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Abstract
Over any quadratic finite field we construct function fields of large genus that have si-

multaneously many rational places, small p-rank, and many automorphisms.
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1 Introduction

Let IF, be the finite field of characteristic p > 0 and cardinality ¢, where ¢ is a power of p, and
let F' be a function field over F, with full constant field F,. We denote by g(F') the genus and by
N(F') the number of rational places of F//F,. By a tower of function fields we mean an infinite
sequence F = (Fj);>o of function fields over F, such that Fy C F; C F, C ..., all extensions
F;11/F; are separable, and g(F;) — oo for i — co. It is easy to see that the limit
A(F) = lim N(F;)/g(F;)
1—00

exists, and it is called the limit of the tower [14]. The Drinfeld—Vladut bound states that

0<AF) < g—1.



F is called asymptotically good if \(F) > 0, and asymptotically optimal if \(F) = /q — 1. The
tower is asymptotically bad if A(F) = 0. Asymptotically good towers exist and they have been
studied extensively, see [1, 3, 4, 5, 6, 8, 9, 10, 14] and the references therein. We note that it is
a non-trivial task to construct asymptotically good towers, ‘most’ towers are bad.

An important invariant of a function field F'/F, is its p-rank s(F") (which is sometimes called
the Hasse-Witt invariant of F). Tt is defined as follows: Let F be the constant field extension
of F with the algebraic closure F, of F;. The group of divisor classes of degree zero and order
p of F is a finite abelian group of exponent p, and s(F) is defined as the rank of this group. It
is well-known that the inequality 0 < s(F) < g(F') holds for every function field F' over [, and
‘most’ function fields are ordinary; i.e., s(F) = g(F). For a tower F = (F});>0 of function fields
over [y, the quantity

o(F) = liminf s(F}) /g(Fy)
11— 00

is called the asymptotic p-rank, or in short the p-rank of F. Clearly we have the inequality
0<o(F)<L1.

The asymptotic p-rank was introduced by Cramer et al. [7] to analyse the behaviour of various
constructions related to multi-party computations and fast multiplication algorithms. According
to their construction, it is desirable to have asymptotically good towers F with o(F) as small as
possible. The aim of our paper is to construct such towers. Observe however, since most function
fields are ordinary, one expects that for a ‘general’ tower of function fields, the asymptotic p-rank
should be 1.

First we recall known results from the literature. The Garcia—Stichtenoth tower over a
quadratic field F, (i.e., ¢ is a square) in [10] is asymptotically optimal and its p-rank is 1/(,/g+1),
see [2, 7]. This is the smallest known p-rank of an asymptotically good tower. The p-rank of
some asymptotically good towers over a cubic field Fy, (ie., ¢ = p3?) has been determined in
[1, 2], it is close to 1/4. In Section 3 below we will construct asymptotically good towers over
quadratic fields whose p-rank is significantly less than the p-rank of the above-mentioned towers.
More specifically, we show that for any € > 0, there exists an asymptotically good tower F over
[F, such that its p-rank is o(F) < e.

We will also consider towers of function fields that have many automorphisms. Recall that
the automorphism group Aut(F') of a function field F/F, is always finite, and for a ‘general’
function field it is trivial; i.e., |Aut(F)| = 1, see [12]. For large classes of function fields (for
instance if Aut(F') is abelian or if the order of Aut(F) is prime to p), there is a linear upper
bound

Aut(F)| < A- g(F)



with an absolute constant A > 0, see [11, 13]. We will show (see Theorem 4.9.) that for every
e > 0, there is a constant B > 0 and an asymptotically good tower F = (F});>¢ over F, (¢ a
square) such that o(F) < € and

|Aut(F3)|[ > B - g(Fy)

for all + > 0. In other words, there exist function fields over F, of large genus which have

simultaneously many rational points, many automorphisms and small p-rank.

2 Preliminaries

Let £ O F be a finite separable extension of function fields. Denote by P(F') the set of places
of F. For a place @ € P(E) lying above P € P(F), we write Q|P and denote by e(Q|P) the
ramification index and by d(Q|P) the different exponent of Q|P. The genera of F' and E are

then related as follows:

Lemma 2.1 (Hurwitz genus formula). Let E/F be a finite separable extension of function fields

over the same constant field F,. Then
29(E)—2=[E:F]-29(F)=2)+ ) >  dQ|P)-degQ.
PEP(F) QeP(E), Q|P

For the p-ranks of F' and F, such a formula does not hold in general. However, in the

important special case where E/F is a cyclic extension of degree p, one has:

Lemma 2.2 (Deuring—Shafarevich formula). Let E/F be a cyclic extension of degree p of func-
tion fields over the same constant field ;. Then the p-ranks of F' and E satisfy

s(B)—1=p-(s(F)=1)+ »_ Z (e(QIP) = 1)) - deg Q .
PeP(F) QeP(E),Q|P

We will need the following generalization of Lemma 2.2:

Lemma 2.3. Let E/F be an extension of function fields of degree [E : F] = p™ over the same
constant field F,. Assume that there exist intermediate fields F = Fy C Fy C---F,_ 1 CF,=F
such that all extensions Fy11/F; are Galois. Then the p-ranks of F' and E satisfy

s(B)—1=[E:F]- (s(F + ) > (elQIP) — 1)) - deg @ .
PeP(F) QeP(E), Q|P

Proof. We can refine the sequence F' = Fy C Fy} C --- F,_1 C I, = E such that all extensions
Fi+1/F; are Galois of degree p. Then the claim follows from Lemma 2.2 by induction. O



A separable extension E/F' of function fields is called b-bounded if for every place P € P(F')
and every Q € P(E) lying above P, the different exponent d(Q|P) satisfies the equation

d(QIP) = b (e(QIP) = 1).

A tower F = (F;);>0 is called b-bounded if all extensions Fj;/F; are b-bounded. The property
of being b-bounded is transitive as follows from transitivity of ramification index and different

exponent:

Lemma 2.4. Let FF C E C H be separable extensions of function fields. If H/E and E/F are
b-bounded, then H/F is also b-bounded.

A tower F = (F})i>o is called a p-tower if all extensions Fjy;/F; are Galois and their degrees
[Fit+1 : F;] are powers of p. Most towers of function fields that we consider in this paper, will be

p-towers.

Lemma 2.5. For an asymptotically good p-tower F = (F;)i>0, the sequence (s(F;)/g(F;))i>o is

convergent, hence the p-rank of F is

o(F) = lim s(F;)/g(F;).

1—00

Proof. We can assume w.l.o.g. that g(F;) > 0 and N(F;) > 0 for all i. We have

s(F) _s(F)—1 N(R) 1

g(Fs)  N(F)  g(F)  g(F)
The sequence (N(F;)/g(F;))i=o converges to A(F), and 1/g(F;) — 0 as i — oo. The se-
quence ((s(F;) —1)/N(F;))i>o0 is bounded from above as (s(F;) — 1)/N(F;) < g(F;)/N(F;) and
im0 g(F;) /N (F;) < oo since the tower is asymptotically good. Moreover, it is monotonously
increasing which follows easily from the inequalities N (Fy1) < [Fiy1 : F;]- N(F;) and s(Fj11) —
1 > [Fiy1 @ Fij] - (s(F;) — 1), see Lemma 2.3. Therefore, the sequence ((s(F;) — 1)/N(F;))i>o0

converges as well. This proves the lemma. O

We will need two more notions associated to a tower F = (F});>0. The sets of places

Split (F) = {P € P(Fp) | degP =1 and P splits completely in F;/F, for all i« > 1} , and
Ram (F) = {P € P(Fp) | P is ramified in F;/Fy for some ¢ > 1}

are called the splitting locus and the ramification locus of F, respectively. Note that N(F;) >
[F; : Fo] - |Split(F)| holds for all i > 0.



3 Composing a tower B = (B;);>9 with an extension E/B

Starting from a given tower B = (B;);>o (called the basic tower), we will construct new towers
by composing B with an extension E/By. In the next section we will specify the basic tower B

and the field E to prove our main results. We assume that B has the following properties:

(B1) B is an asymptotically good p-tower.
(B2) B is b-bounded.
(B3) The ramification locus Ram(B) is finite and non-empty.

The function field £ O By is supposed to satisfy:

(E'1) The extension E /By is separable of degree [E : By] = m, and m is relatively prime to p.
(E2) Every place P €Ram(B) is totally ramified in the extension E/By.

The extensions E/By and B; /By are linearly disjoint over By for all i > 0. Setting E; := E-B;
for i > 0, we obtain a tower £ = E - B := (E;);>0 over Fy,.

Proposition 3.1. With the above notation, the following hold:

(i) &€= (E;)i>o0 is a p-tower.

(ii) For alli >0, we have [E; : B;] = m and [Eijt1 : E;] = [Bit1 : By

(iii) Let P € Ram(B) and R € P(B;) with R|P. Then R is totally ramified in E;/B;; i.e.,
R has exactly one extension @ in E;, and deg R = deg Q).

(iv) Let Ram(B) ={Pi,...,P.}. Then Ram(€) = {Q1,...,Q:}, where Q; is the unique
extension of Pj in Ej.

(v) The tower £ is c-bounded, with ¢ = mb—m + 1.

Proof. The proofs of items (i) - (iv) are straightforward, hence we prove only item (v). Let
Q € P(E;;+1) with ¢ > 0 that is ramified over E;. We set P := QN E;, Qo := QN B;y1 and Py :=
QN B;. Then Qo|Fy is ramified, hence P|Py and Q|Q are ramified with e(P|FPp) = e(Q|Qo) = m

by (iii). Transitivity of different exponents and b-boundedness of the tower B yield now
d(QPy) = d(Q|P) + (m — 1)e(Q|P) = mb(e(Qo|Fo) — 1) + (m —1).
Observing that e(Q|P) = e(Qo|Fo), we obtain d(Q|P) = (mb—m+1)(e(Q|P)—1), as desired. [

Proposition 3.2. With the above notation, we have for all i > 0:

mb—m +1

9(E;) —1=[B;: Bo)(9(Ep) — 1) + b

((g(Bi) —1) — [B; : Byl(9(Bo) — 1)) and



S(EZ) —1= [Bz . Bo}(S(E()) - 1) + <(S(BZ) - 1) - [Bz . Bo](S(Bo) - 1)> .

Proof. We set
A= Y Y @) - 1) degQ
PeP(Bo) Q€P(B;), QP

By the Hurwitz genus formula and Proposition 3.1.(v),

mb—m+1

A
2

g(B,J) —1= [Bz : Bo](g(Bo) — 1) + g -A; and g(Ez) —1= [Bz : Bo](g(Eo) — 1) +

Substituting A; from the first equation into the second one, we get the first claim. The second

claim of the proposition follows by the same argument, using Lemma 2.3. O

4 Main results

In this section we assume that ¢ = £? is a square, and we specify the basic tower B and the
extension £ D By. We take B := G = (G)i>0 as the Garcia-Stichtenoth tower, see [9]. It is
defined as follows: G; = Fy(z1) is a rational function field, Gy := Fy(xo) with zp = :cli + 21, and
fori>1,

l

Ly

P

Giy1 = Gi(xlqu) with xf—i—l + ZTip1 =
;o Tl

Its properties that we need here, are:

GS1) Gy = Fy(zo) is a rational function field.

(GS1)
(GS2) All extensions G;41/G; are Galois p-extensions; i.e., G is a p-tower.
(GS3) G is 2-bounded.

(GS4)

(GS4) The ramification locus of G consists of the zero and the pole of xg in Gg ,
hence [Ram(G)| = 2.
(GS5) The splitting locus of G consists of the zeros of zg — a, a € F/, hence [Split(G)| = ¢ — 1.
(GS6) The tower G is optimal; i.e., its limit is A(G) = £ — 1,
(@57) lim N(G))/[G: : Go] = [Split(6)] = € — 1 and. lim 9(Gy)/ (G ¢ Go = 1.
(GS8) For a rational place P € P(Gy) \ Split(G) , one has
lim H{Q € P(G;); Q is rational and Q|P}| _

1—00 [GZ : Go] 0.

We will need one more property of the tower G:

1—00



Proof of (GS9). We use the quantity A; as in the proof of Proposition 3.2. By Lemma 2.1,
(GS3) and (GST),
lim A;/[G; : Go] = hm g(G )/1Gi: Go] +1=2.

1—>00

Then we obtain from Lemma 2.3:

lim s(G;)/[Gi: Go] = —-1+2=1.

1—00

d

An immediate consequence of (GS7) and (GS9) is that G is an ordinary tower; i.e., its asymptotic
p-rank is 0(G) = 1. This fact has already been observed in [2].
The extension field E O (i is taken as follows:

E = Go(y) = Fy(zo,y) with y™ =

Note that m is relatively prime to ¢, as in Section 3. It is obvious that G and E satisfy the
conditions (B1)—(B3) and (E1), (£2) from Section 3. Observe also that £ = F,(y) is a rational

function field.

fL'],fEQ)

E = /EQ:G
T

EO = F y G1
y "=z /
LL'())

Figure 1: The towers G and £

Proposition 4.1. Let £ = E -G = (E;);>0 be the composite of the function field E (as defined
above) with the tower G. Then:

(i) [Ei—f—l N E] = [Gi-i-l H ] fOT all © Z 0,

(i) limy oo 9(E:)/[Gi : Go] =

(iii) lm;eo 8(E;)/[Gi : Gol =1,



Proof. Ttem (i) is trivial. To prove item (ii), we observe first that the function field F =
Fq(zo,y) = Fq(y) has genus g(E) = 0. Now Proposition 3.2 and (GS3), (GS7) yield

iliglom:g(E)—l—i-T ili}rglom—(g((;o)—l)>:—1+T(1+1):m.

(iii) We apply Proposition 3.2 and (GS9) and get

E; :
lim _s(B) =s(E)—1+ lim

S
i%oo[Gi:Go] i—)oom_(s(Go)_l)__1+1+1—l.

Proposition 4.2. For the tower £ as in Proposition 4.1, we have

lim N(E;)/[Gi:Gol=({—1)-ged({+1,m).

1—00
Proof. In a rational function field F,(2), we denote by (2 = a) the rational place which is the
zero of the element z —a, for a € F,. Let P € P(Ey) be a rational place of Ey = Fy(y) which lies
over a place (zg = a) € Split(G). Then P = (y = b) with b € F, and b™ = a € F/, by (GS5).
On the other hand, if P € P(Ep) lies above a rational place Py € P(Gp) \ Split(G), then

. {Q € P(E;); Q is rational and Q|P}|
lim =
1—00 [Gz : Go]

0,

as follows from (GS8). Therefore lim; ,oo N(E;)/[G; : Go] is equal to the cardinality of the set
M :={beF,|b" €F;}.
We observe that for an element b € Fq,
be M« b=t =p-1) = 1 e prodla-bml=1)) — 1
Therefore, | M| =ged(¢ —1,m(¢ —1)) = (£ —1)-ged((¢ + 1), m) , as desired. O
Putting together the results of Proposition 4.1 and 4.2, we obtain our main result:

Theorem 4.3. (q = (?) The limit and the asymptotic p-rank of the tower £ as defined above,

A(f):(ﬁ—l)-w and 0(5):%.

Proof. This follows from Proposition 4.1 and 4.2 since

_ limi_wo N(El)/[Gz . Go]
lim; o0 g(E;)/[Gi : Go]

_limy o0 s(E3) /[G 2 Go

and o) = (B (Gr Gol

A(E)




Corollary 4.4. (q = (?) For any divisor m|({+ 1) there exists an asymptotically optimal tower

& over Fy , whose asymptotic p-rank is o(€) = 1/m.

Corollary 4.5. (q = %) For every ¢ > 0 there exists an asymptotically good tower £ over F,
whose asymptotic p-rank is less than €. In other words, there is constant C > 0 such that for

infinitely many integers g € N there exists a function field F/F, of genus g that satisfies
N(F)>C-g(F)and s(F)<e-g(F).
Remark 4.6. Corollary 4.4 was already known in the case m = ¢ + 1, see [7].

Remark 4.7. Note that for small €, the constant C' in our construction is also small. We do
not know (but find it unlikely) if for every e > 0 there exist asymptotically optimal towers whose

p-rank is less than e.

Remark 4.8. It is easy to construct towers whose asymptotic p-rank is 0. We do not know,

however, if there exist asymptotically good towers whose p-rank is 0.

The extensions F;i1/E; in the tower £ above are Galois, but the extensions E;/Ej are not
Galois, for all ¢ > 2. However, a slight modification of our construction will produce a p-tower
having that additional property. For convenience, we will call a tower F = (F})i>0 a Galois
p-tower if for all ¢ > 1, the extension F;/Fj is a Galois p-extension.

Now we will use as the basic tower the Galois closure G* of the Garcia-Stichtenoth tower G.
It is defined as follows: G* = (G});>0 where G} is the Galois closure of G; over Gy. This tower
has all properties as listed in (GS1) — (GS9) if we replace there the fields G; by G, see [8]. The

composite tower £* := F - G* is then a Galois p-tower which satisfies:
Theorem 4.9. (q = (?) The limit and the asymptotic p-rank of the tower £* are

ged(t+1,m) o o () = L

AME)=0U—-1)- - -

Moreover, the automorphism group of E; over IFy has order

[Aut(E})| > [B] « Bg) >m™ - g(B).

If m is a divisor of (¢ — 1), then |Aut(E})| > g(EY).

Proof. The calculation of \(£*) and o(E*) is done in the same way as in Theorem 4.3. The
inequality g(E}) < m[E} : Ej] is shown as in Proposition 4.1.(ii). Finally, if m is a divisor of
(¢ — 1), then the extension E}/Gj is Galois of order m - [E} : Ej]. O



5

Acknowledgment

Nurdagiil Anbar was supported by the Austrian Science Fund (FWF): Project F5505-N26 and
Project F5511-N26, which is a part of the Special Research Program “Quasi-Monte Carlo Meth-
ods: Theory and Applications”.

References

1]

[9]

N. Anbar, P. Beelen, N. Nguyen, A new tower meeting Zink’s bound with good p-rank, Acta
Arith. 177 (2017), no. 4, 347-374.

A. Bassa, P. Beelen, The Hasse-Witt invariant in some towers of function fields over finite

fields, Bull. Braz. Math. Soc. (N.S.) 41 (2010), no. 4, 567-582.

A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, Towers of function fields over non-prime
finite fields, Mosc. Math. J. 15 (1) (2015), 1-29.

A. Bassa, A. Garcia, H. Stichtenoth, A new tower over cubic finite fields, Mosc. Math. J.
8 (3) (2008), 401-418.

J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite
fields and Zink’s lower bound, J. Reine Angew. Math. 589 (2005), 159-199.

N. Caro, A. Garcia, On a tower of Thara and its limit, Acta Arith. 151 (2) (2012), 191-200.

I. Cascudo, R. Cramer, C. Xing, Torsion limits and Riemann-Roch systems for function
fields and applications, IEEE Trans. Inform. Theory 60 (7) (2014), 3871-3888.

A. Garcia, H. Stichtenoth, On the Galois closure of towers. Recent trends in coding theory
and its applications, 83-92, AMS/IP Stud. Adv. Math., 41, Amer. Math. Soc., Providence,
RI, 2007.

A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of function fields
over finite fields, J. Number Theory 61 (2) (1996), 248-273.

[10] A. Garcia, H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining

the Drinfeld-Vladut bound, Invent. Math. 121 (1) (1995), 211-222.

[11] S. Nakajima, On abelian automorphism groups of algebraic curves. J. London Math. Soc.

(2) 36 (1987), no. 1, 23-32.

[12] H. Popp, The singularities of the moduli schemes of curves, J. Number Theory 1, (1969),

90-107.

10



[13] P. Roquette, Abschidtzung der Automorphismenanzahl von Funktionenkdrpern bei
Primzahlcharakteristik. (German) Math. Z. 117 (1970), 157-163.

[14] H. Stichtenoth, Algebraic function fields and codes, 2nd edition, Graduate Texts in Math-
ematics, 254. Springer-Verlag, Berlin, 2009.

11



