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Abstract

The Legendre sequence possesses several desirable features of pseudorandom-
ness in view of different applications such as a high linear complexity (profile)
for cryptography and a small (aperiodic) autocorrelation for radar, gps, or
sonar. Here we prove the first nontrivial bound on its arithmetic autocorrela-
tion, another figure of merit introduced by Mandelbaum for error-correcting
codes.
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1 Introduction
For a prime p > 2 let (`n) be the Legendre sequence defined by

`n =

1 if
(

n
p

)
= 1,

0 otherwise,
n ≥ 0, (1)

where
(

.

.

)
is the Legendre symbol. Obviously, (`n) is p-periodic.

The Legendre sequence satisfies several desirable features of pseudoran-
domness. For example, Turyn [13] proved that it has a high linear complexity,
see also [3] and [1, Chapter 9.3]. It also provides a high linear complexity pro-
file, see [12, Theorem 9.2]. It is well known (see [10], [11]) that the (periodic)
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autocorrelation of the Legendre sequence is two-valued or three-valued,

p−1∑
n=0

(−1)`n+`n+t =

p if t = 0,
−1−

(
t
p

) (
1 + (−1) p−1

2
)

if 1 ≤ t ≤ p− 1,

depending on whether p ≡ 3 (mod 4) or p ≡ 1 (mod 4), and that the abso-
lute value of the aperiodic autocorrelation

M−1∑
n=0

(−1)`n+`n+t

is of order of magnitude at most p1/2 log p for 1 ≤ t ≤ p−1 and 1 ≤M ≤ p−1.
Moreover, Mauduit and Sárközy [9] studied correlations of higher order. Ding
[2] studied the pattern distribution of the Legendre sequence. More precisely,
for i0, i1, . . . , is−1 ∈ {0, 1} and 0 < d1 < d2 < . . . < ds−1 < p, put

N = |{0 ≤ n ≤ p− 1 : `n = i0, `n+d1 = i1, . . . , `n+ds−1 = is−1}|.

In [2, Proposition 2] Ding proved that
∣∣∣∣N − p

2s

∣∣∣∣ ≤ p1/2(2s−1(s− 3) + 2) + 2s−1(s+ 1)− 1
2s

. (2)

In this article we study a different notion of autocorrelation, the arith-
metic autocorrelation introduced by Mandelbaum [8]. Also, see the recent
monograph by Goresky and Klapper [7] for more background and results on
arithmetic correlations. Sequences with small arithmetic autocorrelation can
be used to define codes over the integers (instead of finite fields) that can
correct many errors. For an eventually T -periodic binary sequence (sn) with
preperiod T0, that is sn+T = sn for all n ≥ T0, the imbalance Z(sn) is defined
by

Z(sn) = N0 −N1,

where
Ni = |{T0 ≤ n ≤ T0 + T − 1 : sn = i}|, i = 0, 1.

The arithmetic autocorrelation function A(t) of a (purely) T -periodic binary
sequence (an) is defined as follows. For t ∈ {1, 2, . . . , T − 1} let (an+t) be the
shift of (an) by lag t. Put

xt =
T−1∑
n=0

an+t2n and αt =
∞∑

n=0
an+t2n, 0 ≤ t < T. (3)
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Note that with respect to the 2-norm of Q, that is

|x|2 = 2−k if x = 2ku

v
∈ Q \ {0} with odd u and v,

the geometric series ∑∞n=0 x
n converges for any even integer x to

∞∑
n=0

xn = − 1
x− 1 , |x|2 < 1.

In particular we have ∑∞n=0 2n = −1, or more general
∞∑

n=0
2nk = − 1

2k − 1 , k = 1, 2, . . .

and therefore we get

αt =
T−1∑
n=0

an+t2n
∞∑

m=0
2mT = − xt

2T − 1 , 0 ≤ t < T.

We write

α0 − αt =
∞∑

n=0
sn,t2n (4)

with unique sn,t ∈ {0, 1}.
If x0 ≥ xt, note that (sn,t) is (purely) periodic with period T since

∞∑
n=0

sn,t2n = (x0 − xt)
∞∑

n=0
2nT .

If x0 < xt, note that

0 <
T−1∑
n=0

sn,t2n = 2T +
T−1∑
n=0

(an − an+t)2n = 2T + x0 − xt < 2T ,

and thus (sn,t) is eventually periodic with period T from T on (see also
Goresky and Klapper [4, Proposition 2]) since

∞∑
n=T

sn,t2n−T = −1 +
∞∑

n=0
(an − an+t)2n = (2T − 1 + x0 − xt)

∞∑
n=0

2nT . (5)

In both cases we define
A(t) = Z(sn,t), 1 ≤ t ≤ T − 1.

For the Legendre sequence (`n) we will prove that
|A(t)| ≤ 4p3/4(log2 p)1/2, 1 ≤ t ≤ p− 1,

which is the main result of this article. For very small min{t, p−t} we improve
this bound.

We start with a preliminary result on the symmetry of the arithmetic
autocorrelation and add its proof for the convenience of the reader.
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2 Symmetry of the arithmetic autocorrelation
Proposition 1. The arithmetic autocorrelation function of a periodic binary
sequence (an) of least period T satisfies

A(t) = −A(T − t) for 1 ≤ t ≤ T − 1.

Proof. For 0 ≤ t < T , let xt and αt be defined by (3). If x0 > xt, then we
have

−2T +t <
T +t−1∑

n=0
(an − an+T−t)2n =

t−1∑
n=0

(an − an+T−t)2n − 2t(x0 − xt) < 0.

Hence,

α0 − αT−t = 2T +t +
T +t−1∑

n=0
(an − an+T−t)2n

︸ ︷︷ ︸
< 2T +t

+2t
∞∑

n=T

(1− sn,t)2n =
∞∑

n=0
sn,T−t2n

with (sn,k) defined by (4). Both (sn,t) and (sn,T−t) are (eventually) periodic
with period T from T on and the number of ones in a period of (sn,t) equals
the number of zeros in a period of (sn,T−t). Hence,

A(T − t) = Z(sn,T−t) = −Z(sn,t) = −A(t), t = 1, . . . , T − 1.

If x0 < xt, then we have

2T +t >
T +t−1∑

n=0
(an − an+T−t)2n =

t−1∑
n=0

(an − an+T−t)2n − 2t(x0 − xt) > 0

and thus

α0 − αT−t =
T +t−1∑

n=0
(an − an+T−t)2n + 2t

∞∑
n=T

(1− sn,t)2n =
∞∑

n=0
sn,T−t2n

by (5) and the result follows as in the first case.

3 A bound on the arithmetic autocorrelation of the
Legendre sequence

For t = 1 the arithmetic autocorrelation of the Legendre sequence (`n) is
easy to determine. Then

x0 − x1 = x0/2 = x1 =
p−1∑
n=0

`n+12n,
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N0 = N1 + 1 = (p+ 1)/2 and thus

A(1) = 1 = −A(p− 1). (6)

Now we deal with any 1 ≤ t ≤ p− 1.

Theorem 2. The arithmetic autocorrelation function of the p-periodic se-
quence (`n) defined by (1) satisfies

|A(t)| ≤

4p3/4(log2 p)1/2 if r > m,

2r(4 log2 p+ 2(m2 − r2))p1/2 if r ≤ m,

wherem = b1/4 log2 p−1/2 log2 log2 pc and r = min{t, p−t} for 1 ≤ t ≤ p−1.

Proof. By (6) and Proposition 1 we may assume 2 ≤ t ≤ (p − 1)/2. In the
following we derive a lower bound on the number N1 of ones in a period of
the p-periodic sequence (sn,t) defined by (4).

If p ≤ 4p3/4(log2 p)1/2 or p ≤ 2t(4 log2 p + 2(m2 − t2))p1/2, respectively,
then the result follows immediately since the trivial bound |A(t)| ≤ p always
holds. Thus it is enough to prove the inequality for p1/4 > 4(log2 p)1/2 or
p1/2 > 2t(4 log2 p+ 2(m2 − t2)), respectively.

Note that 1 ≤ m ≤ 1/4 log2 p. Take a ∈ {0, 1}. For some k and m with
0 ≤ k < m and p ≤ n < 2p assume

(`n−k−1, `n−k−1+t) = (a, 1− a),
`n−k+j = `n−k+j+t, j = 0, . . . , k − 1,
(`n, `n+t) ∈ {0, 1}2.

(7)

We consider only patterns of length 4 ≤ s = 2k + 4 ≤ 1/2 log2 p + 2 and
therefore we can further estimate (2) by sp1/2/2, that is∣∣∣∣N − p

2s

∣∣∣∣ ≤ p1/2(2s−1(s− 3) + 2) + 2s−1(s+ 1)− 1
2s

≤ s

2p
1/2 (8)

since p1/4 > 4(log2 p)1/2 or p1/2 > 2t(4 log2 p+ 2(m2 − t2)), respectively.
First we assume m+ 1 ≤ t ≤ (p− 1)/2. From (8) we know that (for fixed

a) the number of patterns(
`n−k−1 `n−k . . . `n−1 `n

`n−k−1+t `n−k+t . . . `n−1+t `n+t

)
(9)

satisfying the assumptions (7) in

`p−k−1 `p−k . . . `p−1 `p . . . `2p−2 `2p−1
`t+p−k−1 `t+p−k . . . `t+p−1 `t+p . . . `t+2p−2 `t+2p−1

(10)
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is at least p/22k+4 − (k + 2)p1/2. We have to distinguish between two cases.
If a = 1, then (`n−k−1, `n−k−1+t) = (1, 0). The subtraction of 0 from 1

gives no carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if `n 6= `n+t,

0 if `n = `n+t.

Since there are 2k+1 possible choices for the pattern (9) we count at least
p/2k+3 − (k + 2)2k+1p1/2 different p ≤ n < 2p with sn,t = 1.

If a = 0, then (`n−k−1, `n−k−1+t) = (0, 1). The subtraction of 1 from 0
gives a carry, no matter if there was a carry in the previous step. Hence

sn,t =

1 if `n = `n+t,

0 if `n 6= `n+t.

Just as before there are 2k+1 possible choices for the pattern (9) and so we
get at least p/2k+3 − (k + 2)2k+1p1/2 additional n with sn,t = 1.

Thus in total we have at least p/2k+2−(k+2)2k+2p1/2 different p ≤ n < 2p
with `n−k−1 6= `n−k−1+t, (`n−k+j, `n−k+j+t) ∈ {(0, 0), (1, 1)} for j = 0, . . . , k−1
and sn,t = 1.

Summing up all the contributions we get the formula

N1 ≥
1
4

(
m−1∑
k=0

2−k

)
p− 2

(
m−1∑
k=0

2k+1(k + 2)
)
p1/2.

The first sum on the right hand side of the inequality is a geometric series,
hence we have

1
4

m−1∑
k=0

1
2k

= 1
2 − 2−m−1.

The second sum can be estimated by
m−1∑
k=0

2k+1(k + 2) = m2m+1 ≤ 2m−1 log2 p

where we used m ≤ 1/4 log2 p. Thus by the definition of m we get

N1 ≥
1
2p− 2−m−1p− 2mp1/2 log2 p

≥ p

2 − p
3/4(log2 p)1/2 − p3/4(log2 p)1/2 = p

2 − 2p3/4(log2 p)1/2.

Analogously N0 can be bounded below by

N0 ≥
p

2 − 2p3/4(log2 p)1/2
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and therefore since N0 +N1 = p

|A(t)| = |N0 −N1| = |p− 2N1| = |p− 2N0| ≤ 4p3/4(log2 p)1/2.

Now we assume 2 ≤ t ≤ m, that means some indices in (9) coincide and
so we have to deal with shorter patterns. From (8) we know that (for fixed a)
the number of patterns (9) satisfying the assumptions (7) in (10) is at least

p/22k+4 − (k + 2)p1/2, k ≤ t− 2,

p/2k+t+2 − k + t+ 2
2 p1/2, k ≥ t− 1.

Similarly as before if a = 1, then

sn,t =

1 if `n 6= `n+t,

0 if `n = `n+t,

and if a = 0, then

sn,t =

1 if `n = `n+t,

0 if `n 6= `n+t.

For each case we have 2k+1 possible choices for the pattern (9) if k ≤ t − 2
and 2t−1 possible choices if k ≥ t− 1 and thus in total we count at least

p/2k+2 − (k + 2)2k+2p1/2, k ≤ t− 2,
p/2k+2 − (k + t+ 2)2t−1p1/2, k ≥ t− 1,

different p ≤ n < 2p with `n−k−1 6= `n−k−1+t, (`n−k+j, `n−k+j+t) ∈ {(0, 0), (1, 1)}
for j = 0, . . . , k − 1 and sn,t = 1.

Put m′ = 2m− t+ 1. Summing up all the contributions we get

N1 ≥
1
4

m′−1∑
k=0

2−k

 p− 2
t−2∑

k=0
2k+1(k + 2) + 2t−2

m′−1∑
k=t−1

(k + t+ 2)
 p1/2

= p

2 − 2−m′−1p− 2(2t(t− 1) + 2t−3((m′)2 + (2t+ 3)m′ + 2 + t− 3t2))p1/2

= p

2 − 2−m′−1p− 2t−2((m′ + t− 1)2 + 5m′ − 4t2 + 11t− 7)p1/2

≥ p

2 − 2−2m+t−2p− 2t−2(4m2 − 4t2 + 16m)p1/2

≥ p

2 − 2−2m+t−2p− 2t−1(2(m2 − t2) + 2 log2 p)p1/2

where we used m ≤ 1/4 log2 p. Thus by the definition of m

N1 ≥
p

2 − 2t−1(4 log2 p+ 2(m2 − t2))p1/2.
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Analogously N0 can be bounded below by

N0 ≥
p

2 − 2t−1(4 log2 p+ 2(m2 − t2))p1/2

and therefore

|A(t)| = |N0 −N1| ≤ 2t(4 log2 p+ 2(m2 − t2))p1/2.

Thus the result follows.

4 Final remarks
For fixed 1 ≤ t < T , Goresky and Klapper [5, 6] proved that the expected
arithmetic autocorrelation, averaged over all binary sequences of period T ,
is

T

2T−gcd(t,T ) .

Sequences with ideal arithmetic autocorrelation equal to zero for all nontrivial
shifts t are known, see [4]. However, the maximum absolute value of the
(classical) autocorrelation of these so-called `-sequences equals the period
since the second half of a period is the bit-wise complement of the first
half [4, Proposition 1]. Hence, these sequences are far away from looking
random. In contrast to these sequences, the Legendre sequence of (almost)
perfect (classical) autocorrelation still guarantees a rather small arithmetic
autocorrelation with respect to its period p if p is sufficiently large.

The following table of maximum absolute values of the arithmetic au-
tocorrelation of the Legendre sequence of period p for all primes p < 150
may lead to the conjecture that it is bounded by p1/2 ln p which we actually
checked for all primes p < 1000:

p 3 5 7 11 13 17 19 23 29 31 37 41
max
1≤t<p

|A(t)| 1 3 3 5 7 7 9 9 7 13 15 15
bp1/2 ln pc 1 3 5 7 9 11 12 15 18 19 21 23

p 43 47 53 59 61 67 71 73 79 83 89 97
max
1≤t<p

|A(t)| 17 15 13 17 15 17 17 13 23 21 21 27
bp1/2 ln pc 24 26 28 31 32 34 35 36 38 40 42 45

p 101 103 107 109 113 127 131 137 139 149
max
1≤t<p

|A(t)| 21 23 23 21 25 35 29 27 27 27
bp1/2 ln pc 46 47 48 48 50 54 55 57 58 61
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5 Conclusion
We showed that the Legendre sequence of period p has a maximal (abso-
lute value of the) arithmetic autocorrelation of order of magnitude at most
p3/4 log2 p. Besides many previously known nice properties including a very
small (classical) autocorrelation, this is another desirable feature of pseudo-
randomness (for sufficiently large p).
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