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Abstract

A positive integer d is called an unitary divisor of any positive integer n if d|n
and (n, n/d) = 1, notation d||n. Let (k, n)∗ be the greatest divisor of the integer
k which is an unitary divisor of n. Let (k, n)∗∗ be the greatest common unitary
divisor of k and n. We introduce the following two functions

tk(j) =
∑

d||(j,k)∗

f(d)g

(
k

d

)
, vk(j) =

∑
d‖(j,k)∗∗

f(d)g

(
k

d

)
,

for any arithmetical functions f and g. Here d‖(j, k)∗ holds if and only if d|j and
d‖k. In this paper, we give some asymptotic formulas for the weighted averages
of tk(j) and vk(j) with weights concerning the monomial factor, the Gamma
function, and the Bernoulli polynomials. We also derive useful formulas for the
unitary and the bi-unitary analogues of the gcd-sum function.

1 Introduction and statements of the results

Let (k, n) be the greatest common divisor of the integers k and n. In 1885, Cesàro pub-
lished an important result on the arithmetic function, showing that for any arithmetic
function f , we have

P (n) :=
n∑
k=1

f ((k, n)) =
∑
d|n

f(d)φ
(n
d

)
. (1)

In a special case when f = id, one can write

n∑
k=1

(k, n) =
∑
d|n

dφ
(n
d

)
= (id ∗φ) (n). (2)
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This latter sum is called by the gcd-sum function (sometime by Pallai’s arithmetic
function) and due to Pallai (1937). Of course, the symbol ∗ denotes the Dirichlet con-
volution of two arithmetical functions f and g defined by (f ∗g)(n) =

∑
d|n f(d)g(n/d),

for every positive integer n. Various generalizations and analogues of Eqs. (1) and (2)
have been widely studied by many authors. For a nice survey see [5]. It is well known
that the Ramanujan sum is defined by

ck(j) =
∑
d|(k,j)

dµ

(
k

d

)
,

for any positive integers k and j. One of the most common generalization of the
Ramanujan sum is due to Anderson-Apostol [1] and defined by

sk(j) :=
∑
d|(k,j)

f(d)g

(
k

d

)
, (3)

for any arithmetical functions f and g. In this paper, we introduce the unitary and
bi-unitary analogues of the Anderson-Apostol sums. The next two subsections describe
precisely our functions and results.

1.1 Unitary analogues

A positive integer d is called an unitary divisor of any positive integer n if d|n and
(n, n/d) = 1, notation d||n. Let (k, n)∗ be the greatest divisor of k which is an unitary
divisor of n, namely

(k, n)∗ = max {d ∈ N : d|k, d||n} .

In 1989, Tóth [4] introduced the unitary analogue of Eq. (2) as follows

P ∗(n) =
n∑
k=1

(k, n)∗. (4)

In that paper, he showed that the function P ∗(n) is multiplicative and that

P ∗(n) =
∑
d||n

dφ∗
(n
d

)
, (5)

where φ∗ denotes the unitary analogue of Euler’s function and defined by

φ∗(n) = # {k ∈ N : 1 ≤ k ≤ n, (k, n)∗ = 1} . (6)

In other words, φ∗(n) is rewritten in the form

φ∗(n) =
∑
d|n

dµ∗
(n
d

)
= (id ∗µ∗) (n).
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Here µ∗(n) the unitary analogue of the Möbius function given by µ∗(n) = (−1)ω(n)

where ω(n) is the he number of distinct prime factors of n.

We introduce the function tk(j) defined by

tk(j) =
∑

d||(j,k)∗

f(d)g

(
k

d

)
, (7)

such that d‖(j, k)∗ holds if and only if d|j and d‖k. The function tk(j) is an unitary
analogue of Eq.(3). From the above, we immediately deduce the identity

k∑
j=1

tk(j) =
∑
d‖k

f(d)g

(
k

d

) k/d∑
`=1

1 = (f ? g · id)(k). (8)

Here the symbol ? denotes the unitary convolution of two arithmetical functions f and
g defined by (f ? g)(n) =

∑
d||n f(d)g(n/d), for every positive integer n. Eq.(8) is a

generalization of Eq. (5). Moreover, we have

∑
k≤x

1

k

k∑
j=1

tk(j) =
∑
d`≤x

(d,`)=1

f(d)

d
g(`). (9)

Since φ is a multiplicative function, one can also see that

∑
k≤x

1

φ(k)

k∑
j=1

tk(j) =
∑
d`≤x

(d,`)=1

f(d)

φ(d)

g(`)`

φ(`)
. (10)

For any complex z we define the functions Bn(x) by the generating function

zexz

ez − 1
=
∞∑
n=0

Bn(x)

n!
zn

for |z| < 2π. The functions Bn(x) are known as Bernoulli polynomials, and the numbers
Bn(0) are called Bernoulli numbers and are denoted by Bn.

Our first goal of this paper is to derive some formulas of the weighted averages of
tk(j) with weight function w concerning the monomial factor, the Gamma function Γ(.),
and the Bernoulli polynomials Bn(.). This is

∑
k≤x

1

W (k)

k∑
j=1

w(j)tk(j) (11)
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with certain weight function W . For any fixed positive integer r, we define the following
function:

Tr(x; f, g) :=
∑
k≤x

1

kr+1

k∑
j=1

jrtk(j), (12)

Then we prove that

Theorem 1. For any positive real number x ≥ 2 and any fixed positive integer r, we
have

Tr(x; f, g) =
1

2

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`
+

1

r + 1

∑
d`≤x

(d,`)=1

f(d)

d
g(`)

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`2m
(13)

In a special case of Theorem 1 when f = f ∗ µ and g = 1, we get an useful formula
for the unitary analogue of gcd-sum function, that is

Corollary 1. Under the hypotheses of Theorem 1, we have

Tr(x; f ∗ µ,1) =
1

2

∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

1

`
+

1

r + 1

∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

1

`2m
. (14)

Now, we define the following two functions

Gf,g(x) =
∑
k≤x

1

k

k∑
j=1

log Γ

(
j

k

)
tk(j),

and

Yf,g(x) =
∑
k≤x

1

k

k−1∑
j=0

Bm

(
j

k

)
tk(j),

for any fixed positive integer m. We also prove that

Theorem 2. for any positive real number x ≥ 2 and any fixed positive integer m, we
have

Gf,g(x) = log
√

2π
∑
d`≤x

(d,`)=1

f(d)

d
g(`)−

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`
log
√

2π`, (15)

and

Yf,g(x) = Bm

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`m
(16)
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By taking f ∗µ in place of f and g = 1 in the above, we get the following interesting
formulas.

Corollary 2. Under the hypotheses of Theorem 2, we have

Gf∗µ,1(x) = log
√

2π
∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d
−
∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

log
√

2π`

`
,

and

Yf∗µ,1(x) = Bm

∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

1

`m
.

1.2 Bi-unitary analogues

Let (k, n)∗∗ be the greatest common unitary divisor of k and n, namely

(k, n)∗∗ = max {d ∈ N d||k, d||n} .

In 2008, Haukkanen [3] defined a generalization of the gcd-sum function as follows:

P ∗∗(n) =
n∑
k=1

(k, n)∗∗. (17)

It is called by the bi-unitary gcd-sum function. Not surprisingly the study of P ∗∗(n)
has a lot of similarities with that of P ∗(n) or even P (n). Haukkanen also showed that

P ∗∗(n) =
∑
d||n

φ∗(d)φ
(n
d
, d
)
, (18)

where φ(x, d) is the Legendre function. More recently, Tóth [6] gave an asymptotic
formula for the partial sum of P ∗∗(n). He proved that∑

n≤x

P ∗∗(n) =
1

2
Bx2 log x+O

(
x2
)
,

where

B =
∏
p

(
1− 3p− 1

p2(p+ 1)

)
= ζ(2)

∏
p

(
1− (2p− 1)2

p4

)
.

Using the above and the partial summation, he deduced that∑
n≤x

P ∗∗(n)

n
= Bx log x+O (x) . (19)
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By similar considerations, we introduce the bi-unitary analogue of Anderson-Apostol
sums vk(j) defined by

vk(j) =
∑

d‖(j,k)∗∗

f(d)g

(
k

d

)
. (20)

With some careful calculations, one can check that

k∑
j=1

vk(j) =
∑
d‖k

f(d)g

(
k

d

)∑
δ|d

µ(δ)

k/(dδ)∑
`=1

1 (21)

= (f · φ · id−1 ?g · id)(k). (22)

Then, we get ∑
k≤x

1

k

k∑
j=1

vk(j) =
∑
d`≤x

(d,`)=1

f(d)

d

φ(d)

d
g(`), (23)

∑
k≤x

1

φ(k)

k∑
j=1

vk(j) =
∑
d`≤x

(d,`)=1

f(d)

d

g(`)`

φ(`)
. (24)

For any positive integer r, we consider the function Vr(x; f, g)

Vr(x; f, g) :=
∑
k≤x

1

kr+1

k∑
j=1

jrvk(j) (25)

to get the following result.

Theorem 3. For any positive real number x > 1 and any fixed positive integer r, we
have

Vr(x; f, g) =
f(1)

2

∑
k≤x

g(k)

k
+

1

r + 1

∑
d`≤x

(d,`)=1

f(d)

d

φ(d)

d
g(`)

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

(d,`)=1

f(d)

d

φ1−2m(d)

d1−2m
g(`)

`2m
(26)

As a consequence of Theorem 3, we deduce the following bi-unitary analogue of the
gcd-sum function by replacing f by f ∗ µ and g = 1.
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Corollary 3. Under the hypotheses of Theorem 3. For any arithmetical function f , we
have

Vr(x; f ∗ µ,1) =
(f ∗ µ)(1)

2

∑
k≤x

1

k
+

1

r + 1

∑
d`≤x

(d,`)=1

(f ∗ µ)(d)

d

φ(d)

d

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

gcd(d,`)=1

(f ∗ µ)(d)

d

φ1−2m(d)

d1−2m
1

`2m
(27)

Our second goal of this paper is to give asymptotic formulas of the weighted averages
of vk(j) with weights concerning the Gamma function and the Bernoulli polynomials.
Put

G̃f,g(x) =
∑
k≤x

1

k

k∑
j=1

log Γ

(
j

k

)
vk(j),

and

Ỹf,g(x) =
∑
k≤x

1

k

k−1∑
j=0

Bm

(
j

k

)
vk(j).

We prove that:

Theorem 4. Let the notation be as above, we have

G̃f,g(x) = log
√

2π
∑
d`≤x

(d,`)=1

f(d)φ(d)

d2
g(`)

− f(1)
∑
k≤x

g(k)

k
log
√

2πk − 1

2

∑
d`≤x

(d,`)=1

f(d)Λ(d)

d

g(`)

`
(28)

where Λ is the von Mangoldt function. Furthermore, we have

Ỹf,g(x) = Bm

∑
d`≤x

(d,`)=1

f(d)

d

φ1−m(d)

d1−m
g(`)

`m
(29)

As an application of Theorem 4, we take f ∗ µ in place of f and g = 1 into the
above to get the interesting formulas
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Corollary 4. Let the notation be as above, we have

G̃f∗µ,1(x) :=
∑
k≤x

1

k

k∑
j=1

log Γ

(
j

k

) ∑
d‖(j,k)∗∗

(f ∗ µ)(d)

= log
√

2π
∑
d`≤x

gcd(d,`)=1

(f ∗ µ)(d)φ(d)

d2
− f(1)

∑
k≤x

log
√

2πk

k

− 1

2

∑
d`≤x

gcd(d,`)=1

(f ∗ µ)(d)Λ(d)

d

1

`
, (30)

and

Ỹf∗µ,1(x) :=
∑
k≤x

1

k

k−1∑
j=0

Bm

(
j

k

) ∑
d‖(j,k)∗∗

(f ∗ µ)(d)

= Bm

∑
d`≤x

gcd(d,`)=1

(f ∗ µ)(d)

d

φ1−m(d)

d1−m
1

`m
. (31)

2 Proof of Theorems 1 and 3

2.1 Proof of Theorem 1

By the definition of tk(j), we have

k∑
j=1

(
j

k

)r
tk(j) =

k∑
j=1

(
j

k

)r∑
d||k
d|j

f(d)g

(
k

d

)

=
1

kr

∑
d||k

f(d)g

(
k

d

) k∑
j=1
d|j

jr

=
1

kr

∑
d||k

drf(d)g

(
k

d

) k/d∑
`=1

`r

We use the well known identity, see [2, Proposition 9.2.12],

N∑
`=1

`r =
N r

2
+

1

r + 1

[r/2]∑
m=0

(
r + 1

2m

)
B2mN

r+1−2m (32)

for any positive integer N > 1, to obtain

k∑
j=1

(
j

k

)r
tk(j) =

1

2

∑
d||k

f(d)g

(
k

d

)
+

1

r + 1

[r/2]∑
m=0

(
r + 1

2m

)
B2m

∑
d||k

f(d)g

(
k

d

)(
k

d

)1−2m
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Using the fact that d||k is d|k and (d, k/d) = 1, we conclude that

∑
k≤x

1

kr+1

k∑
j=1

jrtk(j) =
1

2

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`
+

1

r + 1

∑
d`≤x

(d,`)=1

f(d)

d
g(`)

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`2m
.

This completes the proof of Theorem 1.

2.2 Proof of Theorem 3

By the definition of vk(j), we have

k∑
j=1

(
j

k

)r
vk(j) =

k∑
j=1

(
j

k

)r∑
d||k
d||j

f(d)g

(
k

d

)

=
1

kr

∑
d||k

f(d)g

(
k

d

) k∑
j=1
d||j

jr

=
1

kr

∑
d||k

drf(d)g

(
k

d

) k/d∑
`=1

(d,`)=1

`r

=
1

kr

∑
d||k

drf(d)g

(
k

d

) k/d∑
`=1

`r
∑
q|d
q|`

µ(q).

It follows that

k∑
j=1

(
j

k

)r
vk(j) =

1

kr

∑
d||k

drf(d)g

(
k

d

)∑
q|d

µ(q)

k/d∑
`=1
q|`

`r

=
1

kr

∑
d||k

drf(d)g

(
k

d

)∑
q|d

µ(q)qr
k/(dq)∑
q1=1

qr1
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Applying Eq. (32) to the inner sum on the right-hand side above, we find that

k∑
j=1

(
j

k

)r
vk(j) =

1

2

∑
d||k

f(d)g

(
k

d

)∑
q|d

µ(q)

+
1

r + 1

[r/2]∑
m=0

(
r + 1

2m

)
B2m

∑
d||k

f(d)g

(
k

d

)(
k

d

)1−2m∑
q|d

µ(q)

q1−2m

Now, we notice that
∑

q|d µ(q) = 1 where d = 1. Otherwise
∑

q|d µ(q) = 0. Moreover,
we have ∑

q|d

µ(q)

q1−2m
=
φ1−2m(d)

d1−2m
.

Thus, we get

k∑
j=1

(
j

k

)r
vk(j) =

1

2
f(1)g(k)+

1

r + 1

[r/2]∑
m=0

(
r + 1

2m

)
B2m (f · φ1−2m · id2m−1 ? g · id1−2m) (k)

Therefore, we obtain that

∑
k≤x

1

kr+1

k∑
j=1

jrvk(j) =
f(1)

2

∑
k≤x

g(k)

k
+

1

r + 1

∑
d`≤x

(d,`)=1

f(d)

d

φ(d)

d
g(`)

+
1

r + 1

[r/2]∑
m=1

(
r + 1

2m

)
B2m

∑
d`≤x

(d,`)=1

f(d)

d

φ1−2m(d)

d1−2m
g(`)

`2m
.

This completes the proof.

3 Proof of Theorems 2 and 4

3.1 Proof of Theorem 2

Notice that
k∑
j=1

tk(j) log Γ

(
j

k

)
=
∑
d||k

f(d)g

(
k

d

) k/d∑
`=1

log Γ

(
d`

k

)
Using the multiplication formula of Gauss–Legendre for the gamma function, see [2,
Proposition 9.6.33]

n∏
j=1

Γ

(
j

n

)
=

(2π)
n−1
2

√
n

, (33)
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we get

k∑
j=1

tk(j) log Γ

(
j

k

)
=

log(2π)

2

∑
d||k

f(d)g

(
k

d

)(
k

d

)

− log(2π)

2

∑
d||k

f(d)g

(
k

d

)
− 1

2

∑
d||k

f(d)g

(
k

d

)
log

(
k

d

)
.

This leads to

∑
k≤x

1

k

k∑
j=1

tk(j) log Γ

(
j

k

)
=

log(2π)

2

∑
d`≤x

(d,`)=1

f(d)

d
g(`)

− log(2π)

2

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`
− 1

2

∑
d`≤x

(d,`)=1

f(d)

d

g(`) log `

`
.

This completes the proof of Eq. (15). Now, we have

k−1∑
j=0

Bm

(
j

k

)
tk(j) =

∑
d‖k

f(d)g

(
k

d

) k
d
−1∑
`=0

Bm

(
`

k/d

)
.

Using the following property of Bernoulli polynomial, see [2, Proposition 9.1.3 ]

n−1∑
j=0

Bm

(
j

n

)
=

Bm

nm−1
(34)

for any fixed positive integer m, we get

k−1∑
j=0

Bm

(
j

k

)
tk(j) =

Bm

km−1

∑
d‖k

dm−1f(d)g

(
k

d

)
.

Therefore, we deduce that

∑
k≤x

1

k

k−1∑
j=0

Bm

(
j

k

)
tk(j) = Bm

∑
d`≤x

(d,`)=1

f(d)

d

g(`)

`m
.

The formula (16) is proved.
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3.2 Proof of Theorem 4

Notice that

k∑
j=1

vk(j) log Γ

(
j

k

)
=

∑
d||k

f(d)g

(
k

d

) k/d∑
`=1

(`,d)=1

log Γ

(
d`

k

)

=
∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ)

k/(dδ)∑
q=1

log Γ

(
qdδ

k

)

Using Eq. (33) and −Λ = µ · log ∗1, we get

k∑
j=1

vk(j) log Γ

(
j

k

)
= log

√
2π
∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ)

(
k

dδ
− 1

)
− 1

2

∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ) log

(
k

dδ

)

= log
√

2π
∑
d||k

f(d)g

(
k

d

)
k

d

∑
δ|d

µ(δ)

δ
− log

√
2π
∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ)

−1

2

∑
d||k

f(d)g

(
k

d

)
log

(
k

d

)∑
δ|d

µ(δ) +
1

2

∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ) log δ

= log
√

2π
∑
d||k

f(d)g

(
k

d

)
k

d

φ(d)

d
− log

√
2πkf(1)g(k)− 1

2

∑
d||k

f(d)g

(
k

d

)
Λ(d).

Thus, we find that

∑
k≤x

1

k

k∑
j=1

vk(j) log Γ

(
j

k

)
= log

√
2π

∑
d`≤x

(d,`)=1

f(d)φ(d)

d2
g(`)

− f(1)
∑
k≤x

g(k)

k
log
√

2πk − 1

2

∑
d`≤x

(d,`)=1

f(d)Λ(d)

d

g(`)

`
.

12



This completes the proof of Eq. (28). For Eq. (29), we note that

k−1∑
j=0

Bm

(
j

k

)
vk(j) =

∑
d||k

f(d)g

(
k

d

) k
d
−1∑
`=0

(`,d)=1

Bm

(
d`

k

)

=
∑
d||k

f(d)g

(
k

d

)∑
δ|d

µ(δ)

k
dδ
−1∑

j=0

Bm

(
dδj

k

)

= Bm

∑
d‖k

f(d)g

(
k

d

)(
k

d

)1−m
φ1−m(d)

d1−m
.

We therefore conclude that

∑
k≤x

1

k

k−1∑
j=0

Bm

(
j

k

)
vk(j) = Bm

∑
d`≤x

(d,`)=1

f(d)

d

φ1−m(d)

d1−m
g(`)

`
,

which gives the desired result.
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