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Abstract. The goal of this work is to show a first example of an almost periodic zero entropy
sequence (in the sense of symbolic dynamical systems) whose subsequence along squares is a normal
sequence. As an application, this provides a new method to produce normal numbers in a given
base.

1. Introduction

The study of subsequences along squares or along integer valued polynomials induced a lot of
interest since the questions asked by Bellow [2] and Furstenberg [14] and the proof by Bourgain of
a pointwise ergodic theorem in [5, 6, 7] (see also [3], [9], [16], [17], [29] for other important results in
this direction). The goal of this work is to give an explicit example of an almost periodic sequence
with zero entropy (the Thue-Morse sequence) which subsequence along squares is normal. This
surprising result is optimal in the following sense:

• the Thue-Morse sequence is one of the simplest example of non periodic sequence on two
symbols (and we can’t expect a similar normality result starting from a periodic sequence);
• the sequence of squares is one of the simplest slowly increasing sequence of integers if we

except arithmetic progressions (and we can’t expect such a normality result by extracting
arithmetic progressions).

In this paper we denote by N the set of non negative integers, by U the set of complex numbers
of modulus 1 and we set e(x) = exp(2iπx) for any real number x. If f and g are two functions such
that there exist C > 0 with |f | ≤ C g we write f = O(g) or f � g.

1.1. The Thue-Morse dynamical system. Let (tr)r∈N and (t′r)r∈N be the sequences of words on
the alphabet {0, 1} defined by

t0 = 0, t′0 = 1, tr+1 = trt
′
r, and t′r+1 = t′rtr

(in all this paper we identify words b0 . . . bk−1 on the alphabet {0, 1} with sequences (bi)i∈{0,...,k−1} ∈
{0, 1}k and we denote by UV the concatenation of the words U and V on the alphabet {0, 1}). The
sequence (tr)r∈N converges for the product topology in {0, 1}N to an infinite word t ∈ {0, 1}N called
the Thue-Morse sequence (or Thue-Morse infinite word).

There are many other ways to define the Thue-Morse sequence t = (t(n))n∈N ∈ {0, 1}N. In
particular it is easy to check that, for any non negative integer n, we have

t(n) = s(n) mod 2

where s(n) denotes the number of powers of 2 in the binary representation of n. Since its introduction
independently by Thue in [27] and by Morse in [23], the Thue-Morse sequence has been studied in
many different contexts from combinatorics to algebra, number theory, harmonic analysis, ergodic
theory, geometry and dynamical systems (see [1, 19]).
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Definition 1. The symbolic dynamical system associated to a sequence u ∈ {0, 1}N is the system
(X(u), T ), where T is the shift on {0, 1}N and X(u) the closure (for the product topology of {0, 1}N)
of the orbit of u under the action of T .

We say that (b0, . . . , bk−1) ∈ {0, 1}k is a factor of the sequence u ∈ {0, 1}N if there exists an
integer i such that u(i) = b0,. . . , u(i+ k − 1) = bk−1.

Definition 2. A sequence u ∈ {0, 1}N is almost periodic (or uniformly recurrent) if every factor of
u occurs infinitely often in u with bounded gaps.

Morse proved in [23] that t is an almost periodic sequence (see also [19, Proposition 4] or [25,
Proposition 5.1.2]). This property means that the dynamical system (X(t), T ) is minimal (i.e. the
only closed T -invariant sets in X(t) are ∅ and X(t), see [26, Theorem IV.12] or [25, Proposition
5.1.13]).

Remark 1. It follows from a result of Gottschalk and Hedlund (see [15]) that X(t) is exactly the
set of non overlapping binary sequences i.e. the set of sequences u ∈ {0, 1}N with no factor of the
form BBb where b is the first element of B.

1.2. Low complexity of the Thue-Morse sequence.

Definition 3. For any integer q ≥ 2, the symbolic complexity of a sequence u ∈ {0, . . . , q − 1}N is
the function pu defined for any positive integer k by

pu(k) = card{(b0, . . . , bk−1) ∈ {0, . . . , q − 1}k, ∃i / u(i) = b0, . . . , u(i+ k − 1) = bk−1}
( i.e. pu(k) is equal to the number of distinct factors of length k that occur in the sequence u).

The function pu constitutes a possible measure for the pseudorandomness of the sequence u.
More precisely, it is easy to show that the topological entropy of the symbolic dynamical system

(X(u), T ) is equal to limk→∞
log pu(k)

k
(see [18]).

The symbolic complexity of the sequence t is very low: it follows from [8, Proposition 4.5] or
[13, Corollary 4.5] that for any positive integer k we have pt(k) ≤ 10

3
k. For any fixed (a, b) ∈ N2

it is easy the check that the sequence ta,b = (t(an + b))n∈N is also obtained by a simple algorithm.
More precisely ta,b is generated by a finite 2-automaton (see [1] for a definition of this notion). It
follows that the combinatorial structure of the sequence ta,b can be understood from the study of its
associated 2-automaton and that its symbolic complexity is also sublinear: pta,b(k) = Oa(k) (see [12,
Theorem 2]). This shows that any symbolic dynamical system (X(ta,b), T ) obtained by extracting
a subsequence of t along arithmetic progressions still has zero topological entropy.

1.3. Main result. The goal of this work is to show that the situation changes completely when we
replace linear subsequences by quadratic ones.

Definition 4. A sequence u ∈ {0, . . . , q − 1}N is normal if, for any k ∈ N and any (b0, . . . , bk−1) ∈
{0, . . . , q − 1}k, we have

lim
N→∞

1

N
card{i < N, u(i) = b0, . . . , u(i+ k − 1) = bk−1} =

1

qk
.

It follows from Definition 4 that if u ∈ {0, . . . , q − 1}N is normal then every factor occurs in the
sequence u so that, for any non negative integer k, we have pu(k) = qk and the topological entropy
of (X(u), T ) is equal to log q. But the converse is not true: normality is a much stronger property
than maximal topological entropy.

Moshe proved in [24] that every factor occurs in the sequence t2 answering a question due to
Allouche and Shallit [1, Problem 10.12.7] but his method does not provide any information about
the frequency of occurency of a given factor, which constitute a much more difficult problem.
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Theorem 1. The sequence t2 = (t(n2))n∈N is normal.

Definition 5. For any integer q ≥ 2, a real number is normal in base q if the sequence of its q-adic
digits is normal.

The notion of normal number in a given base was introduced by Borel in [4]. The first explicit
construction was given by Champernowne in [11] and only few such constructions are known (see
[10, Chapters 4 and 5]). This theorem provides a new method to construct normal numbers in a
given base.

Corollary 1. The real number α =
∞∑
n=0

t(n2)
2n

is normal in base 2.

Remark 2. For any integer q ≥ 2, a generalized Thue-Morse sequence t(q) ∈ {0, . . . , q − 1}N can
be defined by

∀n ∈ N, t(q)(n) = s(n) mod q.

Our method might be adapted to prove that t(q) is normal, providing an example of a real number

normal in base q: α(q) =
∞∑
n=0

t(q)(n2)
qn

.

Remark 3. Our proof works (with some extra technicity) if we replace n2 by any quadratic polyno-
mial taking values in N.

If we replace n2 by P (n) where P is a polynomial of degree ≥ 3 taking values in N it is still an
open problem to determine the frequency of 0 and 1 in the sequence (t(P (n)))n∈N. But we believe
that the following much stronger conjecture is true:

Conjecture 1. For any polynomial P of degree ≥ 3 taking values in N the sequence (t(P (n)))n∈N
is normal.

If we replace n2 by pn (the n-th prime number) Mauduit and Rivat proved in [21] that the
frequencies of 0 and 1 in the sequence (t(pn))n∈N are both equal to 1

2
. It seems out of reach to

determine the frequencies of 00, 01, 10 and 11 in this sequence, but we believe that the following
conjecture is true:

Conjecture 2. The sequence (t(pn))n∈N is normal.

2. Plan of the Proof

2.1. Introduction of exponential sums. For any (b0, . . . , bk−1) ∈ {0, 1}k we have

card{n < N : (tn2 , . . . , t(n+k−1)2) = (b0, . . . , bk−1)}

=
∑
n<N

1

2

1∑
α0=0

e
(α0

2

(
s(n2)− b0

))
· · · 1

2

1∑
αk−1=0

e
(αk−1

2

(
s((n+ k − 1)2)− bk−1

))

=
1

2k

∑
(α0,...,αk−1)∈{0,1}k

e

(
−α0b0 + · · ·+ αk−1bk−1

2

)∑
n<N

e

(
1

2

k−1∑
`=0

α` s((n+ `)2)

)

=
N

2k
+

1

2k
O

 ∑
(α0,...,αk−1)∈{0,1}k\{(0,...,0)}

∣∣∣∣∣∑
n<N

e

(
1

2

k−1∑
`=0

α` s((n+ `)2)

)∣∣∣∣∣
 .

It follows that in order to prove Theorem 1 it is enough to prove the following theorem on exponential
sums.
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Theorem 2. For any integer k ≥ 1 and (α0, . . . , αk−1) ∈ {0, 1}k such that (α0, . . . , αk−1) 6=
(0, . . . , 0), there exists η > 0 such that

(1) S0 =
∑
n<N

e

(
1

2

k−1∑
`=0

α` s((n+ `)2)

)
� N1−η.

Remark 4. It follows from our method that the same estimate remains valid for the sums∑
n<N e

(
1
2

∑k−1
`=0 α` s(m+ (n+ `)2)

)
uniformly for m ∈ N, so that Theorem 1 still holds for any

sequence of X(t):

The following result is a consequence of Theorem 1, Remark 1 and Remark 4:

Theorem 3. If u is a non overlapping binary sequence then the sequence (u(n2))n∈N is normal.

2.2. Strategy of the proof of Theorem 2. The case k = 1 follows from [20], but the method
used in [20] fails when k ≥ 2 for many reasons (the first of them being the huge size and the large
number of variables in the exponential sums) and leads us to introduce a new approach in order to
be able to control the Fourier transform of correlations of any order.

First we use a multidimensional approximation method (of Beurling-Selberg-Vaaler type, see
section 9.1) which produces exponential sums much shorter than in [20]. Then the method used
in [20] to detect the squares would lead to introduce a huge number of variables (4k) in these
exponential sums and the next idea is to reduce this number to a constant independent of k at the
price of Fourier transform terms much more difficult to handle. Then the control of these Fourier
transform terms leads to estimate norms of products of large matrices (of size depending on k).
These estimates constitute the most difficult part of the proof and require a new strategy. In order
to obtain these upper bounds we introduce a method based on combinatorial arguments for families
of weighted graphs associated to these matrices.

Let us describe more precisely the structure of the full proof of Theorem 2. Section 3 is devoted to
some properties of the carry propagation (in particular we have to provide a quantitative statement
of the fact that carry propagation along several digits are rare). The main ingredients of the proof
of Theorem 2 are upper bounds on the Fourier terms GI

λ(h, d) defined in section 4 by (7). The other
ingredients include Van-der-Corput type inequalities in order to reduce the problem to sums that
depend only on few digits of n2, (n + 1)2, . . . , (n + k − 1)2. These reduced sums have a periodic
structure that allows a proper Fourier analytic treatment. After the Fourier analysis the problem is
roughly speaking split into a part where the Fourier terms GI

λ(h, d) appear and into a second part
involving quadratic Gauss sums. The bounds corresponding to the Fourier terms are formulated
in Propositions 1 and 2 (see Section 4) and proved in Sections 7 and 8. We have to distinguish
in the proof of Theorem 2 between the cases where K = α0 + · · · + αk−1 is even and where K is
odd, and Sections 5 and 6 correspond to this distinction. In Section 5 we prove that if K is even
we can deduce Theorem 2 from Proposition 1 and in Section 6 we prove that if K is odd we can
deduce Theorem 2 from Proposition 2. Finally, the next two sections (Sections 7 and 8) provide the
proofs of Propositions 1 and 2. Proposition 1 is a bound on averages of Fourier transforms while
Proposition 2 is a uniform bound much more difficult to obtain. Section 9 contains useful technical
results on exponential sums, quadratic Gauss sums and norms of matrix products.

3. Truncated functions and carry Lemmas

Let εj(n) ∈ {0, 1} denote the j-th digit in the binary representation of a non-negative integer n
and write

f(n) =
1

2
s(n) =

1

2

∑
j≥0

εj(n).
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For (λ, µ) ∈ N2 such that 0 ≤ µ < λ, we define the truncated function fλ and the two-fold truncated
function fµ,λ by

fλ(n) =
1

2

∑
0≤j<λ

εj(n) and fµ,λ(n) =
1

2

∑
µ≤j<λ

εj(n) = fλ(n)− fµ(n).

Lemma 1. Let (ν, λ, ρ) ∈ N3 such that ν + ρ ≤ λ ≤ 2ν. For any integer r with 0 ≤ r ≤ 2ρ the
number of integers n < 2ν for which there exists an integer j ≥ λ with εj((n + r)2) 6= εj(n

2) is
� 22ν+ρ−λ. Hence, the number of integers n < 2ν with

fλ((n+ r)2)− fλ(n2) 6= f((n+ r)2)− f(n2)

is also � 22ν+ρ−λ.

Proof. It is sufficient to adapt the proof of Lemma 16 of [20] taking λ in place of ν + 2ρ+ 1. �

Lemma 2. Let (λ, µ, ν, µ′, ρ′) ∈ N5 such that 0 < µ < ν < λ ≤ 2µ, ρ′ ≥ 3, µ′ = µ − ρ′,
2ρ′ ≤ µ ≤ ν − ρ′ and λ − ν ≤ 2(µ − ρ′). For any integers n < 2ν, s ≥ 1 and 1 ≤ r ≤ 2(λ−ν)/2 we
define the integers u1 = u1(n), u2 = u2(n), u3 = u3(n), v = v(n), w1 = w1(n), w2 = w2(n) and
w3 = w3(n) by the following conditions:

n2 ≡ u12
µ′ + w1 mod 2λ (0 ≤ w1 < 2µ

′
, 0 ≤ u1 < U1)

(n+ r)2 ≡ u22
µ′ + w2 mod 2λ (0 ≤ w2 < 2µ

′
, 0 ≤ u2 < U2)(2)

2n ≡ u32
µ′ + w3 mod 2λ (0 ≤ w3 < 2µ

′
, 0 ≤ u3 < U3)

2sn ≡ v mod 2λ−µ, (0 ≤ v < V ),

where

(3) U1 = U2 = 2λ−µ
′
, U3 = 2ν+1−µ′ , V = 2λ−µ.

Then, uniformly for integers ` such that 1 ≤ ` ≤ 2µ
′−3, the number of integers n < 2ν for which at

least one of the following conditions

fµ,λ((n+ `)2) 6= fρ′,λ−µ+ρ′(u1 + `u3)

fµ,λ((n+ `+ s2µ)2) 6= fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)(4)

fµ,λ((n+ r + `)2) 6= fρ′,λ−µ+ρ′(u2 + `u3)

fµ,λ((n+ r + `+ s2µ)2) 6= fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)

is satisfied is � 2ν−ρ
′
.

Proof. We first consider the case (n+ `)2. The other cases are similar and we will comment on them
at the end of the proof. We have

(n+ `)2 ≡ (u1 + `u3)2
µ′ + w1 + `w3 + `2 mod 2λ.

This means that if w1+`w3+`2 < 2µ
′
then for 0 ≤ j < λ− µ′ we have εµ′+j((n+`)2) = εj(u1+`u3).

However, if w1 + `w3 + `2 ≥ 2µ
′

then there is a carry propagation. However, we will show that there
are only few exceptions where more than ρ′ digits are changed. More precisely the proof is split
into the following two steps:

(1) If the digits block (εj((n + `)2))µ≤j<λ differ from the digits block (εj(u1 + `u3))ρ′≤j<λ−µ+ρ′ ,
where u1 = u1(n) and u3 = u3(n) are defined in (2), then we have

(5)
(n+ `)2

2µ
−
⌊

(n+ `)2

2µ

⌋
≤ α or

(n+ `)2

2µ
−
⌊

(n+ `)2

2µ

⌋
≥ 1− α,

where 0 < α < 1 will be independent of `.
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(2) The number of integers n < 2ν with (5) is � 2ν−ρ
′
.

Of course if these two properties are true then Lemma 2 is proven.
We start with the proof of the first property. As mentioned above we just have to consider the

case where w1 + `w3 + `2 ≥ 2µ
′
= 2µ−ρ

′
. Since w1, w3 < 2µ

′
the carry

w̃ :=
⌊
2−µ

′ (
w1 + `w3 + `2

)⌋
≤ D :=

⌊
2−µ

′
(

2µ
′
+ 22µ′−3 + 22µ′−6

)⌋
can only attain values in {0, 1, 2, . . . , D}. These values of w̃ will certainly affect some of (lower
order) digits of u1 + `u3. Let ṽ := u1 + `u3 mod 2ρ

′
with 0 ≤ ṽ < 2ρ

′
. Then the digits εj(u1 + `u3),

ρ′ ≤ j < λ− µ′, might be affected by this carry if ṽ ∈ {2ρ′ − 1, 2ρ
′ − 2, . . . , 2ρ

′ −D}. Now since

(n+ `)2

2µ
≡ u1 + `u3

2ρ′
+
w1 + `w3 + `2

2µ′+ρ′
mod 1

≡ ṽ

2ρ′
+
w1 + `w3 + `2

2µ′+ρ′
mod 1,

it immediately follows that (5) holds with 0 < α = (D + 1) 2−µ < 1. This completes the proof of
the first part.

Let χα denote the characteristic function of the interval [0, α) modulo 1:

(6) χα(x) = bxc − bx− αc .
Next let Z denote the number integers of n < 2ν with (5). We may write

Z =
∑
n<2ν

(
χα
(
2−µ(n+ `)2

)
+ χα

(
−2−µ(n+ `)2

))
.

Then by Lemma 9 we have

Z ≤ 2
∑
|h|≤H

(
α +

1

H

) ∣∣∣∣∣∑
n<2ν

e

(
h

(n+ `)2

2µ

)∣∣∣∣∣
and we can set H = 2ρ

′
. It is clear that the main contribution comes from the term with h = 0

which gives an upper bound of the form O(2ν−ρ
′
). Now every h 6= 0 with |h| ≤ H = 2ρ

′
can be

written as h = h′2t, where 0 ≤ t ≤ ρ′ and h′ is odd with |h′| ≤ 2ρ
′−t. Then we have by Lemma 16∑

n<2ν

e

(
h

(n+ `)2

2µ

)
= O

(
2ν+(t−µ)/2 + µ2(µ+t)/2

)
and consequently

2−ρ
′ ∑
06=|h|≤2ρ′

∣∣∣∣∣∑
n<2ν

e

(
h

(n+ `)2

2µ

)∣∣∣∣∣� 2−ρ
′ ∑
0≤t≤ρ′

2ρ
′−t (2ν+(t−µ)/2 + µ2(µ+t)/2

)
� 2ν−µ/2 + µ2µ/2.

Since µ� 2µ/2 and 2ρ′ ≤ µ ≤ ν − ρ′ all contributions are � 2ν−ρ
′
. This completes the proof of the

second part.
Finally we comment on the other cases. First, there is no change for (n+ `+ s2µ)2 since λ ≤ 2µ

implies that the term s2µ does not affect the discussed carry propagation. Next we have

(n+ `+ r)2 = (u2 + `u3)2
µ′ + w2 + `w3 + `2 + 2r`.

Observing that 1 ≤ r ≤ 2µ
′

we have

2−µ
′
(w2 + `w3 + `2 + 2r`) ≤ 2−µ

′
(

2µ
′
+ 22µ′−3 + 22µ′−6 + 22µ′−2

)
which ensures that 0 < α < 1. The same argument applies for the final case (n+ `+ s2µ + r)2. �
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4. Fourier estimates

For any k ∈ N, we denote by Ik the set of integer vectors I = (i0, . . . , ik−1) with i0 = 0 and
i`−1 ≤ i` ≤ i`−1 + 1 for 1 ≤ ` ≤ k − 1 (note that Ik consists of 2k−1 elements) and for any I ∈ Ik,
h ∈ Z and (d, λ) ∈ N2,

(7) GI
λ(h, d) =

1

2λ

∑
0≤u<2λ

e

(
k−1∑
`=0

α`fλ(u+ `d+ i`)− hu2−λ

)
,

where α` ∈ {0, 1} (we assume that α0 = 1). This sum can be also seen as the discrete Fourier
transform of the function

n 7→ e

(
k−1∑
`=0

α`fλ(n+ `d+ i`)

)
.

For any I ∈ Ik we define

|I| = α0i0 + · · ·+ αk−1ik−1, K = α0 + · · ·+ αk−1 and σ =
k−1∑
`=0

α``.

We start with a recurrence for the discrete Fourier transform terms GI
λ(h, d) defined by (7).

For this purpose we define for any (ε, ε′) ∈ {0, 1}2 the transformations on Ik defined for any
I = (i0, i1, . . . , ik−1) ∈ Ik by

Tεε′(I) =

(⌊
i` + `ε+ ε′

2

⌋)
`∈{0,...,k−1}

.

Lemma 3. For any I ∈ Ik, h ∈ Z, (d, λ) ∈ N2 and ε ∈ {0, 1} we have

(8) GI
λ(h, 2d+ ε) =

(−1)|I|+σε

2
G
Tε0(I)
λ−1 (h, d) +

(−1)|I|+K+σε e(−h/2λ)
2

G
Tε1(I)
λ−1 (h, d).

Proof. We split up the sum 0 ≤ u < 2λ into even and odd numbers and obtain for any ε ∈ {0, 1}

GI
λ(h, 2d+ ε) =

1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α`fλ(2u+ 2`d+ `ε+ i`)− 2hu2−λ

)

+
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α`fλ(2u+ 2`d+ `ε+ i` + 1)− h(2u+ 1)2−λ

)

=
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α` (fλ−1(u+ `d+ b(`ε+ i`)/2c) + f(ε0(`ε+ i`)))− hu2−(λ−1)

)

+
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α` (fλ−1(u+ `d+ b(`ε+ i` + 1)/2c) + f(ε0(`ε+ i` + 1)))

− hu2−(λ−1) − h2−λ

)

=
(−1)|I|+σε

2
G
Tε0(I)
λ−1 (h, d) +

(−1)|I|+K+σε e(−h/2λ)
2

G
Tε1(I)
λ−1 (h, d),

since for any non negative integer i we have e(f(ε0(i))) = e(1
2
(ε0(i))) = (−1)ε0(i) = (−1)i. �
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As I ∈ Ik implies that (T00(I), T01(I), T10(I), T11(I)) ∈ I4k , it follows that the vector Gλ(h, d) =
(GI

λ(h, d))I∈Ik can be determined recursively.
The next two propositions are crucial for the proof of main result. Since the proofs are quite

involved we postpone them to Sections 7 and 8.

Proposition 1. If K is even, then there exists η > 0 such that for any I ∈ Ik we have

1

2λ′
∑

0≤d<2λ′

|GI
λ(h, d)|2 � 2−ηλ

uniformly for all integers h, where 1
2
λ ≤ λ′ ≤ λ.

Proposition 2. If K is odd, then there exists η > 0 such that for any I ∈ Ik we have∣∣GI
λ(h, d)

∣∣� 2−ηL max
J∈Ik

∣∣GJ
λ−L(h, bd/2Lc)

∣∣
uniformly for all non-negative integers h, d and L.

5. The case K even

In this section we show that when K = α0 + · · ·+ αk−1 is even, Proposition 1 provides an upper
bound for the sum

S0 =
∑
n<N

e

(
k−1∑
`=0

α`f((n+ `)2)

)
.

Let ν be the unique integer such that

2ν−1 < N ≤ 2ν

and let (λ, µ) ∈ N2 such that

(9) µ < ν < λ and λ− ν = ν − µ = 1
2
(λ− µ)

(the precise values will be specified later).
By using Lemma 1 it follows that the number of integers n < N such that the j-th digits of n2,

(n+ 1)2, . . ., (n+ k − 1)2 coincide for j ≥ λ is equal to N −O(N2−(λ−ν)). Furthermore since K is
even it follows that we obtain for those n

k−1∑
`=0

α`fλ,∞((n+ `)2) = fλ,∞(n2)K ∈ Z,

where fλ,∞ = f − fλ (notice that 2fλ,∞ is integer valued). Consequently, if we set

S1 =
∑
n<N

e

(
k−1∑
`=0

α`fλ((n+ `)2)

)
,

then

(10) S0 = S1 +O
(
2ν−(λ−ν)

)
.

Next we apply Lemma 12 with Q = 2µ and S = 2ν−µ and obtain

(11) |S1|2 �
N2

S
+
N

S
<(S2),

with

S2 =
∑

1≤s<S

(
1− s

S

)
S ′2(s)
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and

S ′2(s) =
∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fµ,λ((n+ `)2)− fµ,λ((n+ `+ s2µ)2))

)
,

where I(N, s) is an interval included in [0, N − 1] (that we do not specify).
The right hand side of S ′2(s) depends only on the digits of (n+ `)2 and (n+ `+ s2µ)2 between µ

and λ. However, we have to take into account also the digits between µ′ = µ− ρ′ and µ, where

(12) 3 ≤ ρ′ ≤ µ/2

will be chosen in a proper way (much smaller than µ/2). We define the integers u1 = u1(n),
u3 = u3(n), v = v(n), w1 = w1(n), and w3 = w3(n) by the following conditions

n2 ≡ u12
µ′ + w1 mod 2λ (0 ≤ w1 < 2µ

′
, 0 ≤ u1 < U1)

2n = u32
µ′ + w3 (0 ≤ w3 < 2µ

′
, 0 ≤ u3 < U3)

2sn ≡ v mod 2λ−µ (0 ≤ v < V ),

where U1, U3 and V are defined by (3). Then, assuming that

(13) µ ≤ ν − ρ′ and 2µ′ ≥ λ,

we observe that (9), (12) and (13) imply the assumptions of Lemma 2 and applying this lemma it
follows that

fµ,λ((n+ `)2) = fρ′,λ−µ+ρ′(u1 + `u3),

fµ,λ((n+ `+ s2µ)2) = fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

for any integer n < N except for at most O(2ν−ρ
′
) exceptions. Hence it suffices to consider the sum

S ′3(s) =
∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

)
,

since we certainly have

(14) S ′2(s) = S ′3(s) +O(2ν−ρ
′
).

Next we rewrite S ′3(s) as

S ′3(s) =
∑

0≤u1<U1

∑
0≤u3<U3∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v(n)2ρ
′
+ `s2ρ

′+1)

)

χU−1
1

(
n2

2λ
− u1
U1

)
χU−1

3

(
2n

2ν+1
− u3
U3

)
,

where the characteristic functions χα are defined by (6). Lemma 11 allows us to replace the product
of characteristic functions χα by a product of trigonometric polynomials. More precisely, using (51)
with H1 = U12

ρ′′ and H3 = U32
ρ′′ for some suitable ρ′′ > 0 (that will be chosen later), we have

(15) S ′3(s) = S4(s) +O(E1) +O(E3) +O(E1,3),
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with, by using the representation of AU−1
1 ,H1

and AU−1
3 ,H3

we obtain

S4(s) =2µ−λ
∑
|h1|≤H1

∑
|h3|≤H3

∑
0≤h<2λ−µ

ah1(U
−1
1 , H1) ah3(U

−1
3 , H3)

∑
0≤u1<U1

∑
0≤u3<U3

∑
0≤v<V

e

(
−h1u1

U1

− h3u3
U3

− hv

V

)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

)

×
∑
n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)
,

where by (49),

|ah1(U−11 , H1)| ≤ U−11 and |ah3(U−13 , H3)| ≤ U−13 .

where we have filtered the correct value of v = v(n). The error terms E1, E3, E1,3 can be easily
estimated, provided that

(16) ρ′′ < µ′/2 and µ′ � 2ν−µ
′
,

with the help of Lemma 16:

E1 =
1

2ρ′′
∑
|h1|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h1n

2

2µ′

)∣∣∣∣∣� 2ν−ρ
′′

+ (2ν−µ
′
+ µ′)2µ

′/2 1

2ρ′′
∑

1≤h1≤2ρ′′

√
gcd(h1, 2µ

′),

and

(17)
∑

1≤h1≤2ρ′′

√
gcd(h1, 2µ

′) ≤
∑
δ≤ρ′′

2δ/2
∑

1≤h1≤2ρ
′′

2δ |h1

1 ≤
∑
δ≤ρ′′

2δ/22ρ
′′−δ � 2ρ

′′

so that E1 � 2ν−ρ
′′
, and similarly using the estimate (53) and Lemma 16:

E3 =
1

2ρ′′
∑
|h3|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h32n

2µ′

)∣∣∣∣∣� 2ν−ρ
′′

+ ρ′′2µ
′−ρ′′ � 2ν−ρ

′′
,

E1,3 =
1

22ρ′′

∑
|h1|≤2ρ′′

∑
|h3|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h1n

2

2µ′
+
h32n

2µ′

)∣∣∣∣∣� 2ν−ρ
′′
.

Thus the error terms E1, E3, and E1,3 are negligible (if ρ′′ →∞) and so we just have to concentrate
on S4(s).

The first step in the analysis of the main term of S4(s) is to observe that we only have to take into
account the term that corresponds to h1 = 0. Namely if h1 6= 0 we can estimate the exponential
sum in a simple way. By Lemma 16 we have∑

n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)
�
(
N2−λ + 1 + λ

)√
2λ gcd(h1, 2λ)� λ2λ/2

√
gcd(h1, 2λ),

and similarly to (17) ∑
1≤h1≤H1

√
gcd(h1, 2λ)� H1
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so that ∑
0<|h1|≤H1

∑
|h3|≤H3

∑
0≤h<2λ−µ

∣∣∣∣∣∑
n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)∣∣∣∣∣� λH1H32
λ/2+λ−µ.

We assume that

(18) (ν − µ) + 2(λ− µ) + 2(ρ′ + ρ′′) ≤ λ/4

(which will be justified later) so that

(19) S4(s) = S5(s) +O(λ23λ/4),

where S5(s) denotes the part of S4(s) with h1 = 0. By applying the triangle inequality and by
considering the remaining exponential sum we obtain

|S5(s)| ≤
1

U1U3V

∑
|h3|≤H3

∑
0≤h<2λ−µ

∑
0≤u3<U3∣∣∣∣∣ ∑

0≤u1<U1

∑
0≤v<V

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1))− hv

V

)∣∣∣∣∣
×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

By setting u1 = u′′1 + 2ρ
′
u′1 and u3 = u′′3 + 2ρ

′
u′3 (where 0 ≤ u′′1, u

′′
3 < 2ρ

′
) we get

fρ′,λ−µ+ρ′(u1 + `u3) = fλ−µ(u′1 + `u′3 + i`),

fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1) = fλ−µ(u′1 + v + `(u′3 + 2s) + i`)

with i` = b(u′′1 + `u′′3)/2ρ
′c. As I = (i`)0≤`<k = (b(u′′1 + `u′′3)/2ρ

′c)0≤`<k is contained in Ik, by (3) we
have U1U3V = 22(λ−µ)+(ν+1−µ)+2ρ′ and there are 22ρ′ pairs (u′′1, u

′′
3) so that we get

S5(s) ≤
1

22(λ−µ)+(ν+1−µ)

∑
|h3|≤H3

∑
0≤h<2λ−µ

∑
0≤u′3<2ν−µ+1

max
I∈Ik

∣∣∣∣∣∣
∑

0≤u′1<2λ−µ

∑
0≤v<2λ−µ

e

(
k−1∑
`=0

α`(fλ−µ(u′1 + `u′3 + i`)− fλ−µ(u′1 + v + `(u′3 + 2s) + i`)−
hv

2λ−µ

)∣∣∣∣∣∣
×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

By substituting u′1 + v by another variable ũ′1, by using the definition of GI
λ−µ(h, d) given in (7) and

by replacing the maximum by a sum we obtain

S5(s) ≤
∑
|h3|≤H3

∑
0≤h<2λ−µ

1

2ν+1−µ

∑
0≤u′3<2ν−µ+1

∑
I∈Ik

∣∣∣GI
λ−µ(−h, u′3)GI

λ−µ(−h, u′3 + 2s)
∣∣∣

×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

By using the estimate |GI
λ−µ(−h, u′3 + 2s)| ≤ 1 and the Cauchy-Schwarz inequality we have

∑
0≤u′3<2ν−µ+1

∣∣∣GI
λ−µ(−h, u′3)GI

λ−µ(−h, u′3 + 2s)
∣∣∣ ≤ 2(ν−µ+1)/2

 ∑
0≤u′3<2ν−µ+1

∣∣GI
λ−µ(−h, u′3)

∣∣21/2

.
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Hence by applying Proposition 1 (replacing λ by λ− µ, λ′ by ν − µ+ 1 and using (9)) we get

S5(s)� 2−η(λ−µ)/2
∑
|h3|≤H3

∑
0≤h<2λ−µ

min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

It is now convenient to take also into account the dependency on s and to average according to it.
Provided that

(20) ν − µ′ + ρ′′ + λ− µ ≤ ν − 2,

we have |h3|2λ−µ/2ν ≤ 1/2 and we obtain from (56)

1

S

∑
1≤s≤S

∑
0≤h<2λ−µ

min

(
2ν ,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)

� (λ− µ) min
(

2ν ,
∣∣sin (πh32−ν)∣∣−1)+ (λ− µ)2λ−µ.

Finally we have ∑
|h3|≤H3

min
(

2ν ,
∣∣sin (πh32−ν)∣∣−1)� ν 2ν

and thus we obtain the estimate
1

S

∑
1≤s≤S

|S5(s)| ≤ 2−η(λ−µ)/2
(
ν22ν +H3(λ− µ)2λ−µ

)
� 2−η(λ−µ)/2ν22ν .

Putting all these estimates together, from (10), (11), (14), (15), (19) we finally get the upper
bound

|S0| � 2ν−(λ−ν) + 2ν−(ν−µ)/2 + ν2ν2−η(λ−ν)/2 + 2ν−ρ
′/2 + 2ν−ρ

′′/2 + λ1/22ν/2+3λ/8

provided that the conditions (9), (13), (16), (18), (20) hold:

2ρ′ ≤ µ ≤ ν − ρ′, ρ′′ < µ′/2, µ′ � 2ν−µ
′
, 2µ′ ≥ λ,

(ν − µ) + 2(λ− µ) + 2(ρ′ + ρ′′) ≤ λ/4, ν − µ′ + ρ′′ + λ− µ ≤ ν − 2.

For example the choice

λ = ν +
ν

20
and ρ′ = ρ′′ =

ν

200
ensures that the above conditions are satisfied for ν large enough.

Summing up we have proved that there exists η′ > 0 with

S0 � 2ν(1−η
′) � N1−η′

which is precisely the statement of Theorem 2.

6. The case K odd

In this section we show that when K = α0 + · · · + αk−1 is odd, Proposition 2 provides an upper
bound for the sum

S0 =
∑
n<N

e

(
k−1∑
`=0

α`f((n+ `)2)

)
.

Let µ, λ, ρ and ρ1 be integers satisfying

(21) 3 ≤ ρ1 < ρ, 10ρ < ν < 22ρ, µ = ν − 2ρ, and λ = ν + 2ρ.
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to be chosen later (in (36) and (39)). We apply Lemma 12 with Q = 1 and R = 2ρ, we sum trivially
for 1 ≤ r ≤ R1 = 2ρ1 and obtain

|S0|2 �
N2R1

R
+
N

R

∑
R1<r<R

(
1− r

R

)
<(S1(r)),

where

S1(r) =
∑

n∈I1(r)

e

(
k−1∑
`=0

α`
(
f((n+ `)2)− f((n+ r + `)2)

))
and I1(r) is an interval included in [0, N − 1]. By Lemma 1 we have

S1(r) = S ′1(r) +O(2ν−(λ−ν−ρ)),

where

S ′1(r) =
∑

n∈I1(r)

e

(
k−1∑
`=0

α`
(
fλ((n+ `)2)− fλ((n+ r + `)2)

))
,

which leads to

|S0|2 � 22ν−ρ+ρ1 + 23ν+ρ−λ +
2ν

R

∑
R1<r<R

|S ′1(r)|

and by the Cauchy-Schwarz inequality to

|S0|4 � 24ν−2ρ+2ρ1 + 26ν+2ρ−2λ +
22ν

R

∑
R1<r<R

|S ′1(r)|
2
.

Let ρ′ ∈ N to be chosen later (in (36)) such that

(22) 3 ≤ ρ′ ≤ ρ.

Applying Lemma 12 with Q = 2µ and

(23) S = 22ρ′ ≤ 2ν−µ,

observing that for any m ∈ N we have

fλ((m+ s2µ)2)− fλ(m2) = fµ,λ((m+ s2µ)2)− fµ,λ(m2),

we get

(24) |S0|4 � 24ν−2ρ+2ρ1 + 26ν+2ρ−2λ +
24ν

S
+

23ν

RS

∑
R1<r<R

∑
1≤s<S

|S2(r, s)| ,

with

S2(r, s) =
∑

n∈I2(r,s)

e

(
k−1∑
`=0

α`
(
fµ,λ((n+ `)2)− fµ,λ((n+ r + `)2)

−fµ,λ((n+ s2µ + `)2) + fµ,λ((n+ s2µ + r + `)2)
))
,

where I2(r, s) is an interval included in [0, N − 1].
We can now make a Fourier analysis as in the case where K is even. Let µ′ = µ−ρ′ > 0. By (21)

and (22) the conditions of Lemma 2 are fullfilled. We define the integers u1 = u1(n), u2 = u2(n),
u3 = u3(n), v = v(n), w1 = w1(n), w2 = w2(n), and w3 = w3(n) by condition (2).
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According to Lemma 2, uniformly for integers r, s, ` ≥ 1 such that r ≤ 2µ
′
, ` ≤ 2µ

′−3, the number
of integers n < 2ν for which at least one of the conditions (4) is satisfied is � 2ν−ρ

′
. Filtering by

the values of u1, u2, u3, it follows that

S2(r, s) =
∑

0≤u1<U1

∑
0≤u2<U2

∑
0≤u3<U3∑

n∈I2(r,s)

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v(n)2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v(n)2ρ
′
+ (`+ r)s2ρ

′+1)
))

χU−1
1

(
n2

2λ
− u1
U1

)
χU−1

2

(
(n+ r)2

2λ
− u2
U2

)
χU−1

3

(
2n

2ν
− u3
U3

)
+O(2ν−ρ

′
),

where U1, U2, U3 and V are defined by (3) and the characteristic functions χα are defined by (6).
Lemma 11 allows us again to replace the product of characteristic functions χα by a product of
trigonometric polynomials. More precisely, using (51) with U1 = U2 = U and

(25) H1 = H2 = U 2ρ2 , H3 = U3 2ρ3 ,

where the integers ρ2 and ρ3 verify

(26) 0 < ρ2 ≤ ρ′ and 0 < ρ3 ≤ ρ′,

we obtain

S2(r, s) = S3(r, s) + O(2ν−ρ
′
) +O (E3(r)) +O (E1) +O (E2(r))(27)

+ O (E2,3(0)) +O (E2,3(r)) +O (E1,2(r)) +O (E1,2,3(r)) ,

with

S3(r, s) =
∑

0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
0≤v<V

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)
))

∑
n∈I2(r,s)

AU−1,H1

(
n2

2λ
− u1
U

)
AU−1,H2

(
(n+ r)2

2λ
− u2
U

)
AU−1

3 ,H3

(
2n

2ν
− u3
U3

)
1

2λ−µ

∑
0≤h<2λ−µ

e

(
h

2sn− v
2λ−µ

)
.
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The sums E1, E2(r), E3(r), E1,2(r), E1,3, E2,3(r), E1,2,3(r) can be estimated by elementary expo-
nential sums arguments:

E3(r) =
U3

H3

2ν +
U3

H3

∑
1≤h3≤H3/U3

∣∣∣∣∣∑
n

e

(
2h3U3n

2ν

)∣∣∣∣∣
gives by (55), (3), (25), (26) and (21), observing that since ρ3 ≤ ρ < µ − 7ρ < µ − ρ′ − 2 we sum
over less than a period and µ < ν ≤ 22ρ:

E3(r)� 2ν−ρ3 + 2−ρ3
∑

1≤h3≤2ρ3

∣∣∣∣sin πh3
2µ−ρ′−2

∣∣∣∣−1 � 2ν−ρ3 + µ 2µ−ρ
′−ρ3 � 2ν−ρ3 ;

E2(r) =
U

H2

∑
|h2|≤H2/U

∣∣∣∣∣∑
n

e

(
h2(n+ r)2

2λ/U

)∣∣∣∣∣
gives by (59) (for which we have at most 2ν−µ+ρ

′
complete sums), (21), (25) and (26)

E2(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h2≤2ρ2

(
2ν−µ+ρ

′
+ µ− ρ′

)
2
µ−ρ′

2

√
gcd(h2, 2µ−ρ

′),

hence, since µ < ν ≤ 22ρ ≤ 2ν−µ+ρ
′

(by (21)), observing that ρ2 ≤ ρ ≤ µ
8
≤ 1

2
(µ − ρ) ≤ 1

2
(µ − ρ′)

(by (21) and (26)), we get similarly to (17),

E2(r)� 2ν−ρ2 + 2ν−
µ−ρ′

2 � 2ν−ρ2 ;

Similarly we have

E1 =
U

H1

∑
|h1|≤H1/U

∣∣∣∣∣∑
n

e

(
h1n

2

2λ/U

)∣∣∣∣∣� 2ν−ρ2 ;

E2,3(r) =
U

H2

U3

H3

∑
|h2|≤H2/U

∑
|h3|≤H3/U3

∣∣∣∣∣∑
n

e

(
h2(n+ r)2

2λ/U
+

2h3n

2ν/U3

)∣∣∣∣∣
similarly gives by (59), (17), (21), (25) and (26), with a trivial summation over h3,

E2,3(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h2≤2ρ2
2ν−µ+ρ

′
2
µ−ρ′

2

√
gcd(h2, 2µ−ρ

′)� 2ν−ρ2 ;

Similarly we have

E1,3 =
U

H1

U3

H3

∑
|h1|≤H1/U

∑
|h3|≤H3/U3

∣∣∣∣∣∑
n

e

(
h1n

2

2λ/U
+

2h3n

2ν/U3

)∣∣∣∣∣� 2ν−ρ2 ;

E1,2(r) =
U2

H2
2

∑
|h1|≤H1/U

∑
|h2|≤H2/U

∣∣∣∣∣∑
n

e

(
h1n

2 + h2(n+ r)2

2λ/U

)∣∣∣∣∣
similarly gives by (59), (17), (21), (25) and (26), writing h = h1 + h2,

E1,2(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h≤2ρ2+1

2ν−µ+ρ
′
2
µ−ρ′

2

√
gcd(h, 2µ−ρ′)� 2ν−ρ2

and

E1,2,3(r) =
U2

H2
2

U3

H3

∑
|h1|≤H1/U

∑
|h2|≤H2/U

∑
|h3|≤H3/U3

∣∣∣∣∣∑
n

e

(
h1n

2 + h2(n+ r)2

2λ/U
+

2h3n

2ν/U3

)∣∣∣∣∣
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similarly gives by (59), (17), (21), (25) and (26), writing h = h1 +h2, with a trivial summation over
h3,

E1,2,3(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h≤2ρ2+1

2ν−µ+ρ
′
2
µ−ρ′

2

√
gcd(h, 2µ−ρ′)� 2ν−ρ2 .

We deduce from (27) that

(28) S2(r, s) = S3(r, s) +O(2ν−ρ
′
) +O(2ν−ρ2) +O(2ν−ρ3)

and we can write

S3(r, s) = 2µ−λ
∑

0≤h<2λ−µ

∑
|h1|≤H1

ah1(U
−1, H1)

∑
|h2|≤H2

ah2(U
−1, H2)

∑
|h3|≤H3

ah3(U
−1
3 , H3)

∑
0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
0≤v<V

e

(
−h1u1 + h2u2

U
− h3u3

U3

− hv

V

)

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)
))

∑
n∈I2(r,s)

e

(
h1n

2 + h2(n+ r)2

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)
.

Let us introduce the decomposition

(29) S3(r, s) = S4(r, s) + S ′4(r, s),

where S4(r, s) denotes the contribution of the terms for which h1 + h2 = 0 while S ′4(r, s) denotes
the contribution of the terms for which h1 + h2 6= 0. We have by (59)

S ′4(r, s) �
∑
|h1|≤H1

ah1(U
−1, H1)

∑
|h2|≤H2

ah2(U
−1, H2)

∑
|h3|≤H3

ah3(U
−1
3 , H3)

U2U3V λ2λ/2
√

gcd(h1 + h2, 2λ)

� ν3U2U3V λ2λ/2
√

2H2 � ν4 2ν+
1
2
(8λ−9µ+7ρ′+ρ2),

and it remains to consider S4(r, s). Setting u1 = u′′1 + 2ρ
′
u′1, u2 = u′′2 + 2ρ

′
u′2 and u3 = u′′3 + 2ρ

′
u′3

(where 0 ≤ u′′1, u
′′
2, u

′′
3 < 2ρ

′
) we get

fρ′,λ−µ+ρ′(u1 + `u3) = fλ−µ

(
u′1 + `u′3 +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

,

fρ′,λ−µ+ρ′(u2 + `u3) = fλ−µ

(
u′2 + `u′3 +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

,

fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1) = fλ−µ

(
u′1 + v + `(u′3 + 2s) +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1) = fλ−µ

(
u′2 + v + 2sr + `(u′3 + 2s) +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

.

Using the periodicity modulo 2λ−µ(= V ) we replace the variable v by v1 such that v1 ≡ u′1 +
v mod 2λ−µ and we introduce a new variable v2 such that

v2 ≡ u′2 + v + 2sr mod 2λ−µ ≡ v1 + u′2 − u′1 + 2sr mod 2λ−µ.
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If we observe that U/2ρ
′
= V and write U ′3 = U3/2

ρ′ , we obtain

S4(r, s) = 22µ−2λ
∑

0≤h<2λ−µ

∑
0≤h′<2λ−µ

∑
|h2|≤H2

a−h2(U
−1, H2)ah2(U

−1, H2)
∑
|h3|≤H3

ah3(U
−1
3 , H3)

∑
0≤u′′1<2ρ′

∑
0≤u′′2<2ρ′

∑
0≤u′′3<2ρ′

e

(
−−h2u

′′
1 + h2u

′′
2

U
− h3u

′′
3

U3

)
∑

0≤u′3<U ′3

e

(
−h3u

′
3

U ′3
+

2h′sr

2λ−µ

)
∑

0≤u′1<V

e

(
k−1∑
`=0

α`fλ−µ

(
u′1 + `u′3 +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)
− (−h2 − h+ h′)u′1

V

)
∑

0≤u′2<V

e

(
−

k−1∑
`=0

α`fλ−µ

(
u′2 + `u′3 +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

+
(h′ − h2)u′2

V

)
∑

0≤v1<V

e

(
−

k−1∑
`=0

α`fλ−µ

(
v1 + `(u′3 + 2s) +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

+
(h′ − h)v1

V

)
∑

0≤v2<V

e

(
k−1∑
`=0

α`fλ−µ

(
v2 + `(u′3 + 2s) +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)
− h′v2

V

)
∑

n∈I2(r,s)

e

(
2h2rn+ h2r

2

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)
.

Using (7) this gives

S4(r, s) � 22λ−2µ
∑

0≤h<2λ−µ

∑
0≤h′<2λ−µ

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , |h3|−1)∑
0≤u′′1<2ρ′

∑
0≤u′′2<2ρ′

∑
0≤u′′3<2ρ′

∑
0≤u′3<U ′3∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣∣∣∣∣∣∣

∑
n∈I2(r,s)

e

(
2h2rn

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)∣∣∣∣∣∣ ,
where, for any (u, ũ) ∈ N2

I(u, ũ) =

(⌊ u
2ρ′

⌋
,

⌊
u+ ũ

2ρ′

⌋
, . . . ,

⌊
u+ (k − 1)ũ

2ρ′

⌋)
.

This leads to

S4(r, s) � 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , |h3|−1)

∑
0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sin πh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣S5(h, h2, s, u

′′
1, u

′′
2, u

′′
3),
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where

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3) =

∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′1 ,u
′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣

can be bounded above by using the Cauchy-Schwarz inequality:

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3)

≤

 ∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′1 ,u
′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣2 ∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣2
1/2

 ∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′2 ,u
′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣2 ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣2
1/2

.

By periodicity modulo 2λ−µ and taking h′′ = h′− h the first parenthesis is independent of h and we
get

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3) ≤ S6(h2, s, u

′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2,

where

(30) S6(h2, s, u
′′, u′′3) =

∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣2 ∣∣∣GI(u′′,u′′3 )
λ−µ (h′, u′3 + 2s)

∣∣∣2 .
We obtain

S4(r, s) � 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , |h3|−1)

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2∑

0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sin πh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣ .

Observing that using (26), (22) and (21) we have∣∣h2r + 2λ−νh3
∣∣ /2µ ≤ (H2R + 2λ−νH3)/2

µ ≤ 2λ−2µ+ρ
′+ρ2+ρ + 2λ−2µ+ρ

′+ρ3+1 ≤ 1/2,

we have by (54)

∑
0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sin πh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣

� gcd(s, 2λ−µ−1) min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1)+ (λ− µ)2λ−µ
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and by (21) we have λ− µ = 4ρ < ν, thus 2λ−µ � min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1) , it follows

S4(r, s) � (λ− µ) gcd(s, 2λ−µ−1) 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2∑

|h3|≤H3

min(U−13 , |h3|−1) min

(
2ν ,
∣∣∣sinπ h2r+2λ−νh3

2λ−1

∣∣∣−1) .
We recall here that in (24) we have R1 < r < R and introduce the integers H ′2 and κ such that

(31) H ′2 = 2λ−ν+1H3/R1 = 2λ−µ+ρ
′+ρ3−ρ1+2 = 2κ.

By (3), assuming that

(32) ρ′ + ρ3 + 2 < ρ1,

we will have H ′2 < 2λ−µ and the condition |h2| > H ′2 ensures that 2λ−ν |h3| ≤ 1
2
|h2r|. This leads to

S4(r, s)� S41(r, s) + S42(r, s) + S43(r, s),

where S41(r, s), S42(r, s) and S43(r, s) denote respectively the contribution above of the terms |h2| ≤
H ′2, H

′
2 < |h2| ≤ 2λ−µ, 2λ−µ < |h2| ≤ H2.

6.1. Estimate of S41(r, s). By (25), (26), (3) and by (21) we have H3 = 2ν−µ+ρ
′+ρ3+1 ≤ 24ρ+1 ≤ 2ν

and by (54) we get ∑
|h3|≤H3

min

(
2ν ,
∣∣∣sin π h3+h2r2ν−λ2ν−1

∣∣∣−1)� ν2ν ,

so that

S41(r, s) � ν (λ− µ) gcd(s, 2λ−µ−1) 2ν+2λ−2µU−2U−13∑
0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2.

By Proposition 2 (replacing λ by λ− µ and L by λ− µ− κ), we have for some 0 < η ≤ 1∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣� 2−η(λ−µ−κ) max
J∈Ik

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣ .
By Parseval’s equality and recalling that card Ik = 2k−1 it follows that∑

|h2|≤H′2

max
J∈Ik

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣2
≤
∑
J∈Ik

∑
|h2|≤H′2

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣2 ≤ 2k+1.

We obtain uniformly in λ, µ, H ′2, u
′
3, u

′′ and u′′3:∑
|h2|≤H′2

∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣2 � 2−η(λ−µ−κ) =

(
H ′2

2λ−µ

)η
.

Hence it follows from (30) and Parseval’s equality that∑
|h2|≤H′2

S6(h2, s, u
′′, u′′3)� U ′3

(
H ′2

2λ−µ

)η
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and by the Cauchy-Schwarz inequality we obtain∑
|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

≤
( ∑
|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)

)1/2( ∑
|h2|≤H′2

S6(h2, s, u
′′
2, u

′′
3)

)1/2

� U ′3

(
H ′2

2λ−µ

)η
.

This gives

S41(r, s)� ν (λ− µ) gcd(s, 2λ−µ−1) 2ν+2λ−2µ+3ρ′U−2U−13 U ′3

(
H ′2

2λ−µ

)η
,

so that by (31), (3) and (57)

(33)
1

RS

∑
R1<r<R

∑
1≤s<S

S41(r, s)� ν (λ− µ)2 2ν−η(ρ1−ρ
′−ρ3).

6.2. Estimate of S42(r, s). The condition |h2| > H ′2 ensures that 2λ−ν |h3| ≤ 1
2
|h2r| so that

min

(
2ν ,
∣∣∣sinπ h2r+2λ−νh3

2λ−1

∣∣∣−1)� 2λ

H ′2r
.

By the Cauchy-Schwarz inequality we have∑
H′2<|h2|≤2λ−µ

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

≤
( ∑
|h2|≤2λ−µ

S6(h2, s, u
′′
1, u

′′
3)

)1/2( ∑
|h2|≤2λ−µ

S6(h2, s, u
′′
2, u

′′
3)

)1/2

� U ′3.

It follows that

S42(r, s)� (λ− µ) gcd(s, 2λ−µ−1) 22λ−2µ+3ρ′U−2
2λ

H ′2r
U ′3

∑
|h3|≤H3

min(U−13 , |h3|−1)

and recalling that U ′3 = U3/2
ρ′ we get by (31) and (3),

S42(r, s)� (λ− µ)2
gcd(s, 2λ−µ−1)

r
2ν+ρ1−ρ3 ,

so that by (57)

(34)
1

RS

∑
R1<r<R

∑
1≤s<S

S42(r, s)� ρ (λ− µ)3 2ν−ρ+ρ1−ρ3 .

6.3. Estimate of S43(r, s). We will split the summation over h2 into J = H2/2
λ−µ− 1 parts of the

form j2λ−µ < |h2| ≤ (j + 1)2λ−µ with j = 1, . . . , J . The condition |h2| > j2λ−µ implies that

22λ−2µ min(U−2, h−22 ) < j−2

and ensures that 2λ−ν |h3| ≤ 1
2
|h2r| so that

min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1)� 2λ

j2λ−µr
=

2µ

jr
.



NORMALITY ALONG SQUARES 21

By the Cauchy-Schwarz inequality we have∑
j2λ−µ<|h2|≤(j+1)2λ−µ

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

�
( ∑
h2 mod 2λ−µ

S6(h2, s, u
′′
1, u

′′
3)

)1/2( ∑
h2 mod 2λ−µ

S6(h2, s, u
′′
2, u

′′
3)

)1/2

� U ′3.

It follows that

S43(r, s)� (λ− µ) gcd(s, 2λ−µ−1) 23ρ′U ′3
∑

1≤j≤J

2µ

j3r

∑
|h3|≤H3

min(U−13 , |h3|−1),

so that by (3) and (57)

(35)
1

RS

∑
R1<r<R

∑
1≤s<S

S43(r, s)� ρ (λ− µ)3 2ν−ρ+3ρ′ .

It follows from (33), (34) and (35) that

1

RS

∑
R1<r<R

∑
1≤s<S

|S4(r, s)| � ν42ν
(

2−η(ρ1−ρ
′−ρ3) + 2−ρ+ρ1−ρ3 + 2−ρ+3ρ′

)
.

Choosing

(36) ρ = 4ρ′, ρ1 = 3ρ′, ρ2 = ρ3 = ρ′,

using (22) we see that condition (32) is satisfied and we obtain (since 0 < η < 1)

(37)
1

RS

∑
R1<r<R

∑
1≤s<S

|S4(r, s)| � ν42ν
(

2−ηρ
′
+ 2−2ρ

′
+ 2−ρ

′
)
� ν42ν−ηρ

′
.

Using (29) and (28), we obtain

(38)
1

RS

∑
R1<r<R

∑
1≤s<S

|S2(r, s)| � ν42ν
(

2−ηρ
′
+ 2

1
2
(8λ−9µ+8ρ′)

)
that we can insert in (24), recalling by (23) that S = 22ρ′ and by (21) that µ = ν − 2ρ, λ = ν + 2ρ,
so that we get

|S0|4 � 24ν−2ρ′ + 24ν−2ρ + ν424ν
(

2−ηρ
′
+ 2−

ν
2
+17ρ+4ρ′

)
.

Choosing

(39) ρ′ = bν/146c

we have −ν
2

+ 17ρ+ 4ρ′ ≤ −73ρ′+ 68ρ′+ 4ρ′ = −ρ′ and to check that the condition (21) is satisfied
it is enough to observe that 10ρ = 40ρ′ < ν. We obtain

(40) |S0| � ν2ν−
ηρ′
4 � νN1−η′

which completes the proof that when K is odd Proposition 2 implies Theorem 2.
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7. Proof of Proposition 1

7.1. Proof of Proposition 1 in the case (α0, . . . , αk−1) = (1, . . . , 1). With the help of Lemma 3
it is easy to establish a set of recurrences for

ΦI,I′

λ,λ′(h) =
1

2λ′
∑

0≤d<2λ′

GI
λ(h, d)GI′

λ (h, d),

where h ∈ Z, (λ, λ′) ∈ N2 and (I, I ′) ∈ I2k : if λ, λ′ ≥ 1 we have

ΦI,I′

λ,λ′(h) =
(−1)|I|+|I

′|

8

×
(

Φ
T00(I),T00(I′)
λ−1,λ′−1 (h) + e(h/2λ)Φ

T00(I),T01(I′)
λ−1,λ′−1 (h) + e(−h/2λ)ΦT01(I),T00(I′)

λ−1,λ′−1 (h) + Φ
T01(I),T01(I′)
λ−1,λ′−1 (h)

+ Φ
T10(I),T10(I′)
λ−1,λ′−1 (h) + e(h/2λ)Φ

T10(I),T11(I′)
λ−1,λ′−1 (h) + e(−h/2λ)ΦT11(I),T10(I′)

λ−1,λ′−1 (h) + Φ
T11(I),T11(I′)
λ−1,λ′−1 (h)

)
.

This gives rise to a vector recurrence for ψλ,λ′(h) =
(

ΦI,I′

λ,λ′(h)
)
(I,I′)∈I2k

of the form

ψλ,λ′(h) = M(h/2λ) ·ψλ−1,λ′−1(h),

where the 22(k−1)×22(k−1)-matrix M(β) = (M(I,I′),(J,J ′)(β)))((I,I′),(J,J ′))∈I2k×I2k is independent of λ and

λ′ (we put β = h/2λ). By construction all absolute row sums of M(β) can be estimated to be ≤ 1.
More precisely in each row there are (in total) eight non-zero terms, where all of them are either
equal to ±1/8 or equal to ± e(±β)/8. Note that it might occur that, for example, (T00(I), T00(I

′)) =
(T00(I), T01(I

′)) for some (I, I ′) so that some entries of the matrix M(β) consists of a sum of several
term of the form ±1/8 or ± e(±β)/8. For example, if k = 4 and I = I ′ = (0, 0, 0, 0) then we have
(with J1 = (0, 0, 1, 1) and J2 = (0, 1, 1, 2))

Φ0,0
λ,λ′(h) =

1

8

((
2 + e(h/2λ) + e(−h/2λ)

)
Φ0,0
λ−1,λ′−1(h) + ΦJ1,J1

λ−1,λ′−1(h)+

+ e(h/2λ)ΦJ1,J2
λ−1,λ′−1(h) + e(−h/2λ)ΦJ2,J1

λ−1,λ′−1(h) + ΦJ2,J2
λ−1,λ′−1(h)

)
so that the first row of the matrix has just 5 non-zero entries and the first entry comprises 4 terms.

It is convenient to interpret these matrices as weighted directed multi-graphs, where the vertices
are the pairs (I, I ′) ∈ I2k and starting from each vertex there are eight directed edges to the vertices
(Tεε′(I), Tεε′′(I

′)) (where (ε, ε′, ε′′) ∈ {0, 1}3) with the corresponding weights 1/8 or e(±β)/8 (with
the common sign (−1)|I|+|I

′|), see Figure 1. Note again that different edges might connect the same
pair of vertices so that we get multiple edges (and even multiple loops). Of course products of

I, I'

T  (I), T  (I') T  (I), T  (I') T  (I), T  (I') T  (I), T  (I')T  (I), T  (I') T  (I), T  (I')T  (I), T  (I')T  (I), T  (I') 0001 10 110000 0101 0100 10 10 1011 11 11

1/8

e( )/8β e( )/8β
e(-  )/8β

e(-  )/8β 1/8 1/8

1/8

Figure 1. Weighted directed graph representation of the recurrence for ΦI,I′

λ,λ′(h) (the

common sign of all the edge weights is (−1)|I|+|I
′|).

m such matrices correspond to oriented paths of length m on these graphs, where such paths are
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weighted with the corresponding products (of modulus 8−m). The entries at position ((I, I ′), (J, J ′))
of such product matrices correspond then to the sum of weights of paths from (I, I ′) to (J, J ′).

In order to prove Proposition 1 it is enough to check the conditions of Lemma 17 uniformly in h
for M` = M(h/2`). Indeed, as for 1

2
λ ≤ λ′ ≤ λ we have

ψλ,λ′(h) = M(h/2λ) · · ·M(h/2λ−λ
′+1)ψλ−λ′,0(h),

it follows by applying (60) with k = λ′ and r = λ− λ′ + 1 that

(41) ‖ψλ,λ′(h)‖∞ ≤ C2−δλ
′ ‖ψλ−λ′,0(h)‖∞ ≤ C2−δλ

′ � 2−δλ/2

and consequently

ΦI,I
λ,λ′(h) =

1

2λ′
∑

0≤d<2λ′

∣∣GI
λ(h, d)

∣∣2 ≤ ‖ψλ,λ′(h)‖∞ � 2−δλ/2.

We first show that there exists an integer m0 ≥ 1 such that every product

A = (A(I,I′),(J,J ′))((I,I′),(J,J ′))∈I2k×I2k

of m0 consecutive matrices M` = M(h/2`) verifies the condition (1) of Lemma 17. It is clear that
Tm00(I) = 0 for all I ∈ Ik if m is sufficiently large, which means in the graph interpretation (see
Figure 1) that for every vertex (I, I ′) there is a path of length m from (I, I ′) to (0,0). Let m0 be
one of these values and fix a row indexed by (I, I ′) in the matrix A. From the graph interpretation
it is clear that the entry A(I,I′),(0,0) is the sum of at least one term of modulus 8−m0 . Now there
are two possible cases. If the absolute row sum is ≤ 1− 8−m0/2 then we are done. However, if the
absolute row sum is > 1− 8−m0/2 then it follows that |A(I,I′),(0,0)| ≥ 8−m0/2. Indeed the inequality
|A(I,I′),(0,0)| < 8−m0/2 would imply that A(I,I′),(0,0) is the sum of at least two terms of modulus 8−m0 ,
so that the absolute row sum would be bounded by∑

(J,J ′)

|A(I,I′),(J,J ′)| <
1

2
8−m0 +

(
1− 2 · 8−m0

)
= 1− 3

2
8−m0 ,

which would contradict the assumption that the absolute row sum is > 1 − 8−m0/2. This shows
that condition (1) of Lemma 17 is satisfied with c0 = η = 1

2
8−m0 .

Finally we show that there exists an integer m1 ≥ 1 such that every product

B = (B(I,I′),(J,J ′))((I,I′),(J,J ′))∈I2k×I2k

of m1 consecutive matrices M` = M(h/2`) verifies the condition (2) of Lemma 17. Indeed we will
concentrate on the entry B(0,0),(0,0), that is, we will consider all possible paths from (0,0) to (0,0)
of length m1 in the corresponding graph and show that a positive saving is due to the structure
of this entry. Since T00(0) = T01(0) = 0 it follows that the entry B(0,0),(0,0) is certainly a sum
of k0 = k0(m1) ≥ 2 terms of modulus 8−m1 (for every m1 ≥ 1), that is, there are k0 ≥ 2 paths
from (0,0) to (0,0) of length m1 in the corresponding graph. For m1 ≥ 3, starting from (0,0) we
first apply m1− 2 times the transformations (T00, T00), then one time the transformation (T00, T01),
and then one time the transformation (T00, T00). This corresponds in the graph interpretation (see
Figure 1) to a path from (0,0) to (0,0) of length m1 with weight e(h/2λ−m1+1)8−m1 .

Next we observe that T11(0) has k − 1 non-zero entries and we recall that k − 1 is odd. Thus,
there exists m1 ≥ 4 such that Tm1−3

01 T11(0) is of the form 011 · · · 1, that is, it has an odd number of
1’s. Starting from (0,0) we apply now one time the transformation (T11, T11), then m1 − 3 times
the transformation (T01, T01), then one time the transformations (T00, T01), and then one time the
transformation (T00, T00). This corresponds in the graph interpretation (see Figure 1) to a path from
(0,0) to (0,0) of length m1 with weight (−1)|0|+|(0,1,...,1)| e(h/2λ−m1+1)8−m1 = − e(h/2λ−m1+1)8−m1 .
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Thus we have shown that at least two terms cancel for a properly chosen m1. Of course this
implies

|B(0,0),(0,0)| ≤ (k0 − 2)8−m1 ,

so that ∑
(J,J ′)

|B(0,0),(J,J ′)| ≤ (k0 − 2)8−m1 + (1− k08−m1) ≤ 1− 2 · 8−m1 ,

so that condition (2) of Lemma 17 is verified with η = 2 · 8−m1 , which completes the proof of
Proposition 1 when (α0, . . . , αk−1) = (1, . . . , 1) and K is even.

7.2. Proof of Proposition 1 in the case (α0, . . . , αk−1) 6= (1, . . . , 1). Without loss of generality
we can assume that α0 = 1 and that for at least one ` ≥ 1 we have α` = 0. As the discrete Fourier
transform GI

λ only depends on those indices ` for which α` = 1, let us introduce the reduced K-uple

Ĩ = (i`)0≤`<k, α`=1 and the reduced sets Ĩk = {Ĩ , I ∈ Ik}.
Then the proof of Proposition 1 works in the case (α0, . . . , αk−1) 6= (1, . . . , 1) in the same way as

in the case (α0, . . . , αk−1) = (1, . . . , 1) if we replace Ik by Ĩk, GI
λ by GĨ

λ and for any (ε, ε′) ∈ {0, 1}2
the transformation Tεε′ on Ik by the corresponding transformation T̃εε′ on Ĩk. In particular, working
with

ΦĨ,Ĩ′

λ,λ′(h) =
1

2λ′
∑

0≤d<2λ′

GĨ
λ(h, d)GĨ′

λ (h, d)

instead of ΦI,I′

λ,λ′(h), the corresponding recurrence is exactly the same. Furthermore the matrices

M(β) have now dimension |Ĩk|2× |Ĩk|2 instead of 22(k−1)× 22(k−1) and, of course, the corresponding
weighted directed graph has less vertices. If we replace k by K (and use the fact that K is even)
then we prove in the same way like in Section 7.1 that the conditions of Lemma 17 are satisfied.

This completes the proof of Proposition 1 in the case where K is even.

8. Proof of Proposition 2

8.1. Proof of Proposition 2 in the case (α0, . . . , αk−1) = (1, . . . 1). Formula (8) can be written
as

Gλ(h, d) =
1

2
Mε0(d)

(
e(−h/2λ)

)
Gλ−1(h, bd/2c),

with for any ε ∈ {0, 1} and z ∈ U,

Mε(z) =
(
1l[J=Tε0(I)]wε0(I, z) + 1l[J=Tε1(I)]wε1(I, z)

)
(I,J)∈I2k

,

where for any ε′ ∈ {0, 1},

wεε′(I, z) = (−1)|I|+εσ+ε
′Kzε

′
= (−1)|I|+εσ+ε

′
zε
′

(as K = k is odd) and 1l[P] = 1 if the proposition P is true and 1l[P] = 0 otherwise. It follows by
induction that for any integer n ≥ 1, we have

Gλ(h, d) =
1

2m
Mε0(d)...εm−1(d)

(
e(−h/2λ)

)
Gλ−m(h, bd/2mc),

where for any d = (d0, . . . , dm−1) ∈ {0, 1}m we put

Md(z) = Md0...dm−1(z) = Md0(z) · · ·Mdm−1(z2
m−1

)

and we define the polynomials Pd
IJ for (I, J) ∈ I2k by

Md(z) =
(
Pd
IJ(z)

)
(I,J)∈I2k

,
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so that ∥∥Md(z)
∥∥
∞ = max

I∈Ik

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ ;
‖A‖∞ denotes the matrix row-sum norm of A (see Section 9.5). Proposition 2 will follow from the
fact that there exists an integer m ≥ 1 (which will be actually k+ 1) such that for any d ∈ {0, 1}m,
I ∈ Ik, and z ∈ U

(42)
∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ < 2m.

For this purpose we can apply Lemma 17 with matrices 1
2
Mε0(d)

(
e(−h/2λ)

)
, with m0 = m1 = m,

and

η = 1− 1

2m
max

d∈{0,1}m
max
I∈Ik

max
z∈U

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ > 0

(we do not need c0 since all absolute row sums are ≤ 1− λ). The rest of this section is devoted to
a proof of (42).

Let G(z) be the weighted directed multi-graph of outdegree 4 whose vertices are the elements of
Ik and where for each (ε, ε′) ∈ {0, 1}2 and I ∈ Ik the edge from I to Tεε′(I) has weight wεε′(I, z).

For example when k = 3 we have

M0(z) =


1− z 0 0 0
−1 z 0 0
1 0 −z 0
0 −1 z 0

 , M1(z) =


0 −1 z 0
0 1 0 −z
0 0 −1 z
0 0 0 1− z


and G(z) is the following weighted directed graph:

001

000

011

012

w11(z) = −z

w00(z) = −1

w10(z) = 1w01(z) = z

w10(z) = −1

w00(z) = 1

w01(z) = −z

w11(z) = z

w00(z) = 1

w01(z) = −zw10(z) = −1

w11(z) = z

w01(z) = z

w10(z) = 1

w11(z) = −z

w00(z) = −1

For any d = (d0, . . . , dm−1) ∈ {0, 1}m we can interpret the coefficients of the matrix Md(z) as

coding of paths of length m with, for j ∈ {0, . . . ,m − 1}, step j in the graph G(z2
j
). More

precisely, for any I ∈ Ik, e = (e0, . . . , em−1) ∈ {0, 1}m and i ∈ {1, . . . ,m}, let us denote Tde
i (I) =

Tdi−1ei−1
◦· · ·◦Td0e0(I) and associate to each of the 2m paths from the vertex I to the vertices Tde

m (I)
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the weight

wde(I, z) = wd0e0(I, z)wd1e1(T
de
1 (I), z2) · · ·wdm−1em−1(T

de
m−1(I), z2

m−1

)

= (−1)ν(I,d,e)zN(e),

with

(43) ν(I,d, e) = |I|+
∣∣Tde

1 (I)
∣∣+ · · ·+

∣∣Tde
m−1(I)

∣∣+ |d|σ + |e|
and

(44) N(e) =
m−1∑
i=0

ei2
i,

where |d| =
∑m−1

i=0 |di|. Then, for any (I, J) ∈ I2k , we have, by definition of Pd
IJ :

(45) Pd
IJ(z) =

∑
e∈{0,1}m
Tde
m (I)=J

wde(I, z) =
∑

e∈{0,1}m
Tde
m (I)=J

(−1)ν(I,d,e)zN(e).

Lemma 4. For any d ∈ {0, 1}m, the family of polynomials (Pd
IJ)(I,J)∈I2k has the following properties:

(1) for any (I, J) ∈ I2k , the coefficients of Pd
IJ are 0, +1 or −1;

(2) for any I ∈ Ik and j ∈ {0, . . . , 2m − 1}, zj or −zj appears exactly once as a monomial of
some polynomial Pd

IJ (J ∈ Ik);
(3) for any I ∈ Ik,

card{j, 0 ≤ j < 2m, ∃J ∈ Ik, zj appears as a monomial of Pd
IJ}

= card{j, 0 ≤ j < 2m, ∃J ∈ Ik, −zj appears as a monomial of Pd
IJ} = 2m−1.

Proof. It follows from (45) that (1) is a direct consequence of the fact that the function N defined
by (44) is a bijection between {0, 1}m and {0, . . . , 2m−1} and (2) of the fact that for any I ∈ Ik, the
sets E(J) = {e ∈ {0, 1}m, T de

m (I) = J} form a partition of {0, 1}m. Moreover, as for any ε ∈ {0, 1}
the sum of the coefficients of each line of the matrix Mε(1) is equal to zero, it follows that for any
d ∈ {0, 1}m the sum of the coefficients of each line of the matrix Md(1) is equal to zero, which
proves (3). �

For any I = (i0, . . . , ik−1) ∈ Ik we denote I|j = ij.

Lemma 5. Let (I0, I1) ∈ I2k and j ∈ {0, . . . , k−1} such that I0|j−I1|j = 1. Then, for any ε ∈ {0, 1},
we have either

Tε0(I0)|j = Tε0(I1)|j and Tε1(I0)|j = Tε1(I1)|j + 1

or
Tε0(I0)|j = Tε0(I1)|j + 1 and Tε1(I0)|j = Tε1(I1)|j.

Proof. For I ∈ Ik, j ∈ {0, . . . , k − 1} and (ε, ε′) ∈ {0, 1}2 we have Tεε′(I)|j =
⌊
I|j+jε+ε

′

2

⌋
, so that

Lemma 5 follows from the fact that for any (i, i′) ∈ N2 we have either⌊
i+ i′

2

⌋
=

⌊
i+ 1 + i′

2

⌋
or

⌊
i+ i′ + 1

2

⌋
=

⌊
i+ 1 + i′ + 1

2

⌋
.

�

Lemma 6. For any (di)i∈N ∈ {0, 1}N and any I ∈ Ik there exist J = J(I) ∈ Ik, m = m(I) ∈
{1, . . . , k} and (e, e′) ∈ {0, 1}m × {0, 1}m, e 6= e′ such that J = Tde

m (I) = Tde′
m (I) and N(e′) =

N(e) + 1, where d = (d0, . . . , dm−1).
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Proof. For any I ∈ Ik and e0 ∈ {0, 1} we define Ie0 = Td0e0(I).
If d0 = 0 and I = (0, . . . , 0) or d0 = 1 and I = (0, 1, . . . , k − 1), we have I0 = I1 = I so that

Lemma 6 is true in these two cases with m = 1.
In any other case, we have I0 6= I1 and it remains to find an integer m ∈ {2 . . . , k} and

(e1, . . . , em−1) ∈ {0, 1}m−1 such that

Tdm−1em−1 ◦ · · · ◦ Td1e1(I0) = Tdm−1em−1 ◦ · · · ◦ Td1e1(I1).
Let j1 be the smallest integer j such that I0|j = I1|j + 1 and choose, by Lemma 5, e1 ∈ {0, 1} such
that Td1e1(I0)|j1 = Td1e1(I1)|j1 +0. By repeating this procedure m−1 ≤ k−1 times (by construction,

for any i ∈ {1, . . . ,m} the entries of Tdi−1ei−1
◦ · · · ◦ Td00(I) and Tdi−1ei−1

◦ · · · ◦ Td01(I) are equal or
differ by 1) and taking e = (0, e1, . . . , em−1) and e′ = (1, e1, . . . , em−1) we obtain Lemma 6. �

Lemma 6 remains valid if for any I ∈ Ik we replace m = m(I) by m = k (or any value greater
than k) and it shows that for any m ≥ k, d ∈ {0, 1}m and I ∈ Ik there exist J ∈ Ik such that
the polynomial Pd

IJ contains two monomials of consecutive degrees: ±zN(e) and ±zN(e)+1. In the
next Lemma 7 we make this even more precise by showing that we can find two such monomials of
consecutive degrees with different signs: ν(I,d, e) ≡ ν(I,d, e′) + 1 mod 2.

Lemma 7. For any d ∈ {0, 1}k and any I ∈ Ik there exist J ∈ Ik and (e, e′) ∈ {0, 1}k × {0, 1}k,
e 6= e′ such that J = Tde

k (I) = Tde′

k (I), N(e′) = N(e) + 1 and ν(I,d, e′) ≡ ν(I,d, e) + 1 mod 2.

Proof. Let us consider for any ` ∈ {1, . . . , k} the k-tuples I0(`) = Td`−1e`−1
◦ · · · ◦ Td1e1(I0) and

I1(`) = Td`−1e`−1
◦ · · · ◦ Td1e1(I1) obtained by the procedure described in the proof of Lemma 6. By

construction the entries of I0(`) and I1(`) are equal or differ by 1 and we will distinguish between
two cases depending on the parity of the number of different entries.

Even case. For any ` ∈ {1, . . . , k}, I0(`) and I1(`) differ at an even number of entries.
In this case, for any ` ∈ {1, . . . , k} we have |I0(`)| ≡ |I1(`)| mod 2, which implies∣∣Tde

1 (I)
∣∣+ · · ·+

∣∣∣Tde′

k−1(I)
∣∣∣ ≡ ∣∣Tde

1 (I)
∣∣+ · · ·+

∣∣∣Tde′

k−1(I)
∣∣∣ mod 2

and
ν(I,d, e) ≡ ν(I,d, e′) + 1 mod 2,

so that Lemma 7 is true in this case.

Odd case. There exists ` ∈ {1, . . . , k} such that I0(`) and I1(`) differ at an odd number of entries.
In this case, let `0 ≥ 1 be the smallest number for which this occurs. In what follows we slightly

modify the procedure described in the proof of Lemma 6 for the remaining steps. We again construct
(e`0 , . . . , ek−1) such that Tde

k (I) = Tde′

k (I), but by using another principle, namely that at each step
` ≥ `0 (with the only exception of the final steps) I0(`) and I1(`) differ at an odd number of positions.
For convenience we say that a position j is corrected if I0(`+ 1)|j = I1(`+ 1)|j whereas I0(`)|j and

I1(`)|j differ by 1.

Let us describe the first step of this new procedure. When we compare (Td`00(I0(`0)), Td`00(I1(`0)))
and (Td`01(I0(`0)), Td`01(I1(`0))), which are the possible candidates for (I0(`0 + 1), I1(`0 + 1)) it
follows from Lemma 5 that a position j is corrected in the first case if and only if it is not cor-
rected in the second case. This means that either Td`00(I0(`0)) and Td`00(I1(`0)) or Td`01(I0(`0)) and
Td`01(I1(`0)) differ at an odd number of positions (and the other one at an even number of positions).
Suppose without loss of generality that Td`00(I0(`0)), Td`00(I1(`0)) differs by an odd number of po-
sitions. If Td`01(I0(`0)) = Td`01(I1(`0)) then we choose e`0 = 1 and the procedure stops. However,
if Td`0+11(I0(`0)) 6= Td`0+11(I1(`0)) then we choose e`0 = 0 and observe that the number of different
positions in I0(`0 + 1) and I1(`0 + 1) is again odd but smaller than the number of different positions
in I0(`0) and I1(`0). Of course we can proceed in this way step by step till I0(k) = I1(k) = J .
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The advantage of this procedure is that we can control the values modulo 2 of ν(I,d, e) and
ν(I,d, e′). Actually since |I0(`)| ≡ |I1(`)| mod 2 for 1 ≤ ` < `0, |I0(`)| 6≡ |I1(`)| mod 2 for `0 ≤ ` ≤
m0 (with 1 ≤ m0 < k) and I0(`) = I1(`) = J for m0 < ` ≤ k, we obtain

ν(I,d, e) ≡ ν(I,d, e′) + (m0 − `0 + 1) + 1 mod 2.

If m0 − `0 is odd we are done.
If m0−`0 is even we modify the last step of the above procedure. As I0(m0) and I1(m0) differ at an

odd number of positions and Tdm0em0
(I0(m0)) = Tdm0em0

(I1(m0)), it follows, writing ẽm0 = 1− em0 ,
that the number of different entries of Tdm0 ẽm0

(I1(m0)) Tdm0 ẽm0
(I0(m0)) is the same as the number

of different entries of I0(m0) and I1(m0) (since Tdm0em0
corrects all positions, Tdm0 ẽm0

corrects no
position). By using ẽm0 instead of em0 at step m0, we have now that property that I0(m0 + 1) and
I1(m0 + 1) differ at and odd number of positions.

If we can choose em0+1 in a way that I0(m0 + 2) = I1(m0 + 2) then by the same arguments as
above (where we have to replace m0 by m0 + 1) it follows that

(46) ν(I,d, e) ≡ ν(I,d, e′) + (m0 + 1− `0 + 1) + 1 mod 2 ≡ ν(I,d, e′) + 1 mod 2

and we are done. In particular this is possible if I0(m0 + 1) and I1(m0 + 1) differ at precisely one
position.

If we cannot choose em0+1 in a way that I0(m0 + 2) = I1(m0 + 2) then we restart the original
procedure at this point knowing that the number of different positions in I0(m0 + 2) and I1(m0 + 2)
is smaller than the number of different positions in I0(m0 + 1) and I1(m0 + 1). If I0(`) and I1(`)
differ at an even number of positions for all ` ≥ m0 + 2 (till we end up at some common J), then we
again get (46) and we are done. If not, let `1 be the smallest integer ` ≥ m+ 1 such that I0(`1) and
I1(`1) differ at an odd number of positions. By construction this number is smaller that the number
of different positions in I0(`0) and I1(`0) and we can proceed now by induction and the procedure
will terminate after at most k steps. �

It is now easy to complete the proof of Proposition 2 by proving (42).

Lemma 8. For any d ∈ {0, 1}k+1, any I ∈ Ik and any z ∈ U we have∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ < 2k+1.

Proof. Lemmas 4 and 6 imply that for any d ∈ {0, 1}k and any I ∈ Ik, there exists J = J(I) ∈ Ik
and j = j(I) ∈ {0, . . . , 2k − 2} such that ±zj and ±zj+1 are monomials of the polynomial Pd

IJ . In
particular, any z ∈ U such that

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ = 2k should verify |±zj ± zj+1| = |z ± 1| = 2, which
implies z ∈ {−1,+1}. Now Lemma 7 shows that we will actually find two consecutive terms of the
form ±(zj− zj+1) which implies that z = 1 can be excluded, too. Summing up we have proved that
for all I ∈ Ik and all z ∈ U \ {−1} we have

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ < 2k.

Next we repeat the argument (however, just by using Lemma 6) by starting with any d′ ∈ {0, 1}k+1

and obtain that for all I ∈ Ik and all z ∈ U \ {1,−1} we have
∑

J∈Ik

∣∣Pd′
IJ(z)

∣∣ < 2k+1.

Now we set d′ = (ε, d0, . . . , dk−1) for ε ∈ {0, 1} so that we have Md′(z) = Mε(z)Md(z2) or

Pd′

IJ(z) = (−1)|I|+εσPd
Tε0(I)J

(z2) + (−1)|I|+εσ+1zPd
Tε1(I)J

(z2).

Since we have already observed that
∑

J∈Ik

∣∣∣Pd
Tε,ε′ (I)J

(1)
∣∣∣ < 2k we also have

∑
J∈Ik

∣∣Pd′
IJ(±1)

∣∣ < 2k+1

which completes the proof of Lemma 8. �
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8.2. Proof of Proposition 2 in the case (α0, . . . , αk−1) 6= (1, . . . , 1). Without loss of generality
we can assume that α0 = 1 and that for at least one ` ≥ 1 we have α` = 0. As we mentionned in
Section 7.2, the discrete Fourier transforms GI

λ only depends on those indices ` for which α` = 1, so

that we again introduce the reduced K-uple Ĩ = (i`)0≤`<k, α`=1 and the reduced sets Ĩk = {Ĩ , I ∈
Ik}.

The proof of Proposition 2 works again in the case (α0, . . . , αk−1) 6= (1, . . . , 1) in the same way as

in the case (α0, . . . , αk−1) = (1, . . . , 1) if we replace Ik by Ĩk, GI
λ by GĨ

λ and for any (ε, ε′) ∈ {0, 1}2
the transformation Tεε′ on Ik by the corresponding transformation T̃εε′ on Ĩk. In particular we
introduce, for any integer m ≥ 1, d ∈ {0, 1}m and z ∈ U, the matrices

M̃d(z) =
(
P̃d
ĨJ̃

(z)
)
(Ĩ,J̃)∈Ĩ2k

,

where the family of polynomials P̃d
ĨJ̃

verifies Lemma 4. The corresponding weighted directed graph

G̃(z) has still outdegree 4 but less vertices and the coefficients of the matrix M̃d(z) can still be

interpreted as codings of path of length m with, for j ∈ {0, . . . ,m− 1}, step j in the graph G̃(z2
j
).

More precisely, for any Ĩ ∈ Ĩk, e = (e0, . . . , em−1) ∈ {0, 1}m and i ∈ {1, . . . ,m}, if we denote

T̃de
i (Ĩ) = T̃di−1ei−1

◦ · · · ◦ T̃d0e0(Ĩ) we can associate to each of the 2m paths from the vertex Ĩ to the

vertices T̃de
m (Ĩ) the weight

wde(Ĩ , z) = wd0e0(Ĩ , z)wd1e1(T̃
de
1 (Ĩ), z2) · · ·wdm−1em−1(T̃

de
m−1(Ĩ), z2

m−1

)

= (−1)ν(Ĩ,d,e)zN(e),

so that, for any (Ĩ , J̃) ∈ Ĩ2k , we have, by definition of P̃d
ĨJ̃

:

P̃d
ĨJ̃

(z) =
∑

e∈{0,1}m

T̃de
m (Ĩ)=J̃

wde(Ĩ , z) =
∑

e∈{0,1}m

T̃de
m (Ĩ)=J̃

(−1)ν(Ĩ,d,e)zN(e).

Next, the Lemmas 5, 6, and 7 can be generalized in a direct way, replacing I by Ĩ, Ik by Ĩk and
for any m ∈ {1, . . . , k} and any (d, e) ∈ {0, 1}m×{0, 1}m, Tde

m by T̃de
m . In particular the procedures

described in Lemmas 6, and 7 directly translate to this case. For example we can project the two
paths from the proof of Lemma 6 that connect I to J to corresponding paths that connect Ĩ and J̃

and prove that for any m ≥ k, d ∈ {0, 1}m and Ĩ ∈ Ĩk there exist J̃ ∈ Ĩk such that the polynomial

P̃d
ĨJ̃

contains two monomials of consecutive degrees and then show, as in Lemma 7, that we can find

J̃ ∈ Ĩk such that the polynomial P̃d
ĨJ̃

contains two monomials of consecutive degrees and opposite
signs by distinguish again an even case and an odd case.

This completes the proof of Proposition 2.

9. Auxiliary Lemmas

9.1. A multidimensional application of Beurling-Selberg-Vaaler’s method. For α ∈ R
with 0 ≤ α < 1 let χα be the characteristic function of the interval [0, α) modulo 1 defined by (6).
The following lemma is a classical way to detect real numbers in an interval modulo 1 by means of
exponential sums.

Lemma 9. For all α ∈ R with 0 ≤ α < 1 and all integer H ≥ 1 there exist real valued trigonometric
polynomials Aα,H(x) and Bα,H(x) such that for all x ∈ R

(47) |χα(x)− Aα,H(x)| ≤ Bα,H(x),
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where

(48) Aα,H(x) =
∑
|h|≤H

ah(α,H) e(hx), Bα,H(x) =
∑
|h|≤H

bh(α,H) e(hx),

with coefficients ah(α,H) and bh(α,H) satisfying

(49) a0(α,H) = α, |ah(α,H)| ≤ min
(
α, 1

π|h|

)
, |bh(α,H)| ≤ 1

H+1
.

Proof. This is a consequence of Theorem 19 of [28] (see also the proof of [22, Lemma 1]). . �

Similarly we can detect points in a d-dimensional box (modulo 1):

Lemma 10. For (α1, . . . , αd) ∈ [0, 1)d and (H1, . . . , Hd) ∈ Nd with H1 ≥ 1,. . . , Hd ≥ 1, we have
for all (x1, . . . , xd) ∈ Rd

(50)

∣∣∣∣∣
d∏
j=1

χαj(xj)−
d∏
j=1

Aαj ,Hj(xj)

∣∣∣∣∣ ≤ ∑
∅6=J⊆{1,...,d}

∏
j 6∈J

χαj(xj)
∏
j∈J

Bαj ,Hj(xj)

where Aα,H(.) and Bα,H(.) are the real valued trigonometric polynomials defined by (48).

Proof. We have∣∣∣∣∣
d∏
j=1

χαj(xj)−
d∏
j=1

Aαj ,Hj(xj)

∣∣∣∣∣ ≤ ∑
∅6=J⊆{1,...,d}

∏
j 6∈J

∣∣χαj(xj)∣∣∏
j∈J

∣∣χαj(xj)− Aαj ,Hj(xj)∣∣
Since χαi ≥ 0, by (47) we get (50). �

Lemma 11. Let N be a finite set and f1 : N → R, . . . , fd : N → R. Let U1 ≥ 1, . . . ,Ud ≥ 1 be
integers and

g : N × {0, . . . , U1 − 1} × · · · × {0, . . . , Ud − 1} → C
such that |g| ≤ 1. The sum

S =
∑
n∈N

∑
0≤u1<U1

· · ·
∑

0≤ud<Ud

g(n, u1, . . . , ud)
d∏
j=1

χU−1
j

(
fj(n)− uj

Uj

)
can be approximated, for any integers H1 ≥ 1, . . . , Hd ≥ 1, by

S̃ =
∑
|h1|≤H1
···

|hd|≤Hd

ah1(U
−1
1 , H1) · · · ahd(U−1d , Hd)

∑
0≤u1<U1
···

0≤ud<Ud

e

(
−h1u1

U1

− · · · − hdud
Ud

)
∑
n∈N

g(n, u1, . . . , ud) e (h1f1(n) + · · ·+ hdfd(n))

with the error estimate:

(51)
∣∣∣S − S̃∣∣∣ ≤ d∑

`=1

∑
1≤j1<···<j`≤d

Ej1,...,j`

with Ej1,...,j` defined by

Uj1 · · ·Uj`
(Hj1 + 1) · · · (Hj` + 1)

∑
|hj1|≤Hj1/Uj1

···
|hj` |≤Hj`/Uj`

∣∣∣∣∣∑
n∈N

e (hj1Uj1fj1(n) + · · ·+ hj`Uj`fj`(n))

∣∣∣∣∣ .
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Proof. We have

S − S̃ =
∑
n∈N

∑
0≤u1<U1
···

0≤ud<Ud

g(n, u1, . . . , ud)

(
d∏
j=1

χU−1
j

(
fj(n)− uj

Uj

)
−

d∏
j=1

AU−1
j ,Hj

(
fj(n)− uj

Uj

))
.

Using (50) and the hypothesis |g| ≤ 1 we obtain∣∣∣S − S̃∣∣∣ ≤∑
n∈N

∑
∅6=J⊆{1,...,d}

∏
j 6∈J

∑
0≤uj<Uj

χU−1
j

(
fj(n)− uj

Uj

)∏
j∈J

∑
0≤uj<Uj

BU−1
j ,Hj

(
fj(n)− uj

Uj

) .

For any t ∈ R, we have ∑
0≤uj<Uj

χU−1
j

(
t− uj

Uj

)
= 1,

which shows that the first parenthesis is equal to 1. Observing that∑
0≤uj<Uj

e

(
−hjuj

Uj

)
=

{
Uj if hj ≡ 0 mod Uj
0 otherwise

we can write∑
0≤uj<Uj

BU−1
j ,Hj

(
fj(n)− uj

Uj

)
=

∑
0≤uj<Uj

∑
|hj |≤Hj

bhj(U
−1
j , Hj) e

(
hjfj(n)− hjuj

Uj

)
= Uj

∑
|hj |≤Hj/Uj

bhjUj(U
−1
j , Hj) e (hjUjfj(n)) ,

which leads to∣∣∣S − S̃∣∣∣ ≤ ∑
∅6=J⊆{1,...,d}

∑
n∈N

∏
j∈J

Uj ∑
|hj |≤Hj/Uj

bhjUj(U
−1
j , Hj) e (hjUjfj(n))

 .

Expanding the product, reversing the order of summations and then using
∣∣bhjUj(U−1j , Hj)

∣∣ ≤ (Hj +

1)−1 (by (49)) this leads to (51). �

9.2. Generalized van der Corput’s inequality.

Lemma 12. For all complex numbers z1, . . . , zN and all integers Q ≥ 1 and R ≥ 1 we have

(52)

∣∣∣∣∣ ∑
1≤n≤N

zn

∣∣∣∣∣
2

≤ N +QR−Q
R

( ∑
1≤n≤N

|zn|2 + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−Qr

< (zn+Qrzn)

)
where <(z) denotes the real part of z ∈ C.

Proof. See for example Lemma 17 of [20]. �

9.3. Sums of geometric series. We will often make use of the following upper bound of geometric
series of ratio e(ξ) for (L1, L2) ∈ Z2, L1 ≤ L2 and ξ ∈ R:

(53)

∣∣∣∣∣ ∑
L1<`≤L2

e(`ξ)

∣∣∣∣∣ ≤ min(L2 − L1, |sin πξ|−1).
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Lemma 13. Let (a,m) ∈ Z2 with m ≥ 1, δ = gcd(a,m) and b ∈ R. For any real number U > 0 we
have

(54)
∑

0≤n≤m−1

min
(
U,
∣∣sin π an+b

m

∣∣−1) ≤ δmin

(
U,
∣∣∣sin π δ ‖b/δ‖m

∣∣∣−1)+
2m

π
log(2m).

Proof. The result is trivial for m = 1. For m ≥ 2 after using Lemma 6 of [21] it suffices to observe
that

δ

sin πδ
2m

+
2m

π
log

2m

πδ
≤ 1

sin π
2m

+
2m

π
log

2m

π
≤ 2m

π
log(2m).

�

Lemma 14. Let m ≥ 1 and A ≥ 1 be integers and b ∈ R. For any real number U > 0 we have

(55)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) U +m logm

and if |b| ≤ 1
2

we have the sharper bound

(56)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) min
(
U,
∣∣sin π b

m

∣∣−1)+m logm,

where τ(m) denotes the number of divisors of m.

Proof. Using (54) we have for all b ∈ R:∑
0≤n<m

min
(
U,
∣∣sinπ an+b

m

∣∣−1)� gcd(a,m) U +m logm

while for |b| ≤ 1
2
, since gcd(a,m) ‖b/ gcd(a,m)‖ = |b| this can be sharpened using (54) to∑

0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� gcd(a,m) min
(
U,
∣∣sinπ b

m

∣∣−1)+m logm.

Now

(57)
∑

1≤a≤A

gcd(a,m) =
∑
d |m
d≤A

d
∑

1≤a≤A
gcd(a,m)=d

1 ≤
∑
d |m
d≤A

d
∑

1≤a≤A
d | a

1 =
∑
d |m
d≤A

d

⌊
A

d

⌋
≤ A τ(m)

which implies (55) and (56) when |b| ≤ 1
2
. �

9.4. Gauss sums.

Lemma 15. For all (a, b,m) ∈ Z3 with m ≥ 1, we have

(58)

∣∣∣∣∣
m−1∑
n=0

e
(
an2+bn
m

)∣∣∣∣∣ ≤√2m gcd(a,m).

Proof. This is Proposition 2 of [20] (notice that gcd(0,m) = m). �

For incomplete quadratic Gauss sums we have

Lemma 16. For all (a, b,m,N, n0) ∈ Z5 with m ≥ 1 and N ≥ 0, we have

(59)

∣∣∣∣∣
n0+N∑
n=n0+1

e
(
an2+bn
m

)∣∣∣∣∣ ≤ (Nm + 1 + 2
π

log 2m
π

)√
2m gcd(a,m).
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Proof. The following argument is a variant of a method known at least since Vinogradov. For m = 1
the result is true. Assume that m ≥ 2. There are bN/mc complete sums which are bounded above

by
√

2m gcd(a,m). The remaining sum is either empty or of the form

S =

n1+L∑
n=n1+1

e
(
an2+bn
m

)
for some n1 ∈ Z and 1 ≤ L ≤ m. We have

S =

n1+L∑
u=n1+1

m−1∑
n=0

e
(
an2+bn
m

) 1

m

m−1∑
k=0

e
(
k n−u

m

)
,

hence

S =
1

m

m−1∑
k=0

n1+L∑
u=n1+1

e
(−ku
m

)m−1∑
n=0

e
(
an2+(b+k)n

m

)
,

thus

|S| ≤ 1

m

m−1∑
k=0

min
(
L,
∣∣sin πk

m

∣∣−1) ∣∣∣∣∣
m−1∑
n=0

e
(
an2+(b+k)n

m

)∣∣∣∣∣ .
Applying Lemma 15 with b replaced by b+k and observing (by convexity of t 7→ 1/ sin(πt/m)) that

1

m

m−1∑
k=0

min
(
L,
∣∣sin πk

m

∣∣−1) ≤ 1 +
1

m

∫ m−1/2

1/2

dt

sin πt
m

= 1 +
2

π
log cot

π

2m

we obtain (59). �

9.5. Norm of matrix products. We denote by ‖A‖∞ = max1≤i≤N
∑N

j=1 |Ai,j| the row-sum norm

of a matrix A = (Ai,j)(i,j)∈{1,...,N}2 .

Lemma 17. Let M`, ` ∈ N, be N × N-matrices with complex entries M`;i,j, 1 ≤ i, j ≤ N , and
absolute row sums

N∑
j=1

|M`;i,j| ≤ 1.

Furthermore assume that there exists integers m0 ≥ 1 and m1 ≥ 1 and constants c0 > 0 and η > 0
such that

(1) every product A = (Ai,j)(i,j)∈{1,...,N}2 of m0 consecutive matrices M` has the property that
for every row i we have

|Ai,1| ≥ c0 or
N∑
j=1

|Ai,j| ≤ 1− η;

(2) every product B = (Bi,j)(i,j)∈{1,...,N}2 of m1 consecutive matrices M` has the property

N∑
j=1

|B1,j| ≤ 1− η.

Then there exist constants C > 0 and δ > 0 such that

(60)

∥∥∥∥∥
r+k−1∏
`=r

M`

∥∥∥∥∥
∞

≤ C2−δk

uniformly for all r ≥ 0 and k ≥ 0.
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Proof. It is enough to show that the product of m0 + m1 consecutive matrices M` has row-sum
norm ≤ 1− ηc0. Indeed this implies∥∥∥∥∥

r+k−1∏
`=r

M`

∥∥∥∥∥
∞

≤ (1− ηc0)bk/(m0+m1)c ≤ 1

1− ηc0
2−ηc0k/(m0+m1)

and we obtain (60) for C = 1/(1− ηc0) and δ = ηc0/(m0 +m1).
Let A = (Ai,j)(i,j)∈{1,...,N}2 denote the product ofm0 consecutive matrices M` and B = (Bj,k)(j,k)∈{1,...,N}2

the product of the next m1 consecutive matrices M`. For any i ∈ {1, . . . , N}, if |Ai,1| ≥ c0 then the
i-th absolute row-sum of the product AB is bounded by

N∑
k=1

∣∣∣∣∣
N∑
j=1

Ai,jBj,k

∣∣∣∣∣ ≤
N∑
j=1

|Ai,j|
N∑
k=1

|Bj,k|

= |Ai,1|
N∑
k=1

|B1,k|+
N∑
j=2

|Ai,j|
N∑
k=1

|Bj,k|

≤ |Ai,1| (1− η) +
N∑
j=2

|Ai,j|

≤ |Ai,1| (1− η) + 1− |Ai,1| = 1− η |Ai,1| ≤ 1− ηc0.

Similarly if we have
∑N

j=1 |Ai,j| ≤ 1− η then

N∑
k=1

∣∣∣∣∣
N∑
j=1

Ai,jBj,k

∣∣∣∣∣ ≤
N∑
j=1

|Ai,j|
N∑
k=1

|Bj,k| ≤ 1− η.

Since c0 ≤ 1 we have 1− η ≤ 1− c0η, which completes the proof of Lemma 17. �
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[4] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques., Rend. Circ. Mat. Palermo, 27
(1909), pp. 247–271.

[5] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math., 61 (1988),
pp. 39–72.

[6] , On the pointwise ergodic theorem on Lp for arithmetic sets, Israel J. Math., 61 (1988), pp. 73–84.

[7] , Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math., (1989), pp. 5–45.
With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein.

[8] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math., 24 (1989), pp. 83–96. First
Montreal Conference on Combinatorics and Computer Science, 1987.

[9] Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. (2), 171 (2010), pp. 1479–1530.
[10] Y. Bugeaud, Distribution modulo one and Diophantine approximation, vol. 193 of Cambridge Tracts in Math-

ematics, Cambridge University Press, Cambridge, 2012.
[11] D. Champernowne, The construction of decimals normal in the scale of ten., J. Lond. Math. Soc., 8 (1933),

pp. 254–260.
[12] A. Cobham, Uniform tag sequences, Math. Systems Theory, 6 (1972), pp. 164–192.
[13] A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem

in semigroups, Theoret. Comput. Sci., 63 (1989), pp. 333–348.



NORMALITY ALONG SQUARES 35

[14] H. Furstenberg, Problem session, Conference on Ergodic Theory and Applications, University of New Hamp-
shire, Durham, NH, June 1982, (1982).

[15] W. H. Gottschalk and G. A. Hedlund, A characterization of the Morse minimal set, Proc. Amer. Math.
Soc., 15 (1964), pp. 70–74.

[16] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math., 149 (2005), pp. 1–19.
Probability in mathematics.

[17] , Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), pp. 397–488.
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