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Abstract
Pseudorandom numbers are generated by deterministic algorithms and are
not random at all. However, in contrast to truly random numbers they guar-
antee certain randomness properties. Their desirable features depend on the
application area. For example, unpredictable sequences are needed for cryp-
tography and uncorrelated sequences for wireless communication or radar.
Some corresponding quality measures are linear complexity and expansion
complexity for unpredictability and autocorrelation or more general correla-
tion measure of order k.

The Legendre sequence possesses several desirable features of pseudoran-
domness in view of different applications such as a high linear complexity
for cryptography and a small (aperiodic) autocorrelation for radar, GPS, or
sonar. In this thesis we prove the first nontrivial bound on its arithmetic
autocorrelation, another figure of merit coming from coding theory and in-
troduced by Mandelbaum. Sequences with small arithmetic autocorrelation
can be used to define good error-correcting codes over the integers.

Furthermore, we analyze the relation between arithmetic autocorrelation
and correlation measures of higher orders. Roughly speaking, we show that
any binary sequence with small correlation measure of order k up to a suffi-
ciently large k cannot have a large arithmetic autocorrelation.

In 2012, Diem introduced a new figure of merit for cryptographic sequences
called expansion complexity. Expansion complexity is essentially the same
as linear complexity in the periodic case but finer in the aperiodic case.
Sequences with small expansion complexity are predictable and thus not
suitable in cryptography.

In this thesis we study the predictability of some number theoretic se-
quences over finite fields by analyzing their expansion complexity. Addition-
ally, we consider the expansion complexity of some linear combinations of
these sequences.
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Zusammenfassung
Pseudozufallszahlen, welche von deterministischen Algorithmen erzeugt wer-
den, sind nicht zufällig, garantieren aber im Gegensatz zu echten Zufalls-
zahlen bestimmte Zufallsmerkmale. Diese gewünschten Zufallseigenschaften
variieren mit der Art der Anwendung, zum Beispiel benötigt man unvorher-
sagbare Folgen in der Kryptographie, unkorrelierte Folgen in der drahtlosen
Kommunikation oder bei Radar. Einige dazugehörige Qualitätsmaße sind
die lineare Komplexität und die Expansionskomplexität für die Unvorher-
sagbarkeit und die Autokorrelation oder allgemeiner das Korrelationsmaß
der Ordnung k.

Die Legendre Folge besitzt einige wünschenswerte Eigenschaften der Pseu-
dozufälligkeit im Hinblick auf verschiedene Anwendungen, wie eine große
lineare Komplexität für die Kryptographie und eine kleine (aperiodische)
Autokorrelation für Radar, GPS oder Sonar. In dieser Arbeit beweisen wir
die erste nichttriviale Schranke für ihre arithmetische Autokorrelation, eine
weitere aus der Kodierungstheorie stammende Gütezahl, welche von Man-
delbaum eingeführt wurde. Folgen mit kleiner arithmetischer Autokorrela-
tion können zur Definition guter fehlerkorrigierender Codes über den ganzen
Zahlen herangezogen werden.

Weiters analysieren wir den Zusammenhang zwischen der arithmetischen
Autokorrelation und dem Korrelationsmaß der Ordnung k. Grob gesagt
zeigen wir, dass binäre Folgen mit kleinem Korrelationsmaß der Ordnung
k bis zu einem hinreichend großen k keine große arithmetische Autokorrela-
tion haben können.

Im Jahr 2012 führte Diem die Expansionskomplexität als neue Gütezahl für
kryptographische Folgen ein. Die Expansionskomplexität entspricht im pe-
riodischen Fall im Wesentlichen der linearen Komplexität, im aperiodischen
Fall ist sie jedoch feiner als die lineare Komplexität. Folgen mit kleiner
Expansionskomplexität sind vorhersagbar und somit nicht geeignet in der
Kryptographie.

In dieser Arbeit studieren wir die Vorhersagbarkeit einiger zahlentheo-
retischer Folgen, indem wir ihre Expansionskomplexität analysieren. Zusätz-
lich betrachten wir die Expansionskomplexität von einigen Linearkombina-
tionen dieser Folgen.
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Chapter 1

Introduction

The Legendre sequence (of period p) satisfies several desirable features of
pseudorandomness. For example, Turyn [42] proved that it has a high lin-
ear complexity (see also [12] and [9, Chapter 9.3]), which is necessary but
not sufficient for cryptographic applications. It also provides a high linear
complexity profile, see [39, Theorem 9.2].

Autocorrelation measures the similarity of a sequence and its shifts. A
small (aperiodic) autocorrelation is important for radar and sonar. It is well
known (see [37], [38]) that the (periodic) autocorrelation of the Legendre
sequence is one-valued or two-valued depending on whether p ≡ 3 (mod 4) or
p ≡ 1 (mod 4), and that the (absolute value of the) aperiodic autocorrelation
is of order of magnitude at most p1/2 ln p.

In this thesis we prove the first nontrivial bound on its arithmetic au-
tocorrelation, another figure of merit introduced in [26] for error-correcting
codes. More precisely, we show that the (absolute value of the) arithmetic
autocorrelation of the Legendre sequence is of order of magnitude at most
p3/4(log2 p)1/2.

Finding relations between different measures of pseudorandomness is an
important goal. For example, the linear complexity provides essentially the
same quality measure as certain lattice tests coming from the area of Monte
Carlo methods, see [13, 33]. The correlation measure of order k is a rather
general measure of pseudorandomness introduced by Mauduit and Sárközy
[28]. A relation between linear complexity and the correlation measure of
order k is given in [5]. Hence, we may roughly say that correlation measure is
a stronger measure than linear complexity. A relation between the arithmetic
autocorrelation and the correlation measure of order k is provided in this
thesis.

Expansion complexity introduced in [10] is another measure which is es-
sentially the same as linear complexity in the periodic case but finer in the
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aperiodic case [31] (see also [32]).
In this thesis we analyze the linear complexity and expansion complexity

of some number theoretic sequences over finite fields including the character-
istic sequence of the set of sums of three squares and (linear combinations
of) sequences of binomial coefficients.

Organization of the thesis
This thesis is organized as follows:

Chapter 2

• In Section 2.1 we start with some well-known preliminary results of
elementary number theory. We define the Legendre sequence and show
that it has the best possible distribution of patterns of length 2, see
[11, Proposition 1].

• In Section 2.2 we prove that the (absolute value of the) arithmetic
autocorrelation of the Legendre sequence is of order of magnitude at
most p3/4(log2 p)1/2.

• In Section 2.3 we give a relation between arithmetic autocorrelation
and the correlation measure of order k. Roughly speaking, we show
that any binary sequence with small correlation measure of order k up
to a sufficiently large k cannot have a large arithmetic autocorrelation.
We apply our result to several classes of sequences including Legendre
sequences defined with polynomials.

Chapter 3

• In Section 3.1 we provide some basic properties of the linear complexity
and expansion complexity. In particular, we present the proof of [31,
Theorem 1] for (purely) periodic sequences.

• In Section 3.2 we show that the characteristic sequence of the set of
sums of three squares has a very small expansion complexity and thus is
rather predictable. Moreover, we prove that some linear combinations
of p-periodic sequences of binomial coefficients modulo p have a very
small expansion complexity and are predictable despite of a high linear
complexity. As an example, we consider the Legendre sequence and
verify that it does not belong to this class of predictable sequences.
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Chapter 2

Correlation measures

In this chapter we study a different notion of autocorrelation, the arithmetic
autocorrelation introduced by Mandelbaum [26]. Sequences with small arith-
metic autocorrelation can be used to define good error-correcting codes over
the integers (instead of finite fields). Also, see the recent monograph by
Goresky and Klapper [17] for more background and results on arithmetic
correlations.

Throughout this chapter let p be an odd prime number.

2.1 Preliminaries
In this section we provide some basic notions and results of elementary num-
ber theory including the Legendre symbol, 2-adic integers and cyclotomic
numbers of order 2. For more details, see [9], [17], [24], [35], [36] and [40].

2.1.1 Quadratic residues and Legendre symbol
We start with a brief review of some well-known terminologies and results of
elementary number theory.

Definition 2.1. Let a ∈ Z with gcd(a, p) = 1. Then a is called a quadratic
residue modulo p if there exists b ∈ Z such that a ≡ b2 (mod p). Otherwise
a is called a quadratic nonresidue modulo p.

Since a + p is a quadratic residue or nonresidue modulo p, according as
a is or is not, we consider as distinct residues or nonresidues only those that
are distinct modulo p. Hence, we find all incongruent quadratic residues and
nonresidues modulo p in the set {1, 2, . . . , p− 1}.
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Remark 2.2. If a is a quadratic residue modulo p, then a ≡ b2 (mod p)
for some b ∈ {1, 2, . . . , p − 1}. Then r2 ≡ a ≡ b2 (mod p) implies that p
divides (r− b)(r+ b) and so r = b or r = p− b. Thus, the quadratic residues
modulo p in {1, 2, . . . , p − 1} can all be found by computing b2 (mod p) for
b = 1, 2, . . . , (p− 1)/2 (since the remaining integers up to p− 1 are all equal
to p− b for one of these b). Therefore, there are exactly (p− 1)/2 quadratic
residues modulo p in {1, 2, . . . , p−1}, and consequently there are also exactly
(p− 1)/2 quadratic nonresidues modulo p in {1, 2, . . . , p− 1}.

Statements about quadratic residues can be formulated in an elegant
manner by using the following notation.

Definition 2.3. Let a ∈ Z. The Legendre symbol
(
a
p

)
is defined as

(
a

p

)
=


0 if p | a,
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic nonresidue modulo p.

The Legendre symbol is simply a way of identifying whether or not an
integer is a quadratic residue modulo p.

Lemma 2.4 (Fermat’s Little Theorem). Let a ∈ Z with gcd(a, p) = 1. Then

ap−1 ≡ 1 (mod p).

Proof. (see [24]). We first claim that the integers a, 2a, 3a, . . . , (p − 1)a are
pairwise distinct modulo p. Otherwise, we would have ia ≡ ja (mod p) for
some i, j ∈ {1, 2, . . . , p − 1}. But this would mean that p divides (i − j)a,
and since gcd(a, p) = 1, we would have p | (i − j). Since 1 ≤ i, j < p, the
only way this can happen is if i = j.

We conclude that the integers a, 2a, . . . , (p− 1)a are simply a rearrange-
ment of 1, 2, . . . , (p− 1) when considered modulo p. Hence

a · 2a · . . . · (p− 1)a ≡ 1 · 2 · . . . · (p− 1) (mod p),

that is ap−1(p − 1)! ≡ (p − 1)! (mod p). Thus, p divides (p − 1)!(ap−1 − 1).
Since (p − 1)! is not divisible by p, we have p | (ap−1 − 1) and the result
follows.

Lemma 2.5 (Wilson’s Theorem). We have

(p− 1)! ≡ −1 (mod p).
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Proof. (see [36]). If p = 3, the result is trivial. Thus we may assume that
p ≥ 5. Suppose that i ∈ {1, 2, . . . , p − 1}. Then there exists a unique
j ∈ {1, 2, . . . , p− 1} such that

ij ≡ ji ≡ 1 (mod p).

We say i and j form a pair. If i = j, then i2 ≡ 1 (mod p) and so i = 1
or i = p − 1. Hence, if i ∈ {2, 3, . . . , p − 2} we have i 6= j and it follows
2 · 3 · . . . · (p− 2) ≡ 1 (mod p). Thus

(p− 1)! = 1 · 2 · 3 · . . . · (p− 2) · (p− 1) ≡ p− 1 ≡ −1 (mod p).

The Legendre symbol satisfies the following properties.

Proposition 2.6. Let a ∈ Z. Then(
a

p

)
≡ a(p−1)/2 (mod p).

Proof. (see [36]). If p divides a, the congruence is easily verified. Thus we
can assume that gcd(a, p) = 1. If

(
a
p

)
= 1, then there exists a b ∈ Z such

that a ≡ b2 (mod p) and by Fermat’s Little Theorem we get

a(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

since gcd(b, p) = gcd(a, p) = 1. To each i ∈ {1, 2, . . . , p−1} there exists some
unique j ∈ {1, 2, . . . , p − 1}, so that a ≡ ij (mod p). We say i and j form
a pair. If

(
a
p

)
= −1, then there exists no b ∈ Z such that a ≡ b2 (mod p)

and hence i 6= j. By Wilson’s Theorem and the fact that there are exactly
(p− 1)/2 distinct ordered pairs i, j with i 6= j and a ≡ ij (mod p) we get

a(p−1)/2 ≡ (p− 1)! ≡ −1 (mod p).

Proposition 2.7. Let a, b ∈ Z. Then(
ab

p

)
=
(
a

p

)(
b

p

)
.

Proof. (see [35]). From Proposition 2.6 it follows that(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p).

Now both extreme sides of this congruence have the value 0, 1 or −1 and so
the congruence holds if and only if equality holds.
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Example 2.8 (see [35]). Let a = −1. By Proposition 2.6 we obtain(
−1
p

)
≡ (−1)(p−1)/2 (mod p).

Both sides of this congruence have the value 1 or −1, and so we get the
equality (

−1
p

)
= (−1)(p−1)/2.

Thus, −1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4).

For sums of Legendre symbols we can state the following lemmas.

Lemma 2.9. We have
p−1∑
a=0

(
a

p

)
= 0.

Proof. (see [35]). Let b ∈ Z be a quadratic nonresidue modulo p. If a runs
through {1, 2, . . . , p−1} in some order, then also ab (mod p) does so. Hence

p−1∑
a=0

(
a

p

)
=

p−1∑
a=0

(
ab

p

)
=
(
b

p

) p−1∑
a=0

(
a

p

)
= −

p−1∑
a=0

(
a

p

)

and the result follows.

Lemma 2.10. Let b ∈ Z with gcd(b, p) = 1. Then
p−1∑
a=0

(
a

p

)(
a+ b

p

)
= −1.

Proof. (see [35]). To each a ∈ {1, 2, . . . , p − 1} there exists some unique
a−1 ∈ {1, 2, . . . , p − 1}, such that a−1a ≡ 1 (mod p). If gcd(a, p) = 1, then
by Fermat’s Little Theorem and Proposition 2.6 we get(

a

p

)2

≡
(
a2

p

)
≡ ap−1 ≡ 1 ≡

(
1
p

)
≡
(
a−1a

p

)
≡
(
a−1

p

)(
a

p

)
(mod p)

and therefore
(
a
p

)
=
(
a−1

p

)
. Thus

p−1∑
a=0

(
a

p

)(
a+ b

p

)
=

p−1∑
a=1

(
a−1(a+ b)

p

)
=

p−1∑
i=2

(
i

p

)
= −

(
1
p

)
= −1.

by Lemma 2.9 and the observation that if a runs through {1, 2, . . . , p− 1} in
some order, then a−1(a+ b) (mod p) runs through {0} ∪ {2, 3, . . . , p− 1} in
some order.
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For a ∈ Z with gcd(a, p) = 1, we see from Fermat’s Little Theorem that
there is some ah, where 1 ≤ h ≤ p− 1, that is congruent to 1 modulo p.

Definition 2.11. For a ∈ Z with gcd(a, p) = 1, the least positive integer h
such that ah ≡ 1 (mod p) is called the multiplicative order of a modulo p.
If the multiplicative order of a modulo p is equal to p− 1, then a is called a
primitive root modulo p.

Using the Legendre symbol we can define the following well-known pseu-
dorandom sequence.

Definition 2.12. The Legendre sequence (`n)n≥0 is defined by

`n =

1 if
(
n
p

)
= 1,

0 otherwise.
(2.1)

Obviously, the Legendre sequence (`n)n≥0 is a p-periodic binary sequence.
It has an optimal balance between zeros and ones. A period of (`n)n≥0 consists
of exactly (p+ 1)/2 zeros and (p− 1)/2 ones.

Definition 2.13. A 2-adic integer is a formal expression
∞∑
n=0

fn2n,

where fn ∈ {0, 1}.

On the set of 2-adic integers we can perform addition and multiplication
with carry which make the set of 2-adic integers a ring. More precisely, the
statement ∞∑

n=0
fn2n +

∞∑
n=0

gn2n =
∞∑
n=0

hn2n

with fn, gn, hn ∈ {0, 1} means that there exist integers c0, c1, c2, . . . so that
c0 = 0 and for all n ≥ 0

fn + gn + cn = hn + 2cn+1.

The quantity cn is called the carry and obviously cn ∈ {0, 1}. It is easy to
see, by induction, that cn, hn are uniquely determined by fn, gn. In fact

hn = (fn + gn + cn) (mod 2)

and
cn+1 = b(fn + gn + cn)/2c.

14



Similarly, the statement
∞∑
n=0

fn2n ·
∞∑
n=0

gn2n =
∞∑
n=0

hn2n

means that there exist integers c0, c1, c2, . . . so that c0 = 0 and for all n ≥ 0
n∑
i=0

fign−i + cn = hn + 2cn+1,

although in this case the carry cn may be greater than 1.

Remark 2.14. Addition and subtraction of 2-adic integers are not the same
operation. We say that

∞∑
n=0

fn2n −
∞∑
n=0

gn2n =
∞∑
n=0

hn2n,

if there are integers c0, c1, c2, . . . so that c0 = 0 and for all n ≥ 0

fn − gn − cn = hn − 2cn+1.

This implies hn = (fn − gn − cn) (mod 2) and cn+1 = −b(fn − gn − cn)/2c.

2.1.2 Cyclotomic numbers of order 2
In this paragraph let g be a primitive root modulo p and let f = (p− 1)/2.

Definition 2.15. For a ∈ Z, the cyclotomic classes Da of order 2 are defined
by

Da = {g2u+a (mod p) : u = 0, 1, . . . , f − 1}.

The cyclotomic classes D0 and D1 of order 2 are exactly the sets of in-
congruent quadratic residues and nonresidues modulo p, respectively.

Lemma 2.16. If g2u+a ≡ g2v+b (mod p) with u, v ∈ {0, 1, . . . , f − 1} and
a, b ∈ {0, 1}, then a = b and u = v.

Proof. (see [40]). We have g2u+a ≡ g2v+b (mod p) if and only if

2u+ a ≡ 2v + b (mod p− 1), (2.2)

that is p − 1 divides 2(u − v) + (a − b). Since 2 | (p − 1) it follows that
2 | (a− b) and thus a = b. Then (2.2) simplifies to 2u ≡ 2v (mod p− 1), or
equivalently u ≡ v (mod f), that is f | (u− v). But 0 ≤ u, v < f and hence
u = v.

15



From Lemma 2.16 it follows that the cyclotomic classes Da of order 2 are
pairwise disjoint and Da+2j = Da for j ∈ Z. Hence the cyclotomic classes
D2j and D1+2j of order 2 coincide with the cyclotomic classes D0 and D1 of
order 2, respectively. Thus we have exactly two different cyclotomic classes
of order 2 and by Remark 2.2 we obtain

|Da| = |D0| = |D1| = (p− 1)/2 = f.

For j ∈ Z put

Da + j = {a+ j (mod p) : a ∈ Da}

and
jDa = {ja (mod p) : a ∈ Da}.

Lemma 2.17. If r ∈ D0, then

rD0 = D0 and rD1 = D1.

If r ∈ D1, then
rD0 = D1 and rD1 = D0.

Proof. (see [9]). If r ∈ D0, then r ≡ g2v (mod p) for some v = 0, 1, . . . , f−1.
Thus we get

rD0 = {g2(u+v) (mod p) : u = 0, 1, . . . , f − 1} = D0

and
rD1 = {g2(u+v)+1 (mod p) : u = 0, 1, . . . , f − 1} = D1.

If r ∈ D1, then r ≡ g2v+1 (mod p) for some v = 0, 1, . . . , f − 1. Hence we
obtain

rD0 = {g2(u+v)+1 (mod p) : u = 0, 1, . . . , f − 1} = D1

and
rD1 = {g2(u+v+1) (mod p) : u = 0, 1, . . . , f − 1} = D0.

We now define the cyclotomic numbers of order 2.

Definition 2.18. For a, b ∈ Z, the cyclotomic number (a, b)2 of order 2 is
defined to be the number of solutions of the equation

u+ 1 = v, u ∈ Da, v ∈ Db.
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That is, (a, b)2 is the number of ordered pairs u, v such that

g2u+a + 1 ≡ g2v+b (mod p), u, v ∈ {0, 1, . . . , f − 1}, (2.3)

or equivalently
(a, b)2 = |(Da + 1) ∩Db|.

By the definition of Da and (a, b)2 it follows immediately that

(a+ 2i, b+ 2j)2 = (a, b)2, i, j ∈ Z.

Thus there are at most four distinct cyclotomic numbers of order 2.
Lemma 2.19. There exists a k ∈ {0, 1, . . . , f − 1} such that

g2k+j ≡ −1 (mod p),

where j = 0 if f is even, and j = 1 if f is odd.
Proof. (see [40]). By Fermat’s Little Theorem we have gp−1 ≡ 1 (mod p)
and thus g(p−1)/2 ≡ −1 (mod p) since g is a primitive root modulo p.

If f is even, then

−1 ≡ g(p−1)/2 ≡ g2(f/2) (mod p),

that is k = f/2. If f is odd, then

−1 ≡ g(p−1)/2 ≡ g
p−3

2 +1 ≡ g2( f−1
2 )+1 (mod p),

that is k = (f − 1)/2.

The cyclotomic numbers of order 2 satisfy the following properties.
Lemma 2.20. We have

(a, b)2 = (2− a, b− a)2 =

(b, a)2 if f is even,
(b+ 1, a+ 1)2 if f is odd,

Proof. (see [40]). By Fermat’s Little Theorem we have g2f ≡ 1 (mod p). If
we multiply both sides of (2.3) by g2(f−u−1)+(2−a), that is the inverse of g2u+a,
we get

g2(f−u−1)+(2−a) + 1 ≡ g2(v−u)+(b−a) (mod p),
whose number of solutions is (2− a, b− a)2 by definition.

From Lemma 2.19 it follows that there exists a k ∈ {0, 1, . . . , f − 1} such
that g2k+j ≡ −1 (mod p), where j = 0 if f is even, and j = 1 if f is odd. If
we multiply both sides of (2.3) by g2k+j ≡ −1 (mod p) we obtain

g2(v+k)+(b+j) + 1 ≡ g2(u+k)+(a+j) (mod p),

whose number of solutions is (b+ j, a+ j)2 by definition.
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Lemma 2.21. We have

(a, 0)2 + (a, 1)2 = f − βa,

where

βa =


1 if f is even and a ≡ 0 (mod 2),
1 if f is odd and a ≡ 1 (mod 2),
0 otherwise.

Proof. (see [40]). We have

(a, 0)2 + (a, 1)2 = |(Da + 1) ∩D0|+ |(Da + 1) ∩D1|.

From Example 2.8 it follows that p− 1 ∈ D0 if and only if p ≡ 1 (mod 4), or
equivalently 0 ∈ D0 + 1 if and only if p ≡ 1 (mod 4). Furthemore, we have
|Da+1| = |Da| = f , and the only element of {0, 1, . . . , p−1} not in some Da

is 0 which is neither a quadratic residue nor a quadratic nonresidue modulo
p. Hence if f is even, that is p ≡ 1 (mod 4), then

|(Da + 1) ∩D0|+ |(Da + 1) ∩D1| =

f − 1 if a ≡ 0 (mod 2),
f if a ≡ 1 (mod 2).

If f is odd, that is p ≡ 3 (mod 4), then

|(Da + 1) ∩D0|+ |(Da + 1) ∩D1| =

f if a ≡ 0 (mod 2),
f − 1 if a ≡ 1 (mod 2).

Thus the result follows.

The properties given in Lemma 2.20 and Lemma 2.21 are sufficient to
determine the cyclotomic numbers of order 2.

Proposition 2.22. If p ≡ 1 (mod 4), the cyclotomic numbers of order 2 are
given by

(0, 0)2 = (p− 5)/4, (0, 1)2 = (1, 0)2 = (1, 1)2 = (p− 1)/4.

If p ≡ 3 (mod 4), they are given by

(0, 0)2 = (1, 0)2 = (1, 1)2 = (p− 3)/4, (0, 1)2 = (p+ 1)/4.
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Proof. (see [9]). If f is even, that is p ≡ 1 (mod 4), it follows from Lemma
2.20 and Lemma 2.21 that the four distinct cyclotomic numbers are related
by

(0, 0)2 =: A, (0, 1)2 = (1, 0)2 = (1, 1)2 =: B,
where A and B satisfy the equations

A+B = f − 1, 2B = f.

Solving these equations we get

(0, 0)2 = A = (p− 5)/4, (0, 1)2 = (1, 0)2 = (1, 1)2 = B = (p− 1)/4.

If f is odd, that is p ≡ 3 (mod 4), it follows that

(0, 0)2 = (1, 0)2 = (1, 1)2 =: C, (0, 1)2 =: D,

where
C +D = f, 2C = f − 1.

Solving these equations we obtain

(0, 0)2 = (1, 0)2 = (1, 1)2 = C = (p− 3)/4, (0, 1)2 = D = (p+ 1)/4.

2.1.3 Pattern distribution of the Legendre sequence
Employing the elementary facts about cyclotomic numbers of order 2 we can
present the proof of [11, Proposition 1], which shows that Legendre sequences
have an ideal distribution of patterns of length 2. But first we introduce the
notion of a pattern.

Definition 2.23. Let s be a positive integer. A pattern of length s is a string

i0 ∗ · · · ∗ i1 ∗ · · · ∗ · · · ∗ is−1,

where i0, i1, . . . , is−1 ∈ {0, 1} are fixed bits, the ∗’s indicate arbitrary bits
that could be either 0 and 1, and the distances among i0, i1, . . . , is−1 are
fixed.

Ding [11] studied the pattern distribution of the Legendre sequence. More
precisely, for i0, i1, . . . , is−1 ∈ {0, 1} and positive integers d1, d2, . . . , ds−1 with
0 < d1 < d2 < . . . < ds−1 < p, put

Pi0,i1,...,is−1(`n) = |{0 ≤ n ≤ p− 1 : `n = i0, `n+d1 = i1, . . . , `n+ds−1 = is−1}|.

The parameters Pi0,i1,...,is−1(`n) count the number of patterns distributed in
a cycle of the Legendre sequence.
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For the distribution of patterns of length 2 in Legendre sequences we
have the following exact result, which means that Legendre sequences have
the best possible distribution of patterns of length 2.

Proposition 2.24 (Ding, [11]). If p ≡ 3 (mod 4), then

Pi0,i1(`n) =

(p− 3)/4 for i0 = i1 = 1,
(p+ 1)/4 otherwise.

If p ≡ 1 (mod 4), then

P1,1(`n) =

(p− 5)/4 for (p− 1)/2 elements d1 of {1, 2, . . . , p− 1},
(p− 1)/4 for the remaining elements,

P1,0(`n) =

(p+ 3)/4 for (p− 1)/2 elements d1 of {1, 2, . . . , p− 1},
(p− 1)/4 for the remaining elements,

P0,1(`n) =

(p+ 3)/4 for (p− 1)/2 elements d1 of {1, 2, . . . , p− 1},
(p− 1)/4 for the remaining elements,

P0,0(`n) =

(p+ 3)/4 for (p− 1)/2 elements d1 of {1, 2, . . . , p− 1},
(p− 1)/4 for the remaining elements.

Proof. (see [11]). Recall that

(a, b)2 = |(Da + 1) ∩Db| = |Db ∩ (Da + 1)|.

Note that 0 is neither a quadratic residue nor a quadratic nonresidue modulo
p and the cyclotomic classes are pairwise disjoint.

We have

P1,1(`n) = |{0 ≤ n ≤ p− 1 : `n = 1, `n+d1 = 1}| = |D0 ∩ (D0 + d1)|.

To each d1 ∈ {1, 2, . . . , p−1} there exists some unique d−1
1 ∈ {1, 2, . . . , p−1},

such that d1d
−1
1 ≡ 1 (mod p). Hence

|D0 ∩ (D0 + d1)| = |d−1
1 D0 ∩ (d−1

1 D0 + 1)|

and by Lemma 2.17 we get

P1,1(`n) = |d−1
1 D0 ∩ (d−1

1 D0 + 1)| = |Dj ∩ (Dj + 1)| = (j, j)2,

where d−1
1 ∈ Dj for some j ∈ {0, 1}.
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Similarly,

P0,1(`n) = |{0 ≤ n ≤ p− 1 : `n = 0, `n+d1 = 1}| = |(D1 ∪ {0}) ∩ (D0 + d1)|
= |(d−1

1 D1 ∪ {0}) ∩ (d−1
1 D0 + 1)| = |(Dj+1 ∪ {0}) ∩ (Dj + 1)|

= |Dj+1 ∩ (Dj + 1)|+ |{0} ∩ (Dj + 1)| = (j, j + 1)2 + |{0} ∩ (Dj + 1)|,

where d−1
1 ∈ Dj for some j ∈ {0, 1}.

With similar argument, we have

P1,0(`n) = |{0 ≤ n ≤ p− 1 : `n = 1, `n+d1 = 0}| = |D0 ∩ ((D1 ∪ {0}) + d1)|
= |d−1

1 D0 ∩ ((d−1
1 D1 ∪ {0}) + 1)| = |d−1

1 D0 ∩ ((d−1
1 D1 + 1) ∪ {1})|

= |d−1
1 D0 ∩ (d−1

1 D1 + 1)|+ |d−1
1 D0 ∩ {1}|

= |Dj ∩ (Dj+1 + 1)|+ |Dj ∩ {1}| = (j + 1, j)2 + |Dj ∩ {1}|

and

P0,0(`n) = |{0 ≤ n ≤ p− 1 : `n = 0, `n+d1 = 0}|
= |(D1 ∪ {0}) ∩ ((D1 ∪ {0}) + d1)|
= |(d−1

1 D1 ∪ {0}) ∩ ((d−1
1 D1 ∪ {0}) + 1)|

= |(d−1
1 D1 ∪ {0}) ∩ ((d−1

1 D1 + 1) ∪ {1})|
= |d−1

1 D1 ∩ ((d−1
1 D1 + 1) ∪ {1})|+ |{0} ∩ ((d−1

1 D1 + 1) ∪ {1})|
= |d−1

1 D1 ∩ (d−1
1 D1 + 1)|+ |d−1

1 D1 ∩ {1}|+ |{0} ∩ (d−1
1 D1 + 1)|

= |Dj+1 ∩ (Dj+1 + 1)|+ |Dj+1 ∩ {1}|+ |{0} ∩ (Dj+1 + 1)|
= (j + 1, j + 1)2 + |Dj+1 ∩ {1}|+ |{0} ∩ (Dj+1 + 1)|,

where d−1
1 ∈ Dj for some j ∈ {0, 1}.

We have 1 ∈ Da if a ≡ 0 (mod 2) since 1 is always a quadratic residue
modulo p and from Example 2.8 it follows that 0 ∈ D0 + 1 if and only if
p ≡ 1 (mod 4). Hence

|{0} ∩ (Da + 1)| =

a (mod 2) if p ≡ 3 (mod 4),
a+ 1 (mod 2) if p ≡ 1 (mod 4),

and

|Da ∩ {1}| =

1 if a ≡ 0 (mod 2),
0 if a ≡ 1 (mod 2).

The result follows then from Proposition 2.22 and the above four formulae
for P1,1(`n), P0,1(`n), P1,0(`n) and P0,0(`n).
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Example 2.25. For p = 7 the (incongruent) quadratic residues modulo 7
are 1, 2 and 4, the (incongruent) quadratic nonresidues modulo 7 are 3, 5
and 6. Hence, the 7-periodic Legendre sequence is given by

(`n)n≥0 = (0 1 1 0 1 0 0 0 1 1 0 1 0 0 . . .)

with `n+7 = `n for all n ≥ 0. If i0 = i1 = 1, the patterns

1 1 appear once as `1 `2 in a cycle of (`n)n≥0,
1 ∗ 1 appear once as `2 ∗ `4 in a cycle of (`n)n≥0,

1 ∗ ∗ 1 appear once as `1 ∗ ∗ `4 in a cycle of (`n)n≥0,
1 ∗ ∗ ∗ 1 appear once as `4 ∗ ∗ ∗ `1 in a cycle of (`n)n≥0,

1 ∗ ∗ ∗ ∗ 1 appear once as `4 ∗ ∗ ∗ ∗ `2 in a cycle of (`n)n≥0,
1 ∗ ∗ ∗ ∗ ∗ 1 appear once as `2 ∗ ∗ ∗ ∗ ∗ `1 in a cycle of (`n)n≥0.

Thus P1,1(`n) = 1 for all d1 ∈ {1, 2, . . . , 6}. By Proposition 2.24 we have
P1,0(`n) = P0,1(`n) = P0,0(`n) = 2, which means that all remaining patterns
appear twice in a cycle of (`n)n≥0.

For the distribution of patterns of length s ≥ 3 in Legendre sequences
Ding proved the following proposition.
Proposition 2.26 (Ding, [11]). For s ≥ 3 we have∣∣∣∣Pi0,i1,...,is−1(`n)− p

2s
∣∣∣∣ ≤ p1/2(2s−1(s− 3) + 2) + 2s−1(s+ 1)− 1

2s . (2.4)

Proof. See [9] or [11, Proposition 2].

If s = 3, the bound (2.4) simplifies to∣∣∣∣Pi0,i1,i2(`n)− p

23

∣∣∣∣ ≤ 2p1/2 + 15
23 .

Numerical computation shows that these lower and upper bounds for s = 3
are quite tight.

It can be seen from the development of the bounds that they are usually
tight for small s. Hence, Proposition 2.26 shows that Legendre sequences
have a rather ideal distribution of patterns of length s when s is small.

2.2 Arithmetic autocorrelation of the Legen-
dre sequence

In this section we show that the Legendre sequence of period p has a maximal
(absolute value of the) arithmetic autocorrelation of order of magnitude at
most p3/4(log2 p)1/2.
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2.2.1 Periodic autocorrelation
We start with the calculation of the (periodic) autocorrelation of the Legen-
dre sequence.

Definition 2.27. The (periodic) autocorrelation function C(t) of a (purely)
T -periodic binary sequence (an)n≥0 is defined as

C(t) =
T−1∑
n=0

(−1)an−an+t , 1 ≤ t ≤ T − 1.

The (periodic) autocorrelation C(t) is a measure for the similarity of a
sequence and its shifts by t positions. Note that (−1)an−an+t = (−1)an+an+t

since (an)n≥0 is a binary sequence.

Proposition 2.28. The (periodic) autocorrelation function of the p-periodic
binary sequence (`n)n≥0 defined by (2.1) satisfies

C(t) =

−1 if p ≡ 3 (mod 4),
−2

(
t
p

)
− 1 if p ≡ 1 (mod 4),

1 ≤ t ≤ p− 1.

Proof. (see [35]). If n 6≡ 0 (mod p), then

(−1)`n = −
(
n

p

)
.

Hence for 1 ≤ t ≤ p− 1 we get

C(t) =
p−1∑
n=0

(−1)`n+`n+t = (−1)`t + (−1)`p−t +
p−1∑
n=1
n6=p−t

(−1)`n+`n+t

= −
(
t

p

)
−
(
p− t
p

)
+

p−1∑
n=1
n6=p−t

(
n

p

)(
n+ t

p

)

= −
(
t

p

)(
1 +

(
−1
p

))
+

p−1∑
n=1
n6=p−t

(
n

p

)(
n+ t

p

)

= −
(
t

p

)(
1 + (−1)(p−1)/2

)
+

p−1∑
n=1

(
n

p

)(
n+ t

p

)

by Proposition 2.6 and the result follows from Lemma 2.10.
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Remark 2.29. The (absolute value of the) aperiodic autocorrelation of the
Legendre sequence

M−1∑
n=0

(−1)`n−`n+t , 1 ≤ t ≤ p− 1,

is of order of magnitude at most p1/2 ln p for 1 ≤M ≤ p− 1 (see for example
[41, Theorem 3.1]).

2.2.2 Arithmetic autocorrelation
For an ultimately T -periodic binary sequence (sn)n≥0 with preperiod T0, that
is sn+T = sn for all n ≥ T0, the imbalance I(sn) is defined by

I(sn) = N0 −N1, (2.5)

where
Ni = |{T0 ≤ n ≤ T0 + T − 1 : sn = i}|, i = 0, 1.

The arithmetic autocorrelation function A(t) of a (purely) T -periodic binary
sequence (an)n≥0 is defined as follows. For t ∈ {1, 2, . . . , T − 1} let (an+t)n≥0
be the shift of (an)n≥0 by lag t. Put

xt =
T−1∑
n=0

an+t2n and αt =
∞∑
n=0

an+t2n, 0 ≤ t < T. (2.6)

Note that with respect to the 2-adic norm of Q, that is

|x|2 = 2−k if x = 2ku
v
∈ Q \ {0} with odd u and v,

the geometric series ∑∞n=0 x
n converges for any even integer x to

∞∑
n=0

xn = − 1
x− 1 , |x|2 < 1.

In particular we have ∑∞n=0 2n = −1, or more general
∞∑
n=0

2nk = − 1
2k − 1 , k = 1, 2, . . .

and therefore we get

αt =
T−1∑
n=0

an+t2n
∞∑
m=0

2mT = − xt
2T − 1 , 0 ≤ t < T.
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We write

α0 − αt =
∞∑
n=0

sn,t2n (2.7)

with unique sn,t ∈ {0, 1}.
If x0 ≥ xt, note that (sn,t)n≥0 is (purely) periodic with period T since

∞∑
n=0

sn,t2n = (x0 − xt)
∞∑
n=0

2nT .

If x0 < xt, note that

0 <
T−1∑
n=0

sn,t2n = 2T +
T−1∑
n=0

(an − an+t)2n = 2T + x0 − xt < 2T

and thus (sn,t)n≥0 is ultimately periodic with period T from T on (see also
Goresky and Klapper [14, Proposition 2]) since

∞∑
n=T

sn,t2n−T = −1 +
∞∑
n=0

(an − an+t)2n = (2T − 1 + x0 − xt)
∞∑
n=0

2nT . (2.8)

In both cases we define

A(t) = I(sn,t), 1 ≤ t ≤ T − 1.

Remark 2.30. The arithmetic autocorrelation A(t) is a with-carry analogue
to the (periodic) autocorrelation C(t). In Proposition 2.28 we showed that
the (periodic) autocorrelation of the Legendre sequence (`n)n≥0 is one-valued
if p ≡ 3 (mod 4) and two-valued if p ≡ 1 (mod 4). For the arithmetic
autocorrelation of the Legendre sequence we prove that

|A(t)| ≤ 4p3/4(log2 p)1/2, 1 ≤ t ≤ p− 1.

For very small min{t, p− t} we improve this bound.

The arithmetic autocorrelation satisfies the following symmetry property.

Proposition 2.31. The arithmetic autocorrelation function of a periodic
binary sequence (an)n≥0 of least period T satisfies

A(t) = −A(T − t), 1 ≤ t ≤ T − 1.
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Proof. For 0 ≤ t < T , let xt and αt be defined by (2.6). If x0 > xt, then we
have

−2T+t <
T+t−1∑
n=0

(an − an+T−t)2n =
t−1∑
n=0

(an − an+T−t)2n − 2t(x0 − xt) < 0.

Hence

α0 − αT−t = 2T+t +
T+t−1∑
n=0

(an − an+T−t)2n︸ ︷︷ ︸
< 2T+t

+2t
∞∑
n=T

(1− sn,t)2n =
∞∑
n=0

sn,T−t2n

with (sn,t)n≥0 and (sn,T−t)n≥0 defined by (2.7). Both (sn,t)n≥0 and (sn,T−t)n≥0
are (ultimately) periodic with period T from T on and the number of ones
in a period of (sn,t)n≥0 equals the number of zeros in a period of (sn,T−t)n≥0.
Hence

A(T − t) = I(sn,T−t) = −I(sn,t) = −A(t), t = 1, . . . , T − 1.

If x0 < xt, then we have

2T+t >
T+t−1∑
n=0

(an − an+T−t)2n =
t−1∑
n=0

(an − an+T−t)2n − 2t(x0 − xt) > 0

and thus

α0 − αT−t =
T+t−1∑
n=0

(an − an+T−t)2n + 2t
∞∑
n=T

(1− sn,t)2n =
∞∑
n=0

sn,T−t2n

by (2.8) and the result follows as in the first case.

2.2.3 A bound on the arithmetic autocorrelation of the
Legendre sequence

For t = 1 the arithmetic autocorrelation of the Legendre sequence (`n)n≥0 is
easy to determine. Then

x0 − x1 = x0/2 = x1 =
p−1∑
n=0

`n+12n,

N0 = N1 + 1 = (p+ 1)/2 and thus

A(1) = 1 = −A(p− 1). (2.9)

Now we deal with any 1 ≤ t ≤ p− 1.
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Theorem 2.32. The arithmetic autocorrelation function of the p-periodic
binary sequence (`n)n≥0 defined by (2.1) satisfies

|A(t)| ≤

4p3/4(log2 p)1/2 if r > m,

2r(4 log2 p+ 2(m2 − r2))p1/2 if r ≤ m,

wherem = b1/4 log2 p−1/2 log2 log2 pc and r = min{t, p−t} for 1 ≤ t ≤ p−1.

Proof. By (2.9) and Proposition 2.31 we may assume 2 ≤ t ≤ (p − 1)/2. In
the following we derive a lower bound on the number N1 of ones in a period
of the p-periodic sequence (sn,t)n≥0 defined by (2.7).

If p ≤ 4p3/4(log2 p)1/2 or p ≤ 2t(4 log2 p + 2(m2 − t2))p1/2, respectively,
then the result follows immediately since the trivial bound |A(t)| ≤ p always
holds. Thus it is enough to prove the inequality for p1/4 > 4(log2 p)1/2 or
p1/2 > 2t(4 log2 p+ 2(m2 − t2)), respectively.

Note that 1 ≤ m ≤ 1/4 log2 p. Take a ∈ {0, 1}. For some k and n with
0 ≤ k < m and p ≤ n < 2p assume

(`n−k−1, `n−k−1+t) = (a, 1− a),
`n−k+j = `n−k+j+t, j = 0, . . . , k − 1,
(`n, `n+t) ∈ {0, 1}2.

(2.10)

We consider only patterns of length 4 ≤ s = 2k + 4 ≤ 1/2 log2 p + 2 and
therefore we can further estimate (2.4) by sp1/2/2, that is∣∣∣∣Pi0,i1,...,is−1(`n)− p

2s
∣∣∣∣ ≤ p1/2(2s−1(s− 3) + 2) + 2s−1(s+ 1)− 1

2s

≤
(
s− 3

2 + 21−s
)
p1/2 + s+ 1

2
≤
(
s

2 −
11
8

)
p1/2 + 7

4 log2 p ≤
s

2p
1/2

(2.11)

since p1/4 > 4(log2 p)1/2 or p1/2 > 2t(4 log2 p+ 2(m2− t2)) ≥ 16 log2 p, respec-
tively.

First we assume m + 1 ≤ t ≤ (p − 1)/2. From (2.11) we know that (for
fixed a) the number of patterns(

`n−k−1 `n−k . . . `n−1 `n
`n−k−1+t `n−k+t . . . `n−1+t `n+t

)
(2.12)

satisfying the assumptions (2.10) in

`p−k−1 `p−k . . . `p−1 `p . . . `2p−2 `2p−1
`t+p−k−1 `t+p−k . . . `t+p−1 `t+p . . . `t+2p−2 `t+2p−1

(2.13)
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is at least p/22k+4 − (k + 2)p1/2. We have to distinguish between two cases.
If a = 1, then (`n−k−1, `n−k−1+t) = (1, 0). The subtraction of 0 from 1

gives no carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if `n 6= `n+t,

0 if `n = `n+t.

Since there are 2k+1 possible choices for the pattern (2.12) we count at least
p/2k+3 − (k + 2)2k+1p1/2 different p ≤ n < 2p with sn,t = 1.

If a = 0, then (`n−k−1, `n−k−1+t) = (0, 1). The subtraction of 1 from 0
gives a carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if `n = `n+t,

0 if `n 6= `n+t.

Just as before there are 2k+1 possible choices for the pattern (2.12) and so
we get at least p/2k+3 − (k + 2)2k+1p1/2 additional n with sn,t = 1.

Thus in total we have at least

p/2k+2 − (k + 2)2k+2p1/2

different p ≤ n < 2p with `n−k−1 6= `n−k−1+t, (`n−k+j, `n−k+j+t) ∈ {(0, 0), (1, 1)}
for j = 0, . . . , k − 1 and sn,t = 1.

Summing up all the contributions we get the formula

N1 ≥
1
4

(
m−1∑
k=0

2−k
)
p− 2

(
m−1∑
k=0

2k+1(k + 2)
)
p1/2.

The first sum on the right hand side of the inequality is a geometric series,
hence we have

1
4

m−1∑
k=0

1
2k = 1

2 − 2−m−1.

The second sum can be estimated by
m−1∑
k=0

2k+1(k + 2) = m2m+1 ≤ 2m−1 log2 p,

where we used m ≤ 1/4 log2 p. Thus by the definition of m we get

N1 ≥
1
2p− 2−m−1p− 2mp1/2 log2 p

≥ p

2 − p
3/4(log2 p)1/2 − p3/4(log2 p)1/2 = p

2 − 2p3/4(log2 p)1/2.
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Analogously N0 can be bounded below by

N0 ≥
p

2 − 2p3/4(log2 p)1/2

and therefore since N0 +N1 = p

|A(t)| = |N0 −N1| = |p− 2N1| = |p− 2N0| ≤ 4p3/4(log2 p)1/2.

Now we assume 2 ≤ t ≤ m, that means some indices in (2.12) coincide
and so we have to deal with shorter patterns. From (2.11) we know that (for
fixed a) the number of patterns (2.12) satisfying the assumptions (2.10) in
(2.13) is at least

p/22k+4 − (k + 2)p1/2, k ≤ t− 2,

p/2k+t+2 − k + t+ 2
2 p1/2, k ≥ t− 1.

Similarly as before if a = 1, then

sn,t =

1 if `n 6= `n+t,

0 if `n = `n+t,

and if a = 0, then

sn,t =

1 if `n = `n+t,

0 if `n 6= `n+t.

For each case we have 2k+1 possible choices for the pattern (2.12) if k ≤ t−2
and 2t−1 possible choices if k ≥ t− 1 and thus in total we count at least

p/2k+2 − (k + 2)2k+2p1/2, k ≤ t− 2,
p/2k+2 − (k + t+ 2)2t−1p1/2, k ≥ t− 1,

different p ≤ n < 2p with `n−k−1 6= `n−k−1+t, (`n−k+j, `n−k+j+t) ∈ {(0, 0), (1, 1)}
for j = 0, . . . , k − 1 and sn,t = 1.

Put m′ = 2m− t+ 1. Summing up all the contributions we get

N1 ≥
1
4

m′−1∑
k=0

2−k
 p− 2

t−2∑
k=0

2k+1(k + 2) + 2t−2
m′−1∑
k=t−1

(k + t+ 2)
 p1/2

= p

2 − 2−m′−1p− 2(2t(t− 1) + 2t−3((m′)2 + (2t+ 3)m′ + 2 + t− 3t2))p1/2

= p

2 − 2−m′−1p− 2t−2((m′ + t− 1)2 + 5m′ − 4t2 + 11t− 7)p1/2

≥ p

2 − 2−2m+t−2p− 2t−2(4m2 − 4t2 + 16m)p1/2

≥ p

2 − 2−2m+t−2p− 2t−1(2(m2 − t2) + 2 log2 p)p1/2,
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where we used m ≤ 1/4 log2 p. Thus by the definition of m

N1 ≥
p

2 − 2t−1(4 log2 p+ 2(m2 − t2))p1/2.

Analogously N0 can be bounded below by

N0 ≥
p

2 − 2t−1(4 log2 p+ 2(m2 − t2))p1/2

and therefore

|A(t)| = |N0 −N1| ≤ 2t(4 log2 p+ 2(m2 − t2))p1/2.

Thus the result follows.

Remark 2.33. Sequences with ideal arithmetic autocorrelation equal to zero
for all nontrivial shifts t are known, see [14]. However, the maximum absolute
value of the (periodic) autocorrelation of these so-called `-sequences equals
the period since the second half of a period is the bit-wise complement of the
first half [14, Proposition 1]. Hence, these sequences are far away from looking
random. In contrast to these sequences, the Legendre sequence of (almost)
perfect (periodic) autocorrelation still guarantees a rather small arithmetic
autocorrelation with respect to its period p if p is sufficiently large.

The following table of maximum absolute values of the arithmetic au-
tocorrelation of the Legendre sequence of period p for all primes p < 150
may lead to the conjecture that it is bounded by p1/2 ln p which we actually
checked for all primes p < 1000:

p 3 5 7 11 13 17 19 23 29 31 37 41
max
1≤t<p

|A(t)| 1 3 3 5 7 7 9 9 7 13 15 15
bp1/2 ln pc 1 3 5 7 9 11 12 15 18 19 21 23

p 43 47 53 59 61 67 71 73 79 83 89 97
max
1≤t<p

|A(t)| 17 15 13 17 15 17 17 13 23 21 21 27
bp1/2 ln pc 24 26 28 31 32 34 35 36 38 40 42 45

p 101 103 107 109 113 127 131 137 139 149
max
1≤t<p

|A(t)| 21 23 23 21 25 35 29 27 27 27
bp1/2 ln pc 46 47 48 48 50 54 55 57 58 61
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2.3 Arithmetic autocorrelation and correla-
tion measure

In this section we prove a relation between the arithmetic autocorrelation
and the correlation measure of order k. Roughly speaking, we show that any
binary sequence with small correlation measure of order k up to a sufficiently
large k cannot have a large arithmetic autocorrelation. We apply our result
to several classes of sequences including Legendre sequences defined with
polynomials.

2.3.1 Correlation measure of order k
We start with the definition of a more general notion of the (periodic) auto-
correlation.
Definition 2.34. The (periodic) correlation measure of order k ≥ 1 of a
(purely) T -periodic binary sequence (an)n≥0 is defined as

Ck(an) = max
0<d1<...<dk−1<T

∣∣∣∣∣
T−1∑
n=0

(−1)an+an+d1+···+an+dk−1

∣∣∣∣∣ .
Note that for any (purely) T -periodic binary sequence (an)n≥0 we have

C1(an) = |I(an)| and C2(an) is simply the maximum over all 0 < d1 < T of
the absolute value of the (periodic) autocorrelation of (an)n≥0.

For the distribution of patterns of length k
Pi0,i1,...,ik−1(an) = |{0 ≤ n ≤ T − 1 : an = i0, an+d1 = i1, . . . , an+dk−1 = ik−1}|
in (purely) T -periodic binary sequences (an)n≥0 Mauduit and Sárközy [29]
proved the aperiodic analogue of the following proposition.
Proposition 2.35. For k ≥ 1 we have∣∣∣∣Pi0,i1,...,ik−1(an)− T

2k
∣∣∣∣ ≤ 1

2k
k∑
l=1

(
k

l

)
Cl(an).

Proof. (see [29]). Put d0 = 0. Then

Pi0,i1,...,ik−1(an) =
T−1∑
n=0

k∏
l=1

(−1)an+dl−1+il−1 + 1
2

=
T−1∑
n=0

1
2k

1 +
k∑
l=1

∑
1≤j1<...<jl≤k

jl∏
r=j1

(−1)an+dr−1+ir−1


= 1

2k

T +
k∑
l=1

∑
1≤j1<...<jl≤k

jl∏
r=j1

(−1)ir−1
T−1∑
n=0

(−1)an+dj1−1+···+an+djl−1

 .
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Since (an)n≥0 is a (purely) T -periodic binary sequence it follows∣∣∣∣Pi0,i1,...,ik−1(an)− T

2k
∣∣∣∣ ≤ 1

2k

 k∑
l=1

∑
1≤j1<...<jl≤k

∣∣∣∣∣
T−1∑
n=0

(−1)an+dj1−1+···+an+djl−1

∣∣∣∣∣


≤ 1
2k

k∑
l=1

(
k

l

)
Cl(an).

2.3.2 A bound on the arithmetic autocorrelation
Now we estimate the arithmetic autocorrelation of a binary sequence of pe-
riod T in terms of correlation measures.
Theorem 2.36. Put

Γs = max
1≤l≤s

Cl(an).

Then the arithmetic autocorrelation function of a T -periodic binary sequence
(an)n≥0 satisfies

A(t)� min
{
T 1/2Γ1/2

blog T c, 2
rΓblog T c log T

}
,

where r = min{t, T − t} for 1 ≤ t ≤ T − 1.
Proof. The proof is very similar to the proof of Theorem 2.32. By the sym-
metry A(t) = −A(T − t) of the arithmetic autocorrelation (see Proposition
2.31) we may assume 1 ≤ t ≤ bT/2c. In the following we derive a lower
bound on the number N1 of ones in a period of the T -periodic sequence
(sn,t)n≥0 defined by (2.7).

Take c ∈ {0, 1}. For some k and n with 1 ≤ k < m and T ≤ n < 2T
assume

(an−k, an−k+t) = (c, 1− c),
an−k+j = an−k+j+t, j = 1, . . . , k − 1,
(an, an+t) ∈ {0, 1}2.

(2.14)

We consider only patterns of length 4 ≤ s = 2k + 2 and therefore it follows
from Proposition 2.35 that∣∣∣∣Pi0,i1,...,is−1(an)− T

2s
∣∣∣∣ ≤ 1

2s
s∑
l=1

(
s

l

)
Cl(an) ≤ max

1≤l≤s
Cl(an) = Γs. (2.15)

First we assume m+ 1 ≤ t ≤ bT/2c. From (2.15) we know that (for fixed
c) the number of patterns(

an−k an−k+1 . . . an−1 an
an−k+t an−k+t+1 . . . an−1+t an+t

)
(2.16)
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satisfying the assumptions (2.14) in

aT−k aT−k+1 . . . aT−1 aT . . . a2T−2 a2T−1
at+T−k at+T−k+1 . . . at+T−1 at+T . . . at+2T−2 at+2T−1

(2.17)

is at least T/22k+2 − Γ2k+2. We have to distinguish between two cases.
If c = 1, then (an−k, an−k+t) = (1, 0). The subtraction of 0 from 1 gives

no carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if an 6= an+t,

0 if an = an+t.

Since there are 2k possible choices for the pattern (2.16) we count at least
T/2k+2 − 2kΓ2k+2 different T ≤ n < 2T with sn,t = 1.

If c = 0, then (an−k, an−k+t) = (0, 1). The subtraction of 1 from 0 gives a
carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if an = an+t,

0 if an 6= an+t.

Just as before there are 2k possible choices for the pattern (2.16) and so we
get at least T/2k+2 − 2kΓ2k+2 additional n with sn,t = 1.

Thus in total we have at least T/2k+1 − 2k+1Γ2k+2 different T ≤ n < 2T
with an−k 6= an−k+t, (an−k+j, an−k+j+t) ∈ {(0, 0), (1, 1)} for j = 1, . . . , k − 1
and sn,t = 1.

Summing up all the contributions we get

N1 ≥
1
2

(
m−1∑
k=1

2−k
)
T − 2

(
m−1∑
k=1

2kΓ2k+2

)

≥ 1
2

(
m−1∑
k=1

2−k
)
T − 2Γ2m

(
m−1∑
k=1

2k
)
≥ T

2 − 2−mT − 2m+1Γ2m,

where we used Γs = Γ2k+2 ≤ Γ2m since k ≤ m − 1. Analogously N0 can be
bounded below by

N0 ≥
T

2 − 2−mT − 2m+1Γ2m

and therefore

|A(t)| = |N0 −N1| ≤ 2−m+1T + 2m+2Γ2m

since

N0 −N1 = T − 2N1 ≤ 2−m+1T + 2m+2Γ2m,

N0 −N1 = 2N0 − T ≥ −(2−m+1T + 2m+2Γ2m).
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Now we assume 1 ≤ t ≤ m, that means some indices in (2.16) coincide
and so we have to deal with shorter patterns. From (2.15) we know that (for
fixed c) the number of patterns (2.16) satisfying the assumptions (2.14) in
(2.17) is at least

T/22k+2 − Γ2k+2, k ≤ t− 1,
T/2k+t+1 − Γk+t+1, k ≥ t.

Similarly as before if c = 1, then

sn,t =

1 if an 6= an+t,

0 if an = an+t,

and if c = 0, then

sn,t =

1 if an = an+t,

0 if an 6= an+t.

For each case we have 2k possible choices for the pattern (2.16) if k ≤ t− 1
and 2t−1 possible choices if k ≥ t and thus in total we count at least

T/2k+1 − 2k+1Γ2k+2, k ≤ t− 1,
T/2k+1 − 2tΓk+t+1, k ≥ t,

different T ≤ n < 2T with an−k 6= an−k+t, (an−k+j, an−k+j+t) ∈ {(0, 0), (1, 1)}
for j = 1, . . . , k − 1 and sn,t = 1.

Put m′ = 2m− t. Summing up all the contributions we get

N1 ≥
1
2

m′−1∑
k=1

2−k
T − 2

t−1∑
k=1

2kΓ2k+2 + 2t−1
m′−1∑
k=t

Γk+t+1


≥ 1

2

m′−1∑
k=1

2−k
T − 2Γ2m(2t − 2)− 2tΓm+t(m′ − t)

≥ T

2 − 2−m′T − 2t+1Γ2m − 2tΓ2m(m′ − t)

≥ T

2 − 2−2m+tT − 2t+1(m− t+ 1)Γ2m,

where we used Γ2k+2 ≤ Γ2m or Γk+t+1 ≤ Γm+t ≤ Γ2m, respectively. Analo-
gously N0 can be bounded below by

N0 ≥
T

2 − 2−2m+tT − 2t+1(m− t+ 1)Γ2m
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and therefore

|A(t)| = |N0 −N1| ≤ 2−2m+t+1T + 2t+2(m− t+ 1)Γ2m.

Choosing

m =
⌊

1
2 log T

Γblog T c

⌋
we obtain the result. (Note that we may assume Γblog T c = o(T ) and thus
m ≥ 2 since otherwise the result is trivial.)

2.3.3 Applications
For a squarefree polynomial f(x) ∈ Fp[x] with positive degree d let the p-
periodic sequences (ln)n≥0 be defined by

ln =

1 if
(
f(n)
p

)
= 1,

0 otherwise.
(2.18)

For f(n) = n these sequences are the Legendre sequences.

Corollary 2.37. If d < 0.5 log p/ log log p or 2 is a primitive root modulo
p, then the arithmetic autocorrelation function of the p-periodic sequences
(ln)n≥0 defined by (2.18) satisfies

A(t)� min
{
d1/2p3/4(log p)1/2, 2rdp1/2(log p)2

}
,

where r = min{t, p− t} for 1 ≤ t ≤ p− 1.

This result immediately follows from Theorem 2.36 and from the following
proposition.

Proposition 2.38. If f(x) has no multiple zeros in the algebraic closure of
Fp and

(i) k < p and 2 is a primitive root modulo p, or

(ii) (4k)d < p,

then the (periodic) correlation measure of order k satisfies Ck(ln)� kdp1/2.

Proof. Similar to the proof of Theorem 1 in [18] (since we consider the peri-
odic correlation measure of order k instead of the aperiodic one we lose the
log p term).
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Let q be the power of an odd prime, let g be a primitive element of Fq,
and let η denote the quadratic character of Fq, that is

η(a) =


0 if a = 0,
1 if a is a square of an element of F∗q,
−1 if a is not a square of an element of F∗q,

where a ∈ Fq. We denote by (un)n≥0 the (q − 1)-periodic Sidelnikov-Lempel-
Cohn-Eastman sequence defined by

un =

1 if η(gn + 1) = 1,
0 otherwise.

Similar to the proof in [5, Lemma 1] it follows that the (periodic) correlation
measure of order k satisfies Ck(un)� kq1/2. From Theorem 2.36 we get

A(t)� min
{
q3/4(log q)1/2, 2rq1/2(log q)2

}
,

where r = min{t, q − 1− t} for 1 ≤ t ≤ q − 2.
Let λ ∈ F∗p be of multiplicative order T and let f(x) ∈ Fp[x] be a polyno-

mial of positive degree d not of the form bxβ(g(x))2 with b ∈ Fp, g(x) ∈ Fp[x]
and β a positive integer. Define the T -periodic sequence (vn)n≥0 by

vn =

1 if
(
f(λn)
p

)
= 1,

0 otherwise.
Similar to the proof in [19, Theorem 2] it follows that if T is a prime and
either (4k)d ≤ T or 2 is a primitive root modulo T , then the (periodic)
correlation measure of order k satisfies Ck(vn) � kdp1/2. From Theorem
2.36 we get that if d ≤ log p/ log log p or 2 is a primitive root modulo T , then

A(t)� min
{
d1/2p1/4T 1/2(log T )1/2, 2rdp1/2(log T )2

}
,

where r = min{t, T − t} for 1 ≤ t ≤ T − 1.
Remark 2.39. For fixed 1 ≤ t < T , Goresky and Klapper [15, 16] proved
that the expected arithmetic autocorrelation, averaged over all binary se-
quences of period T , is

T

2T−gcd(t,T ) .

Actually, the correlation measure of order k was defined for finite se-
quences. Analogs of our results for finite sequences can be easily obtained
with the obvious definition of arithmetic autocorrelation. Moreover, for a
truly random sequence of length T , Alon et al. [2] showed that the correla-
tion measure of order k is of order of magnitude k1/2T 1/2(log T )1/2 and thus
its arithmetic autocorrelation is at most of order of magnitude T 3/4(log T )1/2.
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Chapter 3

Complexity measures

Expansion complexity introduced by Diem [10] and linear complexity are
both measures for the unpredictability of a sequence. Sequences with small
linear complexity or expansion complexity are predictable and thus not suit-
able in cryptography. Expansion complexity is essentially the same as linear
complexity in the periodic case but finer in the aperiodic case [31]. For
more background and results on linear complexity and related measures see
[30, 34, 41, 43].

Throughout this chapter let q be a power of the prime number p.

3.1 Preliminaries
In this section we provide some basic properties of the linear complexity and
expansion complexity. A large linear complexity or expansion complexity is
necessary but not sufficient for cryptographic applications. For more details,
see [9], [23], [31] and [43].

3.1.1 Linear complexity and expansion complexity
First of all we have to define the linear complexity and expansion complexity.

Definition 3.1. Let k be a positive integer. A sequence S = (sn)n≥0 over Fq
is called a linear recurring sequence if it satisfies a linear recurrence relation

sn+k + αk−1sn+k−1 + αk−2sn+k−2 + · · ·+ α0sn = 0, n ≥ 0,

for some α0, α1, . . . , αk−1 ∈ Fq.

For more information on linear recurring sequences see [25, Chapter 8].
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Definition 3.2. For a positive integer N , the N th linear complexity LN(S)
of a sequence S = (sn)n≥0 over Fq is defined as the length of a shortest linear
recurrence relation

sn+LN (S) +
LN (S)−1∑
`=0

α`sn+` = 0, 0 ≤ n ≤ N − LN(S)− 1,

for some α` ∈ Fq, which is satisfied by the first N elements of the sequence.
We use the convention

LN(S) = 0 if sn = 0 for 0 ≤ n ≤ N − 1,
LN(S) = N if sn = 0 for 0 ≤ n ≤ N − 2 and sN−1 6= 0.

(3.1)

The linear complexity L(S) is

L(S) = sup
N≥1

LN(S).

It is well-known, see for example [25], that the linear complexity L(S) is
finite if and only if S is ultimately periodic, that is, S is a linear recurring
sequence.

Definition 3.3. The generating function GS(x) of a sequence S = (sn)n≥0
over Fq is

GS(x) =
∞∑
n=0

snx
n.

We call a generating function GS(x) algebraic over Fq[x] if there exists a
nonzero polynomial h(x, y) ∈ Fq[x, y] such that h(x,GS(x)) = 0.

Definition 3.4 (Diem, [10]). For a positive integer N , the N th expansion
complexity EN(S) of a sequence S = (sn)n≥0 over Fq is defined as the least
total degree of a nonzero polynomial h(x, y) ∈ Fq[x, y] with

h(x,GS(x)) ≡ 0 (mod xN).

We use the convention

EN(S) = 0 if sn = 0 for 0 ≤ n ≤ N − 1.

The expansion complexity E(S) is

E(S) = sup
N≥1

EN(S).

Note that EN(S) depends only on the first N elements of S. By a famous
result of Christol [7, 8] the expansion complexity E(S) is finite, that is GS(x)
is algebraic, if and only if S is an automatic sequence. For more details on
automatic sequences we refer to the monograph of Allouche and Shallit [1].
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3.1.2 Growth of LN(S) and EN(S)
We start with the description of the possible growth of the nondecreasing
function N 7→ EN(S).

Proposition 3.5 (Mérai, Niederreiter, Winterhof, [31]). Let S = (sn)n≥0 be
a sequence over Fq. Then

EN(S) ≤ EN+1(S) ≤ EN(S) + 1.

Proof. (see [31]). Evidently the function N 7→ EN(S) is nondecreasing since
h(x,GS(x)) ≡ 0 (mod xN+1) implies h(x,GS(x)) ≡ 0 (mod xN).

If h(x,GS(x)) ≡ 0 (mod xN), then

xh(x,GS(x)) ≡ 0 (mod xN+1),

from which the second inequality follows.

For comparison, we state the corresponding result on the possible growth
of the nondecreasing function N 7→ LN(S) called the linear complexity profile
of S. But first we prove the following lemma.

Lemma 3.6. Let S = (sn)n≥0 and T = (tn)n≥0 be sequences over Fq. Then

LN(S + T ) ≤ LN(S) + LN(T ).

Proof. (see [23]). Put U = LN(S) and V = LN(T ). Let

sn+U +
U−1∑
i=0

αisn+i = 0, 0 ≤ n ≤ N − U − 1,

be a shortest linear recurrence relation satisfied by the first N elements of S
and let

tn+V +
V−1∑
j=0

βjtn+j = 0, 0 ≤ n ≤ N − V − 1,

be a shortest linear recurrence relation satisfied by the first N elements of
T . Then S and T satisfy the linear recurrence relations

sn+U+V +
U−1∑
i=0

αisn+i+V = 0, 0 ≤ n ≤ N − U − V − 1,

and
tn+U+V +

V−1∑
j=0

βjtn+j+U = 0, 0 ≤ n ≤ N − U − V − 1,
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as well, respectively. Adding the last two equations we get

sn+U+V + tn+U+V +
U−1∑
i=0

αi(sn+i+V + tn+i+V ) +
V−1∑
j=0

βj(sn+j+U + tn+j+U)

=
U−1∑
i=0

αitn+i+V +
V−1∑
j=0

βjsn+j+U = −
U−1∑
i=0

αi
V−1∑
j=0

βjtn+i+j −
V−1∑
j=0

βj
U−1∑
i=0

αisn+i+j

= −
U−1∑
i=0

V−1∑
j=0

αiβj(sn+i+j + tn+i+j), 0 ≤ n ≤ N − U − V − 1,

that is a linear recurrence relation (but not necessarily the shortest one) of
length U + V for the first N elements of S + T . Thus the result follows.

The proof of the following proposition is constructive and provides the
well-known Berlekamp-Massey algorithm [4, 27] for the calculation of the
linear complexity profile of S.

Proposition 3.7. Let S = (sn)n≥0 be a sequence over Fq. If LN(S) > N/2,
then

LN+1(S) = LN(S).
If LN(S) ≤ N/2, then

LN+1(S) ∈ {LN(S), N + 1− LN(S)}.

Proof. (see [43]). Let

sn+LN (S) +
LN (S)−1∑
`=0

α`sn+` = 0, 0 ≤ n ≤ N − LN(S)− 1, (3.2)

be a shortest linear recurrence relation satisfied by the first N elements of S.
Put

µ = sN + αLN (S)−1sN−1 + · · ·+ α0sN−LN (S).

If µ = 0, then the linear recurrence relation (3.2) holds for n = N − LN(S)
as well and we have LN+1(S) = LN(S).

Otherwise if µ 6= 0 we define the first N + 1 elements of a sequence
T = (tn)n≥0 over Fq by

tn = sn, n = 0, . . . , N − 1 and tN = sN − µ.

Then T = (tn)n≥0 satisfies the linear recurrence relation

tn+LN (T ) +
LN (T )−1∑

`=0
α`tn+` = 0, 0 ≤ n ≤ N − LN(T ),
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and we have LN+1(T ) = LN(T ). Hence we get
N + 1 = LN+1(S − T ) ≤ LN+1(S) + LN+1(−T )

= LN+1(S) + LN+1(T ) = LN+1(S) + LN(T ) = LN+1(S) + LN(S),
where we used (3.1), Lemma 3.6 and the fact that the sequences T and −T
trivially have the same linear complexity profile. Since the linear complexity
profile of S is nondecreasing, that is LN+1(S) ≥ LN(S), we obtain

LN+1(S) ≥ max{LN(S), N + 1− LN(S)}.
We show equality by induction on N . We may assume that there is a

positive integer M ≤ N − 1 such that
LN(S) = LN−1(S) = . . . = LM+1(S) > LM(S).

Then by induction hypothesis we have
LM+1(S) = max{LM(S),M + 1− LM(S)} = M + 1− LM(S),

that is LM(S) = M + 1− LM+1(S). Let

sn+M+1−LM+1(S) +
M−LM+1(S)∑

`=0
β`sn+` = 0, 0 ≤ n ≤ LM+1(S)− 2,

be a linear recurrence relation satisfied by the first M elements of S and put
ν = sM + βM−LM+1(S)sM−1 + · · ·+ β0sLM+1(S)−1 6= 0.

If LN(S) > N/2, then

sn+LN (S) +
LN (S)−1∑
`=0

α`sn+` −R1 = 0, 0 ≤ n ≤ N − LN(S),

with

R1 := µν−1

sn+M−N+LM+1(S) +
M−LM+1(S)∑

`=0
β`sn+`−N+2LM+1(S)−1

 ,
is a linear recurrence relation of length LN(S), and if LN(S) ≤ N/2, then

sn+N+1−LN (S) +
LN (S)−1∑
`=0

α`sn+`+N−2LN (S)+1 −R2 = 0, 0 ≤ n ≤ LN(S)− 1,

with

R2 := µν−1

sn+M+1−LM+1(S) +
M−LM+1(S)∑

`=0
β`sn+`

 ,
is a linear recurrence relation of length N + 1 − LN(S) for the first N + 1
elements of S. This completes the proof.
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3.1.3 Purely periodic sequences
In this paragraph let S = (sn)n≥0 be a (purely) T -periodic sequence over Fq.
Then L(S) is finite and obviously L(S) ≤ T . In fact, the linear complexity
can be computed explicitly as the following proposition shows.

Proposition 3.8. Put

ST (x) =
T−1∑
n=0

snx
n.

Then
L(S) = T − deg(gcd(ST (x), 1− xT )).

Proof. (see [9]). We have

(1− xT )
∞∑
n=0

snx
n =

∞∑
n=0

snx
n −

∞∑
n=T

sn−Tx
n = ST (x)

since S is (purely) T -periodic and hence

(1− xT )
gcd(ST (x), 1− xT )

∞∑
n=0

snx
n = ST (x)

gcd(ST (x), 1− xT ) . (3.3)

Comparing the coefficients of both sides of this equation we get a linear
recurrence relation of length T − deg(gcd(ST (x), 1− xT )), which is satisfied
by S.

It remains to show that this is the shortest linear recurrence relation
satisfied by S. Therefore let

sn+L(S) +
L(S)−1∑
`=0

α`sn+` = 0, n ≥ 0,

and put

f(x) =
1−

L(S)−1∑
`=0

α`x
L(S)−`

 ∞∑
n=0

snx
n ∈ Fq[x]. (3.4)

Note that f(x) is a polynomial of degree at most L(S)− 1. Using (3.3) and
(3.4) we obtain

f(x) (1− xT )
gcd(ST (x), 1− xT ) =

1−
L(S)−1∑
`=0

α`x
L(S)−`

 ST (x)
gcd(ST (x), 1− xT ) .
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Since
(1− xT )

gcd(ST (x), 1− xT ) and ST (x)
gcd(ST (x), 1− xT )

are relatively prime, ST (x)/ gcd(ST (x), 1− xT ) divides f(x). Thus

L(S)− 1 ≥ deg(f) ≥ T − 1− deg(gcd(ST (x), 1− xT ))

and the result follows.

Next we want to prove a relation between linear complexity and expansion
complexity for (purely) periodic sequences.

Lemma 3.9. The generating function GS(x) of S is a rational function

GS(x) = f(x)
g(x) , f, g ∈ Fq[x], g 6= 0, (3.5)

where deg(f) < L(S) and deg(g) = L(S).

Proof. (see [25]). Let

L(S)∑
`=0

α`sn+` = 0, n ≥ 0, αL(S) = 1,

be a shortest linear recurrence relation satisfied by S. Choose

g(x) =
L(S)∑
`=0

α`x
L(S)−` ∈ Fq[x]

and

f(x) = g(x)GS(x) =
L(S)∑
`=0

α`x
L(S)−`

∞∑
n=0

snx
n =

L(S)∑
`=0

α`
∞∑
n=0

snx
n+L(S)−`

=
L(S)−1∑
j=0

 L(S)∑
`=L(S)−j

α`sj−L(S)+`

xj +
∞∑

j=L(S)

L(S)∑
`=0

α`sj−L(S)+`

xj
=

L(S)−1∑
j=0

 L(S)∑
`=L(S)−j

α`sj−L(S)+`

xj ∈ Fq[x]

since
L(S)∑
`=0

α`sj−L(S)+` = 0, j ≥ L(S).
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Obviously deg(f) < L(S) and g(x) 6= 0 with deg(g) ≤ L(S). But S is
(purely) T -periodic and therefore α0 6= 0 since otherwise

L(S)−1∑
`=0

α`+1sn+` = 0, n ≥ 0,

would be a shorter linear recurrence relation satisfied by S. Hence we have
deg(g) = L(S).

Lemma 3.10 (Mérai, Niederreiter, Winterhof, [31]). Let GS(x) in (3.5) be
not identically zero and let h(x, y) ∈ Fq[x, y] be a nonzero polynomial of local
degree d in y. Put

H(x) = g(x)dh(x,GS(x)).

If H(x) is the zero polynomial, then the total degree of h(x, y) satisfies

deg(h) ≥ L(S) + 1.

Proof. (see [31]). We write

h(x, y) =
d∑
i=0

hi(x)yi ∈ Fq[x, y]

with hd(x) 6= 0. Then H(x) = 0 implies

g(x)d
d∑
i=0

hi(x)GS(x)i =
d∑
i=0

hi(x)f(x)ig(x)d−i = 0,

that is
d−1∑
i=0

hi(x)f(x)ig(x)d−i = −hd(x)f(x)d,

and d ≥ 1 since otherwise if d = 0 we would have hd(x) = 0. Hence, hd(x)
is divisible by g(x) and thus of degree at least deg(g) = L(S). Finally, we
obtain

deg(h) = deg
(

d∑
i=0

hiy
i

)
≥ deg(hdyd) = deg(hd) + d ≥ L(S) + 1.

The following proposition shows that expansion complexity and linear
complexity are essentially the same for (purely) periodic sequences.
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Proposition 3.11 (Mérai, Niederreiter, Winterhof, [31]). If GS(x) in (3.5)
is not identically zero, then

EN(S) ≥

L(S) + 1 for N > L(S)(L(S) + 1),
dN/(L(S) + 1)e otherwise,

and
EN(S) ≤ L(S) + 1.

Proof. (see [31]). Take

h(x, y) =
d∑
i=0

hi(x)yi ∈ Fq[x, y], hd(x) 6= 0,

and put H(x) = g(x)dh(x,GS(x)). We may assume deg(h) < N/(L(S) + 1)
since otherwise deg(h) ≥ N/(L(S) + 1) implies

EN(S) ≥ dN/(L(S) + 1)e.
Then we have

deg(H) = deg(gd) + deg(h) = L(S)d+ deg(h)
≤ L(S)(deg(h)− deg(hd)) + deg(h) ≤ deg(h)(L(S) + 1) < N

since deg(h) ≥ deg(hd) + d and therefore
h(x,GS(x)) ≡ 0 (mod xN)

is equivalent to H(x) = 0. Now the lower bound follows by Lemma 3.10.
Choosing the polynomial

h(x, y) = g(x)y − f(x) ∈ Fq[x, y]
of degree

deg(h) = max{deg(f), deg(g) + 1} = L(S) + 1,
which satisfies

h(x,GS(x)) ≡ 0 (mod xN),
we get the upper bound.
Remark 3.12. If N > L(S)(L(S)+1) the lower and upper bound in Propo-
sition 3.11 coincide and we obtain EN(S) = L(S) + 1. However, Proposition
3.11 shows that

EN(S) ≤ E(S) = L(S) + 1
for any (purely) periodic sequence S over Fq.

Proposition 3.11 can be easily extended to ultimately periodic sequences,
see [31, Theorem 1], but then the expansion complexity becomes finer by the
preperiod than the linear complexity.
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3.2 Linear complexity and expansion complex-
ity of some number theoretic sequences

In this section we study the predictability of some number theoretic sequences
over finite fields and thus their suitability in cryptography. First we analyze
the (not ultimately periodic) binary automatic sequence T = (tn)n≥0 with
tn = 1 whenever n is the sum of three integer squares. We show that it
has a large Nth linear complexity, which is necessary but not sufficient for
unpredictability. However, it also has a very small expansion complexity and
thus is rather predictable.

Next we study p-periodic sequences of binomial coefficients over Fp. In
particular, we prove that some linear combinations of p-periodic sequences
of binomial coefficients modulo p have a very small expansion complexity
and are predictable despite of a high linear complexity. As an application
we consider the Legendre sequence and verify that it does not belong to this
class of predictable sequences.

Finally, we analyze the expansion complexity of t-periodic sequences over
Fq where t | q − 1.

3.2.1 The characteristic sequence of the set of sums of
three squares

We define the (not ultimately periodic) automatic sequence T = (tn)n≥0 over
F2 by

tn =

1 if n = u2 + v2 + w2 for some integers u, v, w,
0 otherwise.

By the Three-Square Theorem, see for example [3], this is equivalent to

tn =


0 if there exist nonnegative integers a, k

such that n = 4a(8k + 7),
1 otherwise.

Theorem 3.13. We have
E(T ) ≤ 12,

and
LN(T ) ≥ (N − 7)/4.
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Proof. The generating function GT (x) of T is

GT (x) =
∞∑
n=0

tnx
n =

∞∑
n=0

xn +
∞∑
a=0

∞∑
k=0

x4a(8k+7)

= 1
x+ 1 +

∞∑
a=0

(
x7
∞∑
k=0

x8k
)4a

= 1
x+ 1 +

∞∑
a=0

(
x7

(x+ 1)8

)4a

.

We have

GT (x) +GT (x)4 = 1
x+ 1 + 1

(x+ 1)4 + x7

(x+ 1)8 ,

which is equivalent to

(x+ 1)8(GT (x) +GT (x)4) + x6 + x5 + x3 + x2 + x = 0. (3.6)

Hence the nonzero polynomial

h(x, y) = (x+ 1)8(y + y4) + x6 + x5 + x3 + x2 + x ∈ F2[x, y]

satisfies h(x,GT (x)) = 0 and we obtain E(T ) ≤ deg(h) = 12.
Assume GT (x) is a rational function, that is

GT (x) = f(x)
g(x) , f, g ∈ F2[x], g 6= 0,

with gcd(f, g) = 1. Then from (3.6) we get

(x+ 1)8(fg3 + f 4) + (x6 + x5 + x3 + x2 + x)g4 = 0.

Hence (x+ 1)8 | g4, that is (x+ 1)2 | g. Also g3 | (x+ 1)8 since gcd(f, g) = 1.
This is only possible if g(x) = x2 + 1. Now (x2 + 1)GT (x) = f(x) implies
tn+2 = tn for n ≥ deg(f). However, if n ≡ 7 (mod 8) and thus n + 2 ≡ 1
(mod 8), we have 1 = tn+2 6= tn = 0. Consequently, GT (x) is not rational.
Moreover, the four zeros of h(x, y) are obviously y = GT (x) + γ with γ ∈ F4
and none of them is rational.

Let
LN (T )∑
`=0

α`tn+` = 0, 0 ≤ n ≤ N − LN(T )− 1, αLN (T ) = 1,

be a shortest linear recurrence relation satisfied by the first N elements of
T . Choosing

g(x) =
LN (T )∑
`=0

α`x
LN (T )−` ∈ F2[x]
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we get
g(x)GT (x) ≡ f(x) (mod xN)

for some polynomial f(x) ∈ F2[x] of degree at most LN(T )− 1. Then

(x+ 1)8(fg3 + f 4) + (x6 + x5 + x3 + x2 + x)g4 = K(x)xN

with K(x) 6= 0 since h(x, y) has no rational zero. Comparing the degrees of
both sides we get

4LN(T ) + 7 ≥ N.

Thus LN(T ) ≥ (N − 7)/4.

Note that lower bounds on the Nth linear complexity of many other auto-
matic sequences including the Thue-Morse sequence, the Rudin-Shapiro se-
quence, and the regular paper-folding sequence were obtained in [32]. Roughly
speaking, for the class of (not ultimately periodic) automatic sequences the
linear complexity is a much weaker measure for the unpredictability of a
sequence than the expansion complexity.

3.2.2 Expansion complexity of p-periodic sequences over
Fp

For 0 ≤ k ≤ p − 1 we study the p-periodic sequence Ak = (am,k)m≥0 of
binomial coefficients over Fp defined by

am,k =
(
m+ k

k

)
(mod p).

Proposition 3.14 (Mérai, Niederreiter, Winterhof, [31]). We have

GAk(x) = 1
(1− x)k+1 ,

and
L(Ak) = k + 1.

Proof. (see [31]). First verify that(
p− 1− k

m

)
(−1)m ≡

m∏
j=1

k + j

j
≡
(
m+ k

m

)
≡
(
m+ k

k

)
(mod p).
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Then we get

(1− x)pGAk(x) = (1− xp)GAk(x) =
p−1∑
m=0

am,kx
m =

p−1−k∑
m=0

(
m+ k

k

)
xm

=
p−1−k∑
m=0

(
p− 1− k

m

)
(−x)m = (1− x)p−1−k,

where we used that(
m+ k

k

)
≡ 0 (mod p), m = p− k, . . . , p− 1.

Thus
GAk(x) = 1

(1− x)k+1 .

By Proposition 3.8 we obtain

L(Ak) = p− deg
gcd

 p−1∑
m=0

am,kx
m, 1− xp


= p− deg(gcd((1− x)p−1−k, (1− x)p)) = k + 1.

The following theorem shows that the p-th expansion complexity of se-
quences of binomial coefficients can be very small if the linear complexity is
large with respect to p.

Theorem 3.15 (Mérai, Niederreiter, Winterhof, [31]). For (k+1)(k+2) < p
we have

Ep(Ak) = k + 2,
and for (k + 1)(k + 2) ≥ p we have⌈

p

k + 2

⌉
≤ Ep(Ak) ≤ max

{⌈
p

k + 2

⌉
, (k + 1)

{
p

k + 1

}}
,

where {x} = x− bxc is the fractional part of x.

Proof. (see [31]). By Proposition 3.11 and Proposition 3.14 we get

Ep(Ak) = k + 2

if (k + 1)(k + 2) < p and ⌈
p

k + 2

⌉
≤ Ep(Ak)
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if (k + 1)(k + 2) ≥ p.
Put

d = min
{⌊

p

k + 1

⌋
,
⌈

p

k + 2

⌉}
and take

h(x, y) = yd − (1− x)p−d(k+1) ∈ Fp[x, y].
By Proposition 3.14 we have

GAk(x) = 1
(1− x)k+1

and thus

h(x,GAk(x)) = 1
(1− x)d(k+1) − (1− x)p−d(k+1) = 1− (1− x)p

(1− x)d(k+1)

= xp

(1− x)d(k+1) ≡ 0 (mod xp)

since gcd(x, (1− x)) = 1. Hence

Ep(Ak) ≤ deg(h) = max{d, p− d(k + 1)} =

d if d =
⌈

p
k+2

⌉
,

p− d(k + 1) otherwise,

and the result follows.

Next we study p-periodic sequences Au,v = (Am)m≥0 over Fp of the form

Am =
v∑

k=u
λkam,k (mod p) (3.7)

with λuλv 6= 0, λk ∈ Fp and 0 ≤ u < v ≤ p− 1.

Lemma 3.16. We have

GAu,v(x) =
v∑

k=u

λk
(1− x)k+1 ,

and
L(Au,v) = v + 1.

Proof. By Proposition 3.14 we get

GAu,v(x) =
∞∑
m=0

Amx
m =

v∑
k=u

λk
∞∑
m=0

am,kx
m =

v∑
k=u

λk
(1− x)k+1 .
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Since

gcd
1− xp,

p−1∑
m=0

Amx
m

 = gcd
(

(1− x)p, (1− x)p
v∑

k=u

λk
(1− x)k+1

)

= gcd

(1− x)p, (1− x)p
v∑

k=u
λk(1− x)v−k

(1− x)v+1

 = (1− x)p−1−v

it follows from Proposition 3.8 that

L(Au,v) = p− deg((1− x)p−1−v) = v + 1.

Remark 3.17. Note that any p-periodic sequence can be written in the form
(3.7). More precisely, any p-periodic sequence S = (sm)m≥0 over Fp can be
defined by

sm = f(m), m ≥ 0,

with a unique polynomial f(x) over Fp of degree at most p − 1. Now the
polynomials

fk(x) = (k!)−1(x+ k)(x+ k − 1) · · · (x+ 1) =
(
x+ k

k

)
, k = 0, . . . , p− 1,

of degree k are a basis of the linear space of polynomials over Fp of degree
at most p− 1. Hence, the sequences

Ak = (am,k)m≥0, k = 0, . . . , p− 1,

are a basis of the linear space of p-periodic sequences over Fp and any p-
periodic sequence is a linear combination of these basis sequences.

The p-th expansion complexity of Au,v has the following lower and upper
bound.

Theorem 3.18. The p-th expansion complexity of Au,v = (Am)m≥0, u < v,
of the form (3.7) can be bounded by

min
{⌈

p

v + 2

⌉
, v + 2

}
≤ Ep(Au,v)

≤ min
{

(u+ 1)
{

p

v + 1

}
+ (v − u) p

v + 1 , v + 2
}
,

where {x} = x− bxc is the fractional part of x.
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Proof. The bound

min
{⌈

p

v + 2

⌉
, v + 2

}
≤ Ep(Au,v) ≤ v + 2

follows from Proposition 3.11 and Lemma 3.16.
Recall that

GAu,v(x) =
v∑

k=u

λk
(1− x)k+1 = 1

(1− x)v+1

v∑
k=u

λk(1− x)v−k.

Put
d =

⌊
p

v + 1

⌋
and take

h(x, y) = yd −
(

v∑
k=u

λk(1− x)v−k
)d

(1− x)p−d(v+1) ∈ Fp[x, y].

Then

h(x,GAu,v(x)) =

(
v∑

k=u
λk(1− x)v−k

)d
−
(

v∑
k=u

λk(1− x)v−k
)d

(1− x)p

(1− x)d(v+1)

=

(
v∑

k=u
λk(1− x)v−k

)d
xp

(1− x)d(v+1) ≡ 0 (mod xp)

since gcd(x, (1− x)) = 1. Hence

Ep(Au,v) ≤ deg(h) = max{d, d(v − u) + p− d(v + 1)}
= max{d, p− d(u+ 1)} = p− d(u+ 1)

and the result follows.

Remark 3.19. In Theorem 3.18 we proved that

Ep(Au,v) ≤ min
{

(u+ 1)
{

p

v + 1

}
+ (v − u) p

v + 1 , v + 2
}

=: Z(Au,v). (3.8)

On the one hand the bound can be very small if v is large with respect to
p and v − u is small. For the case u = v see Theorem 3.15. On the other
hand we have L(Au,v) = v + 1 by Lemma 3.16. Hence, there are many p-
periodic sequences over Fp of large linear complexity but small p-th expansion
complexity and we have the following hierarchy of complexity measures for
p-periodic sequences

Ep(Au,v) ≤ Z(Au,v) ≤ L(Au,v) + 1 = v + 2.
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As an application we provide some examples of p-periodic sequences over
Fp for which the bound (3.8) is not small.

Example 3.20. For a positive integer d consider the p-periodic sequence
S = (sm)m≥0 over Fp defined by

sm ≡ md (mod p),

that is sm = 0 for m ≡ 0 (mod p) and sm 6= 0 otherwise.
Assume S = Au,v. Then we need v = d and u = 0 since

Am =
v∑

k=u
λk

(
m+ k

k

)
≡ 0 (mod p), m = p− u, . . . , p− 1.

Thus, v is large with respect to p if and only if v − u is large and conse-
quently the bound (3.8) cannot be small.

Example 3.21. Consider the Legendre sequence L = (`m)m≥0 over Fp of
period p defined by (see also Chapter 2)

`m =

1 if m is a quadratic residue modulo p,
0 otherwise,

or equivalently

`m = mp−1 +m
p−1

2

2 (mod p).

We prove
Z(L) = p+O

(
p

1
4
√
e

+ε
)

for any ε > 0.

Assume L = Au,v. Then we need v = p − 1. If p ≡ 1 (mod 4), then
p − 1 is a quadratic residue modulo p, thus `p−1 = 1, and hence we must
have u = 0 since otherwise `p−1 = Ap−1 = 0. If p ≡ 3 (mod 4), then p− 1 is
not a quadratic residue modulo p and also p−u, . . . , p−1 must be quadratic
nonresidues modulo p since `m = Am = 0 for m = p − u, . . . , p − 1. This
simply means that 1, . . . , u are quadratic residues modulo p since the product
of two quadratic nonresidues is a quadratic residue. Thus

u = O
(
p

1
4
√
e

+ε
)

for any ε > 0

by the Burgess bound [6, Theorem 2].
Hence, the Legendre sequence does not belong to the class of sequences

for which the bound (3.8) is small.
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3.2.3 Expansion complexity of t-periodic sequences over
Fq with t | q − 1

Let g ∈ F∗q be an element of order t, where t | q − 1. For 0 ≤ k ≤ t − 1 we
study the t-periodic sequence Bk = (bi,k)i≥0 over Fq defined by

bi,k = (−1)t−1g−(i+1)k.

Proposition 3.22. We have

GBk(x) = 1
gk − x

.

Proof. First verify that
t−1∏
j=0
j 6=k

gj = g
(t−1)t

2 −k = (−1)t−1g−k = b0,k.

Put
fk(x) =

t−1∑
i=0

bi,kx
i ∈ Fq[x]

and note that bi,k = b0,kg
−ik. Then

fk(gj) = b0,k

t−1∑
i=0

gi(j−k) =

0 if j 6≡ k (mod t),
b0,kt if j ≡ k (mod t).

Hence fk(gj) = 0 for all 0 ≤ j ≤ t− 1 with j 6= k and since fk(x) has degree
t− 1 and

fk(0) = b0,k =
t−1∏
j=0
j 6=k

gj,

we can write fk(x) as

fk(x) =
t−1∏
j=0
j 6=k

(gj − x).

This implies

(1− xt)GBk(x) =
t−1∑
i=0

bi,kx
i = fk(x) =

t−1∏
j=0
j 6=k

(gj − x) = 1− xt
gk − x

and thus
GBk(x) = 1

gk − x
.
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The (Nth) linear complexity and t-th expansion complexity of Bk can be
computed exactly as the following theorem shows.

Theorem 3.23. We have

L(Bk) = LN(Bk) = 1,

and

Et(Bk) =

1 if t ≤ 2,
2 otherwise.

Proof. Since bi+1,k = g−kbi,k the linear recurrence relation bi+1,k+α0bi,k = 0 of
length 1 is fulfilled with α0 = −g−k ∈ Fq. This implies L(Bk) = LN(Bk) = 1.

By Proposition 3.11 we get

min
{⌈

t

2

⌉
, 2
}
≤ Et(Bk) ≤ 2

and the result follows for t ≥ 3. For t = 1, 2 take

h(x, y) = y −
t−1∑
i=0

bi,kx
i ∈ Fq[x, y]

of degree 1 which satisfies

h(x,GBk(x)) ≡ 0 (mod xt).

Thus Et(Bk) = 1 for t = 1, 2.

Next we study t-periodic sequences Bu,v = (Bi)i≥0 over Fq of the form

Bi =
v∑

k=u
λkbi,k (3.9)

with λuλv 6= 0, λk ∈ Fq and 0 ≤ u < v ≤ t− 1.

Lemma 3.24. We have

GBu,v(x) =
v∑

k=u

λk
gk − x

,

and
L(Bu,v) = |{u ≤ k ≤ v : λk 6= 0}|.
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Proof. By Proposition 3.22 we get

GBu,v(x) =
∞∑
i=0

Bix
i =

v∑
k=u

λk
∞∑
i=0

bi,kx
i =

v∑
k=u

λk
gk − x

,

that is

GBu,v(x) =
v∑

k=u

λk
gk − x

=

v∑
k=u

λk
v∏
j=u

j 6=k,λj 6=0

(gj − x)

v∏
k=u
λk 6=0

(gk − x)
.

Then

gcd
(

1− xt,
t−1∑
i=0

Bix
i

)
= gcd

(
1− xt, (1− xt)

v∑
k=u

λk
gk − x

)
= 1− xt

v∏
k=u
λk 6=0

(gk − x)

and by Proposition 3.8 we obtain

L(Bu,v) = t− deg


1− xt

v∏
k=u
λk 6=0

(gk − x)

 = |{u ≤ k ≤ v : λk 6= 0}|.

Remark 3.25. Note that any t-periodic sequence can be written in the form
(3.9). Assume

t−1∑
k=0

λkbi,k = 0, i = 0, . . . , t− 1,

which is equivalent to

t−1∑
k=0

λkg
−(i+1)k = 0, i = 0, . . . , t− 1.

This leads to the system of equations

M


λ0
λ1
...

λt−1

 =


0
0
...
0

 , (3.10)
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where

M =


1 g−1 (g−1)2 . . . (g−1)t−1

1 g−2 (g−2)2 . . . (g−2)t−1

... ... ... . . . ...
1 g−t (g−t)2 . . . (g−t)t−1


is a Vandermonde matrix. Since the determinant∏

1≤i<k≤t
(g−k − g−i)

of the Vandermonde matrix M is nonzero if g−i 6= g−k for i 6= k it follows
thatM is regular. Thus the system of equations (3.10) is solvable and λk = 0
for k = 0, . . . , t− 1. Hence, the sequences

Bk = (bi,k)i≥0, k = 0, . . . , t− 1,

are a basis of the linear space of t-periodic sequences over Fq with t | q − 1
and any t-periodic sequence is a linear combination of these basis sequences.

The t-th expansion complexity of Bu,v has the following lower and upper
bound.
Theorem 3.26. The t-th expansion complexity of Bu,v = (Bi)i≥0, u < v, of
the form (3.9) can be bounded by

min
{⌈

t

L(Bu,v) + 1

⌉
, L(Bu,v) + 1

}
≤ Et(Bu,v) ≤ min{t− 1, L(Bu,v) + 1}.

Proof. The bound

min
{⌈

t

L(Bu,v) + 1

⌉
, L(Bu,v) + 1

}
≤ Et(Bu,v) ≤ L(Bu,v) + 1

follows from Proposition 3.11.
Recall that

GBu,v(x) =
v∑

k=u

λk
gk − x

.

Take
h(x, y) = y −

v∑
k=u

λk
t−1∑
i=0

bi,kx
i ∈ Fq[x, y]

of degree max{1, t− 1} = t− 1 which satisfies

h(x,GBu,v(x)) ≡ 0 (mod xt).

Hence
Et(Bu,v) ≤ deg(h) = t− 1.
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Chapter 4

Outlook

In this chapter we provide some additional results which may be of interest
for further research. In particular, we study tpr-periodic sequences over Fq,
where p - t and p is the characteristic of Fq.

4.1 Arithmetic correlation measure
In this section we introduce a new arithmetic correlation measure which may
be seen in some sense as a generalization of the arithmetic autocorrelation
to higher orders. Proper estimates of this new measure may be used to
estimate the 2-adic span (the arithmetic analogue of the linear complexity).
Unfortunately, bounds on the Legendre sequence, though nontrivial, are too
weak for this purpose. However, as first result we prove a nontrivial bound
on this arithmetic correlation measure of order k of the Legendre sequence.

4.1.1 Arithmetic correlation measure of order k
The arithmetic correlation measure of order k ≥ 1 of a (purely) T -periodic
binary sequence (an)n≥0 is defined as

Ak(an) = max
0<d1<...<dk−1<T

|I(sn,d1,...,dk−1)|,

where (sn,d1,...,dk−1)n≥0 is the ultimately p-periodic binary sequence defined
by

sn,d1,...,dk−1 =

1 if (−1)an+an+d1+···+an+dk−1+zn = 1,
0 otherwise,

(4.1)
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with z0 = 0 and for all n ≥ 1

zn =
⌊
an−1 + an−1+d1 + · · ·+ an−1+dk−1 + zn−1

2

⌋
.

We have A1(an) = |I(an)| and zn ∈ {0, 1, . . . , k − 1} since, by induction,

zn ≤ b(2k − 1)/2c = bk − 1/2c = k − 1.

Remark 4.1. In contrast to the relation between the (periodic) autocor-
relation and the correlation measure of order 2, the arithmetic correlation
measure of order 2 is not the maximum over all 0 < d1 < T of the absolute
value of the arithmetic autocorrelation of (an)n≥0 since addition and sub-
traction of 2-adic integers are not the same operation (see Remark 2.14).
Thus we cannot say, that Ak(an) is a direct generalization of the arithmetic
autocorrelation to higher orders.

Let i be a positive integer. In the following put k = 2i + 1 and choose

K = dlog2 ke = i+ 1.

Let Bk×K denote the set of binary k ×K matrices, that is

Bk×K =




b0,0 b0,1 · · · b0,K−1
b1,0 b1,1 · · · b1,K−1
... ... . . . ...

bk−1,0 bk−1,1 · · · bk−1,K−1

 : bi,j ∈ {0, 1}

 .

Obviously, we have |Bk×K | = 2kK .

Algorithm 4.2. Let B ∈ Bk×K and c ∈ {0, k − 1}.

1. Input: zc,0 = c

2. For j = 1, 2, . . . , K do

wj−1 = zk−1,j−1 − z0,j−1

zc,j =
⌊
b0,j−1 + b1,j−1 + · · ·+ bk−1,j−1 + zc,j−1

2

⌋
∈ {0, 1, . . . , k − 1}

3. Output: zc,K ∈ {0, 1, . . . , k − 1}, wK−1 ∈ {0, 1}
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If we identify the i-th row of a matrix B ∈ Bk×K with the 2-adic integer
∞∑
j=0

bi,j2j,

where bi,j = 0 for j ≥ K, then Algorithm 4.2 is simply addition of k 2-adic
integers with input carry zc,0 and output carry zc,K , where c ∈ {0, k−1}. The
value wj−1 computes the difference between the carries zk−1,j−1 and z0,j−1 in
each step of the algorithm. If z0,K = zk−1,K for some B ∈ Bk×K , then we
know that B has the same output carry for all possible inputs 0, 1, . . . , k−1.

Put

Yk×K = {B ∈ Bk×K : z0,K = zk−1,K} (4.2)

and

Bk×K \ Yk×K = {B ∈ Bk×K : z0,K 6= zk−1,K} (4.3)

Proposition 4.3. We have

|Yk×K | = |Bk×K \ Yk×K | = 2kK−1.

Proof. For k = 2i + 1 Algorithm 4.2 gives

wK−1 = zk−1,K−1 − z0,K−1 = 1

for all B ∈ Bk×K since wj−1 = wj−2/2 for j = 2, 3, . . . , K. Computing zc,K ,
where c ∈ {0, k − 1}, the result follows.

4.1.2 A bound on the arithmetic correlation measure
of order k of the Legendre sequence

Exchanging (1, 0) by (0, 0) and (0, 1) by (1, 1) in the proof of Theorem 2.32
we can show for the Legendre sequence (`n)n≥0 that

A2(`n) ≤ 4p3/4(log2 p)1/2.

Theorem 4.4. Put k = 2i + 1. Then the arithmetic correlation measure of
order k of the p-periodic binary sequence (`n)n≥0 defined by (2.1) satisfies

Ak(`n) ≤ 2
k−1

kK1+1 +1
p

1− 1
2(kK1+1) (log2 p)

1− kK1
kK1+1 ,

where K1 = log2 k + 1.
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Proof. Put

m =
⌊

1/2 log2 p− log2 log2 p− k + 1
kK1 + 1

⌋
and note that K ≤ K1. In the following we derive a lower bound on the
number N1 of ones in a period of the p-periodic sequence (sn,d1,...,dk−1)n≥0
defined by (4.1).

If
p ≤ 2

k−1
kK1+1 +1

p
1− 1

2(kK1+1) (log2 p)
1− kK1

kK1+1 ,

then the result follows immediately since the trivial bound Ak(`n) ≤ p always
holds. Thus it is enough to prove the inequality for

p
1

2(kK1+1) > 2
k−1

kK1+1 +1(log2 p)
1

kK1+1 ,

that is p1/2 > 2k(K1+1) log2 p.
Note that 1 ≤ m ≤ (2kK)−1 log2 p. For some r and n with 0 ≤ r < m

and p ≤ n < 2p assume

Y =


`n−Kr−K `n−Kr−K+1 . . . `n−Kr−1
`n−Kr−K+d1 `n−Kr−K+1+d1 . . . `n−Kr−1+d1

... ... . . . ...
`n−Kr−K+dk−1 `n−Kr−K+1+dk−1 . . . `n−Kr−1+dk−1

 ∈ Yk×K , (4.4)

Xj ∈ Bk×K \ Yk×K , j = 0, . . . , r − 1, (4.5)

where

Xj =


`n−Kr+Kj `n−Kr+Kj+1 . . . `n−Kr+Kj+K−1
`n−Kr+Kj+d1 `n−Kr+Kj+1+d1 . . . `n−Kr+Kj+K−1+d1

... ... . . . ...
`n−Kr+Kj+dk−1 `n−Kr+Kj+1+dk−1 . . . `n−Kr+Kj+K−1+dk−1


and

(`n, `n+d1 , . . . , `n+dk−1) ∈ Bk×1. (4.6)

We consider only patterns of length

k(K + 1) ≤ s = k(K +Kr + 1) ≤ 1/2 log2 p+ k
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and therefore we can further estimate (2.4) by sp1/2/2, that is∣∣∣∣Pi0,i1,...,is−1(`n)− p

2s
∣∣∣∣ ≤ p1/2(2s−1(s− 3) + 2) + 2s−1(s+ 1)− 1

2s

≤
(
s− 3

2 + 21−k(K+1)
)
p1/2 + 2k + 3

4 log2 p

≤
(
s− 3 + (2k + 11)2−(kK+k+1)

2

)
p1/2 ≤ s

2p
1/2

(4.7)

since p1/2 > 2k(K1+1) log2 p ≥ 2k(K+1) log2 p.
From (4.7) we know that for fixed Y ∈ Yk×K the number of patterns

`n

Y X0 . . . Xr−1
...

`n+dk−1

 (4.8)

satisfying the assumptions (4.4)-(4.6) in

`p−r−1 . . . `p−1 `p . . . `2p−1
`d1+p−r−1 . . . `d1+p−1 `d1+p . . . `d1+2p−1
... ... ... ...
`dk−1+p−r−1 . . . `dk−1+p−1 `dk−1+p . . . `dk−1+2p−1

(4.9)

is at least p/2k(K+Kr+1) − k/2(K + Kr + 1)p1/2. Note that if the integers
d1 < d2 < . . . < dk−1 do not fulfill

d1 ≥ Km,

dj+1 − dj ≥ Km, j = 1, 2, . . . , k − 2,
dk−1 ≤ p−Km,

then some indices in (4.8) coincide and we would deal with shorter patterns
which would lead to sharper bounds than p/2k(K+Kr+1)−d/2(K+Kr+1)p1/2

on the number of patterns (4.8) satisfying the assumptions (4.4)-(4.6) in (4.9).
But all these bounds are at least p/2k(K+Kr+1) − k/2(K + Kr + 1)p1/2 and
therefore we can continue the proof without taking care of shorter patterns.

By (4.1) we have

sn,d1,...,dk−1 =

1 if ∑k−1
i=1 `n+di + zn is even,

0 if ∑k−1
i=1 `n+di + zn is odd.

Since there are 2(kK−1)r+k−1 possible choices for the pattern (4.8) we count
at least p/2kK+r+1−k(K+Kr+1)2(kK−1)r+k−2p1/2 different p ≤ n < 2p with
sn,d1,...,dk−1 = 1.
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By Proposition 4.3 we have |Yk×K | = 2kK−1. Thus in total there are at
least

p/2r+2 − k(K +Kr + 1)2(kK−1)r+kK+k−3p1/2

different p ≤ n < 2p with Y ∈ Yk×K , Xj ∈ Bk×K \ Yk×K for j = 0, . . . , r − 1
and sn,d1,...,dk−1 = 1.

Summing up all the contributions we get the formula

N1 ≥
1
4

(
m−1∑
r=0

2−r
)
p− 1

4

(
m−1∑
r=0

2r(kK−1)+kK+k−1(rkK + kK + k)
)
p1/2.

The second sum on the right hand side of the inequality can be estimated by
m−1∑
r=0

2r(kK−1)+kK+k−1(rkK + kK + k) ≤
m−1∑
r=0

2rkK+kK+k−1(rkK + kK + k)

≤
m−1∑
r=0

2rkK1+kK1+k−1(rkK1 + kK1 + k) =
(
m−1∑
r=0

2rkK1+kK1+k
)′

= ((mdK1 + k)(2kK1 − 1)− kK1)2mkK1+kK1+k−1 + k(K1 + 1− 2kK1)2kK1+k−1

(2kK1 − 1)2

≤ ((mkK1 + k)(2kK1 − 1)− kK1)2mkK1+k−1 + k(K1 + 1− 2kK1)2k−1

2kK1−1

≤ (mkK1 + k)2mkK1+kK1+k−1

2kK1−1 = (mkK1 + k)2mkK1+k ≤ 2mkK1+k log2 p,

where we used (2kK1 − 1)2 ≥ 22kK1−1 and

m ≤ 1/2 log2 p− log2 log2 p− k + 1
dK1

≤ log2 p

kK1
− k

kK1
.

Thus by the definition of m we get

N1 ≥
p

2 − 2−m−1p− 2mkK1+k−2p1/2 log2 p

≥ p

2 − 2
k−1

kK1+1p
1− 1

2(kK1+1) (log2 p)
1− kK1

kK1+1 .

Analogously N0 can be bounded below by

N0 ≥
p

2 − 2
k−1

kK1+1p
1− 1

2(kK1+1) (log2 p)
1− kK1

kK1+1

and therefore since N0 +N1 = p

Ak(`n) = |N0 −N1| ≤ 2
k−1

kK1+1 +1
p

1− 1
2(kK1+1) (log2 p)

1− kK1
kK1+1 .
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Remark 4.5. In the proof of Theorem 4.4 we need that the sets Yk×K
and Bk×K \ Yk×K defined by (4.2) and (4.3), respectively, have the same
cardinality. Unfortunately, this is only fulfilled if k is the next larger integer
of a power of 2 (see Proposition 4.3). However, for k 6= 2i + 1 we choose
K = dlog2 ke+ 1. Then it can be proven that

|Yk×K | = 2kK−1 + 2k−1|Yk×K−1|.

Thus, modifying the sets Yk×K and Bk×K \ Yk×K by

Yk×K \ S =: Yk×K∗

and
(Bk×K \ Yk×K) ∪ S =: Bk×K \ Yk×K∗ ,

respectively, where

S = {(Y, b) : Y ∈ Yk×K−1, b ∈ Bk×1} ∈ Bk×K ,

and choosing
K1 = log2 k + 2,

we can prove Theorem 4.4 for k 6= 2i + 1 as well (since the new sets Yk×K∗
and Bk×K \ Yk×K∗ satisfy |Yk×K∗ | = |Bk×K \ Yk×K∗ | = 2kK−1 for k 6= 2i + 1).

4.2 Expansion complexity of tpr-periodic se-
quences over Fq

Let n = n0 + n1t and k = k0 + k1t with 0 ≤ n0 < t, 0 ≤ k0 < t and
0 ≤ n1 < pr, 0 ≤ k1 < pr, respectively. For 0 ≤ k ≤ tpr − 1 we study the
tpr-periodic sequence Ck = (cn,k)n≥0 over Fq defined by

cn,k = (−1)t−1
(
n1 + k1

k1

)
g−(n0+1)k0 .

Proposition 4.6. We have

GCk(x) = 1
(1− xt)k1(gk0 − x) ,

and
L(Ck) = tk1 + 1.
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Proof. It follows from Proposition 3.22 that

t−1∑
n0=0

bn0,k0x
n0 =

t−1∑
n0=0

(−1)t−1g−(n0+1)k0xn0 = 1− xt
gk0 − x

.

Furthermore we have
pr−1∑
n1=0

(
n1 + k1

k1

)
xtn1 =

pr−1−k1∑
n1=0

(
n1 + k1

k1

)
xtn1

=
pr−1−k1∑
n1=0

(
pr − 1− k1

n1

)
(−xt)n1 = (1− xt)pr−1−k1 ,

where we used that(
n1 + k1

k1

)
≡
(
n1 + k1 − pr

k1

)(
1
0

)
≡ 0 (mod p), n1 = pr − k1, . . . , p

r − 1,

by Lucas Congruence (see for example [35]) since 0 ≤ n1 +k1−pr < k1 < pr.
Then we get

(1− xt)prGCk(x) = (1− xtpr)GCk(x) =
tpr−1∑
n=0

cn,kx
n

=
t−1∑
n0=0

pr−1∑
n1=0

(
(−1)t−1

(
n1 + k1

k1

)
g−(n0+1)k0

)
xn0+n1t

=
pr−1∑
n1=0

(
n1 + k1

k1

)
xn1t

t−1∑
n0=0

(−1)t−1g−(n0+1)k0xn0 = (1− xt)pr−k1

gk0 − x
.

Thus
GCk(x) = 1

(1− xt)k1(gk0 − x) .

By Proposition 3.8 we obtain

L(Ck) = tpr − deg
gcd

tpr−1∑
n=0

cn,kx
n, 1− xtpr


= tpr − deg

(
gcd

(
(1− xt)pr−k1

gk0 − x
, (1− xt)pr

))
= tk1 + 1.

The following theorem shows that the tpr-th expansion complexity of Ck
can be very small if the linear complexity is large with respect to tpr.
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Theorem 4.7. For (tk1 + 1)(tk1 + 2) < tpr we have

Etpr(Ck) = tk1 + 2,

and for (tk1 + 1)(tk1 + 2) ≥ tpr we have⌈
tpr

tk1 + 2

⌉
≤ Etpr(Ck) ≤ max

{
2
⌈

tpr

tk1 + 2

⌉
, tk1

{
pr

k1

}}
,

where {x} = x− bxc is the fractional part of x.

Proof. By Proposition 3.11 and Proposition 4.6 we get

Etpr(Ck) = tk1 + 2

if (tk1 + 1)(tk1 + 2) < tpr and⌈
tpr

tk1 + 2

⌉
≤ Etpr(Ck)

if (tk1 + 1)(tk1 + 2) ≥ tpr.
Put

d = min
{⌊
pr

k1

⌋
,
⌈

tpr

tk1 + 2

⌉}
and take

h(x, y) = yd(gk0 − x)d − (1− xt)pr−dk1 ∈ Fq[x, y].
By Proposition 4.6 we have

GCk(x) = 1
(1− xt)k1(gk0 − x)

and thus

h(x,GCk(x)) = (gk0 − x)d
(1− xt)dk1(gk0 − x)d − (1− xt)pr−dk1

= 1− (1− xt)pr

(1− xt)dk1
= xtp

r

(1− xt)dk1
≡ 0 (mod xtp

r)

since gcd(x, (1− x)) = 1. Hence

Etpr(Ck) ≤ deg(h) = max{2d, tpr − tdk1} =

2d if d =
⌈

tpr

tk1+2

⌉
,

t(pr − dk1) otherwise,

and the result follows.
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Next we study tpr-periodic sequences Cu,v = (Cn)n≥0 over Fq of the form

Cn =
v∑

k=u
λkcn,k (4.10)

with λuλv 6= 0, λk ∈ Fq and 0 ≤ u < v ≤ tpr − 1.
Lemma 4.8. We have

GCu,v(x) =
v∑

k=u

λk
(1− xt)k1 (gk0 − x) ,

and

L(Cu,v) =

tv1 + |{u ≤ k ≤ v : λk 6= 0}| if u1 = v1,

tv1 + |{tv1 ≤ k ≤ v : λk 6= 0}| if u1 < v1.

Proof. By Proposition 4.6 we get

GCu,v(x) =
∞∑
n=0

Cnx
n =

v∑
k=u

λk
∞∑
n=0

cn,kx
n =

v∑
k=u

λk
(1− xt)k1 (gk0 − x) .

If u1 = v1, that is u0 ≤ v0, we can write GCu,v(x) as

1
(1− xt)v1

v∑
k=u

λk
gk0 − x

=

v∑
k=u

λk
v∏
j=u

j 6=k,λj 6=0

(gj0 − x)

(1− xt)v1
v∏
k=u
λk 6=0

(gk0 − x)
=: F1

and otherwise if u1 < v1 as
tv1−1∑
k=u

λk(1−xt)v1

(1−xt)k1+1

t−1∏
j=0
j 6=k0

(gj − x)
v∏

i=tv1
λi 6=0

(gi0 − x) +
v∑

k=tv1
λk

v∏
j=tv1

j 6=k,λj 6=0

(gj0 − x)

(1− xt)v1
v∏

k=tv1
λk 6=0

(gk0 − x)
=: F2.

Hence
tpr−1∑
n=0

Cnx
n = (1− xt)pr

v∑
k=u

λk
(1− xt)k1(gk0 − x) =

(1− xt)prF1 if u1 = v1,

(1− xt)prF2 if u1 < v1.

Then

gcd
1− xtpr ,

tpr−1∑
n=0

Cnx
n

 =



(1− xt)pr−v1

 v∏
k=u
λk 6=0

(gk0 − x)


−1

if u1 = v1,

(1− xt)pr−v1

 v∏
k=tv1
λk 6=0

(gk0 − x)


−1

if u1 < v1,
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and by Proposition 3.8 we obtain

L(Cu,v) = tpr − deg
gcd

1− xtpr ,
tpr−1∑
n=0

Cnx
n


=

tv1 + |{u ≤ k ≤ v : λk 6= 0}| if u1 = v1,

tv1 + |{tv1 ≤ k ≤ v : λk 6= 0}| if u1 < v1.

For the tpr-th expansion complexity of Cu,v we can prove the following
theorem.

Theorem 4.9. Let Λ = |{u ≤ k ≤ v : λk 6= 0}| be the number of nonzero
linear coefficients λk. For L(Cu,v) + L(Cu,v)2 < tpr we have

Etpr(Cu,v) = L(Cu,v) + 1,

and otherwise the tpr-th expansion complexity of the sequence Cu,v = (Cn)n≥0,
u < v, of the form (4.10) has the lower bound⌈

tpr

L(Cu,v) + 1

⌉
≤ Etpr(Cu,v),

and can be upper bounded by the maximum of either

(Λ + 1)
⌈
tprΛ
tu1 + 2

⌉
,

or

tu1

{
prΛ
v1

}
+ (v1 − u1)tp

rΛ
v1

+ (Λ− 1)
⌊
prΛ
v1

⌋
,

where {x} = x− bxc is the fractional part of x.

Proof. By Proposition 3.11 and Lemma 4.8 we get

Etpr(Cu,v) = L(Cu,v) + 1

if L(Cu,v) + L(Cu,v)2 < tpr and⌈
tpr

L(Cu,v) + 1

⌉
≤ Etpr(Cu,v)

if L(Cu,v) + L(Cu,v)2 ≥ tpr.
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Put
d = min

{⌊
prΛ
v1

⌋
,

⌈
tprΛ
tu1 + 2

⌉}
and take

h(x, y) =

y v∏
k=u
λk 6=0

(gk0 − x)


d

−
∑
|D|=d

(
d

D

)
v∏

k=u
λk 6=0

(gk0 − x)

v∑
j=u

j 6=k,λj 6=0

dj

λdkk (1− xt)pr

(1− xt)dkk1

with multiindex D = (du, . . . , dv). Recall that

GCu,v(x) =
v∑

k=u

λk
(1− xt)k1(gk0 − x) .

Then we have

GCu,v(x)

 v∏
k=u
λk 6=0

(gk0 − x)


d

=
∑
|D|=d

(
d

D

)
v∏

k=u
λk 6=0

λdkk (gk0 − x)

v∑
j=u

j 6=k,λj 6=0

dj

(1− xt)dkk1

and therefore

h(x,GCu,v(x)) = (1− (1− xtpr)Λ)
∑
|D|=d

(
d

D

)
v∏

k=u
λk 6=0

λdkk (gk0 − x)

v∑
j=u

j 6=k,λj 6=0

dj

(1− xt)dkk1

=
 Λ∑
k=1

(
Λ
k

)
(xtpr)k

 ∑
|D|=d

(
d

D

)
v∏

k=u
λk 6=0

λdkk (gk0 − x)

v∑
j=u

j 6=k,λj 6=0

dj

(1− xt)dkk1
≡ 0 (mod xtp

r)

since gcd(x, (1− x)) = 1. Hence

Etpr(Cu,v) ≤ deg(h) = max

d+ dΛ,max
|D|=d

tprΛ + d(Λ− 1)− t
v∑

k=u
λk 6=0

dkk1




≤ max{d(Λ + 1), tprΛ + d(Λ− 1)− tdu1}

=

d(Λ + 1) if d =
⌈
tprΛ
tu1+2

⌉
,

tprΛ + d(Λ− 1)− tdu1 otherwise,

since u1 ≤ k1 ≤ v1 for all k = u, . . . , v with λk 6= 0. Thus the result
follows.
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