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ABSTRACT. Let f be an arithmetic function and let S* denote the extended Selberg class.
We denote by L(s) = > 07, % the Dirichlet series attached to f. The Laurent-Stieltjes
constants of £(s) which belongs to 8%, are the coefficients of the Laurent expansion of £
at its pole s = 1. In this paper, we give an upper bound of these constants, which is a

generalization of many known results.

1. INTRODUCTION

Let ¢ be any positive integer > 1 and let x be a Dirichlet character modulo q. Let v, (x)
denote the Laurent coefficients of the Dirichlet L-function L(s,x) near s = 1. We recall that

q

() = x(@)(a,q),

a=1
where
M (logm)™®  (log M)"H1
n ) = 1 -
(@, q) = lim > — o+ 1)

1<m=a mod q

In particular, 7o(1,1) = 0.5772156649 - - - is the well-known Euler constant. The constants
vn(a, q) are often called the Stieltjes constants or generalized Euler constants. In the particular
case when y = xg, where xq is the principal character modulo 1, the Dirichlet L-function
L(s, xo) reduces to the Riemann zeta function ((s), that is L(s, x0) = ((s). We write the
corresponding Laurent coefficients simply 7,,(x0) = Yn(1,1) = v,. Stieltjes in 1885 showed

that
M (logm)™  (log M)"+!
lim E -
nl Moo\ 2= m (n+1)

(1) Tn =

which pioneered the study of Laurent coefficients of zeta functions and L-functions. This
gives rise to the widely used name “Stieltjes constants” for these coefficients.

The asymptotic behavior of 7, as n — oo has been widely studied by many authors (for
instance: Briggs [3], Mitrovic [14], Israilov [9], Matsuoka [13], and more recently, Coffey [5, 6],
Knessl and Coffey [10], Adell [2], Adell and Lekuona [1], and Saad Eddin [18]). The studies
mostly focused on the growth and sign changes of the sequence (7,), explicit upper estimates
for |v,|, and asymptotic expressions for 7,. Stieltjes constants for other zeta functions and
L-functions have also been studied by many authors. We introduce some of their results in
the following section.
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In this paper, we are interested in investigating the Stieltjes constants of more general L-
functions. We consider functions in a class larger than the Selberg class. We first introduce
the Selberg class S.

Selberg class. Let f be an arithmetic function, and denote by £(s) = 527, £ () the Dirich-

n=1 ns

let series attached to f. We say the Dirichlet series £(s) belongs to the Selberg class S if it
is absolutely convergent when Re(s) > 1 and satisfies the following properties:

Condition S1. Ramanujan hypothesis: For any € > 0, we have f(n) <. n®.

Condition 82. Analytic continuation: There exists k € Z>( such that (s — 1)*£(s) is entire
of finite order.

Condition §3. Functional equation: Define

F(s) = Q* T[T (\ss + ny)

j=1
where @), \; are positive real numbers, I' is the gamma function, p; is a complex number
satisfying Re(p;) > 0. Then the function ®(s) := F(s)L(s) satisfies the functional equation
D(s) =wd(1 —73),

where w is a complex number with |w| = 1.

Condition §4. Euler product: For Re(s) > 1, the function £(s) can be written as a product
over prime numbers p:

L(s) =] £ols)

where

with b(n) < n?, for some < 1.

This class S is expected to be the largest class of zeta and L-functions satisfying the
Riemann hypothesis, usually called the Grand Riemann Hypothesis: all nontrivial zeros of
these functions lie on Re(s) = 1/2. The extended Selberg class S* is defined to be the class
of functions L(s) =Y 7, ! T(Lf) satisfying the above conditions $2 and &3, but not necessarily
S1 and &4.

Notable examples of £ € S are the Riemann zeta function ((s), Dirichlet L-functions
L(s, x) associated with non-principal primitive characters x, and the Dedekind zeta function
(K (s) of a number field K. The sum of the all parameters \; in 83 gives the degree of the
L-function £(s) in S#, and so in S, as follows:

dc=25" 1,
j=1

It is not known if dy € Z for all £L € & but the degree dy characterizes certain properties
of the functions £ € §. For example, d, characterizes several analytic properties of L, even
though the functional equations may contain non-unique information. We shall not discuss
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d further since it is irrelevant to the aim of this paper. The readers may refer to [21, Chapter
6] for more details about the Selberg class.

From now we keep our focus on £ € S#. That is, we would like to extend beyond the
Selberg class by eliminating conditions 81 and §4. Consider the Laurent expansion of £(s)
at its possible pole s = 1 written in the following form:

o0
L(s)= D mL)(s—1)"
n=—=k
We call the coefficients ~,(L) the generalized Laurent-Stieltjes constants or the Laurent-
Stieltjes constants of the extended Selberg class. In this paper, we study these coefficients
and give an upper bound of 7, (£) for £ € S*. We remark that none of the arguments in this
method we use requires 84, while eliminating 81 requires us to use a weaker condition (see
85 in the proof of Lemma 1).
Our main theorem is stated as follows.

Theorem. Let £ € S#\ {0} and let d; be the degree of L. Let Q be the positive real number
appearing in condition 83 and let

Am i= min X;, Ay := max A;, and pp = max |u;|.
1<j<r 1<5<r l<]<7“

For a positive integer n with

n (1 v +1

-+ ) drlog(Q + 3),
logn

2 Am

we have

n 1
I (L)] < Crla)a (2 + n_dﬁ(zal)> ;

2
where a satisfies 1 + “1/‘\47;1 <a<i+ 1. and

2rQ*! = |f(m)] 2 F(2a-1)
- ) (£ 5

Finally we remark that the Laurent-Stieltjes constants of zeta and L-functions have many
applications not only in analytic number theory, but also in algebraic number theory and even
fields outside of number theory. They can be used to determine zero-free regions for L(s, x)
near the real axis in the critical strip 0 < Re(s) < 1, to compute the values of ((s) in the
complex plane, to study the class number of a quadratic field, etc.

2. SOME KNOWN RESULTS ON THE LAURENT-STIELTJES CONSTANTS OF ZETA AND
L-FUNCTIONS

The first explicit upper bound for |7, | has been given by Briggs [3], which was later improved
by Berndt and Israilov. In 1985, the theory made a huge progress via an asymptotic expansion
shown by Matsuoka [13], for these constants. He gave an excellent upper bound of |v,| for
n > 10 and proved that

h/n‘ < 10—4enloglogn.

This result had been the best upper bound of |, | for more than 20 years. Thanks to the above
result, Matsuoka showed that (s) has no zeros in the region |s —1| < v/2, with 0 < Re(s) < 1.
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Many have tried to improve on the Matsuoka bound, with few successful attempts. Matsuoka’s
work relied on a formula that is essentially a consequence of Cauchy’s integral theorem and the
functional equation. More recently, the second author [18] extended this formula to Dirichlet
L-functions. She gave the following upper bound for |v,(x)| for primitive Dirichlet characters
x modulo ¢ and for every 1 < ¢ < we(®*1/2/(2n + 2). We have

2
I%LTE'X)\ < ¢ 2C(n, q) min <1 +D(n,q), = )

) X
where
C(n,q) = 2v2exp {—(n + 1)logf(n,q) + 0(n,q) <log 0(n,q) + log 72:;) }
and
0(n,q) = b;;;zgm —1, D(n,q) = 2—9<n,q)—1m‘

In the case when x = xo and ¢ = 1, this leads to a sizable improvement of Matsuoka’s bound
and of previous results. As an application of this upper bound, the second author showed in
[19] that this result enables us to approximate L(s, x) in the neighborhood of s = 1 by a short
Taylor polynomial. For N = 4logq and ¢ > 150, we have

o) - 3 U0yl 328
n<N

where |s — 1| < e~ !. She also proved that the function ((s) has no zeros in the region

|s — 1| <2.2093 with 0 < Re(s) < 1. This result is an improvement of Matsuoka’s result.

Finally, let K be a number field and Ok be its ring of integers. Define for Re(s) > 1 the

Dedekind zeta function
1 1
Ck(s) _Za:NaS —1;11_]\71337

where a runs over non-zero ideals in O, p runs over the prime ideals in O and Na is the
norm of a. It is known that (x(s) can be analytically continued to C\ {1}, and that at s =1
it has a simple pole, with residue v_1(K) given by the analytic class number formula:

_ 211 (2n)"2h(K)R(K)

)= VD)

Here we denote by 71 the number of real embeddings of K, ro the number of complex em-
beddings of K, h(K) the class number of K, R(K) the regulator of K, w(K) the number of
roots of unity contained in K and D(K) the discriminant of the extension K/Q. Consider
the Laurent expansion

Gele) = ) S ) s 1
n=0

of (x(s) at s = 1. The constants 7, (K) are sometimes called the Stieltjes constants associated
with the Dedekind zeta function. In [7] they are called higher Euler’s constants of K. The
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second author [20] studied these constants and showed that, for n > 1, we have

i) = i (57 QBT

n! z—oo
Na<zx

(log m)n—i—l

n—+1

)
and

T—00

1
K) =l — —~v_1(K)1 _1(K).
Yo(K) = lim N;x Na 1(K)logz | +~y-1(K)

To conclude this section, we remark that only the first constant v = ~vo(K)/v-1(K), called
the Euler-Kronecker constant, which is closely related to values of the logarithmic derivative
of L-functions, has been studied so far. For more details see [15]. This raises questions on the
other Stieltjes constants associated with (x(s). The authors were motivated to give partial
answers to these questions in a much more general context, that is, for all L-functions in the
Selberg class.

3. AUXILIARY LEMMAS

In order to prove our main result, we first show a proposition and two necessary lemmas.
Recall the notation used when we defined S# in Section 1.

Lemma 1. Let £ € S and let d; be the degree of L. Then we have
(2) L(o +it) = L% |L(1 — o + it)).
In particular,
|t|® if o>1,
(3) Lo +it) <ce S [H770%H if 0<o <1,
t|(z—odete i g <.
Proof. For the standard case when we assume 81, see [21, Theorem 6.8]. Note here that the
first-half (2) is obtained from the functional equation S3.

Now without &1, we note that the absolute convergence of the Dirichlet series can be
rewritten as follows:

Condition 85. For any ¢ > 0, we have )_, . [f(n)] < z'**.

Note that this is a weaker condition than 81. This and again the functional equation &3
easily give us the bounds (3) for the case 0 > 1+ ¢ and 0 < —¢. That is

£(0+it)<<55{1 . it o=l+s

7 ]t|(§_“—)dﬁ+‘E if o< —¢.

Since the function L£(s) is entire of finite order from condition 82, for any § > 0,
L(o +it) <z expexp(d|t])

holds in the strip —1 < o < 2. Substituting this into (2), we can show that this also holds for
0 <o <1/2. Applying the theorem of Phragmén-Lindel6f [16, Proposition 8.15], we have

Lo +it) <o [t 20t
for0 <o <1. O
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Remark. We remark that this is the only statement for which we need condition 81 or at
least 85.

Proposition 1. Let £ € S7 with degree d; > 0. Letn be an integer with n > max {0, %ﬁ — }

Forl<a< "+1 + 5 such that A\j(1 — a) + Re(u;) ¢ Z for each j =1,2,...,r, we have

(1" /aﬂ‘w Ge(s)

271 sntl

’Yn('c) =

L(5)ds,

where the function G s defined by

wQ2s—l r

[T TCys + 75 sin(m(h (1 = 8) + )T (s = 1) +1 - ).
j=1

(4)  Ge(s) =
Here Q, \; are positive real numbers, pu; and w are complex numbers with Re(p;) > 0 and
lw| = 1.

Proof. By Cauchy’s formula, we can write

1 L(s
(L) = 27rz’/D(s—(1))”+1dS’

where D is the positively oriented rectangular path passing through the vertices —a + 1447,
—a+1—4T, A—iT and A+ iT, where A and T are sufficiently large numbers. Let us now
divide D into the line segments D, Dy, D3 and Dy joining —a+ 14T, —a+1—iT, A—iT
A—+i4T and —a + 1+ 4T, as in Figure 1. Then, we have

LGRE VYRR =0

By Lemma 1, the integral over Do is bounded by

e =\ L ) e

A
Lge T x ( / 7%= dg + / T29(1-0) g 4 / da>
—a+1 0 1

L e Tfn71+d£(a71/2)+s'

Since a < "H + %, the last term vanishes as T — 4o00. Therefore, the integral over Dy tends
toOasT —> +oo. A similar argument shows that the integral over Dy tends to 0 as T — +o0.
Next we consider the integral over D3. For n > 0, we find that

dt
’/Dg, S ((A—1)2 4 ¢2)(n+D/2 < oo
and for any ¢ > 0,
1
li =0.
A—IEOO (A-1)2+ 252)(n+1)/2
Hence by Lebesgue’s convergence theorem, we have lim  lim = 0.

A—~00 T—+00 Ds
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—a+ 14T Dy A+iT
]
D,
Dy 3
0
[ 3
—a+1—iT Dy A—iT

FiGURE 1. The rectangle D in the complex s plane

Thus, for n > max {O, ‘%ﬂ — 1}, we have

1 /a+lioo £L(s) ds—(_l)n /aJriooL(l_S)dS.

20 ) _qiiqice (s— 1)1 27 sn+l

(L) = '
—100
Here, by using the functional equation &3 for £(s) and the formula I'(s)I'(1 — s) sin(7s) = ,
we have

L(l—s)zﬁ(s)<wﬂ“:(i)s)) — 70 | wQ* 1H iil-;i)ﬂj)

= L(E)Gel(s).

Hence

_1\n a+100 s
iy = I [ Gel g,

271 Sy STE
where the function G(s) is as defined in (4). This completes the proof of Proposition 1. [
Lemma 2. For £ € S#\{0}, consider G as defined in Proposition 1. Let A, := minj<j<; \;

and g := maxi<j<, |pj|. Fora>1+ “M, we have

0L (50
Gela+it)] < ec(@@Q® ™ ((ahar + par + 1% + Ot + par)?) = 7,
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where the constant cr(a) is defined by

ce(a) = 2" exp Z Aj(a—1) Re(uj)

Proof. Put Ay, = mini<j<, A\j, Ayr i= maxi<j<, Aj, iy := Maxi<;<r ||, and let a > 1—1—’)‘\—12.
From (4), we have

Q2a—1

|Gela+it)] <
X H]F i(a+it) +m)I'(Nj(a —14+it) + 1 — py) sin(m(Aj(1 — a —it) + p5))] -

We can easﬂy show that
[sin(r (A (1 — a — it) + 17))| < exp(rlAzt — Im(gy)]).

On the other hand, using Stirling’s formula we can show that, for > 0,

1 1
log |I'(x + iy)| = (x - 2> log(z? + 9?) — yarctan(y/z) — = + 5 log 27 + ¢(z,y)

N~ N~

IN

1 1
(x - 2) log(z® +y°) — *!y\ + 5 log 2m + ¢(x,y),

where the function ¢(z,y) satisfies the inequality (cf. Binet’s first formula)

© /1 1 1 eft(aH*iy) J
S t

/0 (2 t + et — 1> t
From these inequalities, we find that (note that Re(Aj(a — 1 +it) +1 — p;) > 0 since a >

L+ s /Am)
IT(Aj(a+it) + ;)T (Nj(a — 1 +dt) + 1 — py) sin(m (A (1 — a — it) + pj))]

1
< —
— 10z

lo(z,y)| <

A

1 2 F(2a-1)
< mexp < T Re(uj))) ((@Xar + s + 12 + Ouarlt] + ar)?)
Hence we have
2a—1 T
QWT H IT(Nj(a+it) + 1) T(Nj(a — 1 +dt) + 1 — pj) sin(m(A;(1 — a —it) + py))]

J=1

9L (9
< ce(a)Q2 ™ ((ahas + par + 1% + Qg t] + pan)?) + 2070,

which completes the proof. O

4. PROOF OF THEOREM
Now we are ready to prove our main theorem. We again put

A = min A;,  Ap/ := max \; M := max
m 1552, Losay K o |51,

and let a be a real number satisfying 1 + “Jf\fijl <a< % + %.



STIELTJES CONSTANTS OF L-FUNCTIONS IN THE EXTENDED SELBERG CLASS

By Proposition 1 and Lemma 2, we have
|f( |Gz (a+ it)]
< —
[ (L)] < o E_ a2—|—t2 n+1)/2dt

2 o\ % (2a-1)
< an 12 ‘ a)\M+NM+]-) +()\Mt+,U/M) ) dt
= (a2 + £2)(n+D)/2 ’

where

cc(a) =2 exp Z Aj(a—1) Re(uj)

We divide the region of integration into two as follows:

e
. N\ ((aAnr + par +1)% + (At + MM)2)T(2G*1)
o </0 +/A ) (a2 + t2)(n+1)/2 dt =1 1+ Ja

with A =a + ﬁ We estimate J; and Js in the following manner:

A 9L (941
(adnr) 2 ¢ )dt < (8)2,) % (2a- DA nile(2a-1)

3dr(2a—1)
Jl S 24 / an—‘rl — a

0
2(8)\?\4)%(20,—1)&—714-%[*(2(1—1)’

and

(2a—1) 0 dt
34, (2a-1) M 2 \%@a-r [ dt
Jo < 24%F /A s dt < (8\3)* | nH—dc(a-1)/2

L (90
EREED
“n—de(2a—1)/2 '

Substituting the above into (6), we obtain

| (£)|<L@Q2a—1 i\f(m)! (8X2,) F (2a-1) g=n % (2a-1) o4 L
T - m M T deGan1) |

n 2

Therefore putting

2rQ2a 1 1
Crla) = 5 Z Aj(a—1) Re(,u,j) (Z

for1+“§fijl<a<%+ﬁ,weobtain

) Ma2)75(2a 1)

n 1
Im(L)] < Crla)a (2 + ndﬁ(ga_1)> ,
2

which completes the proof of our Theorem.
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