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1 Introduction

In December 2013 the FWF (the Austrian science fund) granted a special
research area (SFB) on the topic ”Quasi-Monte Carlo Methods: Theory and
Applications”. This SFB—which is intended for two four-year periods and
which started work in February 2014—is coordinated by Gerhard Larcher
(speaker) and Friedrich Pillichshammer (co-speaker), both from the Johannes
Kepler University Linz. It connects ten research projects, led by Michael
Drmota (TU Vienna), Peter Grabner and Robert Tichy (both TU Graz),
Peter Hellekalek (Paris Lodron University Salzburg), Roswitha Hofer, Peter
Kritzer, Gerhard Larcher, Gunther Leobacher, Friedrich Pillichshammer (all
Johannes Kepler University Linz), and by Arne Winterhof (RICAM, Austrian
Academy of Sciences). The SFB funds make it possible to finance about 20
new Postdoc and PhD positions.

The work in this research project will be accompanied and monitored by
an international advisory board of highly renowned experts in quasi-Monte
Carlo (QMC) methods. The chair of the advisory board is Harald Niederre-
iter, who is a central figure in the field of QMC methods. In his research, he
has frequently cooperated with the project leaders for many years, and he
will thus play a central role in this SFB.

There is a variety of “big open problems” in QMC, problems partly arising
from theory, partly arising from applications. It is the aim of this SFB to
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efficiently exchange the skills of the participating research groups, to analyze
the new modern techniques in QMC and integrate them into the joint work,
to develop powerful new methods and so to contribute in an essential way to
solutions of the most challenging problems in the field. Further it will create
a center of excellence for the theory and the application of QMC-methods to
be visible world-wide.

“Quasi-Monte Carlo methods” include all methods in which most care-
fully chosen quasi-random-point sets are used to carry out simulations in the
framework of sophisticated and highly developed modeling environments, for
obtaining quantitative information in different branches of applications. The
study and development of QMC methods requires

• the generation, investigation, and analysis of distribution properties of
finite or infinite sequences in all kinds of regions;

• the development, investigation, and analysis of suitable theoretical
models on which the applications of the QMC methods are based, and
in particular the derivation of error bounds for QMC methods in these
models;

• the efficient implementation of the theoretical models and of the al-
gorithms for the generation of the (sometimes very large and high-
dimensional) quasi-random point sets, and the development of sophis-
ticated software;

• the concrete application of the QMC methods in different areas, the
discussion of the implications and of the performance of the applied
QMC methods.

Consequently, many different branches of mathematics are involved in
the comprehensive investigation and development of QMC methods, most
notably number theory, discrete mathematics, combinatorics, harmonic anal-
ysis, functional analysis, stochastics, complexity theory, theory of algorithms,
and numerical analysis. Furthermore, profound knowledge of the branches of
applications in which the QMC methods are intended to be used is necessary.
The theory and application of QMC methods is a modern and extremely
lively branch of mathematics. This is demonstrated by an enormous out-
put of research papers on this topic over the last decades, and by the great
and growing success of the series of the biannual international conferences
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on “Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing”
(MCQMC), which started in 1994 in Las Vegas and was most recently held
in Sydney in 2012 and in Leuven (Belgium) 2014.

It is the aim of this article to give a short insight into some of the most
relevant topics in QMC which will be investigated by the research groups
participating in this SFB. In Section 2 we give a very brief introduction to
the basic facts on and techniques used in QMC. In the remaining Sections
3–12 we give examples of some of the main concrete research topics studied
in the SFB.

2 Quasi-Monte Carlo methods: Basic facts

and techniques

Many quantitative problems in various fields of applications (e.g., finance,
engineering, economics, physics, medicine, biology, . . . ) involve the task of
approximately evaluating (sometimes very high dimensional) integrals. This
is particularly often the case when one has to calculate the expected value
or the variance of a random variable whose value depends on many random
sources.

The basic (quasi-) Monte Carlo approach to evaluate such integrals (say
of a function f over an s-dimensional unit-cube [0, 1]s), is, to choose N points
x1, . . . ,xN in [0, 1)s and to approximate the integral by the average value of
f at these sample points, i.e.,∫

[0,1]s
f(x) dx ≈ 1

N

N∑
n=1

f(xn).

In the pure Monte Carlo approach the N sample points are chosen (pseudo-)
randomly. In this case the expected [!] error (i.e., the difference between the
true integral value and the approximation) is essentially given by a constant
depending on f times 1/

√
N .

In QMC methods the sample point sets are chosen deterministically such
that the point sets show certain well-distribution properties, and sometimes
further structural properties, depending on the class of integrands we are
dealing with. In this case the basic error estimate is the fundamental Koksma-
Hlawka inequality (see, for example, [13, 18, 27, 30, 36]):
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∣∣∣∣∣
∫
[0,1]s

f(x) dx− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f)D∗N({x1, . . . ,xN}),

where V (f) denotes the variation of f (in the sense of Hardy and Krause) and
D∗N({x1, . . . ,xN}) denotes the star-discrepancy of the point set {x1, . . . ,xN}.
The star-discrepancy is defined as

D∗N({x1, . . . ,xN}) = sup
B

∣∣∣∣AN(B)

N
− λ(B)

∣∣∣∣ , (1)

where the supremum is taken over all axis-parallel boxes B in [0, 1)s anchored
at the origin (i.e., which are of the form B =

∏s
j=1[0, tj)), where by AN(B)

we denote the number of indices n ∈ {1, . . . , N} for which xn is contained in
B, and where λ is the s-dimensional Lebesgue measure.

For an infinite sequence S = (x1,x2, . . .) of points in [0, 1)s we denote by
D∗N(S) the star-discrepancy of the point set consisting of the first N elements
of the sequence. The sequence is called uniformly distributed if and only if
limN→∞D

∗
N(S) = 0.

So obviously one of the main tasks in the theory of QMC methods is
to analyze the discrepancy of point sets and point sequences, and to provide
point sets or point sequences with low discrepancy in a (sometimes very high-
dimensional) unit-cube. These tasks—which often lead to deep problems in
fields like number theory or combinatorics—are in the center of interest of
the SFB and in particular of the projects which will be described in short in
Sections 3, 5, 6, 8, 10 and 11 below. It is known that in every dimension s and
for all N there exist point sets {x1, . . . ,xN} ⊆ [0, 1)s with star-discrepancy

D∗N({x1, . . . ,xN})�s
(logN)s−1

N
.

Depending on the class of functions one is dealing with the particular
integration problem. However, sometimes not only distribution properties
of the point sets, but also further structural properties may play a crucial
role. To give but one example: Assume that we know that the integrand f
is periodic with period one in each coordinate and that all its partial mixed
derivatives up to order α exist and are continuous. Then it can be shown
that it is of advantage to use so-called good-lattice point sets for numerical
integration. These are point sets of the form

xn =
({
n
a1
N

}
, . . . ,

{
n
as
N

})
with n = 0, 1, . . . , N − 1, (2)
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with given integers a1, . . . , as. QMC algorithms based on good-lattice point
sets are also known as lattice rules, and they were introduced independently
by Hlawka and Korobov by the end of the 1950s.

It is known, that for all dimensions s and all N there exist a1, . . . , as ∈
{1, . . . , N}, such that the integration error for functions of the above form is
of order O((logN)sα/Nα).

This is just one classical and well-known result in this direction, and—of
course—there exists a magnitude of much more subtle integration rules in the
modern theory of QMC-methods. With the analysis and the development
of such efficient integration- (and also approximation-) rules especially the
projects described in Sections 4, 7, 8, 9 and 10 will be concerned.

Finally, the application of QMC-methods in concrete problems in most
cases needs a suitable adaptation of the methods to the problem. For ex-
ample, the integration region might not be a unit-cube but a more general
manifold (e.g., the sphere), or certain variance and variation reduction meth-
ods might have to be applied, or the special simulation problem needs point
sets with additional pseudo-random properties. With such problems espe-
cially the projects described in Sections 4, 9, 11 and 12 will be concerned.
When dealing with concrete applications in this SFB, then in almost all cases
we will work with show-case problems from mathematical finance.

In the following we will highlight some of the main topics of our research
in the SFB.

3 Subsequences of automatic sequences and

uniform distribution

This project part is led by Michael Drmota and it aims at constructing
uniformly distributed sequences with the help of proper subsequences of au-
tomatic sequences.

Automatic sequences are sequences t(n) on a finite alphabet that are the
output of a finite automaton. The Thue-Morse sequence T (n) = s2(n) mod 2
is one of the most prominent examples of an automatic sequence. (Here and
in what follows sq(n) denotes the q-adic sum-of-digits function).

One of the main motivations for the research in this project part is the
recent progress on the so-called Gelfond problems [19] on the prime values
and on polynomial values of the sum-of-digits function modulo m. Gelfond
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conjectured that the subsequence sq(p), where p runs through all primes,
as well as subsequences of the form sq(P (n)), where P is a polynomial
of degree greater than 1, are uniformly distributed on the residue classes
modulo m. (The cases of primes and squares of these 40 year old con-
jectures have been solved by Mauduit and Rivat [32, 33], and there is a
partial solution for polynomials by Drmota, Mauduit and Rivat [17]). Fur-
thermore, Drmota, Mauduit and Rivat [16] recently proved that the sub-
sequence T (n2) = s2(n

2) mod 2 of the Thue-Morse sequence is actually a
normal sequence, that is, every possible 0-1-block appears with the correct
asymptotic frequency. Consequently this sequence can be used to generate
a Quasi-Monte-Carlo sequence. Since automatic sequences (like the Thue-
Morse sequence) can be efficiently generated this gives rise to a completely
new efficient construction of Quasi-Monte-Carlo sequences.

Therefore the first overall goal of this sub-project is to provide a more
systematic treatment to these kinds of problems and to characterize the dis-
tributional behaviour of subsequences of automatic sequences t(n) of the form
t(P (n)) for polynomials P of degree greater than 1, t(bncc) (for c > 1), and
t(p) for primes p. It is certainly too ambitious to expect a complete solu-
tion in the general case, nevertheless we will work on (at least) the following
questions: to study t(n2), to study t(bncc) for specific non-integer c > 1, to
improve results on sq(P (n)) for polynomials, and to study t(p) for special
(e.g. invertible) automatic sequences.

The second overall goal of this sub-project is to study similar questions
for more general digital expansions like the Zeckendorff expansion that is
based on Fibonacci numbers. The Zeckendorff sum-of-digits funcion sZ(n)
is the (minimal) number of Fibonacci numbers that are needed to represent
n. It is well known that sZ(n) is uniformly distributed modulo m and that
αsZ(n) is uniformly distributed modulo 1 for irrational α. However, nothing
is known on sZ(n2) or sZ(p). It should be mentioned that sZ(n) mod m is
not an automatic sequence, nevertheless it is expected that sZ(n) has similar
distributional properties as sq(n), also regarding its subsequences.
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4 Distributing points on spheres and mani-

folds: minimal energy and designs

This project part led by Peter Grabner aims for a more detailed investigation
of point sets of minimal energy and spherical designs. Especially, estimates
for the discrepancy of such point sets are of interest; quantifying the distribu-
tion properties of such point sets is necessary for applying them to numerical
integration.

Minimal energy point sets

For a given compact manifold M ⊂ Rd+1 and a set of N distinct points
XN = {x1, . . . , xN} ⊂ M , the Riesz s-energy is defined as Es(XN) =∑

i 6=j ‖xi−xj‖−s. A configurationXN , which minimizes Es among allN -point
configurations, is called a minimal energy configuration. Several questions
are of interest in this context:

• the asymptotic behavior of the minimal energy for N →∞
• the (weak-*) limiting distribution of the measures νN = 1

N

∑N
i=1 δxi

• the discrepancy between these discrete measures and the limiting mea-
sure.

One motivation for studying this question is quite classical: how do N
mutually repelling particles distribute on a surface?

• For s = 1, d = 2 these are particles under a Coulomb potential on a
surface.
• For s → ∞ this optimization problem becomes the problem of best

packing (cf. [8]).
• The resulting point distributions for moderately large N occur in biol-

ogy (optimal phyllotaxis, viral morphology).

The case s < dim(M) can be studied by methods from classical po-
tential theory (cf. [29]). The distribution of minimal energy point sets ap-
proaches the equilibrium measure. For s ≥ dim(M) the situation changes
completely. The corresponding energy integral diverges for all probability
measures. Techniques from geometric measure theory could be applied in
[21] to show that the limiting distribution µ

(s)
M of the minimal energy distri-

butions is normalized dim(M)-dimensional Hausdorff measure on M , if M is
rectifiable.
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In [21] it was shown that for s > d the minimal energy of an N point
subset XN on a d-dimensional rectifiable manifold behaves like

Cs,d
Hd(M)s/d

N1+s/d,

where Hd denotes the d-dimensional Hausdorff measure. For s tending to
infinity, C

1/s
s,d has a limit that is related to the best-packing constant.

Spherical designs

A spherical t-design is a finite set of points X ⊂ Sd such that

1

#X

∑
x∈X

p(x) =

∫
Sd
f(x) dσ(x)

for all polynomials p of degree ≤ t, where σ denotes the normalized surface
measure on Sd (cf. [10]). In [10] a lower bound of order td could be given,
which was shown to be only attained for small values of t. Only recently, it
could be shown that O(td) points suffice to obtain a t-design (cf. [4]).

5 Arithmetic primitives for uniform distribu-

tion modulo 1

The setting underlying this subproject led by Peter Hellekalek is the fol-
lowing. We are given three mathematical objects: X, ω, and f , where X
is a nonempty set, ω = (xn)n≥0 is a sequence in X, and f : X → C is a
function on X. Suppose that X and f are such that I(f) =

∫
X
f is de-

fined. It is a fundamental property of any notion of uniformly distributed
(u.d.) sequences in X that, for a given u.d. sequence ω, the sample means
SN(f, ω) = (1/N)

∑N−1
n=0 f(xn) converge to the expectation I(f) if the sample

size N increases to infinity, for all functions f in a suitable function class F
defined on X.

The above notions call for an appropriate structure on X. Integration
requires a measure space structure on X. The concept of u.d. sequences in
X leads to the need for construction methods for such sequences, which, in
their turn, demand arithmetics on X. If we also want to use some kind of
harmonic analysis to study the difference between SN(f, ω) and I(f), a short
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study of [25] will convince the reader that a (compact abelian) topological
group X is a suitable mathematical environment.

In this subproject of the SFB, we start our research on the s-dimensional
torus (R/Z)s, which we represent by the compact abelian group X = [0, 1)s

with addition modulo one. For a given sequence ω in [0, 1)s, it is clearly
important to measure the uniform distribution of ω. The best known figures
of merit employed for this task are discrepancy and diaphony (see [18, 27,
36]). During the recent years, many other figures of merit for u.d. sequences
have been developed and relations to extremal integration errors in certain
function spaces have been established (see, for example, [12, 13]).

The first goal of this project is to find a unifying general concept for these
figures of merit. We will study a generalized version of the spectral test, which
is a concept based on so-called convergence determining classes of functions.
Examples are the trigonometric functions and the Walsh functions. The
methods and results developed in [9, 22, 23, 24] will serve as starting points.

The second goal concerns the construction of finite and infinite sequences
on the s-torus with good uniform distribution behavior. We will employ
the arithmetical structure of the b-adic numbers Qb in a new construction
method that is related to the method of good lattice points (see [36, 46]) and
to some duality principles (see [37, 45]).

The third goal is about arithmetic primitives. In the construction prin-
ciples behind cryptographic primitives and behind pseudo-random number
generators, the iteration of a given update function f : S → S on a finite state
space S plays a central role. We are interested in the question of how to de-
scribe the long-term behavior of the orbits x, f(x), f 2(x) = f(f(x)), f 3(x), . . .
of a given point x ∈ S in dependence of certain properties of f . What are
the appropriate mathematical models to rate different update functions with
respect to their (bit-) mixing behavior? Due to the finiteness of S, there is
no asymptotics. Two different approaches to this kind of question can be
found in the survey papers [26, 44].

6 Finite-row digital sequences and related hy-

brid sequences

One main aim of this project part (which is led by Roswitha Hofer) is to
deepen the study of hybrid sequences with at least one digital component-
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sequence. Hybrid sequences are built by concatenating the components of
two or more different types of low-discrepancy sequences or in the original
idea of Spanier [48] by combining low discrepancy sequences with pseudo-
random sequences. The intentions are multiple: combining the different
structures and/or advantages of the component sequences, providing new
types of sequences, discovering new types of low-discrepancy sequences, etc.
The difficulty we face when studying the distribution of hybrid sequences
is to work out proper methods which can handle the different structures
of the component sequences. Hybrid sequences with one or more digital
component sequences appear as particularly hard-to-study. Digital sequences
are constructed by the digital method introduced in [35]. The digital method
is an algorithm that generates the nth point of the s-dimensional sequence
(xn)n≥0 by operating on the digits of n in base q and at whose heart are s
doubly infinite generating matrices. It should be emphasized here that the
distribution of the sequence is mainly determined by the specific choice of the
generating matrices and the main computational effort of the algorithm lies in
the multiplication with those matrices. In particular, for hybrid sequences so
called finite-row digital sequences, which are generated by matrices satisfying
that each matrix-row contains only finitely many nonzero entries, seem to be
promising.

This project part contains partial problems which are relevant for the in-
vestigation of hybrid sequences with at least one digital component-sequence
and which are interesting as number-theoretical problems per se. An inter-
esting problem is to determine specific relations between special generating
matrices, which for example yield certain correlations between the compo-
nents of the generated digital sequence. This problem seems to be related
to combinatorial objects such as binomial type sequences of polynomials and
generalized versions. Thereof such relations between generating matrices
are not only interesting for the investigation of hybrid sequences but may
also be interesting for efficient construction algorithms of digital sequences.
Furthermore, the current methods for investigating hybrid sequences need
information on the distribution of specific subsequences of the component
sequences. As a part of this project we want to deepen recent investigations
of subsequences of digital sequences.
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7 Approximation of integrals and functions

by new types of quasi-Monte Carlo algo-

rithms

In this project part, led by Peter Kritzer, we consider recent trends in the
theory of QMC algorithms applied to problems of integration and approxi-
mation over suitably chosen function spaces. A particular emphasis is laid
on high-dimensional problems where it is necessary to control how the error
of an algorithm depends on the dimension of the problem.

A prominent topic in this project part is that of function approxima-
tion by means of QMC (and, more generally, linear) algorithms. The basic
problem is to study classes of functions defined on a domain D ⊆ Rs which
usually can be represented by an expansion of the form

f(x) =
∑
k

f̂(k)ek(x),

where the ek form an orthonormal function system and where the coefficients
f̂(k) are given by f̂(k) =

∫
D
f(x)ek(x)dx.

The approximation algorithms considered in this project frequently work
as follows. We first choose a finite set A of indices k corresponding to the
typically large coefficients f̂(k) of the functions considered. Then, the coeffi-

cients f̂(k) are approximated by a suitably chosen QMC algorithm QN,s(f,k)
using N integration nodes. That is, we approximate f by

AN,s(f)(x) :=
∑
k∈A

QN,s(f,k)ek(x),

which makes it necessary to control both the error of a QMC integration
rule and the error of truncating the series expansion of f . The error of an
approximation algorithm AN,s is measured in, most notably, the L2 or L∞
norm. If the function class we consider is a normed space, we frequently use
the so-called worst-case error (i.e., the supremum of the error over the unit
ball of the space) as a quality criterion for approximation algorithms.

In our error analysis, we study how the error of an approximation algo-
rithm depends on two quantities: the number N of integration nodes used
in the QMC algorithm for approximating the coefficients f̂(k), and the di-
mension s of the problem. It is crucial to also include the dependence on
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the dimension, as our algorithms should ideally work for high-dimensional
problems and we would like to avoid a curse of dimensionality, i.e., we would
like to achieve an approximation error that does not depend exponentially
on s. If the latter situation occurs, we say that we can achieve tractability,
a concept that has been introduced by Woźniakowski in [52]. As outlined in
the seminal paper [47] by Sloan and Woźniakowski, one can achieve tractabil-
ity of multivariate algorithms in certain weighted function spaces, where the
influence of different groups of variables is modeled by weights.

So far, there have been numerous results on function approximation based
on QMC or related algorithms for functions in certain weighted reproducing
kernel Hilbert spaces, as for example in [11] and [28]. In these and in related
papers, functions defined on the s-dimensional unit cube [0, 1]s that can be
represented as Fourier or Walsh series are considered.

For many of the previous results, one had to make rather restrictive as-
sumptions on the function classes considered, such as smoothness or peri-
odicity assumptions. It is one of the main goals of this project to develop
approximation algorithms that also work for more general function classes
and to relax some of the restrictions we had to make until now. As first ex-
amples, it is intended to study cosine spaces of non-periodic functions defined
on [0, 1]s and Hermite spaces of functions defined on Rs.

In all problems of high-dimensional integration and approximation con-
sidered in this project, it is our goal to provide constructive algorithms.

8 Improved discrepancy estimates for various

classes of sequences

The aim of this project-part, which is led by Gerhard Larcher, is to give
improved discrepancy estimates for several types of point sequences in an
s-dimensional unit-cube, but also to give general discrepancy estimates for
whole classes of sequences.

It is the so-called “big open problem” in the theory of uniform distribution
to determine the best possible order for the discrepancy of point sets in an
s-dimensional unit-cube. As already mentioned in Section 2, it is known that
in every dimension s and for all N there exist point sets with discrepancy

D∗N �s
(logN)s−1

N
, and that in every dimension s there exist infinite point

sequences with discrepancy D∗N �s
(logN)s

N
for all N . Let us concentrate on
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infinite point sequences in the following. Examples for such sequences are
Halton sequences, or digital (t, s)-sequences in the sense of Niederreiter.

However, for s ≥ 2 it is not known until today whether the order D∗N �s
(logN)s

N
for the discrepancy of infinite sequences in the s-dimensional unit-cube

is the best possible order or not (for s = 1 it was shown by W.M. Schmidt in
1972, that the order is best possible). The corresponding best lower bound
for s ≥ 2 currently known was given by Bilyk, Lacey and Vagharshakyan in
[3]: There are positive constants cs and δs such that for every sequence S in
[0, 1)s we have

D∗N(S) > cs
(logN)s/2+δs

N

for infinitely many N ∈ N. Here δs is a positive, but very small constant
which goes to 0 for s tending to infinity.

Indeed, until now even for seemingly very simple types of two-dimensional
sequences the correct order of discrepancy is not known. A basic example
for such a sequence is the simple 2-dimensional Halton sequence in bases 2
and 3.

The Halton sequence is defined as follows: For a non-negative integer n
and an integer b ≥ 2 let n = nrb

r + nr−1b
r−1 + · · · + n1b + n0 be the base b

digit representation of n. Define the radical inverse function φb by

φb(n) :=
n0

b
+
n1

b2
+ · · ·+ nr

br+1
.

Then the 2-dimensional Halton sequence in bases 2 and 3 is given by

xn = (φ2(n), φ3(n)) for n = 0, 1, 2, . . . .

A further example is the really simple hybrid sequence

xn = (φ2(n), {n
√

2}) for n = 0, 1, 2, . . . .

For both of these two simple sequences we do not know the correct order
of their discrepancy.

It is the main aim of this project part to improve—and in the best case
to find the correct order of—the upper and lower discrepancy bounds of
frequently used sequences like Halton sequences, digital (t, s)-sequences in
the sense of Niederreiter, and of certain types of hybrid sequences.
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9 Adapting QMC algorithms to the simula-

tion problem

The project, which is led by Gunther Leobacher, is located at the interface
between QMC methods and applications in finance and natural sciences.
Hereby the main questions are how to (re-)formulate a given high-dimensional
integration problem to make it more suitable for QMC.

One of the most fruitful approaches known is to express the problem
as an expectation of a function depending on independent standard normal
variables and concatenate the function with a carefully chosen orthogonal
transform. Well known examples of general purpose transforms are provided
by the Brownian bridge construction or the principal component analysis
construction (PCA)construction of Brownian paths. More specialized or-
thogonal transforms, which take the form of the integrand into account, exist
as well. For very high-dimensional problems another important requirement
is that the transform can be computed sufficiently fast, whereby the bench-
mark is the complexity of the PCA construction for Brownian paths, with
computational cost O(n log(n)) for an n-dimensional problem. We call this
problem of finding a fast efficient orthogonal transform “FEOT problem”.

It is a curious fact that the choice of any orthogonal transform does not
make a difference for classical Monte Carlo, since for a standard normal
vector X and an orthogonal transform U we have E(f(X)) = E(f(UX)).
On the other hand we have that QMC algorithms, originally developed for
problems of moderate dimension, become more efficient if the problem can
be formulated in a way such that the integrand depends mainly on only few
of the input parameters while the others have little influence. And frequently
this can be facilitated by simply applying an orthogonal transform.

So we may consider an orthogonal transform U to be effective for the
integrand f if only a couple of input parameters of f ◦ U are important. A
classical concept for measuring the numbers of important parameters is that
of “effective dimension”, see [6], which relies on the ANOVA decomposition of
f resp. f ◦U . Thus U could be considered effective, if the effective dimension
of f ◦ U is much lower than that of f .

A modern alternative to that concept is provided by weighted norms of
reproducing kernel Hilbert spaces, as introduced in [47]. Here the integration
error of f can be bounded by the norm of f through a Koksma-Hlawka
type inequality and thus an orthogonal transform U can be considered to be

14



effective for the integrand f if the weighted norm of f ◦ U is much smaller
than that of f .

At the present the project has two main goals: 1. to find and study
suitable reproducing kernel Hilbert spaces of functions on the Rd in which
integration is tractable and 2. to find algorithms for the FEOT problem in
those spaces. A practical problem occuring is that both effective dimension
and weighted norms usually do not depend continuously on the orthogonal
transform. Thus we need to find, for example, weighted reproducing kernel
Hilbert spaces over the Rd which are invariant under orthogonal transforms
of the Rd. One additional constraint on these spaces is that they should
contain interesting functions while at the same time integration should be
defined and tractable (in the sense of Section 10).

10 Digital nets and lattice based integration

rules

In this project, led by Friedrich Pillichshammer, we analyze QMC rules based
on lattice point sets in the sense of Hlawka and Korobov (see (2)) and on
digital nets and sequences in the sense of Niederreiter [35]. As the quality
criterion we study the worst-case integration error of QMC rules in vari-
ous function spaces, a concept which comprises the notions of classical and
weighted discrepancy. We aim at finding explicit constructions of “good”
point sets and sequences and we want to study the dependence of the worst-
case error on the dimension of the problem. The following two topics are
exemplary:

Extending Roth’s general lower bound for the L2-discrepancy of finite
point sets from [43], Proinov [41] showed in 1986 that for any infinite sequence
S in [0, 1)s the Lp-discrepancy1 with p ∈ (1,∞) satisfies

Lp,N(S) ≥ cs,p
(logN)s/2

N
for infinitely many N ∈ N. (3)

Recently, together with Dick [14], we found first explicit constructions of
infinite digital sequences over the finite field F2 with L2-discrepancy of exactly

1The star-discrepancy D∗N given in (1) can be viewed as the L∞-norm of the local
discrepancy AN (B)/N − λ(B). In this sense, the Lp-discrepancy is the Lp-norm of the
local discrepancy.
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this order of magnitude, which shows that Proinov’s lower bound is best
possible for p ∈ (1, 2). For arbitary p > 2 this problem is still open and
it is one aim of this project part to find explicit constructions of infinite
sequences whose Lp-discrepancy matches the lower bound (3). (We remark
that for finite point sets the problem has already been solved by Chen and
Skriganov [7] for p = 2 and by Skriganov [45] for arbitrary p ∈ (1,∞).)

Classical theories study the dependence of the integration error of QMC
rules on the number N of underlying integration nodes. Depending on the
smoothness of the integrands, described by a certain parameter α, one can
typically achieve an error convergence of the form O((logN)κs,α/Nα) for finite
smoothness or even O(e−csN

Bs
) for infinite smoothness. E.g., for functions

on [0, 1]s with finite mixed partial derivatives up to order one, the worst-case
integration error is related to the star-discrepancy of the integration nodes
which can be of order O((logN)s−1/N). Such convergence rates are excellent
in an asymptotic sense when N grows to infinity. However, if we still con-
sider the star-discrepancy, the function N 7→ (logN)s−1/N is increasing for
N ≤ es−1. But already for moderately large dimensions s (e.g., in the hun-
dreds) the value es−1 is too large to use point sets of cardinality N > es−1 in
practical applications. This means that we need to analyze the error bounds
of QMC rules also with respect to their dependence on the dimension s.
This is systematically done by studying the so-called information-complexity
N(ε, s), which is the number of nodes required in order to reduce a certain
initial error in dimension s by a factor of ε, where ε ∈ (0, 1). Problems for
which N(ε, s) grows exponentially in s or ε−1 are called intractable and this
is exactly what we want to avoid. If, on the other hand, the information-
complexity is bounded polynomially in s and ε−1, we speak of polynomial
tractability. The subject of tractability for multivariate problems has been
introduced by Woźniakowski [52] in 1994. It is a further aim of this project
part to study tractability properties for various function spaces and to present
explicit constructions of point sets which can achieve tractability. We think
that lattice point sets and digital nets and sequences are good candidates for
this as well. Following a recent stream of research, we also study the case of
infinite smoothness.
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11 Diophantine equations, discrepancy and

finance

In the analysis of QMC-methods probabilistic methods can be used to inves-
tigate the typical behavior of the distribution properties of sequences. An
interesting class of sequences, because of its importance in Fourier analy-
sis and in probabilistic number theory, is the class of lacunary sequences
(nkx)∞k=1 for x ∈ R, where (nk) is exponentially growing: nk+1/nk ≥ q > 1.
Answering a question of P. Erdős, Walter Philipp (1975) proved a “bounded”
law of the iterated logarithm (LIL) for the discrepancy2 of such sequences:

1

8
≤ lim sup

√
N

2 log logN
DN (nkx) ≤ C(q) (4)

for almost all x (in the sense of Lebesgue measure on R) with a constant
C(q) depending on the growth rate q; see for instance [18]. Note that if (ξk)
is a sequence of i.i.d random variables on (0, 1) then

lim sup
N→∞

√
N

2 log logN
DN(ξk) =

1

2
(5)

with probability one by Chung-Smirnov LIL. It is one aim of this subproject,
led by Robert Tichy, to investigate the “probabilistic” behavior of determin-
istic sequences. This involves various tools, mainly from Fourier analysis,
martingale inequalities and methods from Diophantine analysis such as the
theory of S-unit equations. It was for instance shown in papers by C. Aistleit-
ner, I. Berkes and R. Tichy [1, 2] that a LIL with constant 1

2
as in (2) holds

for lacunary sequences (nkx) provided that nk+1/nk = ∞ (“strongly lacu-
nary sequences”). Furthermore, this result is permutation independent, i.e.
it remains true for sequences (nσ(k)x), where σ : N → N is an arbitrary
permutation of the positive integers. In the case of “proper” lacunary se-
quences i.e. lim supk→∞

nk+1

nk
= q > 1 the situation is completely different:

the constant in the LIL depends on the growth rate q and the result is in
general not permutation invariant. Within this project the investigation will

2The discrepancy DN of a sequence is defined in the same way as the star-discrepancy
in (1) with the only difference that the supremum is extended over all axes-parallel boxes
of the form B =

∏s
j=1[uj , vj) in [0, 1)s.
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be extended to more general classes of sequences, in particular to the multi-
dimensional situation and to certain sublacunary sequences. In this context
so-called Hardy-Littlewood-Polya sequences are well-understood because of
their arithmetic structure: in this case (nk) is given as the multiplicative
semigroup generated by finitely many coprime integers and arranged in in-
creasing order. Such sequences were used by H. Furstenberg in the theory
of dynamical systems. Later W. Philipp (1994) proved a “bounded” LIL for
this class of sublacunary sequences. By Diophantine tools C. Aistleitner, I.
Berkes and R.F. Tichy obtained a permutation invariant LIL and it remains
open to extend such results to more general classes of sublacunary sequences
and to other kinds of distribution measures. It is also one aim of this subpro-
ject to apply Diophantine and probabilistic tools to the analysis of models
in financial mathematics.

12 On the hierarchy of measures of pseudo-

randomness

This project part deals with the analysis of pseudorandom numbers in view
of several different application areas. It is led by Arne Winterhof.

Pseudorandom numbers are generated by deterministic algorithms and
are not random at all. However, in contrast to truly random numbers they
guarantee certain randomness properties. Their desirable features depend
on the application area. For example, uniformly distributed sequences of
pseudorandom numbers are needed for Monte Carlo methods, unpredictable
sequences for cryptography, and uncorrelated sequences for wireless commu-
nication or radar. Some corresponding quality measures are discrepancy for
uniform distribution, linear complexity for unpredictability, and autocorre-
lation.

The main goal of this project is finding relations between different mea-
sures of pseudorandomness. For example, the linear complexity provides
essentially the same quality measure as certain lattice tests coming from the
area of Monte Carlo methods, see [15, 38]. Moreover, the paper [31] stud-
ies links between uniformly distributed pseudorandom sequences (xn) of real
numbers in [0, 1) and the pseudorandom binary sequences (en) defined by
en = 0 if xn < 1/2 and en = 1 otherwise. It is proved that good pseudo-
random [0, 1) sequences induce binary sequences that have small correlation
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measures. The correlation measure of order k is a rather general measure of
pseudorandomness introduced by Mauduit and Sárközy [34]. A relation be-
tween linear complexity and the correlation measure of order k is given in [5].
Hence, we may very roughly say that discrepancy is a stronger measure than
the correlation measure which is a stronger measure than linear complexity.
There are many other related measures of pseudorandomness for sequences,
see [20, 42, 49], and we want to analyze their hierarchy. In this hierarchy
we may also include measures for cryptographic functions. For example, a
small correlation measure of order k of a binary sequence guarantees a high
nonlinearity and algebraic degree of a corresponding Boolean function [40],
which is necessary to avoid some cryptanalytic attacks.

Moreover, we try to find explicit sequence constructions which separate
the hierarchy classes and have excellent behaviour under the strongest mea-
sures. A focus is put on uniformly distributed sequences derived from dynam-
ical systems, see the survey [50], hybrid sequences, sequences defined using
characters of finite fields, and interleaved sequences. We will also study re-
lations to emergent areas as coding theory, biology, or quantum computing.

Our main tools are from analytic number theory, in particular, exponen-
tial sum or character sum techniques. For recent surveys on character sums
and their applications see [39, 51]. However, we also use very new techniques
for example from additive combinatorics.
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[34] C. Mauduit and A. Sárközy. On finite pseudorandom binary sequences.
I. Measure of pseudorandomness, the Legendre symbol. Acta Arith.,
82(4):365–377, 1997.

[35] H. Niederreiter. Point sets and sequences with small discrepancy.
Monatsh. Math., 104:273–337, 1987.

[36] H. Niederreiter. Random number generation and quasi-Monte Carlo
methods, volume 63 of CBMS-NSF Regional Conference Series in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1992.

[37] H. Niederreiter and G. Pirsic. Duality for digital nets and its applica-
tions. Acta Arith., 97(2):173–182, 2001.

22



[38] H. Niederreiter and A. Winterhof. Lattice structure and linear complex-
ity of nonlinear pseudorandom numbers. Appl. Algebra Engrg. Comm.
Comput., 13(4):319–326, 2002.

[39] A. Ostafe and A. Winterhof. Some applications of character sums. In
Gary L. Mullen and Daniel Panario, editors, Handbook of finite fields,
pages 170–184. Boca Raton, FL: CRC Press, 2013.

[40] G. Pirsic and A. Winterhof. Boolean functions derived from pseudo-
random binary sequences. In Sequences and their applications—SETA
2012, volume 7280 of Lecture Notes in Comput. Sci., pages 101–109.
Springer, Heidelberg, 2012.
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