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Abstract

The Legendre sequence possesses several desirable features of pseudorandom-
ness in view of different applications such as a high linear complexity (profile)
for cryptography and a small (aperiodic) autocorrelation for radar, gps, or
sonar. Here we prove the first nontrivial bound on its arithmetic autocorrela-
tion, another figure of merit introduced by Mandelbaum for error-correcting
codes.
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1 Introduction
For a prime p > 2 let (¢,,) be the Legendre sequence defined by

gn:{l if (2)=1, Vo "

0 otherwise,

where () is the Legendre symbol. Obviously, (¢,) is p-periodic.

The Legendre sequence satisfies several desirable features of pseudoran-
domness. For example, Turyn [13] proved that it has a high linear complexity,
see also [3] and [1, Chapter 9.3]. It also provides a high linear complexity pro-
file, see [12, Theorem 9.2]. It is well known (see [10], [11]) that the (periodic)
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autocorrelation of the Legendre sequence is two-valued or three-valued,

p—1 e P ift =0,
;)(—1)@ e —{_1_(t) (1+(-1%=) if1<t<p-1,

p

depending on whether p =3 (mod 4) or p =1 (mod 4), and that the abso-
lute value of the aperiodic autocorrelation

M—-1

Z (_1>én+én+t

n=0

is of order of magnitude at most p'/?logpfor 1 <t < p—land1 < M < p—1.
Moreover, Mauduit and Sarkézy [9] studied correlations of higher order. Ding
[2] studied the pattern distribution of the Legendre sequence. More precisely,
for dg,i1,...,is-1 € {0,1} and 0 < dy < dy < ... < ds_1 < p, put

N = ‘{O <n Sp— 1: gn = i05£n+d1 = il;"'agners_l = Z‘Sfl}‘.

In [2, Proposition 2] Ding proved that

vt

P25 (s —3)+2) + 25 (s +1) 1
2s '

< 5 (2)

In this article we study a different notion of autocorrelation, the arith-
metic autocorrelation introduced by Mandelbaum [8]. Also, see the recent
monograph by Goresky and Klapper [7] for more background and results on
arithmetic correlations. Sequences with small arithmetic autocorrelation can
be used to define codes over the integers (instead of finite fields) that can
correct many errors. For an eventually T-periodic binary sequence (s,,) with
preperiod Ty, that is s, 7 = s, for all n > Ty, the imbalance Z(s,) is defined
by

Z(Sn) = NO — Nl,

where
Ni=[{Toy<n<Ty+T-1:s,=i}, i=0,1

The arithmetic autocorrelation function A(t) of a (purely) T-periodic binary
sequence (ay,,) is defined as follows. For ¢ € {1,2,..., 7 — 1} let (a,4) be the
shift of (a,) by lag t. Put

T-1 00
Ty = Z 2" and o = Z 2", 0<t<T. (3)
n=0 n=0



Note that with respect to the 2-norm of Q, that is
x|, =27% ifzx = ng € Q\ {0} with odd u and v,

the geometric series Y 2 ;2" converges for any even integer x to

Zx” = —L, ||y < 1.
r—1

In particular we have ZOO 2" = —1, or more general

1
nk __ _
§_0j2 =g k=Ll2.

and therefore we get

T-1 00
x
at:Zan+t2n22mT:_T7t7 O§t<T
n=0 m=0 28 -1
We write
o) — p = Z Sp2" (4)
with unique s,,; € {0,1}.
If zy > x4, note that (s,.) is (purely) periodic with period T since
o0 o
Z $ni2" = (g — ) Y 2",
n=0
If ¢y < x4, note that
0<28nt2n—2T+Z an+t :2T+$0—.1Ut<2T,

and thus (smt) is eventually periodic with period T from 7" on (see also
Goresky and Klapper [4, Proposition 2]) since

EZSWQ"*T_.—14-§: n— )2 = (27 = 1420 —2) Y 2" (5)
=T n=0

In both cases we define
A(t) = Z(sp,), 1<t<T-—1.
For the Legendre sequence (¢,,) we will prove that
[A(t)] < 4p™*(logy ), 1<t <p-—1,

which is the main result of this article. For very small min{¢, p—t} we improve
this bound.

We start with a preliminary result on the symmetry of the arithmetic
autocorrelation and add its proof for the convenience of the reader.
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2 Symmetry of the arithmetic autocorrelation

Proposition 1. The arithmetic autocorrelation function of a periodic binary
sequence (ay,) of least period T' satisfies

Alt)y=-A(T —t) for1<t<T-1

Proof. For 0 <t < T, let z; and oy be defined by (3). If g > x;, then we
have

T+t—1 t—1
=2 < N (ap — Anr—)2" =D (an — apir—e)2" — 2 (xg — 7)) < 0.
n=0 n=0
Hence,
T+t—1 o0 i
o — ap_y =271 ¢ Z (@ — Qpyr_g)2" +2° Z (1 —s5,,)2" = Z Spr—t2"
n=0 n=T n=0
< 2T+t

with (s,x) defined by (4). Both (s,.) and (s, r—¢) are (eventually) periodic
with period T" from 7" on and the number of ones in a period of (s, ) equals
the number of zeros in a period of (s, r_;). Hence,

AT —t) = Z(sprs) = —Z(s0) = —A(t),  t=1,...,T 1.

If xy < x4, then we have

T4t-1 —1
2T+t Z (an — apyr—)2" = Z(an — Qpyr1)2" — 2o — ) > 0
n=0 n=0
and thus
T+t—1 0 e
ap—ar—t = Y (an—anyr—0)2" +2" > (1 —8,0)2" = > sp7¢2"
n=0 n=T n=0
by (5) and the result follows as in the first case. O

3 A bound on the arithmetic autocorrelation of the
Legendre sequence

For ¢ = 1 the arithmetic autocorrelation of the Legendre sequence (¢,) is
easy to determine. Then

p—1

n

To— a1 =To/2 =21 =D lp12",
n=0
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No=N;+1=(p+1)/2 and thus
A(l)=1=-Alp-1). (6)
Now we deal with any 1 <t <p—1.

Theorem 2. The arithmetic autocorrelation function of the p-periodic se-
quence (€,) defined by (1) satisfies

4p3/*(log, p)*/? if r > m,
27 (4logy p + 2(m* — r?)p'? ifr <m,

A1) < {

where m = |1/41og, p—1/21og, log, p| and r = min{t,p—t} for1 <t < p—1.

Proof. By (6) and Proposition 1 we may assume 2 < ¢t < (p — 1)/2. In the
following we derive a lower bound on the number N; of ones in a period of
the p-periodic sequence (s, ;) defined by (4).

If p < 4p**(log, p)*/? or p < 2¢(4log, p + 2(m? — t2))p'/?, respectively,
then the result follows immediately since the trivial bound |A(t)| < p always
holds. Thus it is enough to prove the inequality for p'/* > 4(log, p)'/? or
p'/? > 2t(41og,y p + 2(m? — t2)), respectively.

Note that 1 < m < 1/4log, p. Take a € {0,1}. For some k and m with
0<k<mandp<n < 2passume

(gnfk’fl; £n7k71+t) = (CL, 1 - G/),
En—k—f—j = En—k—i—j-‘rt) j = Oa R k— 17 (7)
(€n7£n+t) € {07 1}2
We consider only patterns of length 4 < s = 2k +4 < 1/2log,p + 2 and
therefore we can further estimate (2) by sp'/?/2, that is
p

1/2(9s—1(o __ s—1 _
N_P|cP (2 s—=3)+2)+2° (s + 1) 1<

S 1/2
s 8
95| = 2 =P (8)

since p/* > 4(log, p)'/? or p/? > 2¢(4log, p + 2(m? — t2)), respectively.
First we assume m+1 <t < (p—1)/2. From (8) we know that (for fixed
a) the number of patterns

en—k—l ‘gn—k R gn—l ‘gn
(e ) )

n—k—1+4t én—k-{—t s En—l—&—t En-ﬁ-t
satisfying the assumptions (7) in

U Y Y A )
Ciypi1 Lligp—t - Lligp—1 by oo livop Lligop



is at least p/2%** — (k 4+ 2)p*/2. We have to distinguish between two cases.
If a =1, then (¢,_x_1,0nx-1+¢) = (1,0). The subtraction of 0 from 1
gives no carry, no matter if there was a carry in the previous step. Hence

1 if b, # b,
Spit =
0 il = .

Since there are 2" possible choices for the pattern (9) we count at least

p/2k3 — (k + 2)28+1pl/2 different p < n < 2p with s, = 1.
If a =0, then (¢,—g—1,%n—k—1+¢) = (0,1). The subtraction of 1 from 0
gives a carry, no matter if there was a carry in the previous step. Hence

1 lf gn = én—i—ta
Spt =
YN0 if b, £ .

Just as before there are 25! possible choices for the pattern (9) and so we
get at least p/28+3 — (k + 2)2++1pl/2 additional n with s, ; = 1.

Thus in total we have at least p/2"2 — (k+2)25+2p!/2 different p < n < 2p
with ¢, _,_1 7§ en—k‘—l-ﬁ-tv (én—k—‘rja En—k—l—j-‘,—t) S {(O, 0), (1, 1)} foryj=0,...,k—1
and s,; = 1.

Summing up all the contributions we get the formula

m—1 m—1
2 1 Z 27]6 p— ) Z 2k+1(k 4 2) p1/2.
4 k=0 k=0

The first sum on the right hand side of the inequality is a geometric series,

hence we have .
171 1
72 7:7_2777’171.
4= 2k 2

The second sum can be estimated by

m—1
Z 2’““(1{; +2)= m2™tt < 2™ og, p
k=0

where we used m < 1/4log, p. Thus by the definition of m we get

1
Ny > op—27"p— 2"p'? log, p
p p
> 5 = 0" (logyp)'* — " (logy p)'* = 5 — 2p* (log, p) /2.

Analogously Ny can be bounded below by

Ny > g 2p*/*(log,y p)'/?



and therefore since Ny + Ny = p
[A®)] = [No = Ni| = |p — 2N1| = [p — 2No| < 4p*/*(log, p) /2.

Now we assume 2 < t < m, that means some indices in (9) coincide and

so we have to deal with shorter patterns. From (8) we know that (for fixed a)

the number of patterns (9) satisfying the assumptions (7) in (10) is at least
p/2%H — (k+2)p'?, k<t-2

p/2k+t+2 _ k—{_;+2pl/27 E>t—1.

Similarly as before if a = 1, then

1 if €, # €y,
Spit =
P00 il = b,

and if a = 0, then
)it =y,
T 0 il # by
For each case we have 2¥"! possible choices for the pattern (9) if k < ¢ — 2
and 2!=! possible choices if & >t — 1 and thus in total we count at least
p/2k+2 . (k + 2)2k+2p1/2’ k S t— 27
/2" — (k+t+2)27 Y2 k>t -1,
different p < n < 2p with 1 # Co—1+¢, (Cnitjs bnr+i+t) € {(0,0), (1,1)}

for j=0,...,k—1and s,; = 1.
Put m’ = 2m — ¢ + 1. Summing up all the contributions we get

k=0 k=0 k=t—1
=2 =27 22— 1)+ 27 (') + (2t + B+ 2+ £ = 3))p'?
_ 122 — 27y 212 ()t — 1)? 4 5m — 42 + 11t — T)p/?
> g — 722y 92 (g2 — 4t 4 16m)p'/?
> g 9722y ot=1(9(m? — ¢2) 4 2log, p)p'/2

where we used m < 1/4log, p. Thus by the definition of m

Ny > g — 27 Y4 log, p + 2(m? — 13))p/2.



Analogously Ny can be bounded below by
No > g — 27! (4logy p + 2(m* — *))p'/?
and therefore
|A(t)| = | Ny — Ny| < 28(41og, p + 2(m? — t2))p/2.
Thus the result follows. O

4 Final remarks

For fixed 1 <t < T, Goresky and Klapper [5, 6] proved that the expected
arithmetic autocorrelation, averaged over all binary sequences of period T,
is

T

Sequences with ideal arithmetic autocorrelation equal to zero for all nontrivial
shifts ¢ are known, see [4]. However, the maximum absolute value of the
(classical) autocorrelation of these so-called ¢-sequences equals the period
since the second half of a period is the bit-wise complement of the first
half [4, Proposition 1]. Hence, these sequences are far away from looking
random. In contrast to these sequences, the Legendre sequence of (almost)
perfect (classical) autocorrelation still guarantees a rather small arithmetic
autocorrelation with respect to its period p if p is sufficiently large.

The following table of maximum absolute values of the arithmetic au-
tocorrelation of the Legendre sequence of period p for all primes p < 150
may lead to the conjecture that it is bounded by p'/? In p which we actually
checked for all primes p < 1000:

P 3 5 7 11 13 17 19 23 29 31 37 41
max [A()) [ 1 3 3 5 7 7 9 9 7 13 15 15
1<t<p

p7Inp] | 1 3 5 7 9 11 12 15 18 19 21 23
p 43 47 53 59 61 67 71 73 79 83 89 97
wmax [A(F)] [ 17 15 13 17 15 17 17 13 23 21 21 27
St<p

[p7Inp] | 24 26 28 31 32 34 35 36 38 40 42 45
p 101 103 107 109 113 127 131 137 139 149

max [A(f)][ 21 23 23 21 25 35 20 27 27 2T

SU<p

[p"?Inp] | 46 47 48 48 50 H4 55 57 58 6l




5 Conclusion

We showed that the Legendre sequence of period p has a maximal (abso-
lute value of the) arithmetic autocorrelation of order of magnitude at most
p*/*log, p. Besides many previously known nice properties including a very
small (classical) autocorrelation, this is another desirable feature of pseudo-
randomness (for sufficiently large p).
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