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Abstract. Let f be an arithmetic function and let S# denote the extended Selberg class.

We denote by L(s) =
∑∞
n=1

f(n)
ns the Dirichlet series attached to f . The Laurent-Stieltjes

constants of L(s) which belongs to S#, are the coefficients of the Laurent expansion of L
at its pole s = 1. In this paper, we give an upper bound of these constants, which is a
generalization of many known results.

1. Introduction

Let q be any positive integer ≥ 1 and let χ be a Dirichlet character modulo q. Let γn(χ)
denote the Laurent coefficients of the Dirichlet L-function L(s, χ) near s = 1. We recall that

γn(χ) =

q∑
a=1

χ(a)γn(a, q),

where

γn(a, q) = lim
M→∞

M∑
1≤m≡a mod q

(logm)n

m
− (logM)n+1

q(n+ 1)
.

In particular, γ0(1, 1) = 0.5772156649 · · · is the well-known Euler constant. The constants
γn(a, q) are often called the Stieltjes constants or generalized Euler constants. In the particular
case when χ = χ0, where χ0 is the principal character modulo 1, the Dirichlet L-function
L(s, χ0) reduces to the Riemann zeta function ζ(s), that is L(s, χ0) = ζ(s). We write the
corresponding Laurent coefficients simply γn(χ0) = γn(1, 1) = γn. Stieltjes in 1885 showed
that

(1) γn =
(−1)n

n!
lim
M→∞

(
M∑
m=1

(logm)n

m
− (logM)n+1

(n+ 1)

)
which pioneered the study of Laurent coefficients of zeta functions and L-functions. This
gives rise to the widely used name “Stieltjes constants” for these coefficients.

The asymptotic behavior of γn as n → ∞ has been widely studied by many authors (for
instance: Briggs [3], Mitrovic̀ [14], Israilov [9], Matsuoka [13], and more recently, Coffey [5, 6],
Knessl and Coffey [10], Adell [2], Adell and Lekuona [1], and Saad Eddin [18]). The studies
mostly focused on the growth and sign changes of the sequence (γn), explicit upper estimates
for |γn|, and asymptotic expressions for γn. Stieltjes constants for other zeta functions and
L-functions have also been studied by many authors. We introduce some of their results in
the following section.
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In this paper, we are interested in investigating the Stieltjes constants of more general L-
functions. We consider functions in a class larger than the Selberg class. We first introduce
the Selberg class S.

Selberg class. Let f be an arithmetic function, and denote by L(s) =
∑∞

n=1
f(n)
ns the Dirich-

let series attached to f . We say the Dirichlet series L(s) belongs to the Selberg class S if it
is absolutely convergent when Re(s) > 1 and satisfies the following properties:

Condition S1. Ramanujan hypothesis: For any ε > 0, we have f(n)�ε n
ε.

Condition S2. Analytic continuation: There exists k ∈ Z≥0 such that (s− 1)kL(s) is entire
of finite order.

Condition S3. Functional equation: Define

F(s) := Qs
r∏
j=1

Γ(λjs+ µj)

where Q,λi are positive real numbers, Γ is the gamma function, µj is a complex number
satisfying Re(µj) ≥ 0. Then the function Φ(s) := F(s)L(s) satisfies the functional equation

Φ(s) = ωΦ(1− s),

where ω is a complex number with |ω| = 1.

Condition S4. Euler product: For Re(s) > 1, the function L(s) can be written as a product
over prime numbers p:

L(s) =
∏
p

Lp(s)

where

Lp(s) = exp

( ∞∑
k=1

b(pk)

pks

)
,

with b(n)� nθ, for some θ < 1
2 .

This class S is expected to be the largest class of zeta and L-functions satisfying the
Riemann hypothesis, usually called the Grand Riemann Hypothesis: all nontrivial zeros of
these functions lie on Re(s) = 1/2. The extended Selberg class S# is defined to be the class

of functions L(s) =
∑∞

n=1
f(n)
ns satisfying the above conditions S2 and S3, but not necessarily

S1 and S4.

Notable examples of L ∈ S are the Riemann zeta function ζ(s), Dirichlet L-functions
L(s, χ) associated with non-principal primitive characters χ, and the Dedekind zeta function
ζK(s) of a number field K. The sum of the all parameters λj in S3 gives the degree of the

L-function L(s) in S#, and so in S, as follows:

dL = 2

r∑
j=1

λj .

It is not known if dL ∈ Z for all L ∈ S but the degree dL characterizes certain properties
of the functions L ∈ S. For example, dL characterizes several analytic properties of L, even
though the functional equations may contain non-unique information. We shall not discuss
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dL further since it is irrelevant to the aim of this paper. The readers may refer to [21, Chapter
6] for more details about the Selberg class.

From now we keep our focus on L ∈ S#. That is, we would like to extend beyond the
Selberg class by eliminating conditions S1 and S4. Consider the Laurent expansion of L(s)
at its possible pole s = 1 written in the following form:

L(s) =
∞∑

n=−k
γn(L)(s− 1)n.

We call the coefficients γn(L) the generalized Laurent-Stieltjes constants or the Laurent-
Stieltjes constants of the extended Selberg class. In this paper, we study these coefficients
and give an upper bound of γn(L) for L ∈ S#. We remark that none of the arguments in this
method we use requires S4, while eliminating S1 requires us to use a weaker condition (see
S5 in the proof of Lemma 1).

Our main theorem is stated as follows.

Theorem. Let L ∈ S# \ {0} and let dL be the degree of L. Let Q be the positive real number
appearing in condition S3 and let

λm := min
1≤j≤r

λj , λM := max
1≤j≤r

λj , and µM := max
1≤j≤r

|µj |.

For a positive integer n with

n

log n
>

(
1

2
+
µM + 1

λm

)
dL log(Q+ 3),

we have

|γn(L)| ≤ CL(a)a−n

(
2 +

1

n− dL(2a−1)
2

)
,

where a satisfies 1 + µM+1
λm

< a < 1
2 + n

dL
and

CL(a) =
2rQ2a−1

π
exp

1

5

r∑
j=1

1

λj(a− 1)− Re(µj)

( ∞∑
m=1

|f(m)|
ma

)
(8λ2Ma

2)
dL
4
(2a−1).

Finally we remark that the Laurent-Stieltjes constants of zeta and L-functions have many
applications not only in analytic number theory, but also in algebraic number theory and even
fields outside of number theory. They can be used to determine zero-free regions for L(s, χ)
near the real axis in the critical strip 0 ≤ Re(s) ≤ 1, to compute the values of ζ(s) in the
complex plane, to study the class number of a quadratic field, etc.

2. Some known results on the Laurent-Stieltjes constants of zeta and
L-functions

The first explicit upper bound for |γn| has been given by Briggs [3], which was later improved
by Berndt and Israilov. In 1985, the theory made a huge progress via an asymptotic expansion
shown by Matsuoka [13], for these constants. He gave an excellent upper bound of |γn| for
n ≥ 10 and proved that

|γn| ≤ 10−4en log logn.

This result had been the best upper bound of |γn| for more than 20 years. Thanks to the above
result, Matsuoka showed that ζ(s) has no zeros in the region |s−1| ≤

√
2, with 0 ≤ Re(s) ≤ 1.
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Many have tried to improve on the Matsuoka bound, with few successful attempts. Matsuoka’s
work relied on a formula that is essentially a consequence of Cauchy’s integral theorem and the
functional equation. More recently, the second author [18] extended this formula to Dirichlet
L-functions. She gave the following upper bound for |γn(χ)| for primitive Dirichlet characters

χ modulo q and for every 1 ≤ q ≤ πe(n+1)/2/(2n+ 2). We have

|γn(χ)|
n!

≤ q−1/2C(n, q) min

(
1 +D(n, q),

π2

6

)
where

C(n, q) = 2
√

2 exp

{
−(n+ 1) log θ(n, q) + θ(n, q)

(
log θ(n, q) + log

2q

πe

)}
and

θ(n, q) =
n+ 1

log 2q(n+1)
π

− 1, D(n, q) = 2−θ(n,q)−1
θ(n, q) + 1

θ(n, q)− 1
.

In the case when χ = χ0 and q = 1, this leads to a sizable improvement of Matsuoka’s bound
and of previous results. As an application of this upper bound, the second author showed in
[19] that this result enables us to approximate L(s, χ) in the neighborhood of s = 1 by a short
Taylor polynomial. For N = 4 log q and q ≥ 150, we have∣∣∣∣∣∣L(s, χ)−

∑
n≤N

(−1)nγn(χ)

n!
(s− 1)n

∣∣∣∣∣∣ ≤ 32.3

q2.5
,

where |s − 1| ≤ e−1. She also proved that the function ζ(s) has no zeros in the region
|s− 1| ≤ 2.2093 with 0 ≤ Re(s) ≤ 1. This result is an improvement of Matsuoka’s result.

Finally, let K be a number field and OK be its ring of integers. Define for Re(s) > 1 the
Dedekind zeta function

ζK(s) =
∑
a

1

Nas
=
∏
p

1

1−Np−s
,

where a runs over non-zero ideals in OK , p runs over the prime ideals in OK and Na is the
norm of a. It is known that ζK(s) can be analytically continued to C \ {1}, and that at s = 1
it has a simple pole, with residue γ−1(K) given by the analytic class number formula:

γ−1(K) =
2r1(2π)r2h(K)R(K)

ω(K)
√
|D(K)|

.

Here we denote by r1 the number of real embeddings of K, r2 the number of complex em-
beddings of K, h(K) the class number of K, R(K) the regulator of K, ω(K) the number of
roots of unity contained in K and D(K) the discriminant of the extension K/Q. Consider
the Laurent expansion

ζK(s) =
γ−1(K)

s− 1
+
∞∑
n=0

γn(K)(s− 1)n

of ζK(s) at s = 1. The constants γn(K) are sometimes called the Stieltjes constants associated
with the Dedekind zeta function. In [7] they are called higher Euler’s constants of K. The
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second author [20] studied these constants and showed that, for n ≥ 1, we have

γn(K) =
(−1)n

n!
lim
x→∞

∑
Na≤x

(logNa)n

Na
− γ−1(K)

(log x)n+1

n+ 1

 ,

and

γ0(K) = lim
x→∞

∑
Na≤x

1

Na
− γ−1(K) log x

+ γ−1(K).

To conclude this section, we remark that only the first constant γK = γ0(K)/γ−1(K), called
the Euler-Kronecker constant, which is closely related to values of the logarithmic derivative
of L-functions, has been studied so far. For more details see [15]. This raises questions on the
other Stieltjes constants associated with ζK(s). The authors were motivated to give partial
answers to these questions in a much more general context, that is, for all L-functions in the
Selberg class.

3. Auxiliary lemmas

In order to prove our main result, we first show a proposition and two necessary lemmas.
Recall the notation used when we defined S# in Section 1.

Lemma 1. Let L ∈ S# and let dL be the degree of L. Then we have

(2) L(σ + it) �L |t|dL(
1
2
−σ)|L(1− σ + it)|.

In particular,

(3) L(σ + it)�L,ε


|t|ε if σ ≥ 1,

|t|
1−σ
2
dL+ε if 0 ≤ σ ≤ 1,

|t|(
1
2
−σ)dL+ε if σ ≤ 0.

Proof. For the standard case when we assume S1, see [21, Theorem 6.8]. Note here that the
first-half (2) is obtained from the functional equation S3.

Now without S1, we note that the absolute convergence of the Dirichlet series can be
rewritten as follows:

Condition S5. For any ε > 0, we have
∑

n≤x |f(n)| �ε x
1+ε.

Note that this is a weaker condition than S1. This and again the functional equation S3
easily give us the bounds (3) for the case σ ≥ 1 + ε and σ ≤ −ε. That is

L(σ + it)�L,ε

{
1 if σ ≥ 1 + ε,

|t|(
1
2
−σ)dL+ε if σ ≤ −ε.

Since the function L(s) is entire of finite order from condition S2, for any δ > 0,

L(σ + it)�L,ε exp exp(δ|t|)

holds in the strip −1 ≤ σ ≤ 2. Substituting this into (2), we can show that this also holds for
0 ≤ σ ≤ 1/2. Applying the theorem of Phragmén-Lindelöf [16, Proposition 8.15], we have

L(σ + it)�L,ε |t|
1−σ
2
dL+ε

for 0 ≤ σ ≤ 1. �
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Remark. We remark that this is the only statement for which we need condition S1 or at
least S5.

Proposition 1. Let L ∈ S# with degree dL > 0. Let n be an integer with n > max
{

0, dL2 − 1
}

.

For 1 < a < n+1
dL

+ 1
2 such that λj(1− a) + Re(µj) /∈ Z for each j = 1, 2, . . . , r, we have

γn(L) =
(−1)n

2πi

∫ a+i∞

a−i∞

GL(s)

sn+1
L(s)ds,

where the function GL is defined by

GL(s) :=
ωQ2s−1

πr

r∏
j=1

Γ(λjs+ µj) sin(π(λj(1− s) + µj))Γ(λj(s− 1) + 1− µj).(4)

Here Q,λi are positive real numbers, µj and ω are complex numbers with Re(µj) ≥ 0 and
|ω| = 1.

Proof. By Cauchy’s formula, we can write

γn(L) =
1

2πi

∫
D

L(s)

(s− 1)n+1
ds,

where D is the positively oriented rectangular path passing through the vertices −a+ 1 + iT ,
−a+ 1− iT , A− iT and A+ iT , where A and T are sufficiently large numbers. Let us now
divide D into the line segments D1, D2, D3 and D4 joining −a+ 1 + iT , −a+ 1− iT , A− iT ,
A+ iT and −a+ 1 + iT , as in Figure 1. Then, we have

γn(L) =
1

2πi

(∫
D1

+

∫
D2

+

∫
D3

+

∫
D4

)
L(s)

(s− 1)n+1
ds.

By Lemma 1, the integral over D2 is bounded by∣∣∣∣∫
D2

L(s)

(s− 1)n+1
ds

∣∣∣∣ =

∣∣∣∣(∫ −iT
−a+1−iT

+

∫ 1−iT

−iT
+

∫ A−iT

1−iT

)
L(s)

(s− 1)n+1
ds

∣∣∣∣
�L,ε T−n−1+ε ×

(∫ 0

−a+1
T dL(

1
2
−σ)dσ +

∫ 1

0
T

1
2
dL(1−σ)dσ +

∫ A

1
dσ

)
�L,ε T−n−1+dL(a−1/2)+ε.

Since a < n+1
dL

+ 1
2 , the last term vanishes as T → +∞. Therefore, the integral over D2 tends

to 0 as T → +∞. A similar argument shows that the integral over D4 tends to 0 as T → +∞.
Next we consider the integral over D3. For n > 0, we find that∣∣∣∣∫

D3

∣∣∣∣�L,n ∫ ∞
0

dt

((A− 1)2 + t2)(n+1)/2
< +∞

and for any t ≥ 0,

lim
A→+∞

1

((A− 1)2 + t2)(n+1)/2
= 0.

Hence by Lebesgue’s convergence theorem, we have lim
A→+∞

lim
T→+∞

∫
D3

= 0.
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0

−a+ 1− iT A− iT

A+ iT−a+ 1 + iT

D3

D2

D4

D1

Figure 1. The rectangle D in the complex s plane

Thus, for n > max
{

0, dL2 − 1
}

, we have

γn(L) =
1

2πi

∫ −a+1−i∞

−a+1+i∞

L(s)

(s− 1)n+1
ds =

(−1)n

2πi

∫ a+i∞

a−i∞

L(1− s)
sn+1

ds.

Here, by using the functional equation S3 for L(s) and the formula Γ(s)Γ(1− s) sin(πs) = π,
we have

L(1− s) = L(s)

(
ω
F(s)

F(1− s)

)
= L(s)

ωQ2s−1
r∏
j=1

Γ(λjs+ µj)

Γ(λj(1− s) + µj)


= L(s)GL(s).

Hence

γn(L) =
(−1)n

2πi

∫ a+i∞

a−i∞

GL(s)

sn+1
L(s)ds,

where the function GL(s) is as defined in (4). This completes the proof of Proposition 1. �

Lemma 2. For L ∈ S#\{0}, consider GL as defined in Proposition 1. Let λm := min1≤j≤r λj
and µM := max1≤j≤r |µj |. For a > 1 + µM

λm
, we have

|GL(a+ it)| ≤ cL(a)Q2a−1 ((aλM + µM + 1)2 + (λM |t|+ µM )2
) dL

4
(2a−1)

,
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where the constant cL(a) is defined by

cL(a) = 2r exp

1

5

r∑
j=1

1

λj(a− 1)− Re(µj)

 .

Proof. Put λm := min1≤j≤r λj , λM := max1≤j≤r λj , µM := max1≤j≤r |µj |, and let a > 1+ µM
λm

.

From (4), we have

(5)

|GL(a+ it)| ≤ Q2a−1

πr

×
r∏
j=1

|Γ(λj(a+ it) + µj)Γ(λj(a− 1 + it) + 1− µj) sin(π(λj(1− a− it) + µj))| .

We can easily show that

| sin(π(λj(1− a− it) + µj))| ≤ exp(π|λjt− Im(µj)|).

On the other hand, using Stirling’s formula we can show that, for x > 0,

log |Γ(x+ iy)| = 1

2

(
x− 1

2

)
log(x2 + y2)− y arctan(y/x)− x+

1

2
log 2π + ϕ(x, y)

≤ 1

2

(
x− 1

2

)
log(x2 + y2)− π

2
|y|+ 1

2
log 2π + ϕ(x, y),

where the function ϕ(x, y) satisfies the inequality (cf. Binet’s first formula)

|ϕ(x, y)| ≤

∣∣∣∣∣
∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−t(x+iy)

t
dt

∣∣∣∣∣ ≤ 1

10x
.

From these inequalities, we find that (note that Re(λj(a − 1 + it) + 1 − µj) ≥ 0 since a >
1 + µM/λm)

|Γ(λj(a+ it) + µj)Γ(λj(a− 1 + it) + 1− µj) sin(π(λj(1− a− it) + µj))|

≤ 2π exp

(
1

5(λj(a− 1)− Re(µj))

)(
(aλM + µM + 1)2 + (λM |t|+ µM )2

)λj
2
(2a−1)

.

Hence we have

Q2a−1

πr

r∏
j=1

|Γ(λj(a+ it) + µj)Γ(λj(a− 1 + it) + 1− µj) sin(π(λj(1− a− it) + µj))|

≤ cL(a)Q2a−1 ((aλM + µM + 1)2 + (λM |t|+ µM )2
) dL

4
(2a−1)

,

which completes the proof. �

4. Proof of Theorem

Now we are ready to prove our main theorem. We again put

λm := min
1≤j≤r

λj , λM := max
1≤j≤r

λj , µM := max
1≤j≤r

|µj |,

and let a be a real number satisfying 1 + µM+1
λm

< a < 1
2 + n

dL
.
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By Proposition 1 and Lemma 2, we have

|γn(L)| ≤ 1

2π

∞∑
m=1

|f(m)|
ma

∫ ∞
−∞

|GL(a+ it)|
(a2 + t2)(n+1)/2

dt

≤ cL(a)

π
Q2a−1

∞∑
m=1

|f(m)|
ma

∫ ∞
0

(
(aλM + µM + 1)2 + (λM t+ µM )2

) dL
4
(2a−1)

(a2 + t2)(n+1)/2
dt,

where

cL(a) = 2r exp

1

5

r∑
j=1

1

λj(a− 1)− Re(µj)

 .

We divide the region of integration into two as follows:

(6)

(∫ A

0
+

∫ ∞
A

) (
(aλM + µM + 1)2 + (λM t+ µM )2

) dL
4
(2a−1)

(a2 + t2)(n+1)/2
dt =: J1 + J2

with A = a+ 1
λM

. We estimate J1 and J2 in the following manner:

J1 ≤ 2
3
4
dL(2a−1)

∫ A

0

(aλM )
dL
2
(2a−1)

an+1
dt ≤ (8λ2M )

dL
4
(2a−1)A

a
a−n+

dL
2
(2a−1)

≤ 2(8λ2M )
dL
4
(2a−1)a−n+

dL
2
(2a−1),

and

J2 ≤ 2
3
4
dL(2a−1)

∫ ∞
A

(λM t)
dL
2
(2a−1)

tn+1
dt ≤ (8λ2M )

dL
4
(2a−1)

∫ ∞
A

dt

tn+1−dL(2a−1)/2

≤
(8λ2M )

dL
4
(2a−1)

n− dL(2a− 1)/2
a−n+

dL
2
(2a−1).

Substituting the above into (6), we obtain

|γn(L)| ≤ cL(a)

π
Q2a−1

( ∞∑
m=1

|f(m)|
ma

)
(8λ2M )

dL
4
(2a−1)a−n+

dL
2
(2a−1)

(
2 +

1

n− dL(2a−1)
2

)
.

Therefore putting

CL(a) =
2rQ2a−1

π
exp

1

5

r∑
j=1

1

λj(a− 1)− Re(µj)

( ∞∑
m=1

|f(m)|
ma

)
(8λ2Ma

2)
dL
4
(2a−1)

for 1 + µM+1
λm

< a < 1
2 + n

dL
, we obtain

|γn(L)| ≤ CL(a)a−n

(
2 +

1

n− dL(2a−1)
2

)
,

which completes the proof of our Theorem.
�
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