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Abstract

Let G be a finite group, and assume that G has an automorphism of order at least
ρ|G|, with ρ ∈ (0, 1). We prove that if ρ > 1/2, then G is abelian, and if ρ > 1/10,
then G is solvable, whereas in general, the assumption implies [G : Rad(G)] ≤ ρ−1.78,
where Rad(G) denotes the solvable radical of G. We also prove analogous results for
a larger class of self-transformations of finite groups, so-called bijective affine maps.
Furthermore, we provide two results of independent interest: an upper bound on
element orders in the holomorph of a finite group, and that every bijective affine
map of a finite semisimple group has a cycle of length equal to the order of the map,
extending a theorem of Horoševskĭı.

1 Introduction

1.1 Motivation and main results

Many authors have studied finite groups satisfying “extreme” quantitative conditions
of various kinds. We mention the following examples: A variety of papers deals with
finite groups in which some automorphism raises some minimum fraction of elements
to the e-th power for e = −1, 2, 3, see [20, 21, 15, 16, 17, 18, 22, 4, 27, 9]. Wall
classified the finite groups G having more than 1

2 |G|−1 involutions [26], and this was
extended to a classification of those G with more than 1

2 |G| − 1 subgroups of prime
order by Burness and Scott [2].

For a finite group G and e ∈ {−1, 2, 3}, let us denote by le(G) the maximum
fraction of elements of G which a single automorphism of G can raise to the e-th
power. The uniting “philosophy” behind the aforementioned results on le is that a
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finite group G for which le(G) is “large enough” is abelian or at least “not too far”
from being abelian. For instance, considering the case e = −1, it was observed by
Miller in 1929 that a finite group G with l−1(G) > 3/4 is abelian [20], and in 1972,
Liebeck and MacHale classified the finite groups G with l−1(G) > 1/2 [15], proving
in particular that the nonabelian ones are all either nilpotent of class 2 or have an
abelian subgroup of index 2. In 1988, Potter proved that l−1(G) > 4/15 implies that
G is solvable [22], and in 2005, Hegarty showed that the derived length of a finite
solvable group G with l−1(G) ≥ ρ for some ρ ∈ (0, 1) is bounded from above in terms
of ρ [9].

The main purpose of this paper is to study finite groups that may be viewed
as “extreme” with respect to their maximum automorphism order, considering con-
ditions on finite groups G of the form “G has an automorphism of order at least
ρ|G|” and deriving results that are similar in spirit to those mentioned in the last
paragraph. Our main results are as follows:

Theorem 1.1.1. Let G be a finite group.
(1) If G has an automorphism of order greater than 1

2 |G|, then G is abelian.
(2) If G has an automorphism of order greater than 1

10 |G|, then G is solvable.
(3) For any ρ ∈ (0, 1), if G has an automorphism of order at least ρ|G|, then

[G : Rad(G)] ≤ ρE1, with E1 = (log60(6)− 1)−1 = −1.7781 . . ..

Remark 1.1.2. (1) Theorem 1.1.1(1) is a strengthening of [1, Theorem 1.1.7], where
abelianity of G was derived under the stronger assumption that G has an automor-
phism cycle of length larger than 1

2 |G|.
(2) Horoševskĭı proved that in a nontrivial finite group G, the maximum order

of an automorphism is bounded from above by |G| − 1 (in particular, the maximum
automorphism order of a finite group G can always be written as ρ(G) · |G| with
0 < ρ(G) ≤ 1), and that this upper bound is attained if and only if G is elementary
abelian [11, Theorem 2].

(3) Horoševskĭı also extensively studied automorphisms α of finite groups having
a cycle of length ord(α) (following the terminology in [7], such cycles will be referred
to as regular). One of the results he obtained is that every automorphism of a finite
nilpotent group has a regular cycle [11, Corollary 1]. In view of this, our Theorem
1.1.1(1) and [1, Corollary 1.1.8], one obtains a classification of those pairs (G,α)
where G is a finite group and α an automorphism of G of order larger than 1

2 |G|.
(4) The constants 1

2 and 1
10 in Theorem 1.1.1(1,2) are both optimal, as it is easy

to check that finite dihedral groups D have automorphisms of order 1
2 |D|, and that

the alternating group A5 has an automorphism of order 6 = 1
10 |A5|.

In [1], the author introduced and studied a class of self-transformations of finite
groups extending the class of endomorphisms, so-called (left-)affine maps; these are
maps of the form Ax,ϕ : G → G, x 7→ xϕ(g) for some fixed element x ∈ G and
endomorphism ϕ of G; note that Ax,ϕ is bijective if and only if ϕ is an automorphism
of G. The study of such maps was motivated by the auxiliary result [1, Lemma 2.1.3],
whose main morale is that for any finite group G, any automorphism α of G and any
α-invariant normal subgroup N of G, every cycle length of α is the product of some
cycle length of α̃, the automorphism of G/N induced by α, and some cycle length of
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a bijective affine map of N . Here, we continue our study of (bijective) affine maps
by proving the following analoga to Theorem 1.1.1(2,3):

Theorem 1.1.3. (1) Let G be a finite group such that some bijective affine map of
G has order greater than 1

4 |G|. Then G is solvable.
(2) Let ρ ∈ (0, 1) and let G be a finite group such that some bijective affine map of

G has order at least ρ|G|. Then [G : Rad(G)] ≤ ρE2, with E2 = (log60(30)− 1)−1 =
−5.9068 . . ..

Remark 1.1.4. (1) As was already observed in [1], it follows from the observations
in [23, p. 37] that the bijective affine maps of a group G form a subgroup Aff(G) of
the symmetric group on G, and denoting the holomorph of G by Hol(G), the map
Hol(G)→ Aff(G), (x, α) 7→ Ax,α, is an isomorphism. Hence Theorem 1.1.3(1,2) may
be interpreted as giving restrictions on the structure of a finite group G based on
lower bounds on maximum element orders in Hol(G).

(2) There is no analogon to Theorem 1.1.1(1) for bijective affine maps. Indeed, it
is easy to check that for the dihedral group D2n = 〈r, s | rn = s2 = 1, srs−1 = r−1〉,
n ≥ 3, the bijective affine map As,α, where α maps r 7→ r, s 7→ sr, moves all elements
of D2n in one large cycle. In particular, D2n, in spite of its nonabelianity, even has a
bijective affine map of order 1 · |D2n |.

(3) The constant 1
4 appearing in Theorem 1.1.3 is optimal, as A5 has a bijective

affine map of order 15 = 1
4 |A5|.

Finally, we remark that the proofs of all our main results except for Theorem
1.1.1(1) make use of the classification of finite simple groups (CFSG).

1.2 Outline

In Section 2, we prove our first and only CFSG-free main result, Theorem 1.1.1(1).
The proof is elementary, but builds up on results from [11] and [1].

Section 3 is dedicated to the presentation of some more elementary tools, some
already found in the literature, some new, for proving the other main results. More
precisely, Subsection 3.1 consists of lemmata giving some more insight into possible
orders of automorphisms and bijective affine maps of finite groups. In Subsection
3.2, we provide upper bounds on element orders in wreath products. For the readers’
convenience, we also briefly recall some important facts on finite semisimple groups
and on Landau’s and Chebyshev’s function in Subsections 3.3 and 3.4 respectively.
Finally, in Subsection 3.5, we prove that every bijective affine map of a finite semisim-
ple group has a regular cycle, extending a theorem of Horoševskĭı which asserts this
for automorphisms.

In Section 4, we will make use of the tools from Section 3 as well as results from
[8] to provide some upper bounds on maximum automorphism and bijective affine
map orders of finite semisimple groups. Most of the section consists of the proof
of a lemma, Lemma 4.1, asserting such bounds for automorphism groups of finite
nonabelian characteristically simple groups and to which the more general bounds
can be reduced. How these bounds relate to our main results will become clear in
Section 6 in view of results and ideas from Section 5, and readers wishing for a
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motivation before studying the rather laborious proof of Lemma 4.1 (which uses the
CFSG) may skip it on a first reading.

In Section 5, we first establish a general lemma bounding [G : Rad(G)] in finite
groups G with f(G) bounded away from zero for a “sufficiently well-behaved” (see
the properties listed in Definition 5.1.1) function f from the class of finite groups
into the interval [0,∞). This is the content of Subsection 5.1. In Subsection 5.2, we
will give some nontrivial examples of “well-behaved” functions f . We will actually
prove a little more than what is needed for the proof of our main results (see Remark
5.2.10), but the additional work will also result in an upper bound on the maximum
element order of the holomorph of a finite group (see Theorem 5.2.5) which is of
independent interest.

In Section 6, we finally prove the remaining main results, and Section 7 gives
some outlook on possible future research.

1.3 Notation and terminology

We denote by N the set of natural numbers (von Neumann ordinals, including 0),
and by N+ the set of positive integers. The image of a set M under a function f
is denoted by f [M ]. The identity function on a set M is denoted by idM , and SM
usually denotes the symmetric group on M , except when M is a natural number n,
in which case Sn is understood as S{1,...,n}. Similarly, for a natural number n, An is
the alternating group on {1, . . . , n}. The set of fixed points of a permutation σ over
some set is denoted by fix(σ), and the cycle length of a point x under σ by clσ(x).

For a prime p and a ∈ N+, we denote by νp(a) the p-adic valuation of a, and for
a prime power q, the finite field with q elements is denoted by Fq.

Let G be a group. For an element r ∈ G, we denote by τr : G → G, g 7→ rgr−1

the inner automorphism of G with respect to r. The centralizer and normalizer of
a subset X ⊆ G are denoted by CG(X) and NG(X) respectively. As in Theorem
1.1.1, Rad(G) denotes the solvable radical of G. We denote the derived length of
a solvable group G by dl(G). The term “semisimple group” will always denote a
group without nontrivial solvable normal subgroups. We will also frequently use the
following notation from [1] and [8]:

Definition 1.3.1. (1) Let ψ be a permutation of a finite set X. We denote by Λ(ψ)
the maximum length of one of the disjoint cycles into which ψ decomposes, and set
λ(ψ) := 1

|X|Λ(ψ).

(2) For a finite group G, we set Λ(G) := maxα∈Aut(G) Λ(α) and λ(G) := 1
|G|Λ(G).

(3) For a finite group G, the group of bijective left-affine maps of G is denoted by
Aff(G). We set Λaff(G) := maxA∈Aff(G) Λ(A) and λaff(G) := 1

|G|Λaff(G).

(4) For a finite group G, we denote by meo(G) the maximum element order of G
and set mao(G) := meo(Aut(G)), the maximum automorphism order of G, as well
as maffo(G) := meo(Aff(G)), the maximum order of a bijective affine map of G.

Finally, in this paper, exp mostly denotes the exponent of a group, although in
the definition of Ψ in Subsection 3.4, it denotes the natural exponential function. log
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always denotes the natural logarithm, and for c > 1, the logarithm with base c is
denoted by logc.

2 On the proof of Theorem 1.1.1(1)

The proof of this main result will use the following simple observation:

Lemma 2.1. Let G be a finite group, α an automorphism of G such that λ(α) > 1
2 .

Assume that η : G → Q is a surjective group homomorphism such that η ◦ α = η.
Then η (and thus Q) is trivial.

Proof. The assumption η ◦ α = η implies that g−1
1 g2 ∈ ker η whenever g1, g2 ∈ G lie

on the same cycle of α. Since α has a cycle of length greater than 1
2 |G| by assumption,

it follows that | ker η| > 1
2 |G|, whence ker η = G by Lagrange’s theorem, and we are

done.

Proof of Theorem 1.1.1(1). Fix an automorphism α of G such that ord(α) > 1
2 |G|.

We prove that G is abelian by induction on |G|. For the induction step, observe that
G cannot be semisimple, since otherwise, by [11, Theorem 1], α would have a regular
cycle and hence G would be abelian by [1, Theorem 1.1.7], a contradiction.

Following the argument in [11, proof of Theorem 2], we fix a minimal α-invariant
elementary abelian normal subgroup B of G. We may of course assume that B is
proper in G. Denote by α̃ the induced automorphism of G/B, set m := ord(α̃),
n := ord(α|B), and denote by C the set of fixed points of αm in B. Horoševskĭı
proceeded to show that either C = {1} or C = B (by minimality of B) and to derive
upper bounds on ord(α) in both cases, which imply that ord(α) ≤ m · |G/B| in any
case and thus m ≥ ord(α)/|G/B| = |B| · ord(α)/|G| > 1

2 |B|, whence G/B is abelian
by the induction hypothesis.

In particular, we have G′ ≤ B and λ(α̃) > 1
2 by [11, Corollary 1]. Consider

the homomorphism ϕ : G → Aut(B) corresponding to the conjugation action of G
on B. Since B is abelian, we have B ≤ ker(ϕ), and so there is a homomorphism
ϕ : G/B → Aut(B) such that ϕ ◦ πB = ϕ, where πB : G → G/B is the canonical
projection.

Now the kernel of ϕ consists by definition of those πB(g) ∈ G/B such that gB ⊆
CG(B). Clearly, since B is α-invariant, so is CG(B), and thus ker(ϕ) is α̃-invariant.
It follows that there exists an automorphism α on the image ϕ(G/B) ≤ Aut(B) such
that the following diagram commutes:

G/B G/B

ϕ(G/B) ϕ(G/B)

α̃

ϕ ϕ

α

By this definition of α, it is clear that ord(α) | ord(α̃) = m. We now give an
alternative definition of α. The element ϕ(gB) ∈ ϕ(G/B), which is by definition the
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restriction of conjugation by g to B, is mapped by α to α(ϕ(gB)) = ϕ(α̃(gB)) =
ϕ(α(g)B), which is the restriction of conjugation by α(g) to B. But this implies that
α is the restriction of conjugation by α|B in Aut(B) to its subgroup ϕ(G/B). In
particular, ord(α) | ord(α|B) = n.

We now distinguish two cases. First, assume that B is cyclic. Then Aut(B) is
abelian, and so by the second definition of α, it is clear that α = idϕ(G/B). By Lemma
2.1, this implies that ϕ is the trivial homorphism G/B → Aut(B), and by definition
of ϕ, this just means that B ≤ ζG. In particular, we have G′ ≤ ζG, whence G is
nilpotent of class 2. By [11, Corollary 1], this implies that λ(α) = ord(α) > 1

2 |G|,
and so G is abelian by [1, Theorem 1.1.7].

Now assume that B ∼= (Z/pZ)n for some prime p and n ≥ 2. By the argument in
[11, proof of Theorem 2], if C = B, we have ord(α) ≤ m · p ≤ |G/B| · 1

p |B| = 1
p |G|,

a contradiction. Hence C = {1}, whence by [11, Lemma 3a], we have ord(α) =
lcm(m,n). If gcd(m,n) > 1, it follows that ord(α) ≤ 1

2 ·m ·n ≤
1
2 · |G/B| · |B| =

1
2 |G|,

a contradiction. Therefore, gcd(m,n) = 1, which implies that α = idϕ(G/B). Now
repeat the argument from the first case to conclude the proof.

3 Some tools

3.1 Lemmata concerning orders of automorphisms and
bijective affine maps

We begin with a very simple observation. For a family (fi)i∈I , where fi : Xi → Yi,
we call the map

∏
i∈I fi :

∏
i∈I Xi →

∏
i∈I Yi, (xi)i∈I 7→ (fi(xi))i∈I , the product of

the maps fi, i ∈ I. Let us say that a family (Gi)i∈I of groups has the splitting
property if and only if every automorphism α of

∏
i∈I Gi can be written as a product

of automorphisms of the single Gi. Then the following is easy to prove:

Lemma 3.1.1. Let (G1, . . . , Gr) be a tuple of finite groups with the splitting property.
Then:

(1) mao(G1 × · · · ×Gr) ≤ mao(G1) · · ·mao(Gr).
(2) Each bijective affine map of G1×· · ·×Gr is a product of bijective affine maps of

the single Gi. In particular, we have maffo(G1×· · ·×Gr) ≤ maffo(G1) · · ·maffo(Gr).

We now provide some lemmata that are useful for the study of orders of bijec-
tive affine maps in finite groups. It turns out that the following elements play an
important role (see the remarks after Lemma 3.1.3 below):

Definition 3.1.2. Let G be a finite group, x ∈ G, α an automorphism of G, n ∈ N+.

(1) The element sh
(n)
α (x) := xα(x) · · ·αn−1(x) ∈ G is called the n-th shift of x

under α.
(2) The element shα(x) := sh

(ord(α))
α ∈ G is called the shift of x under α.

The following calculation rules for shifts are easy to show:
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Lemma 3.1.3. Let G be a finite group, x ∈ G, α an automorphism of G.
(1) α(shα(x)) = x shα(x)x−1.

(2) If d ∈ N+ is such that clα(x) | d | ord(α), then shα(x) = sh
(d)
α (x)

ordα
d .

Definition 3.1.2 is motivated by the following: Note that by the isomorphism
Hol(G)→ Aff(G) mentioned in Remark 1.1.4(1), it is clear that for all finite groups
G, all x ∈ G and all α ∈ Aut(G), we have ord(α) | ord(Ax,α). Now computing, in
Hol(G), the power (x, α)ord(α) (which is of course an element of G), one sees that this
is just the element which we called shα(x) above. Consequently, we get the following
formula for computing orders of bijective affine maps of finite groups:

ord(Ax,α) = ord(α) · ord(shα(x)).

We will also make use of this isomorphism, providing us with a natural faithful
permutation representation of Hol(G) on G, in the proof of the next lemma. When
ψ is a permutation of a finite set X and n ∈ N+, we say that an orbit O of the action
of ψ on X induces an orbit Õ of ψn (or that Õ stems from O) if and only if Õ ⊆ O,
in which case |Õ| = 1

gcd(n,|O|) |O|. Every orbit of ψ induces an orbit of ψn, and every
orbit of ψn stems from precisely one orbit of ψ.

Lemma 3.1.4. Let G be a finite group, x ∈ G, α an automorphism of G. Then every
cycle length of Ax,α is divisible by LG(x, α) := ord(shα(x)) ·

∏
p p

νp(ord(α)), where p
runs through the common prime divisors of ord(shα(x)) and ord(α). In particular,
LG(x, α) | |G|.

Proof. Every orbit of A
ord(α)
x,α , the left multiplication by shα(x) in G, has cardinality

ord(shα(x)), so certainly every cycle length of Ax,α is divisible by ord(shα(x)). In
particular, if p is a common prime divisor of ord(shα(x)) and ord(α), and O is
any orbit of Ax,α, then p | |O|, but pνp(ord(shα(x))) still divides |Õ|, where Õ is any

orbit of A
ord(α)
x,α induced by O. This is only possible if |O| actually is divisible by

pνp(ord(shα(x)))+νp(ord(α)), and the assertion follows.

Lemma 3.1.5. Let G be a finite group, x, r ∈ G. Then x−1r ∈ CG(shτr(x)). In
particular, if, for some subgroup H ≤ G, CG(shτr(x)) ⊆ H, then x ∈ H if and only
if r ∈ H.

Proof. This follows immediately from the equation r shτr(x)r−1 = τr(shτr(x)) =
x shτr(x)x−1, where the first equality is by the definition of τr and the second by
Lemma 3.1.3(1).

Lemma 3.1.6. (1) Let G be a finite centerless group, r, s ∈ G. Set x := sr−1. Then
shτr(x) = sord(r). In particular, ord(Ax,τr) = lcm(ord(s), ord(r)).

(2) Let G be any finite group, r, s ∈ G, x as in point (1). Then shτr(x) = sord(τr) ·
r− ord(τr). In particular, if gcd(ord(r), ord(s)) = 1, then ord(Ax,τr) = ord(s) · ord(r).

Proof. An easy induction on n ∈ N+ proves that in both cases, we have sh
(n)
τr (x) =

snr−n. Therefore, we have shτr(x) = sord(r) under the assumptions of point (1). This
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implies that

ord(Ax,τr) = ord(τr) · ord(shτr(x)) = ord(r) · ord(s)

gcd(ord(s), ord(r))

= lcm(ord(s), ord(r)),

proving the statement of point (1). The proof of point (2) is similar, using that
r− ord(τr) ∈ ζG and that the order of a product of two commuting elements with
coprime orders is the product of their orders.

Remark 3.1.7. Using the notation of Lemma 3.1.6, view r as fixed. Then, as s runs
through G, x = sr−1 assumes every value in G. Hence Lemma 3.1.6 provides a simple
formula for shifts of group elements under any bijective affine map Ax,α, where α is
an inner automorphism.

3.2 Upper bounds on element orders in wreath products

We will need upper bounds on meo(G) and mao(G) for finite semisimple groups G.
To this end, some bounds on orders of elements in wreath products in general come
in handy. Before formulating and proving Lemma 3.2.2 below, we introduce the
following notation and terminology:

Definition 3.2.1. Let G be a finite group, n ∈ N+, and ψ ∈ Sn.
(1) Let g = (g1, . . . , gn) ∈ Gn. For i = 1, . . . , n, we define

el
(ψ)
i (g) := gigψ−1(i) · · · gψ− clψ(i)+1

(i)
∈ G.

Alternatively, one can describe el
(ψ)
i (g) as the image of sh

(clψ(i))
τψ (g) ∈ Gn ≤ G o Sn

under the projection πi : Gn → G onto the i-th component.
(2) We denote the set of orbits of the action of ψ on {1, . . . , n} by Orb(ψ).
(3) An assignment to ψ in G is a function β : Orb(ψ) → G. For such an

assignment β, we define its order to be the least common multiple of the numbers

ord(β(O)
ord(ψ)
|O| ), where O runs through Orb(ψ).

Lemma 3.2.2. Let G be a finite group, n ∈ N+, denote by π : G o Sn → Sn the
canonical projection, and let ψ ∈ Sn.

(1) Let g = (g1, . . . , gn) ∈ Gn and consider the element x := (g, ψ) ∈ Gn o Sn =

G oSn. Then for i = 1, . . . , n, the i-th component of xord(ψ) ∈ Gn equals el
(ψ)
i (g)

ord(ψ)
clψ(i) .

(2) In particular, the maximum order of an element x ∈ G oSn such that π(x) = ψ
equals the product of ord(ψ) with the maximum order of an assignment to ψ in G
and is bounded from above by ord(ψ) ·meo(G|Orb(ψ)|).

Proof. For (1): We may assume that G is nontrivial. Fix i, and denote by πi :
Gn → G the projection onto the i-th component. It is clear that xord(ψ) = shτψ(g)
(where the shift is formed inside G o Sn and τψ is the inner automorphism of G o Sn
with respect to ψ), whence πi(x

ord(ψ)) = πi(shτψ(g)). But the i-th component of
shτψ(g) only depends on the components of g whose indices are from the orbit Oi of
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i under ψ, so if we denote by g̃ the element of Gn which has the same entries as g
in the components whose indices are in Oi but all other entries equal to 1G, we have
πi(x

ord(ψ)) = πi(shτψ(g̃)). Now note that clψ(i) is a multiple of clτψ(g̃) and a divisor
of ord(ψ) = ord(τψ), which gives us, by an application of Lemma 3.1.3(2),

πi(x
ord(ψ)) = πi(shτψ(g̃)) = πi(sh

(clψ(i))
τψ (g̃)

ord(ψ)
clψ(i) ) = πi(sh

(clψ(i))
τψ (g̃))

ord(ψ)
clψ(i)

= πi(sh
(clψ(i))
τψ (g))

ord(ψ)
clψ(i) = el

(ψ)
i (g)

ord(ψ)
clψ(i) .

For (2): For any element x ∈ G o Sn of the form (g, ψ), we have ord(x) = ord(ψ) ·
ord(xord(ψ)), where, by (1), the second factor is the least common multiple of the

numbers ord(el
(ψ)
i (g)

ord(ψ)
clψ(i) ) for i = 1, . . . , n. Fix a set R of representatives of the

orbits of ψ, which is in canonical bijection with Orb(ψ). It is not difficult to see

that if i, j ∈ {1, . . . , n} are from the same orbit under ψ, then el
(ψ)
i (g)

ord(ψ)
clψ(i) and

el
(ψ)
j (g)

ord(ψ)
clψ(j) are conjugate in G and thus have the same order, so ord(xord(ψ)) is

equal to just the least common multiple of the numbers ord(el
(ψ)
i (g)

ord(ψ)
clψ(i) ) for i ∈

R. Therefore, composing the canonical bijection Orb(ψ) → R with the function

R → G, i 7→ el
(ψ)
i (g) gives an assignment to ψ in G whose order coincides with

ord(xord(ψ)). Conversely, if any assignment β to ψ in G is given, by choosing the
components g1, . . . , gn of g such that for all O ∈ Orb(ψ) there exists i ∈ O such that
gigψ−1(i) · · · gψ− clψ(i)+1

(i)
= β(O), we can assure that ord((g, ψ)ord(ψ)) = ord(β). This

proves the claim.

3.3 Finite semisimple groups

In this subsection, for the readers’ convenience, we briefly recall some basic facts on
finite semisimple groups which we will need later, following mostly the exposition in
[23, pp. 89ff.].

Any group G has a unique largest normal centerless completely reducible sub-
group, the centerless CR-radical of G, which we denote by CRRad(G). From now on,
assume that G is finite and semisimple. Then CRRad(G) coincides with Soc(G), the
socle of G. G canonically embeds into Aut(Soc(G)) by its conjugation action (which
shows that for any finite centerless CR-group R, there are only finitely many isomor-
phism types of finite semisimple groups G such that Soc(G) ∼= R), and the image G∗

of this embedding clearly contains Inn(Soc(G)). Conversely, for every finite centerless
completely reducible (CR-)group R, any group G such that Inn(R) ≤ G ≤ Aut(R)
is semisimple with socle Inn(R) ∼= R.

If S1, . . . , Sr are pairwise nonisomorphic nonabelian finite simple groups, and
n1, . . . , nr ∈ N+, then the tuple (Sn1

1 , . . . , Snrr ) has the splitting property, i.e., we
have Aut(Sn1

1 × · · · × Snrr ) = Aut(Sn1
1 ) × · · · × Aut(Snrr ). The structure of the

automorphism groups of finite nonabelian characteristically simple groups can be
described by permutational wreath products. More precisely, Aut(Sn) = Aut(S) o Sn
for any finite nonabelian simple group S and any n ∈ N+.

9



Alexander Bors Large automorphism orders

Rose [24, Lemma 1.1] observed that, in generalization of the embedding of G
into Aut(Soc(G)) for finite semisimple groups G, if G is any group, and H a char-
acteristic subgroup of G such that CG(H) = {1G}, then G embeds into Aut(H) by
its conjugation action on H, and, viewing G as a subgroup of Aut(H), Aut(G) is
canonically isomorphic to NAut(H)(G). This implies, among other things, that auto-
morphism groups of finite centerless CR-groups are complete and that for each finite
semisimple group H, Hol(H) canonically embeds into Hol(Aut(Soc(H))).

3.4 Landau’s and Chebyshev’s function

Both Landau’s function g : N+ → N+, n 7→ meo(Sn), and Chebyshev’s function
ψ : N+ → N+, n 7→ log(exp(Sn)), are well-studied in analytic number theory. Apart
from information on their asymptotic growth behavior, explicit upper bounds are also
available. More precisely, Massias [19, Théorème, p. 271] proved that log(g(n)) ≤
1.05314 ·

√
n log(n) for all n ∈ N+, and Rosser and Schoenfeld [25, Theorem 12] that

ψ(n) < 1.03883 · n for all n ∈ N+.
The latter result translates into an exponential upper bound on Ψ := exp ◦ψ.

For n ≤ 27, the following best possible exponential bound on g(n) is sharper than
the subexponential bound by Massias, and its use will make some of our arguments
easier:

Proposition 3.4.1. For all n ∈ N+, we have g(n) ≤ 3
n
3 , with equality if and only if

n = 3.

We conclude with the following consequence of Lemma 3.2.2:

Lemma 3.4.2. (1) Let G be a finite group, n ∈ N+. Then meo(G o Sn) ≤ g(n) ·
meo(Gn).

(2) Let S be a nonabelian finite simple group, n ∈ N+. Then the inequality g(n) ·
meo(Aut(S)n) < |S|n/3 implies that mao(Aut(Sn)) < |Sn|1/3 and maffo(Aut(Sn)) <
|Sn|2/3.

Proof. For (1): This follows immediately from Lemma 3.2.2(2).
For (2): By completeness of Aut(Sn) and (1), we have

mao(Aut(Sn)) = meo(Aut(Sn)) = meo(Aut(S) o Sn) ≤ g(n) ·meo(Aut(S)n)

< |S|n/3 = |Sn|1/3,

and that

maffo(Aut(Sn)) = meo(Hol(Aut(Sn))) = meo(Aut(Sn) o Aut(Aut(Sn)))

≤ meo(Aut(Sn)) ·meo(Aut(Aut(Sn))) = meo(Aut(Sn))2

< |Sn|2/3.

10
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3.5 On regular cycles in finite semisimple groups

We already mentioned in Remark 1.1.2(3) that Horoševskĭı proved that every auto-
morphism of a finite nilpotent group has a regular cycle. He also established this
for finite semisimple groups [11, Theorem 1]. In this subsection, we will extend
Horoševskĭı’s Theorem 1 to bijective affine maps:

Theorem 3.1. Let G be a finite semisimple group. Then every bijective affine map
of G has a regular cycle.

Our proof of Theorem 3.1 is mostly an adaptation of Horoševskĭı’s proof, with the
arguments getting slightly more complicated because of the more general situation.
However, at one point, our proof differs from the one of Horoševskĭı, using the recent
result [7, Theorem 3.2] to settle one particular case. Just like Horoševskĭı, we use
the following:

Lemma 3.5.1. Let X be a finite set, ψ ∈ SX , p a prime such that p2 | ord(ψ). The
following are equivalent:

(1) ψ has a regular cycle.
(2) ψp has a regular cycle.

Proof. See [11, Lemma 1]. The assumption there that ψ (called φ there) is an auto-
morphism of a finite group is not needed.

Lemma 3.5.2. Let G be a group, B E G, A a bijective affine map of G such that
A|B = idB. Then CG(B) EG, and A induces the identity map in G/CG(B).

Proof. In general, for all x ∈ G and α ∈ Aut(G), it follows immediately from the
definition of Ax,α that Ax,α(1G) = x. Since A(1G) = 1G by assumption, A thus
actually is an automorphism of G, so the claim follows from [11, Lemma 2].

The following lemma (in which we use the “product of maps” notion from the
beginning of Subsection 3.1) is easy to prove:

Lemma 3.5.3. Let X1, . . . , Xn be finite sets, ψi, i = 1, . . . , n, a permutation of Xi

with a regular cycle. Then ψ1 × · · · × ψn has a regular cycle.

One additional simple observation which we will need is the following:

Lemma 3.5.4. Let G be a group, A = Ax,α a bijective left-affine map of G such that
fix(A) 6= ∅. Then fix(A) is a left coset of the subgroup fix(α) ≤ G.

Proof. For all g ∈ G, we have that g ∈ fix(A) if and only if xα(g) = g, or x = gα(g)−1.
Therefore, if we fix f ∈ fix(A), then fix(A) can be desribed as {g ∈ G | gα(g)−1 =
fα(f)−1} = {g ∈ G | g−1f ∈ fix(α)} = f fix(α).

Proof of Theorem 3.1. The proof is by induction on |G| with an inner induction on
ord(A). For the induction step, assume that A = Ax,α is a bijective affine map of
the finite semisimple group G. To show that A has a regular cycle, we make a case
distinction:

11
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1. Case: G is simple. This case is by contradiction, so assume that A does not have
a regular cycle. Note that by Lemma 3.5.1 and the induction hypothesis, ord(A)
then must be squarefree, say ord(A) = p1 · · · pr, with the pi pairwise distinct
primes. Since by the induction hypothesis, Api , i = 1, . . . , r, has a cycle of length
ord(Api) =

∏
j 6=i pj , but A has no regular cycle, A must also have a cycle of

length
∏
j 6=i pj . In particular, we have p2 · · · pr < |G|. Now note that by the as-

sumption that A does not have a regular cycle, we have G ⊆
⋃r
i=1 fix(A

∏
j 6=i pj ).

By Lemma 3.5.4, we have |fix(A
∏
j 6=i pj )| = | fix(α

∏
j 6=i pj )|, and so there must

exist i ∈ {1, . . . , r} such that [G : fix(α
∏
j 6=i pj )] ≤ r (otherwise, G could not be

covered by the r fixed point sets above). But since G is simple, this implies
that |G| ≤ r! ≤ p2 · · · pr < |G|, a contradiction.

2. Case: G is characteristically simple, but not simple. Let S be a nonabelian finite
simple group and n ≥ 2 such that G ∼= Sn. α is an element of the permutational
wreath product Aut(S) o Sn, i.e., α is a composition (α1 × · · · × αn) ◦ ψ, where
each αi is an automorphism of S and ψ is a permutation of coordinates on Sn.
Writing x = (x1, . . . , xn), and denoting by µx the left multiplication by x in
Sn, it follows that A = µx ◦ ((α1 × · · · × αn) ◦ ψ) = ((µx1 × · · · × µxn) ◦ (α1 ×
· · · × αn)) ◦ ψ = (Ax1,α1 × · · · × Axn,αn) ◦ ψ. This proves that A ∈ Aff(S) o Sn
(actually, we just proved that Aff(Sn) = Aff(S) o Sn). By induction hypothesis,
every permutation from Aff(S) has a regular cycle, and so by [7, Theorem 3.2],
A has a regular cycle.

3. Case: G is completely reducible, but not characteristically simple. Then there
exist r ≥ 2, pairwise nonisomorphic nonabelian finite simple groups S1, . . . , Sr
and n1, . . . , nr ∈ N+ such that G ∼= Sn1

1 × · · · × Snrr . Since (Sn1
1 , . . . , Snrr ) has

the splitting property, by Lemma 3.1.1(2), A can be written as a product of
bijective affine maps over the single Snii , each of which has a regular cycle by
the induction hypothesis, and so A has a regular cycle by Lemma 3.5.3.

4. Case: G is not completely reducible. Set B := Soc(G), and note that B is
proper in G and CG(B) = {1G}. Denote by Ã the bijective affine map of G/B
induced by A, and let k denote the cycle length of the identity element of G/B
under Ã. Set A0 := Ak. Then A0 restricts to a bijective affine map of B, so
by the induction hypothesis, A0|B has a cycle of length n := ord(A0|B); fix an
element x ∈ B such that clA0(x) = n. Now An0 acts identically in B, and thus
by Lemma 3.5.2 also in G ∼= G/CG(B). This means that n = ord(A0), and
so ord(A) ≤ k · n. But clearly, clA(x) = k · n, since k divides the cycle length
under A of any element from B. Therefore, ord(A) = k · n and A has a regular
cycle.

4 Upper bounds on mao(G) and maffo(G) for fi-

nite semisimple groups G

The main challenge of this section will be to establish the following lemma:

12
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Lemma 4.1. Let G be a finite nonabelian characteristically simple group. Then:
(1) mao(G) < |G|

1
3 , with the following exceptions:

• G ∼= PSL2(q) for some prime power q ≥ 5. In this case, mao(G) = q + 1, we

have 1
3 < log|G|(q+1) ≤ log(q+1)

log( 1
2
q(q2−1))

, and as q →∞, this upper bound converges

to 1
3 strictly monotonously from above.

• G ∼= PSL2(p)2 for some prime p ≥ 5. In this case, mao(G) = p(p+ 1), we have
1
3 < log|G|(p(p+1)) = log(p(p+1))

2·log( 1
2
p(p2−1))

, and as p→∞, this upper bound converges

to 1
3 strictly monotonously from above.

• G ∼= PSL2(p)3 for some prime p ≥ 5. In this case, mao(G) = 1
2p(p

2−1) = |G|
1
3 .

(2) maffo(Aut(G)) ≤ |G|
2
3 , with the following exceptions: G ∼= PSL2(p) for some

prime p ≥ 5. In this case, maffo(Aut(G)) = p(p+ 1), we have 2
3 < log|G|(p(p+ 1)) =

log(p(p+1))

log( 1
2
p(p2−1))

, and as p → ∞, this upper bound converges to 2
3 strictly monotonously

from above.

Note that by completeness of of Aut(G), we have mao(G) = meo(Aut(G)) =
mao(Aut(G)), so the lemma provides upper bounds on both automorphism and bijec-
tive affine map orders of automorphism groups of finite nonabelian characteristically
simple groups. Before tackling its proof, we note some important consequences.

Lemma 4.2. (1) For all finite nonabelian characteristically simple groups G, we
have that mao(G) ≤ |G|log60(6), with equality if and only if G ∼= PSL2(5) ∼= A5.

(2) For every ε > 0, we have mao(G) ≤ |G|
1
3

+ε for almost all finite nonabelian
characteristically simple groups G.

(3) For all finite nonabelian characteristically simple groups G, we have that
maffo(Aut(G)) ≤ |G|log60(30), with equality if and only if G ∼= PSL2(5) ∼= A5.

(4) For every ε > 0, we have maffo(Aut(G)) ≤ |G|
2
3

+ε for almost all finite non-
abelian characteristically simple groups G.

Proof. The statements in (2) and (4) follow immediately from Lemma 4.1. For (1),
note that by Lemma 4.1(1), we have mao(Aut(PSL2(5))) = 6 = |PSL2(5)|log60(6),
and using the strict monotonicity of the upper bounds in Lemma 4.1(1), it is not
difficult to see that this is the only case where equality holds. The proof of (3) is
analogous.

Remark 4.3. The exceptions in Lemma 4.1 show that the statements of Lemma
4.2(2,4) become false if 1

3 and 2
3 respectively are replaced by smaller constants.

The result which we will actually use in the proof of our main results is the
following:

Theorem 4.4. Let H be a finite semisimple group. Then:
(1) mao(H) ≤ |Soc(H)|log60(6).
(2) maffo(H) ≤ |Soc(H)|log60(30).

13
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Proof. Let S1, . . . , Sr be pairwise nonisomorphic nonabelian finite simple groups,
n1, . . . , nr ∈ N+ such that Soc(H) ∼= Sn1

1 × · · · × Snrr . Using the facts that Aut(H)
embeds into Aut(Soc(H)) and that (Sn1

1 , . . . , Snrr ) has the splitting property, we
conclude that

mao(H) = meo(Aut(H)) ≤ meo(Aut(Soc(H))) = mao(Soc(H))

= mao(Sn1
1 × · · · × S

nr
r ) ≤ mao(Sn1

1 ) · · ·mao(Snrr )

≤ |S1|n1 log60(6) · · · |Sr|nr log60(6) = | Soc(H)|log60(6),

where the last inequality follows from Lemma 4.2(1). This proves the inequality in
(1). For (2), we use the facts that Hol(H) embeds into Hol(Aut(Soc(H))) and that,
by completeness of Aut(Sn1

1 × · · · × Snrr ) = Aut(Sn1
1 ) × · · · × Aut(Snrr ), the tuple

(Aut(Sn1
1 ), . . . ,Aut(Snrr )) has the splitting property, to conclude, with one applica-

tion of Lemma 4.2(3) at the end, that

maffo(H) = meo(Hol(H)) ≤ meo(Hol(Aut(Soc(H)))) = maffo(Aut(Soc(H)))

= maffo(Aut(Sn1
1 )× · · · ×Aut(Snrr ))

≤ maffo(Aut(Sn1
1 )) · · ·maffo(Aut(Snrr ))

≤ |S1|n1 log60(30) · · · |Sr|nr log60(30) = | Soc(H)|log60(30).

The rest of this section is dedicated to the proof of Lemma 4.1. Essentially, the
proof will be an application of the CFSG, the rather recent results on upper bounds
on automorphism orders of finite simple groups from [8] and the tools developed in
Section 3.

Let G = Sn, with S a nonabelian finite simple group. We prove the statement of
Lemma 4.1 in a case distinction in accordance with the CFSG.

4.1 Case: S is sporadic

Note that g(n)·meo(Aut(S)n) < 3n/3·meo(Aut(S))n ≤ (31/3·|Out(S)|·meo(S))n, and
so in view of Lemma 3.4.2(2), it is sufficient to have 31/3 · |Out(S)| ·meo(S) ≤ |S|1/3,
which can be checked for all sporadic S using information from the ATLAS [3].

4.2 Case: S = Am,m ≥ 7

We remark that A5
∼= PSL2(5) and A6

∼= PSL2(9) will be treated in the next case.
In view of Lemma 3.4.2(2), it is sufficient to show g(n) ·meo(Snm) < (1

2m!)n/3 for all
n ∈ N+ and all m ≥ 7. For n = 1, 2, 3, one checks the inequality for m = 7 directly,
and for m ≥ 8, replacing meo(Snm) by 3nm/3 yields a stronger inequality which can
be easily verified. For n ≥ 4, using the results of Subsection 3.4, one can replace g(n)
by 3n/3 and meo(Snm) by e1.03883·m for a stronger inequality which is easy to verify.

4.3 Case: S = PSL2(q), q ≥ 5

This is the most complicated case, requiring to investigate the five subcases n =
1, 2, 3, 4 and n ≥ 5. Recall that Aut(PSL2(q)) = PGL2(q) o Gal(Fq/Fp), and in
particular, there is a natural embedding PSL2(q) ↪→ PGL2(q).

14



Alexander Bors Large automorphism orders

4.3.1 Subcase: n = 1

Our goal is to show the following:

Theorem 4.3.1. Let q ≥ 5 be a prime power. Then:
(1) mao(PSL2(q)) = q + 1.

(2) maffo(Aut(PSL2(q))) =


q(q + 1), if q is prime,

q2 − 1, if q is even,
1
2(q2 − 1), if q is odd and not prime.

.

Now mao(PSL2(q)) = q + 1 was already proved by Guest, Morris, Praeger and
Spiga in [8], see Table 3 there. The following lemma is an extract from the proof of
[8, Theorem 2.16]:

Lemma 4.3.2. Let q ≥ 5 be a power of the prime p.
(1) Denote by π : Aut(PSL2(q)) = PGL2(q) o Gal(Fq/Fp) → Gal(Fq/Fp) the

canonical projection. Let α ∈ Aut(PSL2(q)) such that ord(π(α)) = e. Then ord(α) ≤
e · (q1/e + 1).

(2) mao(PSL2(q)) = q + 1.

Point (2) can be verified using point (1). Since point (1) of Theorem 4.3.1 is
now clear, let us outline the strategy for proving its point (2): Consider a bijective
affine map Ax,α of Aut(PSL2(q)), having order ord(α) ·ord(shα(x)). By completeness
of Aut(PSL2(q)), we know that ord(α) is an element order in Aut(PSL2(q)), so the
order of any bijective affine map of Aut(PSL2(q)) is the product of two automorphism
orders of PSL2(q). If we know a list of the first few largest automorphism orders of
PSL2(q) which is long enough to ensure that for any bijective affine map whose order
exceeds the asserted maffo-value, the two factor orders must be in the list, we can
systematically go through the possible combinations, deriving a contradiction in each
case using Lemmata 3.1.4 and 3.1.5. It will then remain to show that the asserted
maffo-value is indeed the order of some bijective affine map of Aut(PSL2(q)), which
can be done by Lemma 3.1.6.

We can indeed extend the list of largest automorphism orders of PSL2(q) to our
needs in a way similar to how Guest, Morris, Praeger and Spiga derived point (2) of
Lemma 4.3.2 from point (1):

Lemma 4.3.3. (1) Let q = 2f with f ≥ 3. The two largest automorphism orders of
PSL2(q) are q + 1 and q − 1.

(2) Let q = pf ≥ 5 with p an odd prime and f ≥ 1.

• If f = 1, then the five largest automorphism orders of PSL2(q) are q + 1, q, q −
1, q+1

2 , q−1
2 .

• If f ≥ 2 and (p, f) 6= (3, 2), then the four largest automorphism orders of
PSL2(q) are q + 1, q − 1, q+1

2 , q−1
2 . Furthermore, ord(α) ≤ q−1

2 for any α ∈
Aut(PSL2(q)) \ PGL2(q), where the inequality is strict for q 6= 25.

• The four largest automorphism orders of PSL2(9) ∼= A6 are 10, 8, 6, 5.
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For those parts of the argument where we will use Lemma 3.1.5, we will need
some statements about centralizers in Aut(PSL2(q)) for odd q:

Lemma 4.3.4. (1) Let p ≥ 5 be prime, and let α ∈ Aut(PSL2(p)) = PGL2(p) be of
order p. Then CAut(PSL2(p))(α) = 〈α〉 ⊆ PSL2(p).

(2) Let q ≥ 5 be an odd prime power, q /∈ {9, 25}, and let α ∈ Aut(PSL2(q)) be
of order q−1

2 . Then CAut(PSL2(q))(α) ⊆ PGL2(q).
(3) Let q ≥ 5 be an odd prime power, q 6= 9, and let α ∈ Aut(PSL2(q)) be of order

q − 1. Then CAut(PSL2(q))(α) ⊆ PGL2(q).

(4) Let q ≥ 5 be an odd prime power, and let α ∈ Aut(PSL2(q)) be of order q+1
2 .

Then CAut(PSL2(q))(α) ⊆ PGL2(q).
(5) Let q ≥ 5 be an odd prime power, and let α ∈ Aut(PSL2(q)) be of order q+ 1.

Then CAut(PSL2(q))(α) ⊆ PGL2(q).

Proof of Lemma 4.3.3. Denote by π : Aut(PSL2(q)) → Gal(Fq/Fp) the canonical
projection.

For (1): That q + 1 is the largest automorphism order is just a special case of
Lemma 4.3.2(2), and q − 1 is an automorphism order by the well-known element
structure of PGL2(q). It remains to show that q = 2f is not an automorphism
order, which goes as follows: If α ∈ Aut(PSL2(q)) had order 2f , then 2f = ord(α) =
ord(π(α)) · ord(αord(π(α))). Now by its element structure, the only element orders in
PGL2(q) which are powers of 2 are 1 and 2, and so ord(αord(π(α))) ≤ 2, and thus
ord(π(α)) ≥ 2f−1. But ord(π(α)) | |Gal(Fq/F2)| = f , a contradiction.

For (2,i): Since Aut(PSL2(q)) = PGL2(q) if q is prime, the statement follows
from the element structure of PGL2(q).

For (2,ii): Again, by the element structure of PGL2(q), the four listed numbers are
certainly the four largest element orders in PGL2(q), so it suffices to prove the second
part of the claim. Let α ∈ Aut(PSL2(q)) \ PGL2(q), so that e := ord(π(α)) > 1.
We need to show that ord(α) ≤ q−1

2 , and actually ord(α) < q−1
2 unless q = 25. By

Lemma 4.3.2(1), it is sufficient to show that e(q1/e + 1) < q−1
2 for q 6= 25 (and to

check that for q = 25, where e = 2, the left-hand side is equal to the right-hand side).
For q 6= 25 (i.e., q ≥ 27), note that it suffices to show

4

3
eq1/e <

13

27
q, (1)

since

e(q1/e + 1) = eq1/e(1 +
1

q1/e
) ≤ 4

3
eq1/e,

and
q − 1

2
= q(

1

2
− 1

2q
) ≥ q(1

2
− 1

54
) =

13

27
q.

Equation (1) is equivalent to

q ≥ (
36

13
e)1+ 1

e−1 ,

which is easy to verify in the case distinction e = 2 (where q ≥ 49) versus e ≥ 3
(using that q ≥ 3e).

For (2,iii): This is readily checked with GAP [6].
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Proof of Lemma 4.3.4. For (1): By the element structure of PGL2(p), we have α ∈

PSL2(p), and α is conjugate in PGL2(p) to π0(

(
1 x
0 1

)
) for some x ∈ F∗p, so it

suffices to prove the assertion for all such elements. However, since they are powers

of one another, it actually suffices to show the assertion for α = π0(

(
1 1
0 1

)
). So let(

a b
c d

)
∈ GL2(p) such that

π0(

(
1 1
0 1

)
·
(
a b
c d

)
·
(

1 −1
0 1

)
) = π0(

(
a b
c d

)
). (2)

Equation (2) is equivalent to the existence of some µ ∈ F∗p such that(
a+ c b+ d− a− c
c d− c

)
= µ ·

(
a b
c d

)
. (3)

If µ 6= 1, then a comparison of the bottom left entries in equation (3) implies c = 0
and thus also a = 0, a contradiction. So µ = 1, turning equation (3) into a system of
linear equations over Fp which one checks to be equivalent to c = 0, a = d. It follows
that

π0(

(
a b
c d

)
) = π0(

(
a b
0 a

)
) = π0(

(
1 b/a
0 1

)
) ∈ 〈α〉.

For (2): Note that by Lemma 4.3.3(2,ii), α is an element of PGL2(q), and so by
the element structure of PGL2(q), α is conjugate in PGL2(q) to an element of the

form π0(

(
1 0
0 x

)
) with x ∈ F∗q of order q−1

2 (i.e., x generates the subgroup of squares

in F∗q); it suffices to show that the centralizers in Aut(PSL2(q)) of such elements are
contained in PGL2(q). We do so by contradiction: Assume that for some nontrivial
field automorphism σ = Frobe of Fq, where Frob denotes the Frobenius automorphism

of Fq and 1 ≤ e < f , and for some A =

(
a b
c d

)
∈ GL2(q), we have

π0(Aσ ·
(

1 0
0 x

)
· σ−1A−1) = π0(

(
1 0
0 x

)
). (4)

Easy computations reveal that equation (4) is equivalent to the existence of some
µ ∈ F∗q such that

1

ad− bc
·
(
ad− σ(x)bc ab(σ(x)− 1)
cd(1− σ(x)) σ(x)ad− bc

)
= µ ·

(
1 0
0 x

)
. (5)

Comparing the coefficients in the bottom left and top right corners in equation (5),
we find that ab = 0 and cd = 0, so either a = d = 0 or b = c = 0. In the first
case, comparing the coefficients in the top left corners of equation (5) gives µ = σ(x),
and thus by comparing the coefficients in the bottom right corners of equation (5),

σ(x) = x−1, which implies pf−1
2 | pe+1, or pf−1 | 2(pe+1), although it is easy to check
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that 2(pe + 1) ≤ 2(pf−1 + 1) < pf − 1, a contradiction. In the latter case, comparing
the coefficients in the top left corners of equation (5) yields µ = 1, and thus comparing
the bottom right coefficients in equation (5), we get that σ(x) = x, which implies
pf−1

2 | pe−1, or pf−1 | 2(pe−1), although pf−1 > pf−p = p·(pf−1−1) > 2·(pe−1),
a contradiction.

For (3): This follows with an argument analogous to the one for (2) (alternatively,
one can observe that, except for the case q = 25, which can be checked with GAP,
the statement follows from (2)).

For (4): Consider the natural embedding

Aut(PSL2(q)) = PGL2(q) o Gal(Fq/Fp)
↪→ PGL2(q2) o Gal(Fq2/Fp) = Aut(PSL2(q2))

extending the natural embedding PGL2(q) ↪→ PGL2(q2), by means of which we view
Aut(PSL2(q)) as a subgroup of Aut(PSL2(q2)). By Lemma 4.3.3(2,ii), α ∈ PGL2(q),
and by the element structure of PGL2(q), α is conjugate in PGL2(q2) to an element of

the form π1(

(
1 0
0 x

)
), where the order of x ∈ F∗q2 is q+1

2 . Denote by Frob the Frobe-

nius automorphism of Fq2 . It is sufficient to show that CAut(PSL2(q2))(π1(

(
1 0
0 x

)
)) ⊆

PGL2(q2)o 〈Frobf 〉, since this implies that CAut(PSL2(q2))(α) ⊆ PGL2(q2)o 〈Frobf 〉,
and so

CAut(PSL2(q))(α) = CAut(PSL2(q2))(α) ∩Aut(PSL2(q))

⊆ (PGL2(q2) o 〈Frobf 〉) ∩Aut(PSL2(q)) = PGL2(q).

To see that among the elements of Aut(PSL2(q2)), π1(

(
1 0
0 x

)
) only commutes with

elements from PGL2(q2)o〈Frobf 〉, we proceed by contradiction, with the same ansatz
as in point (2). This time, the divisibility relations at which one arrives in the two
cases are pf + 1 | 2(pe − 1) and pf + 1 | 2(pe + 1) respectively. Note that now,
1 ≤ e < 2f , so we cannot argue as in point (2) that the supposed multiple is always
smaller than the supposed divisor. However, this idea at least excludes the case
e < f , so we may write e = f + k with 0 ≤ k < f . Then it is easy to check that
2pk − 1 < 2(pe−1)

pf+1
< 2pk, making the first case contradictory. Similarly, one can

exclude k > 0 for the second case, leaving only k = 0, i.e., e = f .
For (5): This follows immediately from (4).

Proof of Theorem 4.3.1. As pointed out before, point (1) of the theorem follows
from Lemma 4.3.2(2), so we focus on the proof of point (2). Let A = Ax,α ∈
Aff(Aut(PSL2(q))) be such that ord(A) = maffo(Aut(PSL2(q))). Set o1 := ord(α)
and o2 := ord(shα(x)), so that ord(A) = o1 · o2, and note that o1, o2 ≤ q + 1.

If q is prime, then on the one hand, we cannot have o1 = o2 = q + 1, since that
would imply by Lemma 3.1.4 that (q+1)2 | |Aut(PSL2(q))| = |PGL2(q)| = q(q2−1),
a contradiction. The next smaller potential order of A is q(q + 1), which is indeed

18



Alexander Bors Large automorphism orders

attained by Lemma 3.1.6 and the fact that Aut(PSL2(q)) = PGL2(q) contains both
an element of order q and of order q + 1.

If q = 2f with f ≥ 3, then Lemma 3.1.4 again excludes the case o1 = o2 = q+1 =
2f + 1. By Lemma 4.3.3(1), the next smaller potential order of A is (q+ 1) · (q−1) =
q2 − 1, which can be attained in view of Lemma 3.1.6.

Finally, consider the case q = pf with p an odd prime and f ≥ 2. First,
one verifies with GAP [6] that maffo(Aut(PSL2(9))) = 40 = 1

2(92 − 1) and that
maffo(Aut(PSL2(25))) = 312 = 1

2(252 − 1), so we may henceforth assume that
(p, f) /∈ {(3, 2), (5, 2)}. By the element structure of PGL2(q) and Lemma 3.1.6,
it is clear that 1

2(q2 − 1) can be attained as the order of some bijective affine map of
Aut(PSL2(q)), so it remains to show that o1 · o2 ≤ 1

2(q2 − 1). We do this in a case
distinction.

First assume that o1 = q + 1, so that by Lemma 4.3.3(2,ii), α ∈ PGL2(q). Then
the inequality is equivalent to o2 ≤ q−1

2 . If o2 >
q−1

2 , by Lemma 4.3.3(2,ii) again,

it follows that o2 ∈ {q + 1, q − 1, q+1
2 }. In each of these three cases, using Lemma

3.1.5 and Lemma 4.3.4(5,3,4) respectively, we conclude that x ∈ PGL2(q). This gives
a contradiction when o2 = q + 1 or o2 = q − 1, since by the fact that [PGL2(q) :
PSL( q)] = 2 and o1 is even, we get that shα(x) ∈ PSL2(q), but PSL2(q) does not

have any elements of order q + 1 or q − 1. The case o2 = q+1
2 can be refuted by

Lemma 3.1.4 (applied to G := PGL2(q)) again.
Next assume that o1 = q − 1, in which case α ∈ PGL2(q) as well. The inequality

is equivalent to o2 ≤ q+1
2 , so it remains to exclude the two cases o2 = q + 1 and

o2 = q − 1, which can be done as in the previous case, deriving the contradictory
shα(x) ∈ PSL2(q).

If o1 = q+1
2 , we only need to exclude the case o2 = q + 1, which can be done as

in the case o1 = q + 1 using Lemma 3.1.4. Finally, if o1 ≤ q−1
2 , then the inequality

holds for sure.

It now follows by some easy computations that mao(PSL2(q)) > |PSL2(q)|
1
3 for

all prime powers q ≥ 5, and maffo(Aut(PSL2(q))) ≥ |PSL2(q)|
2
3 if and only if q

is a prime, in which case maffo(Aut(PSL2(q))) = q(q + 1), and verification of the
statements about strict monotonous convergence of the upper bounds is also easy.
This settles our discussion of the subcase n = 1.

4.3.2 Useful observations for the other subcases

The following lemma is immediate from the element structure of PGL2(p):

Lemma 4.3.5. Let p ≥ 5 be a prime, and let A ∈ Aff(PGL2(p)). Then ord(A) is a
divisor of one of the following: p(p+ 1), p(p− 1), p2 − 1.

Another useful observation (similar in spirit to Lemma 3.4.2(2)) is the follow-
ing: Since maffo(Aut(PSL2(q)n)) ≤ mao(PSL2(q)n)2, whenever mao(PSL2(q)n) ≤
|PSL2(q)|

n
3 , we can conclude that maffo(Aut(PSL2(q)n)) ≤ |PSL2(q)|

2n
3 .
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4.3.3 Subcase: n = 2

Clearly, for primes p ≥ 5, mao(PSL2(p)2) = meo(Aut(PSL2(p)) o S2) is bounded
from below by p(p+ 1) = meo(Aut(PSL2(p))2), and by Lemma 3.2.2, elements from
Aut(PSL2(p)2)\Aut(PSL2(p))2 have order bounded from above by 2·(p+1) < p(p+1),

so indeed, we have mao(PSL2(p)2) = p(p + 1) > (1
2p(p

2 − 1))
2
3 . As for q ≥ 5 that

are not prime, we first verify directly with GAP [6] that meo(Aut(PSL2(9)2)) =
40 < 3602/3. For all other odd q, we can use Lemma 4.3.3(2,ii) to conclude that

meo(Aut(PSL2(q)2)) = 1
2(q2 − 1) < (1

2q(q
2 − 1))

2
3 , and Lemma 3.2.2 to treat au-

tomorphisms outside Aut(PSL2(q)2) as before. Finally, for q = 2f with f ≥ 3, by

Lemma 4.3.3(1), we have meo(Aut(PSL2(q)2)) = q2 − 1 < (q(q2 − 1))
2
3 , and we can

treat all other automorphisms by Lemma 3.2.2 again.
As for maffo-values in the subcase n = 2, by the “useful observation” after Lemma

4.3.5, it remains to show that maffo(Aut(PSL2(p)2)) ≤ |PSL2(p)|
4
3 for primes p ≥

5. It is easily checked with GAP [6] that maffo(Aut(PSL2(5)2)) = 120 < 60
4
3 , so

we may assume p ≥ 7 from now on. Let A = Ax,α be a bijective affine map of
Aut(PSL2(p)2). We know that we can identify α with an element in Aut(PSL2(p)2),
that meo(Aut(PSL2(p))2) = p(p + 1) and that the maximum element order in the
complement Aut(PSL2(p)2) \ Aut(PSL2(p))2 is bounded from above by 2 · (p + 1).
Therefore, if not both α, shα(x) ∈ Aut(PSL2(p))2, then the order of A is at most 2(p+

1) ·p(p+1) < (1
2p(p

2−1))
4
3 . So we may assume α, shα(x) ∈ Aut(PSL2(p))2 from now

on, and also ord(A) > 2(p+ 1) ·p(p+ 1). The latter implies that the two components
of shα(x) must be of different order. But conjugation of shα(x) by any element from
Aut(PSL2(p)2) \ Aut(PSL2(p)2) swaps the orders of the components, and so shα(x)
cannot commute with any such element. In other words, CAut(PSL2(p)2)(shα(x)) ⊆
Aut(PSL2(p))2, and so, by an application of Lemma 3.1.5, we conclude that x ∈
Aut(PSL2(p))2. Together with α ∈ Aut(PSL2(p))2, this implies that A decomposes
as a product A1×A2, with A1, A2 ∈ Aff(Aut(PSL2(p))). Therefore, by Lemma 4.3.5,

ord(A) = lcm(ord(A1), ord(A2)) ≤ p(p2 − 1) < (1
2p(p

2 − 1))
4
3 .

4.3.4 Subcase: n = 3

Denote by π3 : Aut(PSL2(q)3) = Aut(PSL2(q)) o S3 → S3 the canonical projection.
By a simple case distinction according to the cycle type of π3(α), Lemma 3.2.2 can be
used to show that automorphisms α outside Aut(PSL2(q))3 have order bounded from
above by 2q(q + 1) < |PSL2(q)| in all cases. If q is a prime, then since the element
orders in Aut(PSL2(q)) = PGL2(q) are just the divisors of q+ 1, q and q−1, we have

meo(Aut(PSL2(q))3) = lcm(q + 1, q, q − 1) = 1
2q(q

2 − 1) = |PSL2(q)|
3
3 . If q = 2f

with f ≥ 3, by Lemma 4.3.3(1), we have meo(Aut(PSL2(q)3)) < (q + 1)(q − 1)2 <
|PSL2(q)|. For q = 9, one checks with GAP [6] that meo(Aut(PSL2(9)3)) = 120 <
360, and for odd q ≥ 25, using Lemma 4.3.3(2,ii), we have meo(Aut(PSL2(q))3) <
1
2(q + 1)(q − 1)2 < |PSL2(q)|.
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4.3.5 Subcase: n = 4

We will show mao(PSL2(q)4) < |PSL2(q)|
4
3 for all prime powers q ≥ 5. For q = 5, one

can check directly that meo(Aut(PSL2(5))4) = 60 < 60
4
3 , and automorphisms α from

outside Aut(PSL2(5))4 are treated with Lemma 3.2.2 like before. Assuming q ≥ 7,
and using that [Aut(PSL2(q)) : PGL2(q)] = logp(q), we have meo(Aut(PSL2(q)4)) ≤
g(4) · exp(Aut(PSL2(q))) ≤ 4 · logp(q) · p ·

q2−1
gcd(2,q−1) ≤ 4 · |PSL2(q)| < |PSL2(q)|

4
3 .

4.3.6 Subcase: n ≥ 5

Here we can use crude upper bounds and “get away with it”; it is sufficient and easy
to verify that

mao(PSL2(q)n) ≤ g(n) · exp(Aut(PSL2(q))) < 3
n
3 · |PSL2(q)| ≤ |PSL2(q)|n/3.

4.4 Case: S = PSLd(q), d ≥ 3, q ≥ 2

From now on, we will always work with Lemma 3.4.2(2). Furthermore, we will use the
information on maximum automorphism orders of finite simple groups from [8, Table
3]. Note that since PSL3(2) ∼= PSL2(7), we may assume that (d, q) 6= (3, 2), and so

mao(PSLd(q)) = qd−1
q−1 . In view of meo(Aut(PSLd(q))

n) ≤ meo(Aut(PSLd(q)))
n, our

goal is to show that

g(n) ·meo(Aut(PSLd(q)))
n < |PSLd(q)|

n
3 = (

qd(d−1)/2

gcd(d, q − 1)
·
d∏
i=2

(qi − 1))
n
3 . (6)

4.4.1 Subcase: d = 3, 4, 5

For d = 3, we treat the subsubcases q = 3 and q = 4 separately. Using GAP [6],
one finds that the element orders in Aut(PSL3(3)) are 1, 2, 3, 4, 6, 8, 12, 13. By this,
one can check directly that g(n) · meo(Aut(PSL3(3))n) < |PSL3(3)|

n
3 = 5616

n
3 for

n = 1, 2, and it implies that g(n) · meo(Aut(PSL3(3)n)) = g(n) · 312 < 5616n/3

for n ≥ 3. The subsubcase q = 4 is treated analogously. For q ≥ 5, the stronger
inequality obtained by replacing g(n) by 3n/3 in equation (6) is easy to verify.

For d = 4 and d = 5, again, the stronger inequality obtained by substituting 3n/3

for g(n) in equation (6) is easy to verify.

4.4.2 Subcase: d ≥ 6

One can check that 2d ≤ d(d−1)
2 − 2 for d ≥ 6. The left-hand side of equation (6) is

therefore bounded from above by

(q2)
n
3 · (qd − 1)n < (q2)

n
3 · (qd − 1)

n
3 · (q2d)

n
3

≤ (q2)
n
3 · (qd − 1)

n
3 · (q

d(d−1)
2
−2)

n
3 = (qd(d−1)/2 · (qd − 1))

n
3 ,

which is obviously smaller than the right-hand side of equation (6).
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4.5 Case S is a classical group of Lie type not isomorphic
to any PSLd(q)

These can all be treated with arguments analogous to the ones used for the PSLd(q)
with d ≥ 3 in the previous subcase (Subsection 4.4), mostly by verifying an inequality
of the form g(n) · o(S)n < |S|

n
3 , where o(S) is an upper bound on mao(S) read off

from [8, Table 3]. There is just one particular case where that inequality does not
hold, namely S = PSU3(5); this group can be treated like PSL3(3).

4.6 Case: S is an exceptional group of Lie type

Guest, Morris, Praeger and Spiga [8, Proof of Theorem 1.2] derived upper bounds on
mao(S) for such S, based on the information on largest element orders of exceptional
Lie type groups of odd characteristic from [12, Table A.7], the upper bounds on largest
element orders for those of even characteristic from [8, Table 5], and information on
outer automorphism group orders of such groups from [3, Table 5, p. xvi]. Denoting
their upper bound by o(S), one can, in almost all cases, prove the sufficient inequality

g(n) · o(S)n < |S|
n
3 (7)

with arguments similar to those used in the nonexceptional cases. There are three
groups where a different approach is necessary, namely S = 2 B2(2), 3 D4(2), 2 F4(2)′.
2 B2(2) can be treated like PSL3(3) in Subsection 4.4. For the last two S, one reads off
the precise value of meo(S) and of |Out(S)| from [3], sets o(S) := meo(S) · |Out(S)|
and easily verifies equation (7) for that value of o(S).

5 On relative functions on finite groups

5.1 Some general theory

Assume we have given a function f assigning to each finite group a number from the
real interval [0, 1] (for example, f could be the function assigning to G the quotient
mao(G)/|G|). For proving that a condition of the form f(G) ≥ ρ for fixed ρ ∈ (0, 1)
results in a restriction on the structure of G, it is useful if we know that f “respects”
the structure of finite groups in some sense. Examples of such useful properties of f
are given in the following definition:

Definition 5.1.1. A function f from the class of finite groups to the real interval
[0,∞) such that f(G1) = f(G2) whenever G1 and G2 are isomorphic is called a
group-theoretic function, and a group-theoretic function f is called a relative
function if and only if f(G) ≤ 1 for all finite groups G. Assume that f is a group-
theoretic function. Then:

(1) f is called characteristically submultiplicative (C-submultiplicative) if
and only if for all finite groups G and all N charG, we have f(G) ≤ f(N) · f(G/N).

(2) f is called increasing on characteristic quotients (CQ-increasing) if
and only if for all finite groups G and all N charG, we have f(G) ≥ f(G/N).
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(3) f is called increasing on characteristic subgroups (CS-increasing) if
and only if for all finite groups G and all N charG, we have f(G) ≥ f(N).

Clearly, relative C-submultiplicative functions are both CQ-increasing and CS-
increasing.

Example 5.1.2. (1) The relative function l−1 is C-submultiplicative, see [9, Lemma
1.2]. Actually, this property was one of the key ingredients in Hegarty’s proof that
the derived length of a finite solvable group G with l−1(G) ≥ ρ is bounded from
above in terms of ρ, see also Section 7.

(2) All the relative functions le are CQ-increasing, since the fraction of elements of
G raised to the e-th power by some automorphism α is at most as large as the fraction
of elements of G/N , N charG, raised to the e-th power by the automorphism of G/N
induced by α. However, l2 is not CS-increasing (and thus not C-submultiplicative),
as follows from studying the example (Z/2Z)2 ∼= 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 charA4.

(3) By [1, Lemma 2.1.3], the relative function λaff is C-submultiplicative, and the
relative function λ is CQ-increasing. However, λ is not CS-increasing, as λ(Z/6Z) =
1/3 < 1/2 = λ(D12), although D12 contains a characteristic subgroup isomorphic
with Z/6Z.

The following simple lemma outlines our basic strategy for proving the upper
bounds on the index of Rad(G) in Theorems 1.1.1(3) and 1.1.3(2):

Lemma 5.1.3. Let f be a CQ-increasing group-theoretic function, and assume that
for finite semisimple groups H, f(H)→ 0 as |H| → ∞; more explicitly, fix a function
g : (0,∞) → (0,∞) such that for any ρ ∈ (0,∞), f(H) < ρ whenever H is a finite
semisimple group with |H| > g(ρ).

Then for any ρ ∈ (0,∞), if G is a finite group such that f(G) ≥ ρ, then [G :
Rad(G)] ≤ g(ρ).

Proof. By assumption, we have f(G/Rad(G)) ≥ f(G) ≥ ρ. Since G/Rad(G) is
semisimple, this implies [G : Rad(G)] = |G/Rad(G)| ≤ g(ρ) by choice of g.

Remark 5.1.4. Note that we did not use the full power of the assumption that f
be CQ-increasing in the proof of Lemma 5.1.3; for the proof to work, it would be
enough to know that f(G/Rad(G)) ≥ f(G) for all finite groups G; let us call such
group-theoretic functions f RadQ-increasing (see also Remark 5.2.10).

5.2 Some nontrivial examples of “well-behaved” func-
tions

Of course, for proving our main results, we would like to apply Lemma 5.1.3 to the
following two group-theoretic functions:

Definition 5.2.1. For a finite group G, we define maorel(G) := mao(G)/|G| and
mafforel(G) := maffo(G)/|G|.

To this end, we would like to prove that they are both CQ-increasing and tend to 0
on finite semisimple groups whose orders tend to ∞. The latter follows immediately
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from Theorem 4.4, and for the rest of this subsection, we will be concerned with
proving that the two functions are CQ-increasing.

Now trying to establish a “transfer lemma” for mafforel similar to [1, Lemma
2.1.3] yields the following result:

Lemma 5.2.2. Let G be a finite group, A = Ax,α a bijective affine map of G
and N charG. Denote by π : G → G/N the canonical projection and by α̃ the
automorphism of G/N induced by α. Let Ã = Aπ(x),α̃ denote the bijective affine

map of G/N induced by A, and set o := ord(Ã). Then ord(A) is a divisor of
o · lcmn∈N ord(An,(α|N )o).

Proof. Clearly, o divides ord(A), so we only need to show that ord(Ao) divides
lcmn∈N ord(An,(α|N )o). Now by definition of o, Ao restricts to a permutation on
each coset of N in G, and the order of Ao is the least common multiple of the orders
of the restrictions of Ao to the various cosets. But by [1, Lemma 2.1.3] each action of
Ao on a coset of N is isomorphic (in the sense of an isomorphism of finite dynamical
systems, see [1, remarks after Definition 1.1.5]) with the action on N of some bijective
affine map of N of the form An,(α|N )o . The result follows.

Unfortunately, this result is not strong enough to imply that either of maorel and
mafforel is CQ-increasing. However, it led the author to study the following curious
function on finite groups, which eventually resulted in a proof of this property for
the two functions:

Definition 5.2.3. For a finite group G, we define

f(G) :=
1

|G|
· max
α∈Aut(G)

(lcmx∈G ord(Ax,α)).

Note that in view of the natural isomorphism Hol(G)→ Aff(G), f(G) can also be
defined as follows: The cosets of the canonical copy of G inside Hol(G) = GoAut(G)
are in bijective correspondence with automorphisms α of G. For each such coset,
consider the least common multiple of the orders of all its elements, and denote the
maximum of all such least common multiples by F(G). Then f(G) = F(G)/|G|.

It is clear that f(G1) = f(G2) whenever G1
∼= G2 and that f > 0. One can also

show with a rather simple argument that f is C-submultiplicative:

Lemma 5.2.4. The group-theoretic function f is C-submultiplicative, i.e., for all
finite groups G and N charG, we have f(G) ≤ f(N) · f(G/N).

Proof. Let us prove the equivalent F(G) ≤ F(N) · F(G/N). Fix an automorphism
α of G such that F(G) = lcmx∈G ord(Ax,α) =: L. Denote by α̃ the automorphism
of G/N induced by α, by π : G → G/N the canonical projection, and set L1 :=
lcmy∈G/N ord(Ay,α̃). Clearly, L1 ≤ F(G/N). On the other hand, setting L2 :=

lcmx∈G ord(AL1
x,α), since each ord(Ax,α) divides L1 ·L2, L divides and thus is bounded

from above by L1 ·L2, so it suffices to show that L2 ≤ F(N). Now as in the proof of
Lemma 5.2.2, each ord(AL1

x,α) is a least common multiple of orders of bijective affine
maps of N of the form An,(α|N )L1 for various n ∈ N . But therefore, L2 itself is also

a least common multiple of such orders, and thus bounded from above by F(N), as
we wanted to show.
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However, for establishing that maorel and mafforel are CQ-increasing, we would
rather be interested in proving that f is relative. Our proof of this will make use of
the CFSG.

Theorem 5.2.5. For all finite groups G, f(G) ≤ 1. In particular, for all finite groups
G, we have meo(Hol(G)) ≤ |G|.

Before proving Theorem 5.2.5, we need three auxiliary results. The first provides
some sufficient conditions for a least common multiple as in the definition of f to be
bounded by the group order:

Lemma 5.2.6. Let G be a finite group, α ∈ Aut(G).
(1) If ord(α) | |G|, then lcmx∈G ord(Ax,α) | |G|.
(2) For every prime p | |G|, we have

lcmx∈G ord(Ax,α) |
∏

q||G|,q 6=p

qνq(|G|) · p2νp(exp(G)) · exp(Out(G)).

In particular, if, for some prime p | |G|, we have

p2νp(exp(G)) · exp(Out(G)) ≤ pνp(|G|),

then lcmx∈G ord(Ax,α) ≤ |G|.

Proof. For (1): Fix x ∈ G. We will show that ord(Ax,α). which equals ord(α) ·
ord(shα(x)), divides |G|. This is tantamount to proving that for any prime p, we
have νp(ord(α))+νp(ord(shα(x))) ≤ νp(|G|). This is clear (inter alia by assumption)
if p divides at most one of the two numbers ord(α) and ord(shα(x)), and if p divides
both these numbers, the inequality holds by Lemma 3.1.4.

For (2): Again, we fix x ∈ G. We shall prove that

ord(α) · ord(shα(x)) |
∏

q||G|,q 6=p

qνq(|G|) · p2νp(exp(G)) · exp(Out(G)).

Denoting by π : Aut(G)→ Out(G) the canonical projection and noting that ord(α) =
ord(π(α)) · ord(αord(π(α))) with ord(π(α)) | exp(Out(G)), we find that it is sufficient
to prove that ord(αord(π(α))) ·ord(shα(x)) |

∏
q||G|,q 6=p q

νq(|G|) ·p2νp(exp(G)). Fix a prime

l. If l divides at most one of the numbers ord(αord(π(α))) and ord(shα(x)), it is clear
that the corresponding inequality of l-adic valuations holds. Hence assume that l
divides both these numbers. If l 6= p, we are done by an application of Lemma 3.1.4,
and if l = p, we are done since both orders divide pνp(exp(G)).

We will also need the following well-known result:

Lemma 5.2.7. Let p be a prime, K a field of characteristic p, d ∈ N+. Let A ∈
GLd(K) be of finite order. Then νp(ord(A)) ≤ dlogp(d)e.

The final lemma concerns orders of non-fixed-point-free automorphisms of finite
vector spaces over prime fields:
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Lemma 5.2.8. Let V be a finite vector space over Fp and α a non-fixed-point-free
automorphism of V (i.e., α(v) = v for some v ∈ V \ {0}). Then ord(α) ≤ |V |/p.

Proof. Considering the primary rational canonical form of α (corresponding to a
decomposition of V into a maximal number of subspaces that are cyclic for α), we
may assume by induction that α can be represented by the companion matrix of
P (X)k for some irreducible P (X) ∈ Fp[X]. That α is not fixed-point-free translates
into the existence of a nonzero Q(X) ∈ Fp[X] of degree less than deg(P (X)k) such
that X ·Q(X) ≡ Q(X) (mod P (X)k), or equivalently P (X)k | Q(X) · (X − 1). Since
P (X)k - Q(X), it follows that P (X) | X−1, and thus P (X) = X−1 by irreducibility.
In view of the formula for the order of the companion matrix of P (X)k (first proved
by Elspas [5, Appendix II, 9], see also [14, Theorem 3.11] and [10, Theorem 5 and
remarks afterward]), it follows that ord(β) = pdlogp(k)e ≤ pk−1 = 1

p |V |.

Proof of Theorem 5.2.5. The proof is by induction on |G|. For the induction step,
note that if G is not characteristically simple, then fixing any proper nontrivial char-
acteristic subgroup N of G, we have, by Lemma 5.2.4 and the induction hypothesis,
f(G) ≤ f(N) · f(G/N) ≤ 1 · 1 = 1. Hence we may assume that G is characteristically
simple, i.e., G = Sn for some finite (not necessarily nonabelian) simple group S and
n ∈ N+.

Let us first assume that S is abelian, i.e., S = Z/pZ for some prime p. Fix an
automorphism α of G such that lcmx∈G ord(Ax,α) = F(G). In view of the formula
ord(Ax,α) = ord(α) ·ord(shα(x)) and the fact that all elements of G have order 1 or p,
we get that F(G) is equal to either ord(α) · p or ord(α), according to whether or not
one of the shifts shα(x) for the various x ∈ G is nontrivial or not. But in the latter
case, F(G) < |G| by [11, Theorem 2], so assume that the first case applies. Note that
all shα(x) are fixed points of α (this is easy to check directly, and it is also a special
case of Lemma 3.1.5, applied to Hol(G) and using that G is abelian). Hence α is not
fixed-point-free, and so by Lemma 5.2.8, we get that F(G) = p · ord(α) ≤ |G|, q.e.d.

So we may henceforth assume that S is nonabelian. Let us first treat the case
n ≥ 2. Note that by Lemma 4.2(1), we have mao(Sn) < |Sn|0.438. Furthermore,
exp(Sn) = exp(S) ≤ |S| ≤ |Sn|0.5. It follows that lcmx∈Sn ord(Ax,α) = ord(α) ·
lcmx∈Sn ord(shα(x)) ≤ |Sn|0.438 · |Sn|0.5 < |Sn|.

We may thus henceforth assume that G = S is a nonabelian finite simple group.
It is well-known that the Sylow 2-subgroups of S are not cyclic, whence we are done
by Lemma 5.2.6(1) if exp(Out(S)) ≤ 2. This settles all alternating and all sporadic
S.

Now assume that S is of Lie type. We will treat this case mostly by applications
of Lemma 5.2.6(2), with p always equal to the defining characteristic of S. Hence
our goal is to show the inequality p2νp(exp(S)) ·exp(Out(S)) ≤ pνp(|S|). To this end, we
use information on |S| and |Out(S)| from [3, p. xvi, Tables 5 and 6]; moreover, note
that by Lemma 5.2.7, if dp(S) denotes the minimum faithful projective representation
degree of S in characteristic p, then νp(exp(S)) ≤ dlogp(dp(S))e. The values of dp(S)
for the various finite simple groups of Lie type can be found in [13, p. 200, Table
5.4.C].

26



Alexander Bors Large automorphism orders

Verification of p2dlogp(dp(S))e · |Out(S)| ≤ pνp(|S|), which is sufficient, is straight-
forward for S = PSL2(pf ) with f ≥ 3, with the exception of the cases (p, f) =
(2, 3), (3, 3), (5, 3), for S = PSLd(q) with d ≥ 3, with the exception of (d, q) =
(3, 2), (3, 4), and for all S of Lie type which are not isomorphic with any PSLd(q).

For S = PSL2(p) with p ≥ 5 or S = PSL2(p2) with p ≥ 3, we note that
exp(Out(S)) = 2, whence we are done as in the alternating and sporadic case.
The same applies to S = PSL3(2). Finally, one can check with GAP [6] that for
S = PSL2(8),PSL2(27),PSL2(125),PSL3(4), all automorphism orders of S divide
|S|, whence Lemma 5.2.6(1) can be applied to conclude the proof.

Theorem 5.2.5 has the following consequences:

Corollary 5.2.9. (1) The group-theoretic function mafforel is relative.
(2) The group-theoretic functions maorel and mafforel are both CQ-increasing.

Proof. (1) is just a reformulation of the “In particular” in Theorem 5.2.5. As for (2),
fix a finite groupG andN charG, and letA be an automorphism (resp. bijective affine
map) of G of maximal order. Combining the results of Lemma 5.2.2 and Theorem
5.2.5, we obtain that the order of A, which equals mao(G) (resp. maffo(G)), is
bounded from above by |N | ·mao(G/N) (resp. by |N | ·maffo(G/N)). Dividing both
sides of the respective inequality by |G| yields the desired conclusion.

Remark 5.2.10. In view of Remark 5.1.4, just for proving our main results, it would
be enough to know that maorel and mafforel are RadQ-increasing. We note that this
weaker property can be established without referring to the CFSG. More precisely,
it can be proved by induction on |Rad(G)|, fixing in the induction step a nontrivial
elementary abelian characteristic subgroup B of G and using Lemma 5.2.2 and the
argument that F(A) ≤ |A| for elementary abelian A from the proof of Theorem
5.2.5. This would have spared us of having to bound the values of F on nonabelian
characteristically simple groups, but we would only have established the upper bound
on meo(Hol(G)) for finite solvable G (by induction on the length of a characteristic
series of G where all factors are elementary abelian).

6 Proof of the remaining main results

Proof of Theorem 1.1.1(2,3). We first prove (3). By Corollary 5.2.9(2) and Theorem
4.4(1), we have

ρ ≤ maorel(G) ≤ maorel(G/Rad(G)) ≤ |G/Rad(G)|log60(6)−1,

yielding the desired upper bound on [G : Rad(G)] by Lemma 5.1.3. For (2), note
that by (3) and strict monotonicity of power functions, maorel(G) > 1

10 implies that

[G : Rad(G)] < (1/10)(log60(6)−1)−1
= 60. Since the smallest order of a nonabelian

finite simple group is 60, G/Rad(G) must thus be trivial, i.e., G is solvable.

Proof of Theorem 1.1.3(1,2). (2) can be proved analogously to Theorem 1.1.1(3).
Deriving (1) from (2) is also similar to the proof of Theorem 1.1.1(2), but a little more
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involved. By (2), mafforel(G) > 1
4 implies that [G : Rad(G)] < (1/4)(log60(30)−1)−1

=
3600. Hence if any nonsolvable finite group G such that mafforel(G) > 1

4 existed, then
G/Rad(G) would have socle a nonabelian finite simple group S of order less than
3600. Now using Theorem 3.1 and that the function λaff is CS-increasing, we derive
that mafforel(S) = λaff(S) ≥ λaff(G) = mafforel(G) > 1/4. Hence all that remains to
derive a contradiction is to check that all nonabelian finite simple groups S of order
less than 3600 have maffo-value at most 1/4|S|, which is readily done with the help
of GAP [6].

7 Outlook

We hope that our rather general approach of studying “sufficiently well-behaved”
group-theoretic functions f in Section 5 will allow for extensions to other “interesting”
f , and also to a more general view on methods already found in the literature. As
an example for the latter, let us remark that a closer investigation of Hegarty’s proof
that the derived length of a finite solvable group G is bounded in terms of the value
of G under the C-submultiplicative relative function l−1 [9, Theorem 1.1] leads to
the following lemma:

Lemma 7.1. Let f be a C-submultiplicative relative function, and assume that there
exist k ∈ N+ and ρ0 ∈ (0, 1) such that for any finite solvable group G of derived
length at least k, we have f(G) ≤ ρ0. Then:

(1) For any finite solvable group G, we have f(G) ≤ ρbdl(G)/kc
0 .

(2) For any ρ ∈ (0, 1) and any finite group G with f(G) ≥ ρ, we have that
dl(Rad(G)) ≤ k · log(ρ)/ log(ρ0) + k − 1.

Proof. For (1): If G is a finite solvable group, then G has a characteristic series of
length bdl(G)/kc in which each factor has derived length at least k. The assertion
follows by C-submultiplicativity of f and induction on the length of the series.

For (2): Since f is CS-increasing, we derive that f(Rad(G)) ≥ f(G) ≥ ρ, whence

ρ ≤ ρ
bdl(Rad(G))/kc
0 by (1), and the upper bound on dl(Rad(G)) follows in view of

k · bdl(Rad(G))/kc ≥ dl(Rad(G))− (k − 1).

We plan to study extensions of our main results and of Hegarty’s result to some
more group-theoretic functions f of interest in a subsequent paper.
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[11] M. V. Horoševskĭı, On automorphisms of finite groups, Math. USSR-Sb. 22(4)
(1974), 584–594.
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