4, 6) 2 983/8232 0.212715
15 (0, 4)(2, 6) 3 236/2025 0.207450
16 (0, 5, 4)(2, 3, 7) 4 23/192 0.207859
17 (0, 3, 5, 6, 4, 2)(1, 7) 2 584/4913 0.204829
18 (0, 5, 8, 3)(1, 2, 7, 6) 2 241/1944 0.207101
19 (0, 5)(2, 8)(4, 6, 7) 2 827/6859 0.202358
20 (0, 2, 4)(1, 8)(3, 6)(5, 7, 9) 8 193/1500 0.207243
21 (0, 6)(2, 9)(5, 8) 1 491/3969 0.201576
22 (0, 4, 2, 1, 9, 8, 5, 6, 10, 3, 7) 8 4219/31944 0.206708
23 (0, 6)(2, 10)(4, 8)(7, 9) 1 4586/36501 0.200175
24 (0, 7, 11, 3, 5, 8, 1, 2, 10, 9, 6, 4) 16 343/2592 0.204055
25 (0, 4, 6, 8, 10, 7)(1, 9, 5, 3, 11, 2) 8 1234/9375 0.202218
26 (0, 7, 12, 5)(1, 2, 11, 10)(3, 4, 9, 8) 2 2236/17576 0.198792
27 (0, 3, 1, 10, 6, 8, 11, 9, 4, 12, 2, 7) 14 289/2187 0.200235

Table 3.1.: Numerical results for the full search in Bb(τ)

Finally, we should compare our numerical results to those in Section 5 of [31]. There
the authors searched for the best permutations σ ∈ Ab(τ) to obtain a minimal L2 dis-
crepancy of the digit scrambled Hammersley point sets HΣ

b,n, where Σ ∈ {σ, σ}n. The
authors obtained the lowest L2 discrepancy overall in base 22; the corresponding leading
constant is 0.179069... We obtain the lowest leading constant for L2(H̃Σ

b,n) in base 26,
namely 0.198792.... In general, the minimal constants of the symmetrized Hammersley
point sets are slightly higher than the minimal constants of the digit scrambled Ham-
mersley point sets in every base, at least up to base 23 (Table 1 in [31] ends after this
base). The advantage of the symmetrized point sets is the fact that we do not have to
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care about the arrangement of σ and σ in Σ (see Remark 3.18). As for L2(HΣ
b,n), this is

the case if and only if Φσ
b = 0 (see [31, Table 2]). Additionally, Corollary 3.19 indicates

that the values of cσb for "good" and "bad" permutations do not spread so much for the
symmetrized point sets as it is the case for the digit scrambled point sets. Indeed, our
numerical results suggest that for even bases the highest value for cσb of all σ ∈ Bb(τ) is
always attained only for the identity and the permutation which is determined through
the relations σ(k) = b/2 − 1 − k for all k ∈ {0, . . . , b/2 − 1} and that for odd bases
maxσ∈Bb(τ) c

σ
b is attained if and only if σ = id.

Open Problem 3.28. We state several unsolved problems on the L2 discrepancy of
the symmetrized Hammersley point sets.

• Prove or disprove that maxσ∈Bb(τ) c
σ
b = cidb as conjectured above.

• Find minσ∈Bb(τ) c
σ
b for bases b ≥ 28 (maybe there is a law behind it). Investigate

in particular if minσ∈Bb(τ)
√
cσb /(log b) is bounded in b as suggested by Table 3.1.

3.3. L2 discrepancy of symmetrized van der Corput
sequences

In Section 2.1.2 we discussed methods to find good bounds on the constants involved
in the L2 discrepancy of the symmetrized van der Corput sequences. The result of
Faure [27] on the sequence Ṽ2 provides the smallest constant known so far. However, it
is reasonable to assume that there are sequences among the huge class of symmetrized
generalized van der Corput sequences Ṽσb whose L2 discrepancy has even smaller con-
stants asymptotically. Since the approach via the diaphony, executed in the papers [11]
and [56], failed to beat Faure’s constant from 1990, we intend to find an exact formula for
L2,N(Ṽσb ). The aim of this section is to find a precise expression for the L2 discrepancy
of the symmetrized van der Corput sequences Ṽσb for any base b and any permutation
σ ∈ Sb with σ(0) = 0. The following theorem gives a result for even N . To this end,
we introduce the functions

ησb := ϕ
σ,(2)
b + ϕ̃σb , ησb,1 := ϕ̃σb,1 − ϕ̃σb and ησb,2 := ϕ̃σb,2 − ϕ̃σb .

Theorem 3.29. Let N = 2M with 1 ≤ M < bn, where n ∈ N and b ∈ N, b ≥ 2. Then
we have

L2,N(Ṽσb ) =
2
b

n∑
j=1

ησb

(
M

bj

)
+ 2
b

n−1∑
j=1

νj(M,Σ)≤ b
n−j−1

2

∣∣∣∣∣1− 2νj(M,Σ) + 1
bn−j

∣∣∣∣∣ ησb,1
(
M

bj

)

+ 2
b

n−1∑
j=1

νj(M,Σ)> bn−j−1
2

∣∣∣∣∣1− 2νj(M,Σ) + 1
bn−j

∣∣∣∣∣ ησb,2
(
M

bj

) 1
2

+O(1).
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Proof. We define Ṽσb,N to be the ordered set of the first N elements of Ṽσb . Then we have

Ṽσb,N = (ϕσb (m))M−1
m=0 ∪ (1− ϕσb (m))M−1

m=0 .

We consider the slightly different set

Ṽσ,(2)
b,N = (ϕσb (m))M−1

m=0 ∪ (1− 1/bn − ϕσb (m))M−1
m=0 = (ϕσb (m))M−1

m=0 ∪ (ϕσb (m))M−1
m=0 .

Note that ϕσb (m) means here that we always apply the permutation σ = τb◦σ to the first
n digits of m, even if they are zero from a certain index on. With the same arguments
as used in the proof of Lemma 2.3 we find

|L2,N(Ṽσb,N)− L2,N(Ṽσ,(2)
b,N )| ≤ 1. (3.17)

We therefore compute L2,N(Ṽσ,(2)
b,N ) in the following. An application of Lemma 2.9 yields

∆N(t, Ṽσ,(2)
b,N ) = ∆M(t,Vσb ) + ∆M(t, ϕσb ).

Now we derive a useful relation between the discrepancy functions of the van der Corput
sequence and the Hammersley point set. Note that the generalized Hammersley point
set in base b with respect to the n-tuple Σ = (σ, σ, . . . , σ) may also be written as

HΣ
b,n =

{(
ϕσb (m), m

bn

)
: m ∈ {0, 1, . . . , bn − 1}

}
.

Analogously we have for the generalized Hammersley point set with respect to Σ∗ =
(σ, σ, . . . , σ) the alternative definition

HΣ∗
b,n =

{(
ϕσb (m), m

bn

)
: m ∈ {0, 1, . . . , bn − 1}

}
.

Recall the definition of t(n) from Remark 2.8. We have

∆M(t,Vσb ) =AM([0, t),Vσb )−Mt = AM([0, t(n)),Vσb )−Mt

=Abn
(

[0, t(n))×
[
0, M
bn

)
,Hσ

b,n

)
− bnM

bn
t(n) +M(t(n)− t)

=∆bn

(
t(n), M

bn
,Hσ

b,n

)
+M(t(n)− t).

(see also [57, Lemma 2]) and in the same way we find

∆M(t, ϕσb ) = ∆bn

(
t(n), M

bn
,Hσ

b,n

)
+M(t(n)− t). (3.18)

Now we have

(L2,N(Ṽσ,(2)
b,N ))2 =

∫ 1

0
(∆N(t, Ṽσ,(2)

b,N ))2 dt

=
∫ 1

0
(∆M(t,Vσb ))2 dt+

∫ 1

0
(∆M(t,Vσb ))2 dt+ 2

∫ 1

0
∆M(t,Vσb )∆M(t,Vσb ) dt

= : S1 + S2 + 2S3.

With the above relations we have
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S1 =
∫ 1

0

(
∆bn

(
t(n), M

bn
,HΣ

b,n

)
+M(t(n)− t)

)2
dt

=
∫ 1

0

(
∆bn

(
t(n), M

bn
,HΣ

b,n

))2
dt+ 2M

∫ 1

0
∆bn

(
t(n), M

bn
,HΣ

b,n

)
(t(n)− t) dt

+M2
∫ 1

0
(t(n)− t)2 dt =: A1 + A2 + A3.

At first we have
A3 = M2

bn∑
λ=1

∫ λ
bn

λ−1
bn

(
λ

bn
− t

)2

dt = M2

3b2n .

To calculate A2 we apply Theorem 2.7 and the fact that

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
= bn−1ψσb

(
M

bj

)

(see [31, Lemma 2]) to write

A2 =2M
∫ 1

0
∆bn

(
t(n), M

bn
,HΣ

b,n

)
(t(n)− t) dt

=2M
bn∑
λ=1

∆bn

(
λ

bn
,
M

bn
,HΣ

b,n

)∫ λ
bn

λ−1
bn

(
λ

bn
− t

)
dt

=M

b2n

bn∑
λ=1

n∑
j=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
= M

b2n b
n−1

n∑
j=1

ψσb

(
M

bj

)
= M

bn+1

n∑
j=1

ψσb

(
M

bj

)
.

Similarly, we compute with Lemma 3.21

A1 = 1
bn

bn∑
λ=1

(
∆bn

(
λ

bn
,
M

bn
,HΣ

b,n

))2

= 1
bn

bn∑
λ=1

 n∑
j=1

ψσb,εj(λ,M,Σ)

(
M

bj

)2

= 1
bn

bn∑
λ=1

 n∑
j=1

(
ψσb,εj(λ,M,Σ)

(
M

bj

))2
+

n∑
j1,j2=1
j1 6=j2

ψσb,εj1 (λ,M,Σ)

(
M

bj1

)
ψσb,εj2 (λ,M,Σ)

(
M

bj2

)
=1
b

n∑
j=1

ψ
σ,(2)
b

(
M

bj

)
+ 1
b2

n∑
j1,j2=1
j1 6=j2

ψσb

(
M

bj1

)
ψσb

(
M

bj2

)
.

Now we consider S2 and write, similarly as above,

S2 =
∫ 1

0

(
∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
+M(t(n)− t)

)2
dt =

∫ 1

0

(
∆bn

(
t(n), M

bn
,HΣ∗

b,n

))2
dt

+ 2M
∫ 1

0
∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
(t(n)− t) dt+M2

∫ 1

0
(t(n)− t)2 dt

= : B1 +B2 +B3.

With the same techniques as above and the identities ψσb = −ψσb and ψσ,(2)
b = ψ

σ,(2)
b from

Lemma 3.21 one can easily check that B1 = A1, B2 = −A2 and B3 = A3.
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We turn to S3 and get

S3 =
∫ 1

0

(
∆bn

(
t(n), M

bn
,HΣ

b,n

)
+M(t(n)− t)

)
×
(

∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
+M(t(n)− t)

)
dt

=
∫ 1

0
∆bn

(
t(n), M

bn
,HΣ

b,n

)
∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
dt

+M
∫ 1

0
∆bn

(
t(n), M

bn
,HΣ

b,n

)
(t(n)− t) dt

+M
∫ 1

0
∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
(t(n)− t) dt

+M2
∫ 1

0
(t(n)− t)2 dt = 1

bn

bn∑
λ=1

∆bn

(
λ

bn
,
M

bn
,HΣ

b,n

)
∆bn

(
λ

bn
,
M

bn
,HΣ∗

b,n

)
+ M2

3b2n .

Here we regarded the fact that∫ 1

0
∆bn

(
t(n), M

bn
,HΣ

b,n

)
(t(n)− t) dt = −

∫ 1

0
∆bn

(
t(n), M

bn
,HΣ∗

b,n

)
(t(n)− t) dt

(compare with the computation of A2 and B2, respectively). We derive

1
bn

bn∑
λ=1

∆bn

(
λ

bn
,
M

bn
,HΣ

b,n

)
∆bn

(
λ

bn
,
M

bn
,HΣ∗

b,n

)

= 1
bn

bn∑
λ=1

 n∑
j=1

ψσb,εj(λ,M,Σ)

(
M

bj

) n∑
j=1

ψσb,εj(λ,M,Σ∗)

(
M

bj

)
= 1
bn

bn∑
λ=1

 n∑
j=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)

+
n∑

j1,j2=1
j1 6=j2

ψσb,εj1 (λ,M,Σ)

(
M

bj1

)
ψσb,εj2 (λ,M,Σ∗)

(
M

bj2

)

= 1
bn

n∑
j=1

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
− 1
b2

n∑
j1,j2=1
j1 6=j2

ψσb

(
M

bj1

)
ψσb

(
M

bj2

)
.

Now we put all the results together and apply Lemma 3.22 to obtain

(L2,N(Ṽσ,(2)
b,N ))2

=2
b

n∑
j=1

ψ
σ,(2)
b

(
M

bj

)
+ 2
bn

n∑
j=1

bn∑
λ=1

ψσb,εj(λ,M,Σ)

(
M

bj

)
ψσb,εj(λ,M,Σ∗)

(
M

bj

)
+ 4M2

3b2n

=2
b

n∑
j=1

(
ψ
σ,(2)
b

(
M

bj

)
+ ψ̃σb

(
M

bj

))

+ 2
b

n−1∑
j=1

νj(M,Σ)≤ b
n−j−1

2

(
1− 2νj(M,Σ) + 1

bn−j

)(
ψ̃σb,1

(
M

bj

)
− ψ̃σb

(
M

bj

))

+ 2
b

n−1∑
j=1

νj(M,Σ)> bn−j−1
2

(
2νj(M,Σ) + 1

bn−j
− 1

)(
ψ̃σb,2

(
M

bj

)
− ψ̃σb

(
M

bj

))
+ 4M2

3b2n .
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Considering (3.17) completes the proof.

The following lemma shows that it is not necessary to extend Theorem 3.29 to odd N
in order to obtain results on the asymptotic behaviour of L2,N(Vσb ), since the difference
between the L2 discrepancies of the first N and the first N + 1 elements of a sequence
S is always small.

Lemma 3.30. Let L2,N(S) be the L2 discrepancy of an arbitrary sequence S = (xn)n≥0
in [0, 1). For all N ∈ N we have

|L2,N+1(S)− L2,N(S)| ≤ 1.

Proof. We consider a fixed subinterval [0, t) of the unit interval [0, 1]. Since ∆N(t,S) =
AN([0, t),S) −Nt and ∆N+1(t,S) = AN+1([0, t),S) − (N + 1)t and since we obviously
have AN([0, t),S) ≤ AN+1([0, t),S) ≤ AN([0, t),S) + 1, we have

∆N(t,S)− t ≤ ∆N+1(t,S) ≤ ∆N(t,S) + 1− t.

We derive
∣∣∣∆N+1(t,S)−∆N(t,S)

∣∣∣ ≤ 1 and apply the inequality ||x| − |y|| ≤ |x− y| to
obtain ∣∣∣|∆N+1(t,S)| − |∆N(t,S)|

∣∣∣ ≤ 1

and therefore |∆N+1(t,S)| ≤ |∆N(t,S)| + 1. Now with the Minkowski’s inequality for
the L2 norm this yields

L2,N+1(S) =‖∆N+1(·,S)‖L2([0,1)) ≤ ‖∆N(·,S)‖L2([0,1)) + 1
≤ ‖∆N(·,S)‖L2([0,1)) + 1 = L2,N(S) + 1.

Analogously we can show L2,N(S) ≤ L2,N+1(S) + 1, which completes the proof.

Example 3.31. We would like to recover (2.18) from Theorem 3.29. Let b = 2 and
σ = id. It is easy to check that ηid2 = 0 and ηid2,1 = ηid2,2 = ‖ · ‖2. We consider the
expression

M2,id(M) :=
n∑
j=1

ηid2

(
M

2j
)

+
n−1∑
j=1

νj(M,Σ)≤ 2n−j−1
2

∣∣∣∣∣1− 2νj(M,Σ) + 1
2n−j

∣∣∣∣∣ ηid2,1
(
M

2j
)

+
n−1∑
j=1

νj(M,Σ)> 2n−j−1
2

∣∣∣∣∣1− 2νj(M,Σ) + 1
2n−j

∣∣∣∣∣ ηid2,2
(
M

2j
)
,

which we can simplify to

M2,id(M) =
n−1∑
j=1

νj(M,Σ)≤ 2n−j−1
2

∣∣∣∣∣1− 2νj(M,Σ)
2n−j

∣∣∣∣∣
∥∥∥∥M2j

∥∥∥∥2

+
n−1∑
j=1

νj(M,Σ)> 2n−j−1
2

∣∣∣∣∣1− 2νj(M,Σ)
2n−j

∣∣∣∣∣
∥∥∥∥M2j

∥∥∥∥2
+O(1).
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Since νj(M,Σ) = 2n−j{2jϕ2(M)}, we obtain further

M2,id(M) =
n−1∑
j=1

{2jϕ2(M)}< 1
2

(
1− 2‖2jϕ2(M)‖

) ∥∥∥∥M2j
∥∥∥∥2

+
n−1∑
j=1

{2jϕ2(M)}≥ 1
2

∣∣∣1− 2(1− ‖2jϕ2(M)‖)
∣∣∣ ∥∥∥∥M2j

∥∥∥∥2
+O(1)

=
n−1∑
j=1

(1− 2‖2jϕ2(M)‖)
∥∥∥∥M2j

∥∥∥∥2
+O(1).

Finally, since N = 2M and ϕ2(M) = 2ϕ2(2M), we find

M2,id(N) =
n−1∑
j=1

(1− 2‖2j+1ϕ2(N)‖)
∥∥∥∥ N

2j+1

∥∥∥∥2
+O(1)

=
n∑
j=2

(1− 2‖2jϕ2(N)‖)
∥∥∥∥N2j

∥∥∥∥2
+O(1),

where we may include the summand for j = 1, since it is zero anyway. We have indeed
recovered Faure’s formula in a slightly less precise form (and only for even N).

We would like to derive several more specific results from Theorem 3.29. More precisely,
we prove that Faure’s best upper bound on the quantity

inf
S∈[0,1)N

lim sup
N→∞

L2,N(S)√
logN

(see (2.19)) can not be improved by considering the symmetrized van der Corput se-
quences Ṽ3, Ṽ4, Ṽ5 and Ṽ6. To this end, we prove lower bounds on L2,N(Ṽ3), L2,N(Ṽ4),
L2,N(Ṽ5) and L2,N(Ṽ6), respectively. Therefore we evaluate the expression

Mb,σ(M) :=2
b

n∑
j=1

ησb

(
M

bj

)
+ 2
b

n−1∑
j=1

νj(M,Σ)≤ b
n−j−1

2

∣∣∣∣∣1− 2νj(M,Σ) + 1
bn−j

∣∣∣∣∣ ησb,1
(
M

bj

)

+ 2
b

n−1∑
j=1

νj(M,Σ)> bn−j−1
2

∣∣∣∣∣1− 2νj(M,Σ) + 1
bn−j

∣∣∣∣∣ ησb,2
(
M

bj

)
.

for those numbers 1 ≤ M ≤ bn, for which we conjecture that the above expression is
maximized.

• Let b = 3 and σ = id. Computations with a computer algebra system lead to the
conjecture that

max
1≤M<3n

M3,id(M)

is attained for n = 2k at M3(n) such that M3(n)/3n = 0.0101 . . . 01 (k times) in
3-ary representation. By inserting these numbersM3(n) intoM3,id(M), we obtain
by Theorem 3.29

L2,2M3(n)(Ṽ3) =
( 43

384n
) 1

2
+O(1).
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Thus, we have

L2,N(Ṽ3) ≥
(

43
384 log 3

) 1
2 √

logN +O(1)

for infinitely many N and hence

l2(Ṽ3) = lim sup
N→∞

L2,N(Ṽ3)√
logN ≥

(
43

384 log 3

) 1
2

= 0.319261 . . . (3.19)

We conjecture that we even have equality in (3.19). Note that this lower bound
is already larger than the constant given in (2.19), and hence the sequence Ṽ3 has
certainly a higher asymptotic L2 discrepancy than Ṽ2.

• Now we choose b = 4 and σ = id. We conjecture that max1≤M<4nM4,id(M) is
attained for n = 3k at M4(n) such that M4(n)/4n = 0.011011 . . . 011 (k times) in
4-ary representation. Based on these integers we find

l2(Ṽ4) ≥
(

116288
750141 log 4

) 1
2

= 0.334402 . . . (3.20)

We conjecture again the equality in (3.20).

• For b = 5 and σ = id we find that max1≤M<5nM5,id(M) is probably attained
at M5(n) such that M5(n)/5n = 0.111 . . . 111 (n times) (in 5-ary representation).
These integers lead to the lower bound

l2(Ṽ5) ≥
(

9
40 log 5

) 1
2

= 0.373899 . . . ,

where we conjecture this lower bound to be the exact value of the limes superior
again.

• For b = 6 and σ = id the maximum max1≤M<6nM6,id(M) is probably attained
at M6(n) such that M6(n)/6n = 0.444 . . . 444 (n times) (in 6-ary representation).
These integers lead to the lower bound

l2(Ṽ6) ≥
(

104
375 log 6

) 1
2

= 0.393424 . . .

and again we conjecture this to be the exact value of the limes superior.

Open problems Although we provided a precise formula for L2,N(Ṽσb ) in this section,
it remains an open question how to extract exact values for l2(Ṽσb ) (or at least good
upper bounds) from it and how to determine those permutations which lead to an L2
discrepancy as low as possible. We propose the following open problems:

Open Problem 3.32. The following problems are still unsolved:

• Prove Faure’s conjecture on l2(Ṽ2); i.e.

l2(Ṽ2) =
(

421
6750 log 2

) 1
2

= 0.299969 . . .
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• Prove or disprove the above conjectures on l2(Ṽb) for b = 3, 4, 5, 6 and try to find
a general formula for l2(Ṽb) for all bases b ≥ 2. In particular, investigate whether
l2(Ṽb) increases as b increases.

• Improve (2.19) by finding a base b and a permutation σ ∈ Sb such that l2(Ṽσb ) <
l2(Ṽ2). It appears to be reasonable to try sequences Ṽb for which it is known that
their non-symmetrized versions Vσb have low diaphony. Examples of such sequences
can be found in [11] and [56]. Note that from [11] we know that the sequences Vσb
in bases b = 3, 4, 5, 6 have higher diaphony than V2 for all permutations. In base
7 there exists a permutation such that Vσ7 has a smaller diaphony than the dyadic
van der Corput sequence, which is given by σ = (1, 3)(2, 5). Since we assume
that smaller bases are easier to handle than larger ones, we suggest to investigate
l2(Ṽσ7 ) for this particular permutation to begin with.
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4. Optimal Lp discrepancy rate and
beyond

4.1. Generalized and symmetrized Hammersley point
sets

One of the central questions of interest in this thesis is to find conditions on the digital
shift σ ∈ {0, 1}n or on the tuple Σ ∈ {σ, σ}n which guarantee the optimal order of
Lp discrepancy of the corresponding generalized Hammersley point sets. Section 3.1.1
was a first step towards a solution of this problem. It turned out however that a proof
based on the exact formula of the discrepancy function from Theorem 2.5 yields exact
discrepancy results for certain shifts, whereas this approach seems to be useless in order
to characterize good digital shifts in general. The reasons for this drawback are twofold:

1. The fact that the discrepancy of H2,n(σ) depends only on the number of zero
digits in σ seems to be a peculiarity of the L2 discrepancy. This means that there
exists no simple general formula for Lp(H2,n(σ)) for an arbitrary shift in the style
of Theorem 2.1, from which one can read off desired conditions on the shifts for
low discrepancy.

2. It seems hardly possible to prove an exact formula for Lp(H2,n(σ)) in the first
place, since the combinatorial aspects of the proof would be too hard to handle.

Surprisingly, there exist tools from harmonic analysis which provide quite simple possib-
ilities to investigate the Lp discrepancy of point sets and sequences. These tools include
Haar functions, Littlewood-Paley theory and embedding theorems between Besov and
Triebel-Lizorkin spaces of dominating mixed smoothness, as they have been outlined in
Section 2.3. We will exploit these tools throughout this section and also the subsequent
one.

4.1.1. Optimal order of Lp discrepancy of H2,n(σ) and H̃2,n(σ)
In this section we demonstrate the general method how to prove upper bounds on the Lp
discrepancy of point sets on the example of digit shifted Hammersley point sets based
on Proposition 2.10. The outline of the proof is taken from a joint work with Hinrichs
and Pillichshammer [39]. We rely heavily on estimates of the Haar coefficients µj,m of
∆N(·,H2,n(σ)) from [36, Theorem 3.1]. Note that Hinrichs worked with the normalized
version of the discrepancy function; here however we state a non-normalized version of
his result.

Lemma 4.1 ([36, Theorem 3.1]). Let j = (j1, j2) ∈ N2
0. Then

(i) if j1 + j2 < n− 1 and j1, j2 ≥ 0 then |µj,m| = 2−n−2.
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(ii) if j1 + j2 ≥ n − 1 and 0 ≤ j1, j2 ≤ n then |µj,m| ≤ 2−j1−j2−1 and |µj,m| =
2n−2j1−2j2−4 for all but at most 2n coefficients µj,m withm ∈ Dj (the latter appears
if there is no point of H2,n(σ) in the interior of Ij,m).

(iii) if j1 ≥ n or j2 ≥ n then |µj,m| = 2n−2j1−2j2−4.

Now let j = (−1, k) or j = (k,−1) with k ∈ N0. Then

(iv) if k < n then |µj,m| ≤ 2−k.

(v) if k ≥ n then |µj,m| = 2n−2k−3.

Finally, if l = |{j : σj = 0}| as in Section 2.1 then

(vi) µ(−1,−1),(0,0) = 1
8(2l + 4− n) + 2−n−2.

We use these bounds on the Haar coefficients to show the following result, which classifies
all the digital shifts σ such that the Lp discrepancy of H2,n(σ) is of optimal order
according to the lower bound by Roth and Schmidt. It is remarkable that the condition
on σ is the same for all p ∈ [1,∞). Consequently, the given condition is the same that
was found in (2.6) to assure the optimal order of L2 discrepancy for the digit shifted
Hammersley point set.

Theorem 4.2. Let p ∈ (1,∞). Let σ ∈ {0, 1}n and l = |{j : σj = 0}|. The Lp
discrepancy of the two-dimensional digit shifted Hammersley point set satisfies

Lp(H2,n(σ)) .p

√
logN

if and only if |2l − n| .p

√
n.

Remark 4.3. It follows from the monotonicity of the Lp norm that |2l − n| .
√
n

also implies L1(H2,n(σ)) .
√

logN , which is best possible according to the result of
Halász (1.14).

Proof. First we show the sufficiency of the condition. Using Proposition 2.10 from
Section 2.3.2 (the Littlewood-Paley inequality) with f = ∆N(·,H2,n(σ)) we have

Lp,N(H2,n(σ)) = ‖∆N(·,H2,n(σ))‖Lp([0,1)2)

.p ‖S(∆N(·,H2,n(σ)))‖Lp([0,1)2)

=

∥∥∥∥∥∥∥∥
 ∑
j∈N2

−1

∑
m∈Dj

22|j| µ2
j,m 1Ij,m


1/2
∥∥∥∥∥∥∥∥
Lp([0,1)2)

=

∥∥∥∥∥∥∥
∑
j∈N2

−1

22|j| ∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥∥
1/2

Lp/2([0,1)2)

≤

 ∑
j∈N2

−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)


1/2

,
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where we used Minkowski’s inequality for the Lp/2 norm. Hence, in order to prove the
result it suffices to show that

∑
j∈N2

−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

. n. (4.1)

To this end we split the sum over the j’s into several parts and apply Lemma 4.1:
• j ∈ N2

0 such that |j| < n− 1: According to (i) of Lemma 4.1 we have

∑
j∈N2

0
|j|<n−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
∑
j∈N2

0
|j|<n−1

22|j|2−2n−4

∥∥∥∥∥∥
∑
m∈Dj

1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
∑
j∈N2

0
|j|<n−1

22|j|2−2n−4

.
1

22n

n−2∑
k=0

22k
∞∑

j1,j2=0
j1+j2=k

1

︸ ︷︷ ︸
=k+1≤n−1

. n.

Here we used that for fixed j the intervals Ij,m with m ∈ Dj form a partition of
the unit square [0, 1)2 and hence ∑m∈Dj

1Ij,m
= 1.

• |j| ≥ n− 1 and 0 ≤ j1, j2 ≤ n: Let I◦j,m denote the interior of a dyadic box Ij,m.
According to (ii) of Lemma 4.1 we have

n∑
j1,j2=0
|j|≥n−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
n∑

j1,j2=0
|j|≥n−1

22|j|

∥∥∥∥∥∥∥∥∥∥
∑
m∈Dj

H2,n(σ)∩I◦j,m=∅

µ2
j,m 1Ij,m

+
∑
m∈Dj

H2,n(σ)∩I◦j,m 6=∅

µ2
j,m 1Ij,m

∥∥∥∥∥∥∥∥∥∥
Lp/2([0,1)2)

≤
n∑

j1,j2=0
|j|≥n−1

22|j|22n−4|j|−8 +
n∑

j1,j2=0
|j|≥n−1

22|j|2−2|j|−2

∥∥∥∥∥∥∥∥∥∥
∑

m∈Dj

H2,n(σ)∩I◦j,m
6=∅

1Ij,m

∥∥∥∥∥∥∥∥∥∥
Lp/2([0,1)2)

,

where we used Minkowski’s inequality again. For the first sum in this estimate we
have

n∑
j1,j2=0
|j|≥n−1

22|j|22n−4|j|−8 .
2n∑

k=n−1

22n

22k

n∑
j1,j2=0
j1+j2=k

1 =
2n∑

k=n−1

22n

22k

n∑
j1=0

0≤k−j1≤n

1 . n.

Now we turn to the second sum

n∑
j1,j2=0
|j|≥n−1

22|j|2−2|j|−2

∥∥∥∥∥∥∥∥∥∥
∑
m∈Dj

H2,n(σ)∩I◦j,m 6=∅

1Ij,m

∥∥∥∥∥∥∥∥∥∥
Lp/2([0,1)2)

. (4.2)
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Note that ∑
m∈Dj

H2,n(σ)∩I◦j,m 6=∅

1Ij,m

is the indicator function of a set, say Aj , of measure at most 2n−|j|. Hence (4.2)
can be written as

1
4

n∑
j1,j2=0
|j|≥n−1

∥∥∥1Aj

∥∥∥
Lp/2([0,1)2)

= 1
4

n∑
j1,j2=0
|j|≥n−1

(∫
[0,1]2

1Aj
(x) dx

)2/p

.
n∑

j1,j2=0
|j|≥n−1

(2n−|j|)2/p

= 22n/p
2n∑

k=n−1

1
22k/p

n∑
j1,j2=0
j1+j2=k

1 . 22n/p
2n∑

k=n−1

n

22k/p . n.

Altogether we obtain that

n∑
j1,j2=0
|j|≥n−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

. n

as desired.

• j ∈ N2
0, j1 ≥ n: According to (iii) of Lemma 4.1 we have

∞∑
j2=0

∞∑
j1=n

22|j|

∥∥∥∥∥∥
∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
∞∑
j2=0

∞∑
j1=n

22|j|22n−4|j|−8

∥∥∥∥∥∥
∑
m∈Dj

1Ij,m

∥∥∥∥∥∥
Lp/2([0,1)2)

= 22n
∞∑
j2=0

∞∑
j1=n

2−2|j|−8 . 1.

• j ∈ N2
0, j2 ≥ n: Analogous to the case j ∈ N2

0, j1 ≥ n.

• j = (−1, k) with k ∈ N0 and 0 ≤ k < n: According to (iv) of Lemma 4.1 we have

n−1∑
k=0

22k

∥∥∥∥∥∥
∑

m∈D(−1,k)

µ2
(−1,k),m 1I(−1,k),m

∥∥∥∥∥∥
Lp/2([0,1)2)

≤
n−1∑
k=0

22k2−2k

∥∥∥∥∥∥
∑

m∈D(−1,k)

1I(−1,k),m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
n−1∑
k=0

1 = n.

• j = (k,−1) with k ∈ N0 and 0 ≤ k < n: Analogous to the case j = (−1, k) with
k ∈ N0 and 0 ≤ k < n.
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• j = (−1, k) with k ∈ N0 and k ≥ n: According to (v) of Lemma 4.1 we have

∞∑
k=n

22k

∥∥∥∥∥∥
∑

m∈D(−1,k)

µ2
(−1,k),m 1I(−1,k),m

∥∥∥∥∥∥
Lp/2([0,1)2)

=
∞∑
k=n

22k22n−4k−6

∥∥∥∥∥∥
∑

m∈D(−1,k)

1I(−1,k),m

∥∥∥∥∥∥
Lp/2([0,1)2)

. 22n
∞∑
k=n

2−2k . 1.

• j = (k,−1) with k ∈ N0 and k ≥ n: Analogous to the case j = (−1, k) with
k ∈ N0 and k ≥ n.

• j = (−1,−1): According to (vi) of Lemma 4.1 we have∥∥∥µ2
(−1,−1),(0,0) 1[0,1]2

∥∥∥
Lp/2([0,1)2)

= µ2
(−1,−1),(0,0)‖1[0,1]2‖Lp/2([0,1)2)

=
(1

8(2l + 4− n) + 2−n−2
)2
. (4.3)

Now we assume that |2l − n| .
√
n. Then we have∥∥∥µ2

(−1,−1),(0,0) 1[0,1]2
∥∥∥
Lp/2([0,1)2)

. n.

Altogether this proves inequality (4.1) and therefore also the first point of Theorem 4.2.
It remains to show that the condition on l is also necessary. We use again Lemma 2.10
with f = ∆N(·,H2,n(σ)) and obtain

Lp,N(H2,n(σ)) = ‖∆N(·,H2,n(σ))‖Lp([0,1)2)

&p ‖S(∆N(·,H2,n(σ)))‖Lp([0,1)2)

=

∥∥∥∥∥∥∥∥
 ∑
j∈N2

−1

∑
m∈Dj

22|j| µ2
j,m 1Ij,m


1/2
∥∥∥∥∥∥∥∥
Lp([0,1)2)

=

∥∥∥∥∥∥∥
∑
j∈N2

−1

22|j| ∑
m∈Dj

µ2
j,m 1Ij,m

∥∥∥∥∥∥∥
1/2

Lp/2([0,1)2)

&
∥∥∥µ2

(−1,−1),(0,0) 1[0,1]2
∥∥∥1/2

Lp/2([0,1)2)

=
∣∣∣∣18(2l + 4− n) + 2−n−2

∣∣∣∣ ,
where the last equality follows from (4.3). From this it is evident that

Lp,N(H2,n(σ)) .p

√
logN �

√
n

implies |2l − n| .p

√
n.
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We employ the same method for the symmetrized Hammersley point sets H̃2,n(σ). We
use a simple trick to find bounds on the Haar coefficients µ̃j,m of ∆N(·, H̃2,n(σ)).

Lemma 4.4. Let j = (j1, j2) ∈ N2
−1. Then in the case j 6= (−1,−1) we have

|µ̃j,m| ≤ 2|µj,m| for all m ∈ Dj ,

where µj,m are the Haar coefficients of ∆N(·,H2,n(σ)). Hence the results in Lemma 4.1
apply accordingly also to |µ̃j,m| (the additional factor 2 does not influence the order of
magnitude in n). In the case j = (−1,−1) we have µ̃(−1,−1),(0,0) = 1 + 2−n−1.

Proof. By Lemma 2.9 we have

∆2n+1(t, H̃2,n(σ)) = ∆2n(t,H2,n(σ)) + ∆2n(t,H2,n(σ∗)).

Regarding the linearity of integration, we obtain

µ̃j,m = µσj,m + µσ
∗

j,m, (4.4)

where here we write µσj,m for the the Haar coefficients of the discrepancy function of
H2,n(σ) in order to stress the dependence on the digit shift σ and accordingly for µσ∗j,m.
Then the triangle inequality yields

|µ̃j,m| ≤ |µσj,m|+ |µσ
∗

j,m|.

We analyze the case j 6= (−1,−1). We note that the identities and upper bounds for
|µσj,m| in Lemma 4.1 do not depend on the shift σ and therefore we get our desired
results in this case directly from this lemma. In case that j = (−1,−1) we observe that
the shift σ∗ has n− l zero entries if σ has l zero entries, and thus the result in this case
follows immediately from (4.4) and Lemma 4.1.

Theorem 4.5. Let p ∈ [1,∞). Independently of σ ∈ {0, 1}n the two-dimensional
symmetrized digit shifted Hammersley point set satisfies

Lp,N(H̃2,n(σ)) .p

√
logN.

Proof. It suffices to consider p > 1. Since the absolute values of the Haar coefficients
of ∆N(·, H̃2,n(σ)) are equal or less than two times the absolute values of the Haar
coefficients of ∆N(·,H2,n(σ)) and since µ̃(−1,−1),(0,0) is bounded in n for every digital
shift σ, the proof of this theorem follows the same lines as the proof of Theorem 4.2.

Theorem 4.5 states that we do not need any conditions on σ at all to assure the optimal
order of Lp discrepancy for the symmetrized Lp discrepancy. This is in accordance
to the results of Proinov on the L2 discrepancy and our exact formula as stated in
Theorem 3.13.

4.1.2. Generalizations to arbitrary bases and discrepancy in spaces
with dominating mixed smoothness

In the previous section we were able to fully classify the digital shifts for which

Lp,N(H2,n(σ)) = O(
√

logN).
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We observed that the required condition on σ is the same that follows already from
the exact formula of Kritzer and Pillichhammer for the L2 discrepancy. It is there-
fore reasonable to assume that the conditions on Σ to achieve the optimal order for
Lp,N(HΣ

b,n) match the corresponding conditions for the L2 discrepancy. We have stated
these conditions in the lines after Theorem 2.2. In the dyadic case from the previous
section, we found that the only delicate Haar coefficient is the one where j = (−1,−1),
whereas the other coefficients have the desired order independently of σ. We hope to
find the same in the b-adic case and therefore investigate the said first Haar coefficient
µ(−1,−1),(0,0),(1,1)(∆N(·,HΣ

b,n)) in the following lemma.

Lemma 4.6. Let n ∈ N, σ ∈ Sb, Σ = (σ1, . . . , σn) ∈ {σ, σ}n and l = |{i ∈ {1, . . . , n} :
σi = σ}| as defined in Section 2.1. Then we have

µ(−1,−1),(0,0),(1,1)(∆N(·,HΣ
b,n)) = (n− 2l)

(
(b− 1)2

4b − 1
b2

b−1∑
a=0

σ(a)a
)

+ 1
2 + 1

4N ,

where N = bn is the number of elements in HΣ
b,n.

Proof. We denote the points of HΣ
b,n by {x0, . . . ,xN−1}, where xr = (x(1)

r , x(2)
r ) for all

r ∈ {0, 1, . . . , N − 1}. We have

µ(−1,−1),(0,0),(1,1) =
∫ 1

0

∫ 1

0
∆N(t1, t2,HΣ

b,n) dt1 dt2

=
N−1∑
r=0

∫ 1

0

∫ 1

0
1[0,t1)×[0,t2)(xr) dt1 dt2 −N

∫ 1

0

∫ 1

0
t1t2 dt1 dt2

=
N−1∑
r=0

(1− x(1)
r )(1− x(2)

r )− N

4

= 3N
4 −

N−1∑
r=0

x(1)
r −

N−1∑
r=0

x(2)
r +

N−1∑
r=0

x(1)
r x(2)

r

= 3N
4 − 2

N−1∑
r=0

r

N
+

N−1∑
r=0

x(1)
r x(2)

r

= 3N
4 − (N − 1) +

N−1∑
r=0

x(1)
r x(2)

r

= −N4 + 1 +
N−1∑
r=0

x(1)
r x(2)

r . (4.5)

We regarded the obvious fact that ∑N−1
r=0 x(1)

r = ∑N−1
r=0 x(2)

r = ∑N−1
r=0

r
N
. It remains to

investigate the sum S := ∑N−1
r=0 x(1)

r x(2)
r . We have

S =
b−1∑

a1,...,an=0

(
σn(an)
b

+ · · ·+ σ1(a1)
bn

)(
a1

b
+ · · ·+ an

bn

)
=

b−1∑
a1,...,an=0

n∑
k1,k2=1

σk1(ak1)ak2

bn+1−k1bk2
.

Next we distinguish between the cases where k1 = k2 = k and where k1 6= k2 and change
the orders of the sums, which results in

S =
n∑
k=1

bn−1
b−1∑
ak=0

σk(ak)ak
bn+1︸ ︷︷ ︸

S1

+
n∑

k1,k2=1
k1 6=k2

bn−2
b−1∑

ak1 ,ak2=0

σk1(ak1)ak2

bn+1−k1bk2

︸ ︷︷ ︸
S2

.
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The factors bn−1 and bn−2 come from the fact that the summands of S1 and S2 only
depend on the digit ak or on the digits ak1 and ak2 , respectively, and hence the sums
over the remaining digits give a factor b each. Now we have

S1 = 1
b2

n∑
k=1
σk=σ

b−1∑
ak=0

σ(ak)ak + 1
b2

n∑
k=1
σk=σ

b−1∑
ak=0

σ(ak)ak

= l

b2

b−1∑
a=0

σ(a)a+ (n− l)
b2

b−1∑
a=0

σ(a)a

= l

b2

b−1∑
a=0

σ(a)a+ (n− l)
b2

b−1∑
a=0

(b− 1− σ(a))a

= l − (n− l)
b2

b−1∑
a=0

σ(a)a+ n− l
b2 (b− 1)

b−1∑
a=0

a

= 2l − n
b2

b−1∑
a=0

σ(a)a+ n− l
2b (b− 1)2

and

S2 = 1
b3

n∑
k1,k2=1
k1 6=k2

bk1−k2

 b−1∑
ak1=0

σk1(ak1)
 b−1∑

ak2=0
ak2



= 1
b3

(
b(b− 1)

2

)2 n∑
k1,k2=1
k1 6=k2

bk1−k2 .

straightforward algebra yields
n∑

k1,k2=1
k1 6=k2

bk1−k2 =
n∑

k1,k2=1
bk1−k2 −

n∑
k=1

1 = b

(b− 1)2 (bn + b−n − 2)− n,

which leads to
S2 = 1

4

(
1
N

+N − 2− (b− 1)2

b
n

)
.

Altogether we find

S = 2l − n
b2

b−1∑
a=0

σ(a)a+ n− l
2b (b− 1)2 + 1

4

(
1
N

+N − 2− (b− 1)2

b
n

)

= (n− 2l)
(

(b− 1)2

4b − 1
b2

b−1∑
a=0

σ(a)a
)

+ 1
4N + N

4 −
1
2 .

Inserting this into (4.5) yields the formula for µ(−1,−1),(0,0),(1,1).

Remark 4.7. We note that the Haar coefficient µ(−1,−1),(0,0),(1,1) is of order logN in
general. It can be reduced to the order (logN)

1
q (for 1 ≤ q ≤ ∞) however by either

choosing l such that |2l − n| = O(n
1
q ) or by choosing the permutation σ such that

1
b

b−1∑
a=0

σ(a)a = (b− 1)2

4 .
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In the latter case we even have µ(−1,−1),(0,0),(1,1) = O(1). We remark that these are
exactly the conditions which appear in the subsequent Theorem 4.17 to assure the
optimal Srp,qB-discrepancy for the digit scrambled Hammersley point set for r = 0.

Remark 4.8. Lemma 4.6 can also be proven with aid of Theorem 2.7. We have
∫ 1

0
∆N(t,Hσ

b,n) dt =
bn∑

λ,M=1

∫ λ
bn

λ−1
bn

∫ M
bn

M−1
bn

(
∆N

(
λ

bn
,
M

bn
,Hσ

b,n

)
+ bn

(
λM

b2n − t1t2
))

dt

= 1
b2n

bn∑
λ,M=1

n∑
j=1

ϕ
σj
b,εj

(
M

bn

)
+ bn

bn∑
λ,M=1

∫ λ
bn

λ−1
bn

∫ M
bn

M−1
bn

(
λM

b2n − t1t2
)

dt

=
n∑
j=1

Φσj
b + 1

2 + 1
4bn ,

where we considered the identities ∑bn

λ=1 ϕ
σ
b,εj

(
M
bn

)
= bn−1ϕσb

(
M
bn

)
(see [31, Lemma 2])

and ∑bn

M=1 ϕ
σ
b

(
M
bn

)
= bn+1Φσ

b (see [31, Lemma 4]). We conclude (regarding Φσ
b = −Φσ

b )

n∑
j=1

Φσj
b =

n∑
j=1
σj=σ

Φσ
b +

n∑
j=1
σj=σ

Φσ
b = lΦσ

b − (n− l)Φσ
b = (2l − n)Φσ

b ,

which yields ∫ 1

0
∆N(t,Hσ

b,n) dt = (2l − n)Φσ
b + 1

2 + 1
4bn .

We recover Lemma 4.6 by considering [31, Lemma 5]. However, in order to keep the
computations in Chapter 4 independent of Faure’s apparatus, we have given a direct
proof of this lemma above.

Remark 4.9. Lemma 4.6 leads to a new proof of the formula for the L1 discrepancy
of the classical Hammersley point set Hb,n. It is known that the discrepancy function
of Hb,n is nonnegative on the whole unit square; i.e. ∆N(t,Hb,n) ≥ 0 for all t ∈ [0, 1)2.
This follows from Theorem 2.7 and Remark 2.8. As a result we have

L1,N(Hb,n) =
∫

[0,1)2
∆N(t,Hb,n) dt = µ(−1,−1),(0,0),(1,1)(∆N(·,Hb,n)).

Choosing σ = id and l = n in Lemma 4.6 leads to

µ(−1,−1),(0,0),(1,1)(∆N(·,Hb,n)) = n
b2 − 1

12b + 1
2 + 1

4bn

and we recover (2.3). Of course, the proof of this result would be simpler by restricting
to σ = id and l = n in the proof of Lemma 4.6 in the first place.

It is necessary to have a look on the remaining Haar coefficients where j 6= (−1,−1).
To this end, we can mainly rely on Markhasin’s computations in [50] and [52], where he
studied the case Σ ∈ {id, τb}n. To start with, we state a lemma that can also be found
in [50, Lemma 4.2, 4.3]. We state an one-dimensional version of this lemma together
with its proof in Lemma 4.34.

Lemma 4.10. Let f(t) = bnt1t2 for t = (t1, t2) ∈ [0, 1)2. Let j ∈ N2
−1, m ∈ Dj, ` ∈ Bj

and let µj,m,`(f) be the b-adic Haar coefficient of f . Then
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1. If j = (j1, j2) ∈ N2
0, then

µj,m,`(f) = bn−2j1−2j2−2(
e 2πi

b
`1 − 1

) (
e 2πi

b
`2 − 1

) .
2. If j = (j1,−1) or j = (−1, j2) with j1 ∈ N0 or j2 ∈ N0, then

µj,m,`(f) = 1
2
bn−2ji−1

e 2πi
b
`i − 1

with i = 1 or i = 2, respectively.

Let now z = (z1, z2) ∈ [0, 1)2 and g(t) = 1[0,t)(z) for t = (t1, t2) ∈ [0, 1)2. Let j ∈ N2
−1,

m ∈ Dj, ` ∈ Bj and let µj,m,`(g) be the b-adic Haar coefficient of g. Then µj,m,` = 0
whenever z is not contained in the interior of the b-adic interval Ij,m. If z is contained
in the interior of Ij,m, then

1. If j = (j1, j2) ∈ N2
0, then there is a k = (k1, k2) ∈ {0, 1, . . . , b− 1}2 such that z is

contained in Ikj,m (see Section 2.3). Then

µj,m,`(g) = b−j1−j2−2

(bm1 + k1 − bj1+1z1)e 2πi
b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

×
×

(bm2 + k2 − bj2+1z2)e 2πi
b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2

 .
2. If j = (j1,−1) with j1 ∈ N0, then there is a k1 ∈ {0, 1, . . . , b − 1} such that z is

contained in I(k1,−1)
j,m . Then

µj,m,`(g) = b−j1−1(1− z2)
(bm1 + k1 − bj1+1z1)e 2πi

b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

 .
3. If j = (−1, j2) with j2 ∈ N0, then there is a k2 ∈ {0, 1, . . . , b − 1} such that z is

contained in I(−1,k2)
j,m . Then

µj,m,`(g) = b−j2−1(1− z1)
(bm2 + k2 − bj2+1z2)e 2πi

b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2

 .
Lemma 4.11. Let j ∈ N2

0 such that j1 + j2 < n− 1, m ∈ Dj and ` ∈ Bj. Then

∑
z∈HΣ

b,n
∩Ij,m

(bm1 + k1 − bj1+1z1)e 2πi
b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

×
×

(bm2 + k2 − bj2+1z2)e 2πi
b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2


= bn−j1−j2(

e 2πi
b
`1 − 1

) (
e 2πi

b
`2 − 1

) ± bj1+j2−n
b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

b−1∑
k2=0

σ(k2)e 2πi
b
k2`2 ,

where p(k1) = k1 or p(k1) = −k1− 1 depending on j1 and where the sign depends on j2.
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Proof. With the very same argumentation as in the proof of [50, Lemma 4.4] or [52,
Lemma 4.10], we can show that

∑
z∈HΣ

b,n
∩Ij,m

(bm1 + k1 − bj1+1z1)e 2πi
b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

×
×

(bm2 + k2 − bj2+1z2)e 2πi
b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2


= bn−j1−j2(

e 2πi
b
`1 − 1

) (
e 2πi

b
`2 − 1

)
+ bj1+j2−n

b−1∑
k1=0

an−j1e 2πi
b
k1`1

b−1∑
k2=0

σj2+1(aj2+1)e 2πi
b
k2`2

︸ ︷︷ ︸
S

,

where σn−j1(an−j1) = k1 and aj2+1 = k2. We analyse the expression S. We have

S = bj1+j2−n
b−1∑
k1=0

σ−1
n−j1(k1)e 2πi

b
k1`1

︸ ︷︷ ︸
S1

b−1∑
k2=0

σj2+1(k2)e 2πi
b
k2`2

︸ ︷︷ ︸
S2

.

We have to distinguish the cases σn−j1 = σ and σn−j1 = σ as well as the cases σj2+1 = σ

and σj2+1 = σ, respectively. The case σn−j1 = σ leads to S1 = ∑b−1
k1=0 σ

−1(k1)e 2πi
b
k1`1 ,

whereas σn−j1 = σ yields

S1 =
b−1∑
k1=0

σ−1(b− 1− k1)e 2πi
b
k1`1 =

b−1∑
k1=0

σ−1(k1)e 2πi
b

(b−1−k1)`1 =
b−1∑
k1=0

σ−1(k1)e 2πi
b

(−1−k1)`1 .

Combining these results, we have S1 = ∑b−1
k1=0 σ

−1(k1)e 2πi
b
p(k1)`1 , where p(k1) = k1 if

σn−j1 = σ or p(k1) = −k1 − 1 if σn−j1 = σ. Hence, p(k1) depends only on j1. The case
σj2+1 = σ yields S2 = ∑b−1

k2=0 σ(k2)e 2πi
b
k2`2 , whereas σj2+1 = σ leads to

S2 =
b−1∑
k2=0

(b− 1− σ(k2))e 2πi
b
k2`2 = −

b−1∑
k2=0

σ(k2)e 2πi
b
k2`2 ,

and therefore we have S2 = ±∑b−1
k2=0 σ(k2)e 2πi

b
k2`2 , where the sign depends only on j2.

The proof is complete.
Lemma 4.12. Let j = (j1,−1) such that j1 ∈ N0 with j1 < n − 1, m = (m1, 0) with
m1 ∈ Dj1 and ` = (`1, 1) with `1 ∈ Bj1. Then

∑
z∈HΣ

b,n
∩Ij,m

(bm1 + k1 − bj1+1z1)e 2πi
b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

 (1− z2)

=b
n−j1(1− 2ε) + b

2
(
e 2πi

b
`1 − 1

) + b−1 − bj1−n

2

b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

+ b−1

e 2πi
b
`1 − 1

 b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1 − b(b− 1)

2

 ,
where ε is a positive real number depending on j1 and m1 which satisfies εbn−j1 ≤ b and
where p(k1) = k1 or p(k1) = −k1 − 1 depending on j1.
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Proof. With the very same argumentation as in the proof of [50, Lemma 4.10] or [52,
Lemma 4.17], we can show that

∑
z∈HΣ

b,n
∩Ij,m

(bm1 + k1 − bj1+1z1)e 2πi
b
k1`1 −

k1−1∑
r1=0

e 2πi
b
r1`1

 (1− z2)

=b
n−j1(1− 2ε) + b

2
(
e 2πi

b
`1 − 1

) +
bn−j1−1∑
h=1

hbj1−n+1bj1−n
b−1∑
k1=0

an−j1e 2πi
b
k1`1

︸ ︷︷ ︸
T1

+
bn−j1−1−1∑

h=0
bj1−n

b−1∑
k1=0

an−j1

k1−1∑
r1=0

e 2πi
b
r1`1

︸ ︷︷ ︸
T2

,

where σn−j1(an−j1) = k1. Analogously as in the proof of Lemma 4.11, we find

T1 = b−1 − bj1−n

2

b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1 ,

where the value of p(k1) depends only on j1. We also obtain

T2 = 1
e 2πi

b
`1 − 1

bn−j1−1bj1−n
b−1∑
k1=0

an−j1
(
e 2πi

b
k1`1 − 1

)

= b−1

e 2πi
b
`1 − 1

 b−1∑
k1=0

an−j1e 2πi
b
k1`1 − b(b− 1)

2


= b−1

e 2πi
b
`1 − 1

 b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1 − b(b− 1)

2

 .
The proof is complete.

Lemma 4.13. Let j = (−1, j2) such that j2 ∈ N0 with j2 < n − 1, m = (0,m2) with
m2 ∈ Dj2 and ` = (1, `2) with `2 ∈ Bj2. Then

∑
z∈HΣ

b,n
∩Ij,m

(1− z1)
(bm2 + k2 − bj2+1z2)e 2πi

b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2


=b

n−j2(1− 2ε) + b

2
(
e 2πi

b
`2 − 1

) ± b−1 − bj2−n

2

b−1∑
k2=0

σ(k2)e 2πi
b
k2`2

+ b−1

e 2πi
b
`2 − 1

± b−1∑
k2=0

σ(k2)e 2πi
b
k2`2 − b(b− 1)

2

 ,
where ε′ is a positive real number depending on j2 and m2 which satisfies ε′bn−j2 ≤ b
and where the signs depend only on j2.

Proof. This fact follows from

∑
z∈HΣ

b,n
∩Ij,m

(1− z1)
(bm2 + k2 − bj2+1z2)e 2πi

b
k2`2 −

k2−1∑
r2=0

e 2πi
b
r2`2


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=b
n−j2(1− 2ε′) + b

2
(
e 2πi

b
`2 − 1

) +
bn−j2−1∑
h=1

hbj2−n+1bj2−n
b−1∑
k2=0

aj2+1e 2πi
b
k2`2

+
bn−j2−1−1∑

h=0
bj2−n

b−1∑
k2=0

σj2+1(aj2+1)
k2−1∑
r2=0

e 2πi
b
k2`2

and the relation aj2+1 = k2. The argumentation is very similar to the proofs of [50,
Lemma 4.10], [52, Lemma 4.17], Lemma 4.11 and Lemma 4.12.

Lemma 4.14. Let j ∈ N2
−1,m ∈ Dj, ` ∈ Bj and µj,m,` be the b-adic Haar coefficients of

the discrepancy function of HΣ
b,n. We recall the definition |j| = max{0, j1}+max{0, j2}.

Then

1. if j ∈ N2
0 and |j| < n− 1, then

|µj,m,`| ≤
(
b− 1

2

)2

b−n . b−n,

2. if j ∈ N2
0, |j| ≥ n− 1 and j1, j2 ≤ n, then |µj,m,`| . b−|j| and

|µj,m,`| =
bn−2|j|−2∣∣∣e 2πi

b
`1 − 1

∣∣∣ ∣∣∣e 2πi
b
`2 − 1

∣∣∣ . bn−2|j|

for all but bn coefficients µj,m,`,

3. if j ∈ N2
0 and j1 ≥ n or j2 ≥ n, then

|µj,m,`| =
bn−2|j|−2∣∣∣e 2πi

b
`1 − 1

∣∣∣ ∣∣∣e 2πi
b
`2 − 1

∣∣∣ . bn−2|j|,

4. if j = (j1,−1) or j = (−1, j2) with j1 ∈ N0, j1 < n or j1 ∈ N0, j2 < n respectively,
then we have

|µj,m,`| ≤ (b2 − 1)b−ji . b−|j|

for i = 1 and i = 2, respectively,

5. if j = (j1,−1) or j = (−1, j2) with j1 ∈ N0, j1 ≥ n or j2 ≥ n respectively, then
we have

|µj,m,`| =
1
2
bn−2ji−1∣∣∣e 2πi
b
`i − 1

∣∣∣ . bn−2|j|

for i = 1 and i = 2, respectively.

Proof. Point (2) can be verified analogously as [50, Proposition 5.1, (ii)] or [52, Propos-
ition 4.18, (ii)]. Point (3) and Point (5) follow from Lemma 4.10 and the fact that there
are no points contained in the interior of Ij,m for j ∈ N2

−1 if j1 ≥ n or j2 ≥ n. For the
verification of Point (1) we use Lemma 4.10 and Lemma 4.11 and obtain

µj,m,` =b−j1−j2−2

 bn−j1−j2(
e 2πi

b
`1 − 1

) (
e 2πi

b
`2 − 1

)
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±bj1+j2−n
b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

b−1∑
k2=0

σ(k2)e 2πi
b
k2`2

− bn−2j1−2j2−2(
e 2πi

b
`1 − 1

) (
e 2πi

b
`2 − 1

)
=± b−n−2

b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

b−1∑
k2=0

σ(k2)e 2πi
b
k2`2 ,

which leads to

|µj,m,`| =b−n−2

∣∣∣∣∣∣
b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

∣∣∣∣∣∣
∣∣∣∣∣∣
b−1∑
k2=0

σ(k2)e 2πi
b
k2`2

∣∣∣∣∣∣
≤b−n−2

b−1∑
k1=0

σ−1(k1)
b−1∑
k2=0

σ(k2) = b−n−2
(
b(b− 1)

2

)2

=
(
b− 1

2

)2

b−n . b−n

as claimed, since with k also σ−1(k) and σ(k) runs through {0, 1, . . . , b−1}, respectively.
We turn to the case that j = (j1,−1) with j1 ∈ N0, j1 < n and therefore regard
Lemma 4.10 and Lemma 4.12. We have

µj,m,` =b−j1−1

bn−j1(1− 2ε) + b

2
(
e 2πi

b
`1 − 1

) + b−1 − bj1−n

2

b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

+ b−1

e 2πi
b
`1 − 1

 b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1 − b(b− 1)

2

− bn−2j1−1

2
(
e 2πi

b
`1 − 1

)
=− bn−2j1−1ε

e 2πi
b
`1 − 1

+ b−j1

2
(
e 2πi

b
`1 − 1

) + b−j1−2 − b−n−1

2

b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1

+ b−j1−2

e 2πi
b
`1 − 1

 b−1∑
k1=0

σ−1(k1)e 2πi
b
p(k1)`1 − b(b− 1)

2

 .
The triangle inequality yields (since εbn−j1 ≤ b and b−2n−1 ≤ bn−j1−2)

|µj,m,`| ≤
bn−2j1−1ε

|e 2πi
b
`1 − 1|

+ b−j1

2|e 2πi
b
`1 − 1|

+ b−j1−2 + b−n−1

2

b−1∑
k1=0

σ−1(k1)

+ b−j1−2

|e 2πi
b
`1 − 1|

 b−1∑
k1=0

σ−1(k1) + b(b− 1)
2


≤ b−j1

|e 2πi
b
`1 − 1|

+ b−j1

2|e 2πi
b
`1 − 1|

+ b−j1−2 + b−n−1

2
b(b− 1)

2 + b−j1−2

|e 2πi
b
`1 − 1|

b(b− 1)

≤5
2

b−j1

|e 2πi
b
`1 − 1|

+ b−j1

2 ≤
(

5
2
b2 − 1

6 + 1
2

)
b−j1 ≤ (b2 − 1)b−j1 . b−|j|,

where we used Lemma 4.31. The case (−1, j2) can be handled completely analogously.

In order to prove results on the discrepancy of the symmetrized Hammersley point sets
we also need upper bounds on the absolute values of the Haar coefficients µ̃Σ

j,m,` =
〈D

Ñ
(·, H̃Σ

b,n), hj,m,`〉. Here, Ñ = 2bn denotes the number of elements of H̃Σ
b,n.
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Lemma 4.15. Let j = (j1, j2) ∈ N2
−1. Then in the case j 6= (−1,−1) we have

|µ̃Σ
j,m,`| ≤ 2|µj,m,`| for all m ∈ Dj , ` ∈ Bj ,

where the coefficients µj,m,` refer to ∆N(·,HΣ
b,n). Hence the results in Lemma 4.14 apply

accordingly also to |µ̃Σ
j,m,`| (up to a factor 2). In the case j = (−1,−1) we have

µ̃Σ
(−1,−1),(0,0),(1,1) = 1 + 1

2bn = 1 + 1
Ñ
.

Proof. The proof is basically the same as for Lemma 4.4 and follows in a similar manner
from Lemma 4.6 and Lemma 4.14.

Remark 4.16. The Haar coefficient µ(−1,−1),(0,0),(1,1)(·,∆N(HΣ
b,n)) does not depend on

the position of the components in Σ, but only on the number of σ-entries and σ-entries,
respectively. Therefore Lemma 4.15 is also true for every point set of the formHΣ1

b,n∪H
Σ2
b,n,

where Σ1,Σ2 ∈ {σ, σ}n and where Σ1 has l entries equal to σ and Σ2 has n− l of such
entries for any l ∈ {0, 1, . . . , n}. The proof of the subsequent Theorem 4.18 therefore
works also for point sets of this kind. However, these point sets are in general not
symmetrized in the sense of (2.2).

Now we have collected all the tools to show the following theorems.

Theorem 4.17. Let 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1
p
. Then for any integer b ≥ 2 and

r = 0 we have ∥∥∥∆N(·,HΣ
b,n)

∥∥∥
Srp,qB([0,1)2)

. (logN)
1
q

if and only if |2l − n| = O(n
1
q ) or 1

b

∑b−1
a=0 σ(a)a = (b−1)2

4 . For 0 < r < 1
p
we have

∥∥∥∆N(·,HΣ
b,n)

∥∥∥
Srp,qB([0,1)2)

. N r(logN)
1
q

independently of Σ.

Proof. For j 6= (−1,−1) the bounds on the Haar coefficients of the digit scrambled
Hammersley point set we found in Lemma 4.14 are of the same order of magnitude in
N as the bounds given in [50, Proposition 5.1]. By separating the sum over j in the
estimate

∥∥∥∆N(·,HΣ
b,n)

∥∥∥
Srp,qB([0,1)2)

.

 ∑
j∈N2

−1

b(j1+j2)(r− 1
p

+1)q
 ∑
m∈Dj ,`∈Bj

|µj,m,`|p


q
p


1
q

in six parts according to Lemma 4.14, we have by [50] that all these parts (expect the
summand where j = (−1,−1)) achieve the order N r(logN)

1
q for all 0 ≤ r < 1

p
. Let us

now consider the case j = (−1,−1). If r = 0, we have |µ(−1,−1),(0,0),(1,1)| . (logN)
1
q if

and only if Σ is such that |2l − n| = O(n
1
q ) or 1

b

∑b−1
a=0 σ(a)a = (b−1)2

4 (see Remark 4.7).
However, if 0 < r < 1

p
, we have |µ(−1,−1),(0,0),(1,1)| . logN . N r . N r(logN)

1
q for all

tuples Σ ∈ {σ, σ}n.
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Theorem 4.18. Let 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1
p
. Then for any integer b ≥ 2 we have∥∥∥∆

Ñ
(H̃Σ

b,n)
∥∥∥
Srp,qB([0,1)2)

. Ñ r(log Ñ)
1
q

independently of Σ.

Proof. The proof is obvious, since the bounds on the Haar coefficients of ∆
Ñ

(·, H̃Σ
b,n)

are (up to a constant factor 2) the same as for ∆N(HΣ
b,n, · ), except for the coef-

ficient µ(−1,−1),(0,0),(1,1), which is of order 1 independently of Σ. We therefore have
|µ(−1,−1),(0,0),(1,1)| . Ñ r(log Ñ)

1
q for all 0 ≤ r < 1

p
independently of Σ and we can

refer to the proof of [50, Theorem 1.1] again.

Corollary 4.19. We have the following estimates of the Lp discrepancy for p ∈ [1,∞)
and all b ≥ 2:

•
∥∥∥∆N(·,HΣ

b,n)
∥∥∥
Lp([0,1)2)

.
√

logN, if and only if

|2l − n| = O(
√
n) or 1

b

b−1∑
a=0

σ(a)a = (b− 1)2

4 ,

•
∥∥∥∆

Ñ
(·, H̃Σ

b,n)
∥∥∥
Lp([0,1)2)

.
√

logN independently of Σ.

Proof. The results can be obtained from Theorem 4.18 via the embeddings (2.24) or by
a direct application of Proposition 2.12.

We observe that the conditions for the optimal order of Lp discrepancy match again the
corresponding conditions for L2 discrepancy which were known before.

4.1.3. Optimal discrepancy rate in spaces with negative smoothness
Statement of the result Recall that Triebel [69, 70] could show that for all 1 ≤ p, q ≤
∞ and r ∈ R satisfying 1

p
− 1 < r < 1

p
and q <∞ if p = 1 and q > 1 if p =∞ we have

for any N -element point set P , N ≥ 2, in [0, 1)2 that its discrepancy function satisfies

‖∆N(·,P)‖Srp,qB([0,1)2) & N r−1(logN)
1
q .

Hinrichs showed in [36] that this lower bound is sharp for 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1
p
.

He used digit shifted Hammersley point setsH2,n(σ) to obtain this result. It follows from
his proof that these point sets can not be used to close the gap also for the parameter
range 1/p − 1 < r < 0. It remained an open problem to find a point set which closes
this gap also for 1/p− 1 < r < 0. This problem was again mentioned in [37, Problem 3]
(here also for higher dimensions) and [72, Remark 6.8]. Recall that also Chen-Skriganov
point sets and higher order digital nets, which achieve the best possible discrepancy
rate in Besov spaces in arbitrary dimension, work only if r ≥ 0, see [51, 52, 53]. It is
the aim of this section to show that this problem can be solved in dimension two by
applying some simple modifications to the point setsH2,n(σ). For our purposes, we need
a new definition of symmetrized Hammersley point sets. To this end we fix H2,n(σ) and
introduce three connected point sets by

H(1)
2,n(σ) := {(x, 1− y)|(x, y) ∈ H2,n(σ)},
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H(2)
2,n(σ) := {(1− x, y)|(x, y) ∈ H2,n(σ)},
H(3)

2,n(σ) := {(1− x, 1− y)|(x, y) ∈ H2,n(σ)}.

We set Hsym
2,n (σ) := H2,n(σ) ∪ H(1)

2,n(σ) ∪ H(2)
2,n(σ) ∪ H(3)

2,n(σ) and call Hsym
2,n (σ) a doubly

symmetrized Hammersley type point set. This is because H(1)
2,n(σ) is obtained from

H2,n(σ) by reflecting it at the line y = 1/2, and then H(2)
2,n(σ)∪H(3)

2,n(σ) is the reflection
of H2,n(σ)∪H(1)

2,n(σ) at the line x = 1/2. The point set Hsym
2,n (σ) has N = 2n+2 elements,

where some points might coincide. Since the following results will all be independent of
the digital shift, we will consequently omit the σ and write H2,n, H(1)

2,n, H
(2)
2,n, H

(3)
2,n and

Hsym
2,n throughout this section. With the point sets Hsym

2,n we have the following result.
Theorem 4.20. Let 1 ≤ p, q ≤ ∞ and r ∈ R such that 1/p − 1 < r < 1/p. Then the
point sets Hsym

2,n in [0, 1)2 with N = 2n+1 elements satisfy

‖∆N(·,Hsym
2,n )‖Srp,qB([0,1)2) . N r−1(logN)1/q.

We would like to stress again that our result improves on [36, Theorem 1.1] in the sense
that we extended the range for the smoothness parameter r to negative values.

We will follow the same approach as Hinrichs and first estimate the Haar coefficients of
∆N(·,Hsym

2,n ) and then apply Proposition 2.11.

Proof of Theorem 4.20 To begin with, we state several auxiliary results from [36,
Lemmas 3.2–3.4, 3.6]. These were the fundamental lemmas in order to prove [36, The-
orem 3.1] (see also Lemma 4.1).
Lemma 4.21. Let f(t) = t1t2 for t = (t1, t2) ∈ [0, 1)2. For j ∈ N2

−1 and m ∈ Dj let
µj,m be the Haar coefficients of f . Then
(i) If j = (j1, j2) ∈ N2

0 then 〈f, hj,m〉 = 2−2j1−2j2−4.

(ii) If j = (−1, k) or j = (k,−1) with k ∈ N0 then 〈f, hj,m〉 = −2−2k−3.
Lemma 4.22. Fix z = (z1, z2) ∈ [0, 1)2 and let f(t) = 1[0,t)(z) for t = (t1, t2) ∈ [0, 1)2.
For j ∈ N2

−1 and m = (m1,m2) ∈ Dj let µj,m be the Haar coefficients of f . Then
µj,m = 0 whenever z /∈ I◦j,m, where I◦j,m denotes the interior of Ij,m. If z ∈ I◦j,m then
(i) If j = (j1, j2) ∈ N2

0 then

〈f, hj,m〉 = 2−(j1+j2+2)(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|).

(ii) If j = (−1, k) with k ∈ N0 then 〈f, hj,m〉 = −2−(k+1)(1−z1)(1−|2m2+1−2k+1z2|).

(iii) If j = (k,−1) with k ∈ N0 then 〈f, hj,m〉 = −2−(k+1)(1−z2)(1−|2m1+1−2k+1z1|).
Lemma 4.23. Let H2,n be a shifted Hammersley point set with 2n points. Let j =
(j1, j2) ∈ N2

0 and m = (m1,m2) ∈ Dj. Then, if j1 + j2 < n,∑
z∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1z1|) =
∑

z∈H2,n∩I◦j,m

(1− |2m2 + 1− 2j2+1z2|) = 2n−j1−j2−1

and, if j1 + j2 < n− 1,∑
z∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|) = 2n−j1−j2−2 + 2j1+j2−n.
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Now we are ready to compute the Haar coefficients of the discrepancy function of Hsym
2,n .

Proposition 4.24. Let Hsym
2,n be a doubly symmetrized Hammersley type point set with

N = 2n+2 elements and let µj,m be the Haar coefficients of ∆N(·,Hsym
2,n ) for j ∈ N2

−1 and
m = (m1,m2) ∈ Dj.
Let j = (j1, j2) ∈ N2

0. Then

(i) if j1 + j2 < n− 1 and j1, j2 ≥ 0 then |µj,m| = 2−n.

(ii) if j1 + j2 ≥ n − 1 and 0 ≤ j1, j2 ≤ n then |µj,m| ≤ 2−j1−j2+2 and |µj,m| =
2n−2j1−2j2−2 for all but at most 2n+2 coefficients µj,m with m ∈ Dj.

(iii) if j1 ≥ n or j2 ≥ n then |µj,m| = 2n−2j1−2j2−2.

Now let j = (−1, k) or j = (k,−1) with k ∈ N0. Then

(iv) if k < n then µj,m = 0.

(v) if k ≥ n then |µj,m| = −2n−2k−1.

Finally,

(vi) µ(−1,−1),(0,0) = 0.

Proof. The cases (iii) and (v) follow from the fact that no elements ofHsym
2,n are contained

in the interior of a dyadic box I(j1,j2),m if j1 ≥ n or j2 ≥ n, together with Lemma 4.21.
We consider the case (ii). For a fixed j = (j1, j2) the interiors of the dyadic boxes Ij,m
for m ∈ Dj are mutually disjunct and at most 2n+2 of these boxes can contain points
from Hsym

2,n . We have µj,m = 2n−2j1−2j2−4 if the corresponding box Ij,m is empty. The
other boxes contain at most 8 points (because the volume of Ij,m is at most 2−(n−1) due
to the condition j1 +j2 ≥ n−1 and because of the net property of H2,n and its connected
point sets). Together with the first part of Lemma 4.22 and the triangle inequality this
yields |µj,m| ≤ 8 · 2−(j1+j2+2) + 2n−2j1−2j2−2 ≤ 2−j1−j2+2.
The case (vi) can be seen as follows:

µ(−1,−1),(0,0) =
∫ 1

0

∫ 1

0
∆N(t1, t2,Hsym

2,n ) dt1 dt2

=
∑

z∈Hsym
2,n

∫ 1

z1

∫ 1

z2
1 dt1 dt2 − 2n+2

∫ 1

0

∫ 1

0
t1t2 dt1 dt2

=
∑

z∈Hsym
2,n

(1− z1)(1− z2)− 2n

=
∑

(x,y)∈H2,n

[(1− x)(1− y) + (1− x)y + x(1− y) + xy]− 2n

=
∑

(x,y)∈H2,n

1− 2n = 0.

To show the claim in (iv) for the case j = (k,−1) with k ∈ N0, k < n, we have to
consider the expression

S :=
∑

z∈Hsym
2,n ∩I

◦
(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1z1|)(1− z2)
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for any m1 ∈ {0, . . . , 2k − 1}. We can write

S =
∑

(x,y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1x|)(1− y)

+
∑

(x,1−y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1x|)y

+
∑

(1−x,y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1(1− x)|)(1− y)

+
∑

(1−x,1−y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1(1− x)|)y

=
∑

(x,y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1x|)

+
∑

(1−x,y)∈H2,n∩I◦(k,−1),(m1,0)

(1− |2m1 + 1− 2k+1(1− x)|) =: S1 + S2,

where we used the trivial equivalences (x, y) ∈ H2,n∩I◦(k,−1),(m1,0) if and only if (x, 1−y) ∈
H2,n∩ I◦(k,−1),(m1,0) as well as (1−x, y) ∈ H2,n∩ I◦(k,−1),(m1,0) if and only if (1−x, 1− y) ∈
H2,n∩I◦(k,−1),(m1,0) in the last step. Since the interval I◦(k,−1),(m1,0) is the same as I◦(k,0),(m1,0),
we obtain S1 = 2n−k−1 from the first part of Lemma 4.23. To evaluate S2 we observe
that

1− x ∈ I◦k,m1 ⇔
m1

2k < 1− x < m1 + 1
2k ⇔ 2k − 1−m1

2k < x <
2k −m1

2k ⇔ x ∈ I◦k,m̃1
,

where we set m̃1 = 2k − 1 − m1. This yields the equivalence of (1 − x, y) ∈ H2,n ∩
I◦(k,−1),(m1,0) and (x, y) ∈ H2,n ∩ I◦(k,−1),(m̃1,0). We also find

|2m1 + 1− 2k+1(1− x)| =|2(m1 + 1− 2k)− 1 + 2k+1x|
=| − 2m̃1 − 1 + 2k+1x| = |2m̃1 + 1− 2k+1x|

and hence we obtain

S2 =
∑

(x,y)∈H2,n∩I◦
(k,−1),(m̃1,0)

(1− |2m̃1 + 1− 2k+1x|) = 2n−k−1,

where we regarded the first part of Lemma 4.23 again. Altogether, we have

µ(k,−1),(m1,0) = −2−(k+1)(S1 + S2)− (−2n+2−(2k+3)) = −2−(k+1)2n−k + 2n−2k−1 = 0

with Lemmas 4.21 and 4.22, and this part of the proposition is verified. It is clear that
the result for µ(−1,k),(0,m2) if k < n can be shown analogously.
Finally, we prove (i) and therefore have to analyze the sum

T :=
∑

z∈H̃2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|),

where j = (j1, j2) ∈ N2
0 with j1 + j2 < n− 1. We have

T =
∑

(x,y)∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1x|)(1− |2m2 + 1− 2j2+1y|)
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+
∑

(x,1−y)∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1x|)(1− |2m2 + 1− 2j2+1(1− y)|)

+
∑

(1−x,y)∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1(1− x)|)(1− |2m2 + 1− 2j2+1y|)

+
∑

(1−x,1−y)∈H2,n∩I◦j,m

(1− |2m1 + 1− 2j1+1(1− x)|)(1− |2m2 + 1− 2j2+1(1− y)|)

=:T1 + T2 + T3 + T4.

We obtain directly from the second part of Lemma 4.23 that T1 = 2n−j1−j2−2 + 2j1+j2−n.
With the same arguments as in the proof of point (iv) we can show

T2 =
∑

(x,y)∈H2,n∩I◦
j,(m1,m̃2)

(1− |2m1 + 1− 2j1+1x|)(1− |2m̃2 + 1− 2j2+1y|),

T3 =
∑

(x,y)∈H2,n∩I◦
j,(m̃1,m2)

(1− |2m̃1 + 1− 2j1+1x|)(1− |2m2 + 1− 2j2+1y|),

T4 =
∑

(x,y)∈H2,n∩I◦
j,(m̃1,m̃2)

(1− |2m̃1 + 1− 2j1+1x|)(1− |2m̃2 + 1− 2j2+1y|),

where m̃i = 2ji − 1 − mi for i ∈ {1, 2}. But from this and Lemma 4.23 we see that
T2 = T3 = T4 = T1 and together with Lemma 4.21 and Lemma 4.22

µj,m =2−j1−j2−2(T1 + T2 + T3 + T4)− 2n−2j1−2j2−2

=2−j1−j2−2(2n−j1−j2 + 2j1+j2−n+2)− 2n−2j1−2j2−2 = 2−n

as claimed. The proof of the proposition is complete.

Now we are ready to give the proof of Theorem 4.20.

Proof of Theorem 4.20. We choose any doubly symmetrized Hammersley type point set
Hsym

2,n (we do not have to specify the digital shift σ). For j ∈ N2
−1 andm ∈ Dj let µj,m be

the Haar coefficients of the discrepancy function ofHsym
2,n . According to Proposition 2.11,

it suffices to show that for all p, q, r satisfying the conditions in Theorem 4.20 we have ∑
j∈N2

−1

2(j1+j2)(r− 1
p

+1)q
 ∑
m∈Dj

|µj,m|p


q
p


1
q

. 2nrn1/q. (4.6)

This yields

‖∆N(·,Hsym
2,n )‖Srp,qB([0,1)2) . 2−2r2(n+2)r(n+ 2)1/q . N r(logN)1/q.

To verify (4.6), we split the sum over j in six cases according to Proposition 4.24 (and
thereby applying Minkowski’s inequality). We remark that the cases (i), (ii), (iii) and
(v) have already been treated in [36, Section 4], since in these cases the bounds on the
Haar coefficients of ∆N(·,Hsym

2,n ) are (basically) the same as those for the Haar coefficients
of ∆N(·,H2,n). In all cases Hinrichs obtained an upper bound of the form c2nrn1/q with c
independent of n for the whole parameter range 1/p−1 < r < 1/p. The only cases where
the condition r ≥ 0 was necessary were (iv) and (vi). However, the symmetrization of
H2,n has the effect that the corresponding Haar coefficients of ∆N(·,Hsym

2,n ) in these two
cases vanish, and the result follows.
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Remark 4.25. Consider the point set H2,n(σ) ∪ H(1)
2,n(σ) with σ = (σ1, . . . , σn) ∈

{0, 1}n. For j ∈ N2
−1 and m ∈ Dj let µj,m be the corresponding Haar coefficients.

Then one can show that µ(−1,−1),(0,0) = 1
2 and µ(−1,k),(0,m2) = −2−(2k+2) + 2−(n+1)Tk for

k ∈ N0, k < n. Here, Tk = 1 if σk+1 = 0 and Tk = −1 if σk+1 = 1. Hence, the proof of
Theorem 4.20 does not work for this class of point sets. This is the reason why we have
to deal with the doubly symmetrized Hammersley type point sets.

Discrepancy in further function spaces and numerical integration As pointed out
in Section 2.3.4 one can easily deduce results on the discrepancy of point sets in Triebel-
Lizorkin spaces from the discrepancy estimates in Besov spaces. From the first embed-
ding in (2.24) together with Theorem 4.20 we obtain

Corollary 4.26. Let 1 ≤ p, q <∞ and 1
max{p,q} − 1 < r < 1

max{p,q} . Then the point sets
Hsym

2,n in [0, 1)2 with N = 2n+1 elements satisfy

‖∆N(·,Hsym
2,n )‖Srp,qF ([0,1)2) . N r−1(logN)1/q.

This corollary improves on [50, Theorem 6.1], where Hammersley type point sets in
arbitrary base b ≥ 2 have been considered, by extending again the range of r to negative
values. There exist corresponding lower bounds for the norm of the discrepancy function
in Triebel-Lizorkin spaces for 1

min{p,q} − 1 < r < 1
p
as shown in [52, Corollary 4.2]. This

follows from the lower bounds on the discrepancy in Besov spaces as stated in Section 2.4,
together with the second embedding in (2.24).

By choosing q = 2 in Corollary 4.26 we obtain an analogous result on Sobolev spaces.
Further, from the fact that S0

pH([0, 1)2) = Lp([0, 1)2) we derive from Corollary 4.26 that
the doubly symmetrized Hammersley type point sets achieve an Lp discrepancy of order√

logN for all p ∈ [1,∞), which is best possible in the sense of (1.13). This however is
not so surprising, since in Theorem 4.5 (in conjunction with Lemma 2.3) we have shown
that already a Davenport type symmetrization of H2,n achieves the best possible rate
of Lp discrepancy for all p ∈ [1,∞), i.e. Lp(H2,n ∪H(1)

2,n) .
√

logN . By different means
as employed here, a certain type of symmetrized Hammersley point sets in a prime
base b has been studied by Goda [32, Theorem 24], which matches our construction of
Hsym

2,n for b = 2. We notice that the construction of point sets with the optimal rate of
discrepancy in Besov, Triebel-Lizorkin or Sobolev spaces with negative smoothness is
even more subtle than to find point sets with the optimal order of Lp discrepancy.

We would like to add a few words concerning errors of quasi-Monte Carlo methods for
numerical integration in spaces with dominating mixed smoothness. For a function f
in a normed space F of functions on [0, 1)2 we would like to approximate the integral
I(f) :=

∫
[0,1)2 f(x) dx by a quasi-Monte Carlo algorithm QN(P , f) = 1

N

∑N
k=1 f(xk),

where P = {x1, . . . ,xN} is a set of N points in the unit square. The minimal worst-
case error of quasi-Monte Carlo algorithms with respect to a class of functions F is
defined as

errN(F ) := inf
|P|=N

sup
‖f‖F≤1

|I(f)−QN(P , f)|.

The infimum is extended over all point sets in [0, 1)2 with N elements and the supremum
is extended over all functions in the unit ball of F which consists of all functions with
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norm smaller or equal 1. We state a remarkable connection between discrepancy and
integration errors in Besov spaces. Let therefore

discN(Srp,qB([0, 1)2)) := inf
|P|=N

‖∆N(·,P)‖Srp,qB([0,1)2).

It is known that S1−r
p′,q′B([0, 1)2)q, where 1/p + 1/p′ = 1/q + 1/q′ = 1, is the dual space

of Srp,qB([0, 1)2). Here S1−r
p′,q′B([0, 1)2)q is the class of all functions in S1−r

p′,q′B([0, 1)2) with
zero boundary on the upper and right boundary line. Let 1 ≤ p, q ≤ ∞ (q <∞ if p = 1
and q > 1 if p =∞) and 1/p < r < 1/p+ 1. Then we have for every integer N ≥ 2

errN(Srp,qB([0, 1)2)q) � N−1discN(S1−r
p′,q′B([0, 1)2)), (4.7)

which follows from [69, Theorem 6.11]. This relation leads to the following result:
Theorem 4.27. Let 1 ≤ p, q ≤ ∞ (q < ∞ if p = 1 and q > 1 if p = ∞) and
1/p < r < 1 + 1/p. Then for N = 2n+1 with n ∈ N we have

errN(Srp,qB([0, 1)2)q) . N−r(logN)1−1/q.

Proof. From (4.7) we have

errN(Srp,qB([0, 1)2)q) . N−1discN(S1−r
p′,q′B([0, 1)2))

for 1/p < r < 1 + 1/p. Theorem 4.20 yields further

N−1discN(S1−r
p′,q′B([0, 1)2)) . N1−r−1(logN)1/q′ = N−r(logN)1−1/q

for 1/p′ − 1 < 1− r < 1/p′. The last condition on r is equivalent to 1/p < r < 1 + 1/p
and the result follows.

We remark that there exists a corresponding lower bound on errN(Srp,qB([0, 1)2) which
shows that the rate of convergence in this theorem is optimal. For the smaller parameter
range 1/p < r < 1 the assertion in Theorem 4.27 has already been found in [52, Theorem
5.6] (for arbitrary dimensions). It has been shown in [72, Corollary 6.4] that the result
in Theorem 4.27 can be extended to 1/p < r < 2, if one does not restrict to quasi-Monte
Carlo rules but chooses more general cubature rules. In the same smoothness range
quasi-Monte-Carlo rules based on Chen-Skriganov point sets can achieve the optimal
order for periodic functions in every dimension, see [38]. In [71] is has been proven that
Frolov’s cubature rules (which are in general not of quasi-Monte Carlo type) achieve
the optimal convergence rate even for all r > 1/p in all dimensions and also in the
non-periodic setting. Our new result shows that in the two-dimensional case at least for
1 < r < 1 + 1/p the optimal rate of convergence can also be achieved with quasi-Monte
Carlo rules (based on doubly symmetrized Hammersley type point sets). With similar
arguments as above we obtain an analogous result on integration errors in Triebel-
Lizorkin spaces (and hence in Sobolov spaces).
Corollary 4.28. Let 1 ≤ p, q ≤ ∞ and 1/min{p, q} < r < 1 + 1/min{p, q}. Then for
N = 2n+1 with n ∈ N we have

errN(Srp,qF ([0, 1)2)q) . N−r(logN)1−1/q.

Proof. This result is a consequence of the second embedding in (2.24), which implicates

errN(Srp,qF ([0, 1)2)q) ≤ errN(Srmin{p,q},qB([0, 1)2)q),

and Theorem 4.27.
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4.2. Symmetrized van der Corput sequences

4.2.1. Optimal order of Lp discrepancy of Ṽσb
We consider the generalized van der Corput sequences and their symmetrized variants.
We will prove that the sequences Vσb do not achieve the optimal order of Lp discrepancy
for any p ∈ (1,∞) and any base b and permutation σ. However, the symmetrized
sequences Ṽσb overcome this defect for every b and σ. This is stated more precisely in
the following theorem.

Theorem 4.29. Let b ≥ 2 be an integer and σ ∈ Sb such that σ(0) = 0. Then we have

Lp,N(Vσb ) & logN

for all p ∈ (1,∞) and infinitely many N ∈ N and

Lp,N(Ṽσb ) .
√

logN

for all p ∈ [1,∞) and all N ≥ 2.

Recall that L∞,N(Vσb ) . logN , which yields Lp,N(Vσb ) � logN together with The-
orem 4.29.

The proof is again based on the estimation of the corresponding Haar coefficients. To
show the result on the Lp discrepancy of the symmetrized Hammersley point sets, we
need to estimate all the Haar coefficients. We consider here the general case where
the base b and the permutation σ may be chosen arbitrarily. The calculations are
less technical if one restricts to the case b = 2, for which we refer to [45]. We write
µNj,m,` := µj,m,`(∆N(·,Vσb )) and µ̃Nj,m,` := µj,m,`(∆N(·, Ṽσb )), where the upper index N

denotes that we consider the first N elements of Vσb and Ṽσb , respectively. At first we
need several lemmas.

In the following, we will consequently omit the lower index b and the upper index σ in
the radical inverse function ϕσb , since we will always consider an arbitrary but fixed base
b and permutation σ. We will further use the shorthand ϕ(−1) := ϕσ

−1
b , where σ−1 is the

inverse permutation of σ. Recall the definitions of Ij,m and Ikj,m from Section 2.3.1. We
denote by I◦j,m and Ik,◦j,m the interior of the intervals Ij,m and Ikj,m, respectively.

Lemma 4.30. The following relations hold for the radical inverse function ϕ:

1. ϕ(bjw) = 1
bj
ϕ(w) for all j, w ∈ N0,

2. ϕ(bjϕ(−1)(m)) = m
bj

for all j ∈ N0 and m ∈ {0, . . . , bj − 1},

3. ϕ(n) ∈ Ij,m if and only if n = bjϕ(−1)(m) + bjw for some w ∈ N0, especially
ϕ(n) ∈ I◦j,m if and only if n = bjϕ(−1)(m) + bjw for some w ∈ N,

4. ϕ(n) ∈ Ikj,m for some k ∈ {0, 1, . . . , b− 1} if and only if n = bj+1ϕ(−1)(bm + k) +
bj+1w = bjϕ(−1)(m) + bjk + bj+1w for some w ∈ N0, especially ϕ(n) ∈ Ik,◦j,m if and
only if n = bjϕ(−1)(m) + bjk + bj+1w for some w ∈ N.

107



Proof. 1. Let w = ∑k
i=0wib

i, where wi ∈ {0, 1, . . . , b− 1} for all i ∈ {0, . . . , k}. Then
ϕ(bjw) = ϕ(∑k

i=0 σ(wi)bi+j) = ∑k
i=0 σ(wi)b−i−j−1 = 1

bj
∑k
i=0 σ(wi)b−i−1 = 1

bj
ϕ(w).

2. Since 0 ≤ m ≤ bj − 1, m has a b-ary representation of the form m = ∑j−1
i=0 mib

i,
where mi ∈ {0, 1, . . . , b − 1} for all i ∈ {0, . . . , j − 1}. Then bjϕ(−1)(m) =∑j−1
i=0 σ

−1(mi)bj−i−1 and therefore ϕ(bjϕ(−1)(m)) = ∑j−1
i=0 σ(σ−1(mi))b−(j−i−1)−1 =

1
bj
∑j−1
i=0 mib

i = m
bj
.

3. Again we have m = ∑j−1
i=0 mib

i. Let n = ∑
i≥0 nib

i, where ni ∈ {0, 1, . . . , b−1} and
only finitely many ni are non-zero. We have

m

bj
= mj−1

b
+ mj−2

b2 + · · ·+ m0

bj

and
ϕ(n) = σ(n0)

b
+ σ(n1)

b2 + · · ·+ σ(nj−1)
bj

+
∑
i≥j

σ(ni)
bi+1 .

It is evident that ϕ(n) ∈ Ij,m if and only if n0 = σ−1(mj−1), n1 = σ−1(mj−2)
and so on up to nj−1 = σ−1(m0), whereas the digits ni for i ≥ j may be chosen
arbitrarily. We conclude that ϕ(n) ∈ Ij,m if and only if

n =σ−1(mj−1) + σ−1(mj−2)b+ · · ·+ σ−1(m0)bj−1 +
∑
i≥j

nib
i

=bj
(
σ−1(m0)

b
+ · · ·+ σ−1(mj−2)

bj−1 + σ−1(mj−1)
bj

)
+ bj

∑
i≥0

ni+jb
i

=bjϕ(−1)(m) + bj
∑
i≥0

ni+jb
i,

where w := ∑
i≥0 ni+jb

i may run through all integers in N0. For w = 0 we have
ϕ(n) = ϕ(bjϕ(−1)(m)) = m

bj
/∈ I◦j,m, whereas for w ≥ 1 we have ϕ(n) = m

bj
+ ϕ(w)

bj
∈

I◦j,m, which proves the additional claim in item 3.

4. This follows from 3.

The next lemma contains several formulas for exponential expressions which will occur
in diverse parts of our proofs.

Lemma 4.31. The following equalities and inequalities hold for all integers b ≥ 2:

1. ∑b−1
k=0 e 2πi

b
k` = 0 for all ` ∈ {1, . . . , b− 1},

2. ∑b−1
`=1

1
|e

2πi
b
`−1|2

= b2−1
12 ,

3. 1
|e

2πi
b
`−1|
≤ 2
|e

2πi
b
`−1|2

.b 1 for all ` ∈ {1, . . . , b− 1}.

Proof. The first item is a well-known result and can be verified by applying the formula
for finite geometric sums. The proof of the second item can be found in [21, Corollary
A.23] or in [52, Proposition 3.5]. The last item can be shown directly with aid of the
triangle inequality and 2., because
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1
|e 2πi

b
` − 1|

= |e 2πi
b
` − 1|

|e 2πi
b
` − 1|2

≤|e
2πi
b
`|+ |1|

|e 2πi
b
` − 1|2

= 2
|e 2πi

b
` − 1|2

≤
b−1∑
`=1

2
|e 2πi

b
` − 1|2

= b2 − 1
6 .b 1.

The proof is complete.

We start with the computation of the first Haar coefficient µ̃N−1,0,1:

Lemma 4.32. The Haar coefficient µ̃N−1,0,1 of the discrepancy function ∆N(·, Ṽb) satisfies

|µ̃N−1,0,1| =
0 if N = 2M,∣∣∣12 − ϕ(M)

∣∣∣ ≤ 1
2 if N = 2M + 1.

Proof. For Ṽσb = (xn)n≥0 we have

µ̃N−1,0,1 =
∫ 1

0
∆N(t, Ṽσb ) dt =

∫ 1

0

(
N−1∑
n=0

1[0,t)(xn)−Nt
)

dt

=
N−1∑
n=0

∫ 1

0
1[0,t)(xn) dt− N

2 =
N−1∑
n=0

(1− xn)− N

2 = N

2 −
N−1∑
n=0

xn.

We therefore have to investigate the sum ∑N−1
n=0 xn. If N = 2M , then we have

2M−1∑
n=0

xn =
M−1∑
m=0

ϕ(m) +
M−1∑
m=0

(1− ϕ(m)) = M = N

2 .

For N = 2M + 1, we find

2M∑
n=0

xn =
2M−1∑
n=0

xn + ϕ(M) = M + ϕ(M) = N − 1
2 + ϕ (M) .

This leads to the desired result.

In the following, let µ̃Nj,m,`, µ
N,ϕ
j,m,` and µ

N,1−ϕ
j,m,` be the Haar coefficients of the discrepancy

function of the first N elements of the sequences Ṽσb , (ϕ(n))n≥0 and (1 − ϕ(n))n≥0,
respectively.

Lemma 4.33. For all j ∈ N0, m ∈ Dj and ` ∈ Bj we have

|µ̃Nj,m,`| ≤
{
|µM,ϕ
j,m,`|+ |µ

M,1−ϕ
j,m,` | if N = 2M,

|µM+1,ϕ
j,m,` |+ |µ

M,1−ϕ
j,m,` | if N = 2M + 1.

Proof. The proof is simple and similar to the proofs of Lemma 2.9 and Lemma 4.4.

We proceed with the calculation of the Haar coefficients of the discrepancy function in
the case j ∈ N0 and prove the following general lemma first.
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Lemma 4.34. Let j ∈ N0, m ∈ Dj and ` ∈ Bj. Then for the linear part f(t) = Nt of
the discrepancy function we have

µj,m,`(f) = Nb−2j−1

e 2πi
b
` − 1

and for the counting part g(t) = ∑N−1
n=0 1[0,t)(xn) we have

µj,m,`(g) = b−j−1
b−1∑
k=0

N−1∑
n=0

xn∈Ikj,m, xn 6=
m

bj

((
bm+ k − bj+1xn

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)
,

where the last sum in the brackets is empty for k = 0.

Proof. The assertion on µj,m,`(f) may be verified by simple integration. The Haar
coefficients of g are given by

µj,m,`(g) =
∫ 1

0

(
N−1∑
n=0

1[0,t)(xn)hj,m,`(t)
)

dt =
N−1∑
n=0

∫ 1

0
1[0,t)(xn)hj,m,`(t) dt︸ ︷︷ ︸

In

.

It is obvious that In = 0 in case that xn /∈ Ij,m or xn = m
bj
. Now we assume that

xn ∈ Ikj,m for some k = 0, 1, . . . , b− 1. Then we have

In =
∫ m

bj
+ k+1
bj+1

xn
e 2πi

b
k` dt+

b−1∑
r=k+1

∫
Irj,m

e 2πi
b
r` dt

= b−j−1

(bm+ k + 1− bj+1xn
)

e 2πi
b
k` +

b−1∑
r=k+1

e 2πi
b
r`


= b−j−1

((
bm+ k + 1− bj+1xn

)
e 2πi

b
k` −

k∑
r=0

e 2πi
b
r`

)

= b−j−1
((
bm+ k − bj+1xn

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)

and the proof of this lemma is done.

Now we are ready to show a central lemma.

Lemma 4.35. We have

|µN,ϕj,m,`| ≤
1
bj

9
|e 2πi

b
` − 1|2

and |µN,1−ϕj,m,` | ≤
1
bj

15
|e 2πi

b
` − 1|2

for all 0 ≤ j < dlogbNe and

|µN,ϕj,m,`| = |µ
N,1−ϕ
j,m,` | =

Nb−2j−1

|e 2πi
b
` − 1|

for all j ≥ dlogbNe.

110



Proof. We start with xn = ϕ(n) and therefore employ Lemma 4.30. It allows us to
display the sum

b−1∑
k=0

N−1∑
n=0

ϕ(n)∈Ikj,m

((
bm+ k − bj+1ϕ(n)

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)
,

which appears in Lemma 4.34, as

b−1∑
k=0

A(k)∑
w=0

((
bm+ k − bj+1ϕ

(
bjϕ(−1)(m) + bjk + bj+1w

))
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)
. (4.8)

We may include the case ϕ(n) = m
bj

since the corresponding summand is zero anyway.
In the above expression, A(k) :=

⌊
N−1
bj+1 − ϕ(−1)(m)

b
− k

b

⌋
. We choose this value for the

upper index of the sum, since we have to ensure that the conditions 0 ≤ n ≤ N − 1 and
n = bjϕ(−1)(m) + bjk + bj+1w are fulfilled simultaneously. With the aid of part 1 and 2
of Lemma 4.30 we obtain

ϕ
(
bjϕ(−1)(m) + bjk + bj+1w

)
= m

bj
+ 1
bj
ϕ(k + bw) = m

bj
+ 1
bj

(
k

b
+ 1
b
ϕ(w)

)
,

the expression (4.8) can be simplified to

−
b−1∑
k=0

A(k)∑
w=0

(
ϕ(w)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)
=: S.

Next we notice that A(k) can only take two possible values, namely A(k) = Ã or
A(k) = Ã − 1, where Ã =

⌊
N−1
bj+1 − ϕ(−1)(m)

b

⌋
. We assume that k0 ∈ {1, . . . , b} is such

that A(k) = Ã for k ∈ {0, . . . , k0 − 1} and, in case that k0 < b, A(k) = Ã − 1 for
k ∈ {k0, . . . , b− 1}. Hence, we can write

S =−
k0−1∑
k=0

(
ϕ(Ã)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)
︸ ︷︷ ︸

S1

−
b−1∑
k=0

Ã−1∑
w=0

(
ϕ(w)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)
︸ ︷︷ ︸

S2

.

We intend to simplify S2 and therefore change the order of the sums to obtain

S2 =
Ã−1∑
w=0

ϕ(w)
b−1∑
k=0

e 2πi
b
k` +

Ã−1∑
w=0

b−1∑
k=0

k−1∑
r=0

e 2πi
b
r`

= Ã

e 2πi
b
` − 1

b−1∑
k=0

(
e 2πi

b
k` − 1

)
= − bÃ

e 2πi
b
` − 1

.

We combine the previous results with Lemma 4.34 to obtain

µN,ϕj,m,` = 1
e 2πi

b
` − 1

( 1
bj
Ã−Nb−2j−1

)
− 1
bj+1S1.

Now we take the absolute value and apply the triangle inequality. This yields

|µN,ϕj,m,`| ≤
1

|e 2πi
b
` − 1|

∣∣∣∣ 1
bj
Ã−Nb−2j−1

∣∣∣∣+ 1
bj+1 |S1|.
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The inequalities x− 1 < bxc ≤ x for all x ∈ R yield

1
bj
Ã−Nb−2j−1 ≤ 1

bj

(
N − 1
bj+1 −

ϕ(m)
b

)
−Nb−2j−1 = − 1

b2j+1 −
ϕ(m)
bj+1 < 0

and

1
bj
Ã−Nb−2j−1 ≥ 1

bj

(
N − 1
bj+1 −

ϕ(m)
b
− 1

)
−Nb−2j−1

= − 1
b2j+1 −

ϕ(m)
bj+1 −

1
bj
≥ −b+ 2

bj+1 ≥ −
2
bj

;

thus we get ∣∣∣µN,ϕj,m,`

∣∣∣ ≤ 1
|e 2πi

b
` − 1|

2
bj

+ 1
bj+1 |S1|.

It remains to estimate |S1|. We have

|S1| ≤ ϕ(Ã)
∣∣∣∣∣∣
k0−1∑
k=0

e 2πi
b
k`

∣∣∣∣∣∣+
∣∣∣∣∣∣
k0−1∑
k=0

k−1∑
r=0

e 2πi
b
r`

∣∣∣∣∣∣
≤ |e

2πi
b
k0` − 1|

|e 2πi
b
` − 1|

+
∣∣∣∣∣∣ 1
e 2πi

b
` − 1

e 2πi
b
k0` − 1

e 2πi
b
` − 1

− k0

∣∣∣∣∣∣
≤ 2
|e 2πi

b
` − 1|

+ 2
|e 2πi

b
` − 1|2

+ b

|e 2πi
b
` − 1|

≤ 5b
|e 2πi

b
` − 1|2

,

where we used Lemma 4.31 in the last step. Altogether, we have verified
∣∣∣µN,ϕj,m,`

∣∣∣ ≤ 1
|e 2πi

b
` − 1|

2
bj

+ 1
|e 2πi

b
` − 1|2

5
bj
≤ 1
bj

9
|e 2πi

b
` − 1|2

.

This proves the first estimate of the lemma. It follows from Lemma 4.30, that there are
no elements of {x0, x1, . . . , xN−1} contained in the interior of Ij,m, if bjϕ(m) + bj ≥ N ,
which is certainly fulfilled if j ≥ dlogbNe. Therefore, in this case the counting part does
not contribute to the Haar coefficient µN,ϕj,m,` as we have seen in the proof of Lemma 4.34,
and we have

|µN,ϕj,m,`| =
Nb−2j−1

|e 2πi
b
` − 1|

as claimed.

We investigate
∣∣∣µN,1−ϕj,m,`

∣∣∣ and write

b−1∑
k=0

N−1∑
n=0

1−ϕ(n)∈Ikj,m
1−ϕ(n) 6=m

bj

((
bm+ k − bj+1(1− ϕ(n))

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)

as
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b−1∑
k=0

N−1∑
n=0

1−ϕ(n)∈Ik,◦j,m

((
bm+ k − bj+1(1− ϕ(n))

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)

−
b−1∑
k=1

N−1∑
n=0

1−ϕ(n)=m

bj
+ k

bj+1

k−1∑
r=0

e 2πi
b
r` =: T1 − T2.

It is easily shown that 1 − ϕ(n) ∈ Ik,◦j,m if and only if ϕ(n) ∈ Ib−k−1,◦
j,bj−m−1. In analogy to

preceding parts of this proof we define B(k) :=
⌊
N−1
bj+1 − ϕ(−1)(bj−m−1)

b
− b−k−1

b

⌋
as well

as B̃ :=
⌊
N−1
bj+1 − ϕ(−1)(bj−m−1)

b

⌋
. Let k′0 ∈ {0, . . . , b − 1} be such that B(k) = B̃ for

k ∈ {k′0, . . . , b− 1} and, in case that k′0 > 0, B(k) = B̃ − 1 for k ∈ {0, . . . , k′0 − 1}. We
apply Lemma 4.30 to obtain

T1 =
b−1∑
k=0

N−1∑
n=0

ϕ(n)∈Ib−k−1,◦
j,bj−m−1

((
bm+ k − bj+1(1− ϕ(n))

)
e 2πi

b
k` −

k−1∑
r=0

e 2πi
b
r`

)

=
b−1∑
k=0

B(k)∑
w=1

((
bm+ k − bj+1

(
1− ϕ(bj+1ϕ(−1)(b(bj −m− 1) + b− k − 1) + bj+1w)

))

× e 2πi
b
k` −

k−1∑
r=0

e 2πi
b
r`

)

=−
b−1∑
k=0

B(k)∑
w=1

(
(ϕ(w) + 1)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)

=−
b−1∑
k=k′0

(
(ϕ(B̃) + 1)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)
︸ ︷︷ ︸

T1,1

−
b−1∑
k=0

B̃−1∑
w=1

(
(ϕ(w) + 1)e 2πi

b
k` +

k−1∑
r=0

e 2πi
b
r`

)
︸ ︷︷ ︸

T1,2

.

Similarly as above, we can show that

T1,2 = −b(B̃ − 1)
e 2πi

b
` − 1

.

Altogether, we have

µN,1−ϕj,m,` = 1
e 2πi

b
` − 1

( 1
bj

(B̃ − 1)−Nb−2j−1
)
− 1
bj+1 (T1,1 + T2),

and so the triangle inequality gives

|µN,1−ϕj,m,` | ≤
1

|e 2πi
b
` − 1|

∣∣∣∣ 1
bj

(B̃ − 1)−Nb−2j−1
∣∣∣∣+ 1

bj+1 (|T1,1|+ |T2|).

One can check in the same manner as done above that
∣∣∣ 1
bj

(B̃ − 1)−Nb−2j−1
∣∣∣ ≤ 1

N
3
bj

and |T1,1| ≤ 7b
|e

2πi
b
`−1|2

. We also find

|T2| ≤
∣∣∣∣∣
b−1∑
k=1

k−1∑
r=0

e 2πi
b
r`

∣∣∣∣∣ ≤ 1
|e 2πi

b
` − 1|

∣∣∣∣∣
b−1∑
k=0

(
e 2πi

b
k` − 1

)∣∣∣∣∣ = b

|e 2πi
b
` − 1|

≤ 2b
|e 2πi

b
` − 1|2

.
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By combining all these results we finally arrive at

|µN,1−ϕj,m,` | ≤
1

|e 2πi
b
` − 1|2

( 6
bj

+ 7
bj

+ 2
bj

)
= 1
bj

15
|e 2πi

b
` − 1|2

.

The equality |µN,1−ϕj,m,` | = Nb−2j−1

|e
2πi
b
`−1|

for j ≥ dlogbNe can be verified analogously as in the

case of |µN,ϕj,m,`| and the proof of the lemma is complete.

Corollary 4.36. The Haar coefficients of the symmetrized van der Corput sequence in
base b for j ∈ N0 satisfy

|µ̃Nj,m,`|


≤ 1

bj
26

|e
2πi
b
`−1|2

.b
1
bj

if j < dlogbNe,

= Nb−2j−1

|e
2πi
b
`−1|

.b
N
b2j

if j ≥ dlogbNe.

Proof. We combine Lemma 4.31, Lemma 4.33 and Lemma 4.35 to obtain the result.

In order to prove the result on the non-symmetrized sequences we only need to consider
the first Haar coefficient µ−1,0,1(∆N(·,Vσb )).

Proposition 4.37. We have

|µ−1,0,1(∆N(·,Vσb ))| & logN

for infinitely many N ∈ N.

Proof. By Parseval’s equality (2.21) we have

‖∆N(·,Vσb )‖2
L2([0,1)) =|µ−1,0,1(∆N(·,Vσb ))|2 +

∑
j∈N0,m∈Dj ,`∈Bj

b|j||µj,m,`(∆N(·,Vσb ))|2

Using Lemma 4.35, we find∑
j∈N0,m∈Dj ,`∈Bj

b|j||µj,m,`(∆N(·,Vσb ))|2

.b

dlogbNe−1∑
j=0

b2j
( 1
bj

)2
+

∞∑
j=dlogbNe

b2j
(
N

b2j

)2
≤ c1 logN,

for some positive constant c1 depending only on b and for all N ≥ 2. From the fact that
L2,N(Vσb ) ≥ c2 logN for a constant c2 > 0 depending only on b and for infinitely many
N , we derive

|µ−1,0,1(∆N(·,Vσb ))|2 ≥ c2
2(logN)2 − c1 logN &b (logN)2

for infinitely many N .

Remark 4.38. A direct proof of Proposition 4.37 for b = 2 can be found in [25] (see
also [45, Remark 1]).
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Proof of Theorem 4.29 We first prove the result on the non-symmetrized van der
Corput sequences. Let µNj,m,` be the Haar coefficients of the discrepancy function of the
first N elements of Vσb . We employ the lower bound given in Proposition 2.12 and obtain
for all p ∈ (1,∞)

(Lp,N(Vσb ))2 =‖∆N(·,Vσb )‖2
Lp([0,1)) &

∑
j∈N−1

b2j(1−1/p′)

 ∑
m∈Dj ,`∈Bj

|µNj,m,`|p
′

2/p′

≥b−2(1−1/p′)
(
|µN−1,0,1|p

′)2/p′
& |µN−1,0,1|2 & (logN)2

for infinitely many N , where we regarded Proposition 4.37 in the last step. To verify
the result on the symmetrized van der Corput sequences, we need to take into account
all the Haar coefficients. We use now the upper bound on the Lp norm as given in
Proposition 2.12 and insert there the bounds on the Haar coefficients according to Co-
rollary 4.36. We have

(Lp,N(Ṽσb ))2 =‖∆N(·, Ṽσb )‖2
Lp([0,1)) .

∑
j∈N−1

b2j(1−1/p̄)

 ∑
m∈Dj ,`∈Bj

|µ̃Nj,m,`|p̄
2/p̄

.b−2(1−1/p̄)
(
|µN−1,0,1|p̄

)2/p̄
+
dlogbNe−1∑

j=0
b2j(1−1/p̄)

 ∑
m∈Dj ,`∈Bj

( 1
bj

)p̄2/p̄

+
∞∑

j=dlogbNe
b2j(1−1/p̄)

 ∑
m∈Dj ,`∈Bj

(
N

b2j

)p̄2/p̄

.b−2(1−1/p̄) +
dlogbNe−1∑

j=0
b2j(1−1/p̄)b2j/p̄ 1

b2j +
∞∑

j=dlogbNe
b2j(1−1/p̄)b2j/p̄N

2

b4j

.1 +
dlogbNe−1∑

j=0
1 +N2

∞∑
j=dlogbNe

1
b2j . logN.

The results follows now by taking the square root in both cases, respectively.

4.2.2. Optimal discrepancy rate of Ṽσb in several other norms
As we have already seen in Section 2.3, the estimation of the Haar coefficients of the
discrepancy function is the key to give upper bounds of its norm in various normed
function spaces. In this subsection, we will give such upper bounds for the class of
symmetrized van der Corput sequences. We will consider Besov, Triebel-Lizorkin, BMO
and exponential Orlicz norms. We start with a theorem on the Besov norm, which
demonstrates that the symmetrization of the van der Corput sequence is only necessary
if the smoothness parameter r is zero, whereas for r > 0 also the non-symmetrized
version achieves the optimal discrepancy rate.

Theorem 4.39. Let 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1
p
. Then for any integer b ≥ 2 we have∥∥∥∆N(·, Ṽσb )

∥∥∥
Srp,qB([0,1))

. (logN)
1
q

for all N ≥ 2 and
‖∆N(·,Vσb )‖Srp,qB([0,1)) & logN
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for infinitely many N ∈ N if r = 0 and∥∥∥∆N(·, Ṽσb )
∥∥∥
Srp,qB([0,1))

. N r

as well as
‖∆N(·,Vσb )‖Srp,qB([0,1)) . N r

if 0 < r < 1
p
for all N ≥ 2.

Proof. Let us first consider the symmetrized van der Corput sequences. From Proposi-
tion 2.11 it follows that it suffices to show ∑

j∈N−1

bj(r−
1
p

+1)q
 ∑
m∈Dj ,`∈Bj

∣∣∣µ̃Nj,m,`∣∣∣p


q
p


1
q

.

(logN)
1
q if r = 0,

N r if 0 < r < 1
p
.

Since q ≥ 1, we have
 ∑
j∈N−1

bj(r−
1
p

+1)q
 ∑
m∈Dj ,`∈Bj

∣∣∣µ̃Nj,m,`∣∣∣p


q
p


1
q

. |µ−1,0,1|+

dlogbNe−1∑
j=0

bj(r−
1
p

+1)q
 ∑
m∈Dj ,`∈Bj

∣∣∣µ̃Nj,m,`∣∣∣p


q
p


1
q

+

 ∞∑
j=dlogbNe

bj(r−
1
p

+1)q
 ∑
m∈Dj ,`∈Bj

∣∣∣µ̃Nj,m,`∣∣∣p


q
p


1
q

=: S1 + S2 + S3.

We apply Lemma 4.32 and Corollary 4.36. We have S1 . 1 . N r for all 0 ≤ r < 1
p
. We

also find

S2 .

dlogbNe−1∑
j=0

bj(r−
1
p

+1)q
(
bj
( 1
bj

)p) q
p


1
q

=
dlogbNe−1∑

j=0
bjqr


1
q

.

The assumption r = 0 leads to

S2 .

dlogbNe−1∑
j=0

1


1
q

. (logN)
1
q ,

whereas for 0 < r < 1
p
we obtain

S2 .

dlogbNe−1∑
j=0

bjqr


1
q

. (blogbN)r = N r.

It remains to estimate S3. We have
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S3 .

 ∞∑
j=dlogbNe

bj(r−
1
p

+1)q
(
bj
(
N

b2j

)p) q
p


1
q

= N

 ∞∑
j=dlogbNe

bjq(r−1)

 1
q

. NblogbN(r−1) = N r,

which concludes the proof of the claims on the symmetrized van der Corput sequences.
Now we investigate the non-symmetrized van der Corput sequences Vσb . Note that for
j 6= −1 the corresponding Haar coefficients of ∆N(·,Vσb ) are of the same order as those of
∆N(·, Ṽσb ). It is therefore enough to consider only the Haar coefficient µ−1,0,1(∆N(·,Vσb )).
If r > 0, we have µ−1,0,1(∆N(·,Vσb )) . logN . N r and the proof is complete. If, however,
r is zero, then we have µ−1,0,1(∆N(·,Vσb )) & logN and hence ‖∆N(·,Vσb )‖Srp,qB([0,1)) &
logN by Proposition 2.11.

From the embedding Theorem 2.24 we immediately obtain the following results on the
Triebel-Lizorkin spaces:

Theorem 4.40. Let 1 ≤ p, q ≤ ∞ and 0 ≤ r < 1
max{p,q} . Then for any integer b ≥ 2 we

have ∥∥∥∆N(Ṽσb )
∥∥∥
Srp,qF ([0,1))

. (logN)
1
q

for all N ≥ 2 and
‖∆N(Vσb )‖Srp,qF ([0,1)) & logN

for infinitely many N ∈ N if r = 0 and∥∥∥∆N(Ṽσb )
∥∥∥
Srp,qF ([0,1))

. N r

as well as
‖∆N(Vσb )‖Srp,qF ([0,1)) . N r

if 0 < r < 1
max{p,q} for all N ≥ 2.

By putting q = 2 in Theorem 4.40 we obtain results for Sobolov spaces. We recover
Theorem 4.29 by additionally setting r = 0.

For the rest of this section, we restrict ourselves to the dyadic case, where we can use
the apparatus we have for the BMO and exponential Orlicz norms. We first prove the
following result on the BMO norm of the discrepancy function.

Theorem 4.41. We have

‖∆N(·,V2)‖BMO([0,1)) ≤
√

logN

and
‖∆N(·, Ṽ2)‖BMO([0,1)) ≤

√
logN

for all N ≥ 2.
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Proof. We start with the classical van der Corput sequence. We fix an arbitrary meas-
urable set U ⊂ [0, 1). Since for a fixed j ∈ N0 we can estimate

|U | ≥
∑
m∈Dj
Ij,m⊂U

|Ij,m| = 2−j
∑
m∈Dj
Ij,m⊂U

1,

we have ∑ m∈Dj
Ij,m⊂U

1 ≤ 2j|U |. By the definition of the BMO norm we need to prove

|U |−1 ∑
j∈N0

2j
∑
m∈Dj
Ij,m⊂U

|µNj,m|2 . logN,

because then the supremum extended over all U ⊂ [0, 1) satisfies this upper bound as
well. We distinguish between two cases and use Lemma 4.35. We first assume that
0 ≤ j < dlog2Ne and obtain

|U |−1
dlog2Ne−1∑

j=0
2j

∑
m∈Dj
Ij,m⊂U

|µNj,m|2 . |U |−1
dlog2 Ne−1∑

j=0
2j 1

22j 2j|U | . logN.

For j ≥ dlog2Ne we can estimate

|U |−1
∞∑

j=dlog2 Ne
2j

∑
m∈Dj
Ij,m⊂U

|µNj,m|2 . |U |−1
∞∑

j=dlog2 Ne
2jN

2

24j 2j|U | = N2
∞∑

j=dlog2 Ne

1
22j . 1.

This yields the BMO norm estimate for the local discrepancy of V2. We can proceed
completely analogously for the symmetrized version of the van der Corput sequence by
using Corollary 4.36 (note that we do not need the delicate first Haar coefficient µN−1,0
in the estimation of the BMO norm).

Theorem 4.42. Let β > 0. Then we have

‖∆N(·, Ṽ2)‖exp (Lβ) . (logN)1− 1
max{2,β} .

Proof. Let us first consider the case β = 2. The Chang-Wilson-Wolff inequality (Pro-
position 2.14) and Corollary 4.36 give

‖∆N(·, Ṽ2)‖exp (L2) .

∥∥∥∥∥∥∥
 ∑
j∈N−1

22|j| ∑
m∈Dj

∣∣∣〈∆N(·, Ṽ2), hj,m
〉∣∣∣2 1Ij,m

 1
2
∥∥∥∥∥∥∥
L∞([0,1))

≤

 ∑
j∈N−1

22|j|

∥∥∥∥∥∥
∑
m∈Dj

|µ̃Nj,m|21Ij,m

∥∥∥∥∥∥
L∞([0,1))


1
2

.
(∥∥∥1[0,1)

∥∥∥
L∞([0,1))

) 1
2

+

blog2Nc−1∑
j=0

∥∥∥∥∥∥
∑
m∈Dj

1Ij,m

∥∥∥∥∥∥
L∞([0,1))


1
2

+N

 ∞∑
j=blog2 Nc

2−2j

∥∥∥∥∥∥
∑
m∈Dj

1Ij,m

∥∥∥∥∥∥
L∞([0,1))


1
2

.
√

logN,
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where we regarded
∥∥∥∑m∈Dj 1Ij,m

∥∥∥
L∞([0,1))

= 1.
The result for 0 < β < 2 follows from the fact that ‖f‖exp (Lα) < ‖f‖exp (Lβ) for 0 < α <

β <∞. Hence we have ‖∆N(·, Ṽ2)‖exp (Lβ) .
√

logN in this case.
For β > 2 we can obtain our result by interpolation between Orlicz spaces and the L∞
space. For 0 < α < β <∞ and f ∈ L∞([0, 1)) we have

‖f‖exp (Lβ) .
(
‖f‖exp (Lα)

)α
β
(
‖f‖L∞([0,1))

)1−α
β

(see [7, Proposition 2.4]). We show L∞,N(Ṽ2) . logN . Let N = 2M and n ∈ N such
that 2n−1 ≤M < 2n for an arbitrary n ∈ N. Then we have

‖∆N(·, Ṽ2)‖L∞([0,1)) ≤ ‖∆M(·,V2)‖L∞([0,1)) + ‖∆M(·, 1− ϕ2)‖L∞([0,1)),

where 1 − ϕ2 denotes the sequence (1 − ϕ2(n))n≥0. With similar arguments as in
Lemma 2.3 and in the proof of Theorem 3.29 we find∣∣∣‖∆M(·, 1− ϕ2)‖L∞([0,1)) − ‖∆M(·, ϕτ22 )‖L∞([0,1))

∣∣∣ ≤ 1,

where ϕτ22 is as defined in the proof of Theorem 3.29. This fact yields

‖∆N(·, Ṽ2)‖L∞([0,1)) . ‖∆M(·,V2)‖L∞([0,1)) + ‖∆M(·, ϕτ22 )‖L∞([0,1)).

We already know from [26] that ‖∆M(·,V2)‖L∞([0,1)) . logM and ‖∆M(·,Vτ22 )‖L∞([0,1)) .
logM . Therefore we have

‖∆N(·, Ṽ2)‖L∞([0,1)) ≤ 2 logM . logN.

This yields the claim on the star discrepancy of the symmetrized van der Corput se-
quence since n was arbitrary (the proof for odd N is basically the same). Hence we
obtain

‖∆N(·, Ṽ2)‖exp (Lβ) .
(
‖∆N(·, Ṽ2)‖exp (L2)

) 2
β
(
‖∆N(·, Ṽ2)‖L∞([0,1))

)1− 2
β

.
(√

logN
) 2
β

(logN)1− 2
β . (logN)1− 1

β

and the proof is complete.

4.3. Conclusions
We would like to summarize several general phenomena which occur with the analysis
of the Lp discrepancy of point sets in [0, 1)2 and sequences in [0, 1).

• We observe that the reason for the large Lp discrepancy of the Hammersley point
set and the van der Corput sequence is the large Haar coefficient of the corres-
ponding local discrepancy for j = (−1,−1) and j = −1, respectively, whereas all
the other Haar coefficients are small enough to achieve the optimal order of Lp dis-
crepancy. Modifying the Hammersley point set and the van der Corput sequence
(e.g. by digit scrambling with permutations or symmetrization) leads to a signific-
ant reduction of the aforementioned first Haar coefficient. While for Hammersly
point sets this reduction can occur for suitable permutations, this is not the case
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for the van der Corput sequence. However, the method of symmetrization leads
to the optimal Lp discrepancy rate in both cases. It has already been observed
by Davenport [16] that the symmetrization of point sets has the effect that the
zeroth Fourier coefficient of the discrepancy function is reduced and therefore the
symmetrized point sets L̃N(α) as considered in Example 1.9 achieve the optimal
order of L2 discrepancy.

• We have seen the following: If our modified point sets and sequences achieve
the optimal order of L2 discrepancy, they always have the optimal order of Lp
discrepancy for all p ∈ (1,∞) simultaneously. We do not know if there is a general
law behind this observation.

• Finally, we note that constructions of point sets and sequences with the optimal
order of Lp discrepancy seem to achieve the optimal discrepancy rate in other
function spaces such as Besov spaces with dominating mixed smoothness too.
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A. Appendix - Some arithmetics
concerning cσb

In this paragraph we give all the missing proofs of Section 3.2.2. Our aim is to prove
the following three propositions.

Proposition A.1 provides the formula for the constant cσb appearing in Theorem 3.17,
which has already been mentioned in Lemma 3.27 and was essential to obtain the nu-
merical results for cσb in Section 3.2.2.

Proposition A.1. Let σ ∈ Ab(τ). Then we have

cσb =16− 12b− 111b2 + 228b3 − 112b4

72b2 − 1− (−1)b
16b3

+ 4
b3

b−1∑
k1,k2=0

max{σ(k1), σ(k2)}
(
b

2
(

max{k1, k2}+ max{k1 + k2, b− 1}
)
− k2

1 − k1

)
.

Proposition A.2 contains the relations we used in Remark 3.26 to simplify our formula
for L2(H̃Σ

b,n) as stated in Theorem 3.17.

Proposition A.2. For σ ∈ Ab(τ) we have the relation

Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2 =
−

1
24 if b is even ,
− 1

24
b2−1
b2

if b is odd .

Finally, Proposition A.3 confirms the fact that the value of the constant cσb is invariant
with respect to certain transformations on the permutation σ.

Proposition A.3. Let σ ∈ Ab(τ) and d ∈ {0, . . . , b− 1}. Then we define the permuta-
tion σ̂ ∈ Ab(τ) in the following way: For k ∈ {0, . . . , b − 1} \ {d, b − 1 − d} we set
σ̂(k) = σ(k) and additionally we set σ̂(d) = σ(b− 1− d) and σ̂(b− 1− d) = σ(d). Then
we have cσb = cσ̂b .

The proofs are similar and of elementary, but technical nature. The fundamental prop-
erties of the function ψσb,h, which are required for the proofs, are the following: Let
l ∈ {0, 1, . . . , b− 1} and σ ∈ Sb. Then we have

(P1) (ψσb,h)′
(
l

b
+ 0

)
= (ψidb,h)′

(
σ(l)
b

+ 0
)
,

(P2) ψσb,h

(
l

b

)
= 1
b

l−1∑
k=0

(ψσb,h)′
(
k

b
+ 0

)
,

(P2)′
b−1∑
k=0

(ψσb,h)′
(
k

b
+ 0

)
= 0.
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Note that (P2)’ follows directly from (P2) by setting l = b. We will often use the same
tricks. It is evident that

b−1∑
k=0

f(k) =
b−1∑
k=0

f(b− 1− k) or
b−1∑
k=0

f(σ(k)) =
b−1∑
k=0

f(k),

where f is some expression depending on the index k. We will also need simple relations
concerning the maximum of two real numbers; e.g.

max{a+ b, a+ c} = a+ max{b, c} or max{−a,−b} = −min{a, b}

for a, b, c ∈ R.

In order to prove the central propositions in this Appendix, we need several auxiliary
results. First, we proof the following lemma, which holds for arbitrary permutations in
Sb.
Lemma A.4. For all σ ∈ Sb we have

Φσ,(2)
b =1− 6b2 + 9b3 − 4b4

18b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 + k1 + k2
2 + k2

2 − bmax{k1, k2}
)

and

Φ̃σ
b =c− 6b− 33b2 + 78b3 − 40b4

72b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 + k1 + k2
2 + k2

2 − bmax{k1 + k2, b− 1}
)
,

where c = 4 for even bases b and c = 1 for odd bases b. We also have

Φ̃σ
b,1 =− c1 + 18b− 9b2 − 54b3 + 40b4

72b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 − k1 + k2
2 − k2

2 − (b− 1) max{k1 + k2, b}
)

+ 1
b3

b−1∑
k1,k2=0
k1+k2>b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b),

as well as

Φ̃σ
b,2 =− c1 + 30b+ 27b2 − 102b3 + 40b4

72b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 + 3k1 + k2
2 + 3k2

2

− (b+ 1) max{k1 + k2, b− 2}
)

− 1
b3

b−1∑
k1,k2=0

k1+k2>b−2

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b+ 2)

where c1 = 8 for even bases b and c1 = 5 for odd bases b, respectively.
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Proof. The first formula is [31, Lemma 8]. We show the second formula. By Simpson’s
rule we have

Φ̃σ
b =1

b

∫ 1

0
ψ̃σb (x) dx = 1

3b2

b−1∑
l=0

ψ̃σb

(
l

b

)
+ 2

3b2

b−1∑
l=0

ψ̃σb

(
l

b
+ 1

2b

)

= 1
3b2

b−1∑
l=0

b−1∑
h=0

ψσb,h

(
l

b

)
ψσb,h

(
l

b

)

+ 2
3b2

b−1∑
l=0

b−1∑
h=0

(
ψσb,h

(
l

b

)
+ 1

2b(ψσb,h)′
(
l

b
+ 0

))(
ψσb,h

(
l

b

)
+ 1

2b(ψσb,h)′
(
l

b
+ 0

))
,

where in the last step we regarded the fact that ψσb,h and ψσb,h are piecewise linear on
intervals

[
k
b
, k+1

b

)
for k ∈ N. Now we have

Φ̃σ
b = 1

b2

b−1∑
l=0

b−1∑
h=0

ψσb,h

(
l

b

)
ψσb,h

(
l

b

)
+ 1

3b3

b−1∑
l=0

b−1∑
h=0

ψσb,h

(
l

b

)
(ψσb,h)′

(
l

b
+ 0

)

+ 1
3b3

b−1∑
l=0

b−1∑
h=0

ψσb,h

(
l

b

)
(ψσb,h)′

(
l

b
+ 0

)

+ 1
6b4

b−1∑
l=0

b−1∑
h=0

(ψσb,h)′
(
l

b
+ 0

)
(ψσb,h)′

(
l

b
+ 0

)
=: S1 + S2 + S3 + S4.

With property (P1) we can write

S4 = 1
6b4

b−1∑
l=0

b−1∑
h=0

(ψidb,h)′
(
l

b
+ 0

)
(ψτbb,h)′

(
l

b
+ 0

)
=: 1

6b4

b−1∑
l=0

J(l).

To calculate this expression, we distinguish two cases:

1. Let l ≤ b−1
2 , i.e. l ≤ b− l − 1. Then we have

J(l) =
l∑

h=0
h2 +

b−l−1∑
h=l+1

(b− h)(−h) +
b−1∑
h=b−l

(b− h)2 = b

6(1− b2 + 6l + 6l2).

2. Let l > b−1
2 , i.e. l > b− l − 1. Then we have

J(l) =
b−l−1∑
h=0

h2 +
l∑

h=b−l
(b− h)(−h) +

b−1∑
h=l+1

(b− h)2

= b

6(1 + 5b2 − 6b+ 6l2 + 6l − 12bl).

This leads to

S4 =
−

1
72
b2+2
b2

if b is even
− 1

72
b2−1
b2

if b is odd.

We turn to S2 and S3. Using (P2) we can write it as

S2 = 1
3b4

b−1∑
l=0

b−1∑
h=0

l−1∑
k=0

(ψσb,h)′
(
k

b
+ 0

)
(ψσb,h)′

(
l

b
+ 0

)
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= 1
3b4

b−1∑
l=0

l−1∑
k=0

b−1∑
h=0

(ψidb,h)′
(
σ(k)
b

+ 0
)

(ψτbb,h)′
(
σ(l)
b

+ 0
)
.

Similarly, we have

S3 = 1
3b4

b−1∑
l=0

l−1∑
k=0

b−1∑
h=0

(ψτbb,h)′
(
σ(k)
b

+ 0
)

(ψidb,h)′
(
σ(l)
b

+ 0
)

= 1
3b4

b−1∑
k=0

k−1∑
l=0

b−1∑
h=0

(ψτbb,h)′
(
σ(l)
b

+ 0
)

(ψidb,h)′
(
σ(k)
b

+ 0
)

= 1
3b4

b−1∑
l=0

b−1∑
k=l+1

b−1∑
h=0

(ψidb,h)′
(
σ(k)
b

+ 0
)

(ψτbb,h)′
(
σ(l)
b

+ 0
)
.

Summing S2 and S3 yields

S2 + S3 = 1
3b4

b−1∑
l=0

b−1∑
k=0

b−1∑
h=0

(ψidb,h)′
(
σ(k)
b

+ 0
)

(ψτbb,h)′
(
σ(l)
b

+ 0
)

− 1
3b4

b−1∑
l=0

b−1∑
h=0

(ψidb,h)′
(
σ(l)
b

+ 0
)

(ψτbb,h)′
(
σ(l)
b

+ 0
)

= −2S4,

since the first sum in the last expression vanishes due to property (P2)′. So far we have

Φ̃σ
b = 1

b2

b−1∑
l=0

b−1∑
h=0

ψσb,h

(
l

b

)
ψσb,h

(
l

b

)
− S4.

We have

S1 = 1
b4

b−1∑
l=0

l−1∑
k1,k2=0

b−1∑
h=0

(ψσb,h)′
(
k1

b
+ 0

)
(ψσb,h)′

(
k2

b
+ 0

)

= 1
b4

b−1∑
k1,k2=0

b−1∑
l=max{k1,k2}+1

b−1∑
h=0

(ψidb,h)′
(
σ(k1)
b

+ 0
)

(ψτbb,h)′
(
σ(k2)
b

+ 0
)

=b− 1
b4

b−1∑
k1,k2=0

b−1∑
h=0

(ψidb,h)′
(
σ(k1)
b

+ 0
)

(ψτbb,h)′
(
σ(k2)
b

+ 0
)

− 1
b4

b−1∑
k1,k2=0

max{k1, k2}
b−1∑
h=0

(ψidb,h)′
(
σ(k1)
b

+ 0
)

(ψτbb,h)′
(
σ(k2)
b

+ 0
)

=− 1
b4

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
b−1∑
h=0

(ψidb,h)′
(
k1

b
+ 0

)
(ψτbb,h)′

(
k2

b
+ 0

)
︸ ︷︷ ︸

X

.

We have

X =
min{k1,b−1−k2}∑

h=0
h2 +

max{k1,b−1−k2}∑
h=min{k1,b−1−k2}+1

(−h)(b− h) +
b−1∑

h=max{k1,b−1−k2}+1
(b− h)2

= b

6
(
5b2 − 6b+ 1 + 3(k2

1 + k1 + k2
2 + k2)− 6bk2 − 6bmax{k1, b− 1− k2}

)
.
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This leads to

S1 =− 1
6b3

b−1∑
k1,k2=0

(5b2 − 6b+ 1) max{k1, k2}

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 + k1 + k2
2 + k2

2

− b(k2 + max{k1, b− 1− k2})
)

=− (b− 1)2(4b+ 1)(5b− 1)
36b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 + k1 + k2
2 + k2

2 − bmax{k1 + k2, b− 1}
)
.

The result for Φ̃σ
b follows. We consider Φ̃σ

b,1 and derive analogously as before

Φ̃σ
b,1 = 1

b2

b−1∑
l=0

b−2∑
h=0

ψσb,h+1

(
l

b

)
ψσb,h

(
l

b

)
+ 1

3b3

b−1∑
l=0

b−2∑
h=0

ψσb,h+1

(
l

b

)
(ψσb,h)′

(
l

b
+ 0

)

+ 1
3b3

b−1∑
l=0

b−2∑
h=0

ψσb,h

(
l

b

)
(ψσb,h+1)′

(
l

b
+ 0

)

+ 1
6b4

b−1∑
l=0

b−2∑
h=0

(ψσb,h+1)′
(
l

b
+ 0

)
(ψσb,h)′

(
l

b
+ 0

)
=: S ′1 + S ′2 + S ′3 + S ′4.

For S ′4 we proceed as above and write

S ′4 = 1
6b4

b−1∑
l=0

b−2∑
h=0

(ψidb,h+1)′
(
l

b
+ 0

)
(ψτbb,h)′

(
l

b
+ 0

)
=: 1

6b4

b−1∑
l=0

J ′(l).

To calculate this expression, we distinguish two cases:

1. Let l ≤ b
2 , i.e. l − 1 ≤ b− l − 1. Then we have

J ′(l) =
l−1∑
h=0

(h+ 1)h+
b−l−1∑
h=l+1

(b− h− 1)(−h) +
b−2∑
h=b−l

(b− h)(b− h− 1)

= b

6(−2 + 3b− b2 − 6l + 6l2).

2. Let l > b
2 , i.e. l − 1 > b− l − 1. Then we have

J ′(l) =
b−l−1∑
h=0

(h+ 1)h+
l−1∑
h=b−l

(−h− 1)(b− h)(−h) +
b−2∑
h=l

(b− h)2

= b

6(−2 + 3b− 6l + 5b2 − 12bl + 6l2).

This leads to

S ′4 =
−

1
72
b2−4
b2

if b is even,
− 1

72
b2−1
b2

if b is odd.
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As seen above, we have S ′2 + S ′3 = −2S ′4, and further

S ′1 = − 1
b4

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
b−1∑
h=0

(ψidb,h+1)′
(
k1

b
+ 0

)
(ψτbb,h)′

(
k2

b
+ 0

)
︸ ︷︷ ︸

X ′

.

In order to evaluate X ′, we have to distinguish two cases:

1. Assume that k1 − 1 ≤ b− 1− k2. Then we have

X ′ =
min{k1−1,b−1−k2}∑

h=0
h(h+ 1) +

max{k1−1,b−1−k2}∑
h=min{k1−1,b−1−k2}+1

(−h)(b− h− 1)

+
b−1∑

h=max{k1−1,b−1−k2}+1
(b− h)(b− h− 1) =: X ′1.

2. If k1 − 1 > b− 1− k2, then we have

X ′ =
min{k1−1,b−1−k2}∑

h=0
h(h+ 1) +

max{k1−1,b−1−k2}∑
h=min{k1−1,b−1−k2}+1

(−h− 1)(b− h− 1)

+
b−1∑

h=max{k1−1,b−1−k2)+1
(b− h)(b− h− 1)

= : X ′1 − b(max{k1 − 1, b− 1− k2} −min{k1 − 1, b− 1− k2})
=X ′1 − b(k1 + k2 − b).

A straightforward calculation yields

X ′1 = b

6
(
−2− 3b+ 5b2 + 3k2

1 − 3k1 + 3k2
2 − 3k2 + 6(b− 1) max{k1 + k2, b}

)
,

and therefore

S ′1 =− (b− 1)2(4b+ 1)(5b+ 2)
36b2

− 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
k2

1 − k1 + k2
2 − k2

2 − (b− 1) max{k1 + k2, b}
)

+ 1
b3

b−1∑
k1,k2=0
k1+k2>b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b).

This completes the proof for Φ̃σ
b,1. Since the formula for Φ̃σ

b,2 can be shown in the very
same way, we omit an explicit proof.

We will make excessive use of the property σ ∈ Ab(τ) in all subsequent proofs.

Lemma A.5. Let σ ∈ Ab(τ). With S1(σ) = ∑b−1
k=0 kσ(k) we have

b−1∑
k1,k2=0

max{k1, k2}σ(k1) = b

2S1(σ) + 1
24b(b− 1)(5b2 − 3b− 2).
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Proof. We have

b−1∑
k1,k2=0

max{k1, k2}σ(k1)

=1
2

b−1∑
k1,k2=0

max{k1, k2}σ(k1) + 1
2

b−1∑
k1,k2=0

max{k1, k2}(b− 1− σ(b− 1− k1))

=1
2

b−1∑
k1,k2=0

(
max{k1, k2} −max{b− 1− k1, k2}

)
σ(k1) + b− 1

2

b−1∑
k1,k2=0

max{k1, k2}.

Now we have

−1
2

b−1∑
k1,k2=0

max{b− 1− k1, k2}σ(k1) =− 1
2

b−1∑
k1,k2=0

max{b− 1− k1, b− 1− k2}σ(k1)

=1
2

b−1∑
k1,k2=0

(min{k1, k2} − (b− 1))σ(k1),

where we regarded the fact that

max{b− 1− k1, b− 1− k2} = b− 1 + max{−k1,−k2} = b− 1−min{k1, k2}.

Since max{k1, k2}+ min{k1, k2} = k1 + k2, we get

b−1∑
k1,k2=0

max{k1, k2}σ(k1)

=1
2

b−1∑
k1,k2=0

(
k1 + k2 − (b− 1)

)
σ(k1) + b− 1

2

b−1∑
k1,k2=0

max{k1, k2}

=1
2

b−1∑
k1,k2=0

k1σ(k1) + 1
2

b−1∑
k1,k2=0

k2σ(k1)− b− 1
2

b−1∑
k1,k2=0

σ(k1) + b− 1
2

b−1∑
k1,k2=0

max{k1, k2}

= b

2S1(σ) + 1
2

(
b(b− 1)

2

)2

−
(
b(b− 1)

2

)2

+ b− 1
2

b−1∑
k1,k2=0

max{k1, k2}.

The rest of the proof is straightforward.

Lemma A.6. Let σ ∈ Ab(τ). With S1(σ) = ∑b−1
k=0 kσ(k) and S2(σ) = ∑b−1

k=0 k
2σ(k)2 we

have
b−1∑

k1,k2=0
max{k1, k2}σ(k1)2 = 1

2S2(σ) + b− 1
2 S1(σ) + 1

24b(b− 1)2(4b2 − 3b+ 2).
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Proof. We have
b−1∑

k1,k2=0
max{k1, k2}σ(k1)2

=1
2

b−1∑
k1,k2=0

max{k1, k2}σ(k1)2

+ 1
2

b−1∑
k1,k2=0

max{k1, k2}((b− 1)2 − 2(b− 1)σ(b− 1− k1) + σ(b− 1− k1)2)

=1
2

b−1∑
k1,k2=0

(
max{k1, k2}+ max{b− 1− k1, b− 1− k2}

)
σ(k1)2

+ (b− 1)2

2

b−1∑
k1,k2=0

max{k1, k2} − (b− 1)
b−1∑

k1,k2=0
max{k1, k2}(b− 1− σ(k1))

=1
2

b−1∑
k1,k2=0

(
|k1 − k2|+ (b− 1)

)
σ(k1)2 − (b− 1)2

2

b−1∑
k1,k2=0

max{k1, k2}

+ (b− 1)
(
b

2S1(σ) + 1
24b(b− 1)(5b2 − 3b− 2)

)
.

We compute

1
2

b−1∑
k1,k2=0

|k1 − k2|σ(k1)2 =1
2

b−1∑
k1=0

k1∑
k2=0

(k1 − k2)σ(k1)2 + 1
2

b−1∑
k1=0

b−1∑
k2=k1+1

(k2 − k1)σ(k1)2

=1
4

b−1∑
k1=0

k1(k1 + 1)σ(k1)2 + 1
4

b−1∑
k1=0

(b− 1− k1)(b− k1)σ(k1)2

=1
2S2(σ)− b− 1

2

b−1∑
k=0

kσ(k)2 + 1
4b(b− 1)

b−1∑
k=0

k2.

Further we find
b−1∑
k=0

kσ(k)2 =
b−1∑
k=0

τb(k)σ(τb(k))2 =
b−1∑
k=0

τb(k)τb(σ(k))2 =
b−1∑
k=0

(b− 1− k)(b− 1− σ(k))2

=(b− 1)2
b−1∑
k=0

(b− 1− k)− 2(b− 1)
b−1∑
k=0

(b− 1− k)σ(k)

+ (b− 1)
b−1∑
k=0

σ(k)2 −
b−1∑
k=0

kσ(k)2

which yields after rearranging this formula
b−1∑
k=0

kσ(k)2 = (b− 1)S1(σ)− 1
12b(b− 1)(b2 − 3b+ 2).

Putting all these results together yields the claim of this lemma.

Lemma A.7. For all σ ∈ Ab we have
b−1∑

k1,k2=0
max{k1, k2}max{σ(k1)+σ(k2), b−1} =

b−1∑
k1,k2=0

max{σ(k1), σ(k2)}max{k1+k2, b−1}.
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Proof. We have
b−1∑

k1,k2=0
max{σ(k1), σ(k2)}max{k1 + k2, b− 1}

=
b−1∑

k1,k2=0
max{σ(k1), σ(k2)} (k1 + max{k2, b− 1− k1})

=
b−1∑

k1,k2=0
k1 max{σ(k1), σ(k2)}+

∑
k1,k2=0

max{b− 1− σ(k1), σ(k2)}max{k1, k2}

=
b−1∑

k1,k2=0
k1 max{σ(k1), σ(k2)}+

∑
k1,k2=0

max{σ(k1) + σ(k2), b− 1}max{k1, k2}

−
b−1∑

k1,k2=0
σ(k1) max{k1, k2}.

Further we find by Lemma A.5
b−1∑

k1,k2=0
k1 max{σ(k1), σ(k2)} =

b−1∑
k1,k2=0

σ−1(k1) max{k1, k2}

= b

2S1(σ−1) + 1
24b(b− 1)2(5b+ 2)

= b

2S1(σ) + 1
24b(b− 1)2(5b+ 2) =

b−1∑
k1,k2=0

σ(k1) max{k1, k2},

which completes the proof.

Corollary A.8. We have

cσb =32− 57b− 90b2 + 228b3 − 112b4

72b2 + 1− (−1)b
16b3

− 2
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}(k2
1 + k1 + k2

2 + k2)

+ 2
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(

2bmax{k1, k2}+ bmax{k1 + k2, b− 1}

+ b+ 1
2 max{k1 + k2, b− 2}+ b− 1

2 max{k1 + k2, b}
)

− 1
b3

b−1∑
k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)}.

Proof. At first we compute

1
2b3

b−1∑
k1,k2=0
k1+k2>b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b)

− 1
2b3

b−1∑
k1,k2=0

k1+k2>b−2

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b+ 2)
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= 1
2b3

b−1∑
k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b)

−
(

1
2b3

b−1∑
k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b+ 2)

+ 1
2b3

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}(b− 1− b+ 2)
)

=− 1
b3

b−1∑
k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)} − 1
2b3

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}.

Now it holds that

1
2b3

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)} = 1
2b3

b−1∑
k=0

max{k, b− 1− k} = 3b− 2
8b2 − 1− (−1)b

16b3 .

Summing the results in Lemma A.4 and applying the relation above yields the claim.

Now we are ready to give the proofs of Propositions A.1, A.2 and A.3.

Proof of Proposition A.1. We set M = max{k1 + k2, b− 1}. Then we have
b−1∑

k1,k2=0
max{σ−1(k1), σ−1(k2)}

(
bmax{k1 + k2, b− 1}

+ b+ 1
2 max{k1 + k2, b− 2}+ b− 1

2 max{k1 + k2, b}
)

=
b−1∑

k1,k2=0
k1+k2≤b−2

max{σ−1(k1), σ−1(k2)}
(
bM + b+ 1

2 (M − 1) + b− 1
2 (M + 1)

)

+
b−1∑

k1,k2=0
k1+k2=b−1

max{σ−1(k1), σ−1(k2)}
(
bM + b+ 1

2 M + b− 1
2 (M + 1)

)

+
b−1∑

k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)}
(
bM + b+ 1

2 M + b− 1
2 M

)

=2b
b−1∑

k1,k2=0
max{σ−1(k1), σ−1(k2)}max{k1 + k2, b− 1}

− b+ 1
2

b−1∑
k1,k2=0

k1+k2≤b−2

max{σ−1(k1), σ−1(k2)}+ b− 1
2

b−1∑
k1,k2=0

k1+k2≤b−1

max{σ−1(k1), σ−1(k2)}

=2b
b−1∑

k1,k2=0
max{σ−1(k1), σ−1(k2)}max{k1 + k2, b− 1}

−
b−1∑

k1,k2=0
k1+k2≤b−1

max{σ−1(k1), σ−1(k2)}+ b+ 1
2

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}.
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The last sum is computed easily, since

b+ 1
2

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)} =b+ 1
2

b−1∑
k=0

max{k, b− 1− k}

=1
8b(b+ 1)(3b− 2)− b+ 1

16 (1− (−1)b).

Now we can combine this result with Corollary A.8 to obtain the expression in Pro-
position A.1 with σ−1 instead of σ. However, Lemmas A.5, A.6 and A.7 allow us to
interchange σ−1 and σ in this formula, and the proof is complete.

Proof of Proposition A.2. From Lemma A.4 we observe that

Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2 = c̃+ 3b− 4b2

12b2

+ 1
b3

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
bmax{k1 + k2, b− 1}

− b+ 1
2 max{k1 + k2, b− 2} − b− 1

2 max{k1 + k2, b}
)

− 1
2b3

b−1∑
k1,k2=0
k1+k2>b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b)

+ 1
2b3

b−1∑
k1,k2=0

k1+k2>b−2

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b+ 2),

where c̃ = 2 for even bases and c̃ = 1 for odd bases. As in the proof of Proposition A.1
we set M = max{k1 + k2, b− 1}. Then we have

b−1∑
k1,k2=0

max{σ−1(k1), σ−1(k2)}
(
bmax{k1 + k2, b− 1}

− b+ 1
2 max{k1 + k2, b− 2} − b− 1

2 max{k1 + k2, b}
)

=
b−1∑

k1,k2=0
k1+k2≤b−2

max{σ−1(k1), σ−1(k2)}
(
bM − b+ 1

2 (M − 1)− b− 1
2 (M + 1)

)

+
b−1∑

k1,k2=0
k1+k2=b−1

max{σ−1(k1), σ−1(k2)}
(
bM − b+ 1

2 M − b− 1
2 (M + 1)

)

+
b−1∑

k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)}
(
bM − b+ 1

2 M − b− 1
2 M

)

=
b−1∑

k1,k2=0
k1+k2≤b−2

max{σ−1(k1), σ−1(k2)} − b− 1
2

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}

=
b−1∑

k1,k2=0
k1+k2≤b−1

max{σ−1(k1), σ−1(k2)} − b+ 1
2

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}.
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From the proof of Corollary A.8 we already know that

− 1
2b3

b−1∑
k1,k2=0
k1+k2>b

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b)

+ 1
2b3

b−1∑
k1,k2=0

k1+k2>b−2

max{σ−1(k1), σ−1(k2)}(k1 + k2 − b+ 2)

= 1
2b3

b−1∑
k1,k2=0

k1+k2=b−1

max{σ−1(k1), σ−1(k2)}+ 1
b3

b−1∑
k1,k2=0
k1+k2≥b

max{σ−1(k1), σ−1(k2)},

and therefore

Φ̃σ
b −

1
2Φ̃σ

b,1 −
1
2Φ̃σ

b,2 = c̃+ 3b− 4b2

12b2 − 1
2b2

b−1∑
k=0

max{k, b− 1− k}

+ 1
b3

b−1∑
k1,k2=0

max{k1, k2}.

The rest of the proof is straightforward.

Proof of Proposition A.3. We define

A(σ) =
b−1∑

k1,k2=0
max{σ(k1), σ(k2)}k1,

B(σ) =
b−1∑

k1,k2=0
max{σ(k1), σ(k2)}k2

1,

C(σ) =
b−1∑

k1,k2=0
max{σ(k1), σ(k2)}(max{k1, k2}+ max{k1 + k2, b− 1}).

It follows from Proposition A.1 that in order to prove Proposition A.3, we have to show

−(A(σ)− A(σ̂))− (B(σ)−B(σ̂)) + b

2(C(σ)− C(σ̂)) = 0. (A.1)

We employ Lemma A.5 to obtain

A(σ)− A(σ̂) =
b−1∑

k1,k2=0
max{k1, k2}σ(k1)−

b−1∑
k1,k2=0

max{k1, k2}σ̂(k1) = b

2(S1(σ)− S1(σ̂))

= b

2
(
dσ(d) + (b− 1− d)(b− 1− σ(d))

− d(b− 1− σ(d))− (b− 1− d)σ(d)
)

= b

2(b− 1− 2d)(b− 1− 2σ(d)). (A.2)

With Lemma A.6 we find similarly
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B(σ)−B(σ̂) =
b−1∑

k1,k2=0
max{k1, k2}σ(k1)2 −

b−1∑
k1,k2=0

max{k1, k2}σ̂(k1)2

=1
2(S2(σ)− S2(σ̂)) + b− 1

2 (S1(σ)− S1(σ̂))

=1
2
(
d2σ(d)2 + (b− 1− d)2(b− 1− σ(d))2

− d2(b− 1− σ(d))2 − (b− 1− d)2σ(d)2
)

+ b− 1
2

(
dσ(d) + (b− 1− d)(b− 1− σ(d))

− d(b− 1− σ(d))− (b− 1− d)σ(d)
)

=b(b− 1)
2 (b− 1− 2d)(b− 1− 2σ(d)). (A.3)

It remains to compute C(σ)−C(σ̂). Since all summand with indices k1, k2 /∈ {d, b−1−d}
in C(σ̂) are the same as the corresponding summands in C(σ), we can write

C(σ)− C(σ̂)

=
b−1∑
k2=0

k2 /∈{d,b−1−d}

(
max{σ(d), σ(k2)} −max{σ(b− 1− d), σ(k2)}

)

×
(

max{d, k2}+ max{d+ k2, b− 1}
)

+
b−1∑
k2=0

k2 /∈{d,b−1−d}

(
max{σ(b− 1− d), σ(k2)} −max{σ(d), σ(k2)}

)

×
(

max{b− 1− d, k2}+ max{b− 1− d+ k2, b− 1}
)

+
b−1∑
k1=0

k1 /∈{d,b−1−d}

(
max{σ(k1), σ(d)} −max{σ(k1), σ(b− 1− d)}

)

×
(

max{k1, d}+ max{k1 + d, b− 1}
)

+
b−1∑
k1=0

k1 /∈{d,b−1−d}

(
max{σ(k1), σ(b− 1− d)} −max{σ(k1), σ(d)}

)

×
(

max{k1, b− 1− d}+ max{k1 + b− 1− d, b− 1}
)

+
(

max{σ(d), σ(d)} −max{σ̂(d), σ̂(d)}
)(

max{d, d}+ max{2d, b− 1}
)

+
(

max{σ(d), σ(b− 1− d)} −max{σ̂(d), σ̂(b− 1− d)}
)

×
(

max{d, b− 1− d}+ max{b− 1, b− 1}
)

+
(

max{σ(b− 1− d), σ(d)} −max{σ̂(b− 1− d), σ̂(d)}
)

×
(

max{b− 1− d, d}+ max{b− 1, b− 1}
)

+
(

max{σ(b− 1− d), σ(b− 1− d)} −max{σ̂(b− 1− d), σ̂(b− 1− d)}
)

×
(

max{b− 1− d, b− 1− d}+ max{2b− 2− 2d, b− 1}
)
.
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Let Z1 denote the first four sums in the above expressions and Z2 the last four summands,
respectively. Obviously Z1 may be written as

Z1 =2
b−1∑
k=0

k/∈{d,b−1−d}

(max{σ(d), σ(k)} −max{b− 1− σ(d), σ(k)})

× (max{d, k}+ max{d+ k, b− 1})

+ 2
b−1∑
k=0

k/∈{d,b−1−d}

(max{b− 1− σ(d), σ(k)} −max{σ(d), σ(k)})

× (max{b− 1− d, k}+ max{b− 1− d+ k, b− 1}).

Since

max{b− 1− d, k}+ max{b− 1− d+ k, b− 1}
= max{b− 1, k + d} − d+ max{d, k}+ b− 1− d
= max{b− 1, k + d}+ max{d, k}+ b− 1− 2d,

we can simplify Z1 to

Z1 = 2(b− 1− 2d)
b−1∑
k=0

k/∈{d,b−1−d}

(max{b− 1− σ(d), σ(k)} −max{σ(d), σ(k)}).

By including the summands for k = d and k = b− 1− d, we find

Z1 =− 2(b− 1− 2d)(b− 1− 2σ(d))

+ 2(b− 1− 2d)
b−1∑
k=0

(max{b− 1− σ(d), σ(k)} −max{σ(d), σ(k)}).

We calculate the last sum. Assuming that σ(d) ≤ b− 1− σ(d) yields

b−1∑
k=0

(max{b− 1− σ(d), σ(k)} −max{σ(d), σ(k)})

=
b−1∑
k=0

(max{b− 1− σ(d), k} −max{σ(d), k})

=
σ(d)−1∑
k=0

(b− 1− σ(d)− σ(d)) +
b−1−σ(d)−1∑
k=σ(d)

(b− 1− σ(d)− k)

=σ(d)(b− 1− 2σ(d)) + 1
2(b− 1− 2σ(d))(b− 2σ(d))

= b

2(b− 1− 2σ(d)).

If σ(d) > b − 1 − σ(d), we obtain the same result. Inserting it into our expression for
Z1, we find

Z1 = (b− 2)(b− 1− 2d)(b− 1− 2σ(d)).
It remains to evaluate Z2. Since max{σ(d), σ(b− 1− d)}−max{σ̂(d), σ̂(b− 1− d)} = 0,
it is clear that
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Z2 =(2σ(d)− b+ 1)(d+ max{2d, b− 1})
+ (b− 1− 2σ(d))(b− 1− d+ max{2b− 2− 2d, b− 1}).

By the elementary relation

b− 1− d+ max{2b− 2− 2d, b− 1) = 2b− 2− 3d+ max{2d, b− 1}

we find
Z2 = 2(b− 1− 2d)(b− 1− 2σ(d))

and hence
C(σ)− C(σ̂) = b(b− 1− 2d)(b− 1− 2σ(d)). (A.4)

Now the identity (A.1) can be easily checked by inserting (A.2), (A.3) and (A.4).
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