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Abstract

Over any quadratic finite field we construct function fields of large genus that have si-

multaneously many rational places, small p-rank, and many automorphisms.
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1 Introduction

Let Fq be the finite field of characteristic p > 0 and cardinality q, where q is a power of p, and

let F be a function field over Fq with full constant field Fq. We denote by g(F ) the genus and by

N(F ) the number of rational places of F/Fq. By a tower of function fields we mean an infinite

sequence F = (Fi)i≥0 of function fields over Fq such that F0 ⊆ F1 ⊆ F2 ⊆ . . ., all extensions

Fi+1/Fi are separable, and g(Fi)→∞ for i→∞. It is easy to see that the limit

λ(F) := lim
i→∞

N(Fi)/g(Fi)

exists, and it is called the limit of the tower [14]. The Drinfeld–Vladut bound states that

0 ≤ λ(F) ≤ √q − 1.
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F is called asymptotically good if λ(F) > 0, and asymptotically optimal if λ(F) =
√
q − 1. The

tower is asymptotically bad if λ(F) = 0. Asymptotically good towers exist and they have been

studied extensively, see [1, 3, 4, 5, 6, 8, 9, 10, 14] and the references therein. We note that it is

a non-trivial task to construct asymptotically good towers, ‘most’ towers are bad.

An important invariant of a function field F/Fq is its p-rank s(F ) (which is sometimes called

the Hasse–Witt invariant of F ). It is defined as follows: Let F̄ be the constant field extension

of F with the algebraic closure F̄q of Fq. The group of divisor classes of degree zero and order

p of F̄ is a finite abelian group of exponent p, and s(F ) is defined as the rank of this group. It

is well-known that the inequality 0 ≤ s(F ) ≤ g(F ) holds for every function field F over Fq, and

‘most’ function fields are ordinary; i.e., s(F ) = g(F ). For a tower F = (Fi)i≥0 of function fields

over Fq, the quantity

σ(F) := lim inf
i→∞

s(Fi)/g(Fi)

is called the asymptotic p-rank, or in short the p-rank of F . Clearly we have the inequality

0 ≤ σ(F) ≤ 1.

The asymptotic p-rank was introduced by Cramer et al. [7] to analyse the behaviour of various

constructions related to multi-party computations and fast multiplication algorithms. According

to their construction, it is desirable to have asymptotically good towers F with σ(F) as small as

possible. The aim of our paper is to construct such towers. Observe however, since most function

fields are ordinary, one expects that for a ‘general’ tower of function fields, the asymptotic p-rank

should be 1.

First we recall known results from the literature. The Garcia–Stichtenoth tower over a

quadratic field Fq (i.e., q is a square) in [10] is asymptotically optimal and its p-rank is 1/(
√
q+1),

see [2, 7]. This is the smallest known p-rank of an asymptotically good tower. The p-rank of

some asymptotically good towers over a cubic field Fq (i.e., q = p3a) has been determined in

[1, 2], it is close to 1/4. In Section 3 below we will construct asymptotically good towers over

quadratic fields whose p-rank is significantly less than the p-rank of the above-mentioned towers.

More specifically, we show that for any ε > 0, there exists an asymptotically good tower F over

Fq such that its p-rank is σ(F) < ε.

We will also consider towers of function fields that have many automorphisms. Recall that

the automorphism group Aut(F ) of a function field F/Fq is always finite, and for a ‘general’

function field it is trivial; i.e., |Aut(F )| = 1, see [12]. For large classes of function fields (for

instance if Aut(F ) is abelian or if the order of Aut(F ) is prime to p), there is a linear upper

bound

|Aut(F )| ≤ A · g(F )
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with an absolute constant A > 0, see [11, 13]. We will show (see Theorem 4.9.) that for every

ε > 0, there is a constant B > 0 and an asymptotically good tower F = (Fi)i≥0 over Fq (q a

square) such that σ(F) < ε and

|Aut(Fi)| ≥ B · g(Fi)

for all i ≥ 0. In other words, there exist function fields over Fq of large genus which have

simultaneously many rational points, many automorphisms and small p-rank.

2 Preliminaries

Let E ⊇ F be a finite separable extension of function fields. Denote by P(F ) the set of places

of F . For a place Q ∈ P(E) lying above P ∈ P(F ), we write Q|P and denote by e(Q|P ) the

ramification index and by d(Q|P ) the different exponent of Q|P . The genera of F and E are

then related as follows:

Lemma 2.1 (Hurwitz genus formula). Let E/F be a finite separable extension of function fields

over the same constant field Fq. Then

2g(E)− 2 = [E : F ] · (2g(F )− 2) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

d(Q|P ) · degQ .

For the p-ranks of F and E, such a formula does not hold in general. However, in the

important special case where E/F is a cyclic extension of degree p, one has:

Lemma 2.2 (Deuring–Shafarevich formula). Let E/F be a cyclic extension of degree p of func-

tion fields over the same constant field Fq. Then the p-ranks of F and E satisfy

s(E)− 1 = p · (s(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

(e(Q|P )− 1)) · degQ .

We will need the following generalization of Lemma 2.2:

Lemma 2.3. Let E/F be an extension of function fields of degree [E : F ] = pm over the same

constant field Fq. Assume that there exist intermediate fields F = F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = E

such that all extensions Fi+1/Fi are Galois. Then the p-ranks of F and E satisfy

s(E)− 1 = [E : F ] · (s(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

(e(Q|P )− 1)) · degQ .

Proof. We can refine the sequence F = F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = E such that all extensions

Fi+1/Fi are Galois of degree p. Then the claim follows from Lemma 2.2 by induction.
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A separable extension E/F of function fields is called b-bounded if for every place P ∈ P(F )

and every Q ∈ P(E) lying above P , the different exponent d(Q|P ) satisfies the equation

d(Q|P ) = b · (e(Q|P )− 1).

A tower F = (Fi)i≥0 is called b-bounded if all extensions Fi+1/Fi are b-bounded. The property

of being b-bounded is transitive as follows from transitivity of ramification index and different

exponent:

Lemma 2.4. Let F ⊆ E ⊆ H be separable extensions of function fields. If H/E and E/F are

b-bounded, then H/F is also b-bounded.

A tower F = (Fi)i≥0 is called a p-tower if all extensions Fi+1/Fi are Galois and their degrees

[Fi+1 : Fi] are powers of p. Most towers of function fields that we consider in this paper, will be

p-towers.

Lemma 2.5. For an asymptotically good p-tower F = (Fi)i≥0, the sequence (s(Fi)/g(Fi))i≥0 is

convergent, hence the p-rank of F is

σ(F) = lim
i→∞

s(Fi)/g(Fi).

Proof. We can assume w.l.o.g. that g(Fi) > 0 and N(Fi) > 0 for all i. We have

s(Fi)

g(Fi)
=
s(Fi)− 1

N(Fi)
· N(Fi)

g(Fi)
+

1

g(Fi)
.

The sequence (N(Fi)/g(Fi))i≥0 converges to λ(F), and 1/g(Fi) → 0 as i → ∞. The se-

quence ((s(Fi)− 1)/N(Fi))i≥0 is bounded from above as (s(Fi)− 1)/N(Fi) ≤ g(Fi)/N(Fi) and

limi→∞ g(Fi)/N(Fi) <∞ since the tower is asymptotically good. Moreover, it is monotonously

increasing which follows easily from the inequalities N(Fi+1) ≤ [Fi+1 : Fi] ·N(Fi) and s(Fi+1)−
1 ≥ [Fi+1 : Fi] · (s(Fi) − 1), see Lemma 2.3. Therefore, the sequence ((s(Fi) − 1)/N(Fi))i≥0

converges as well. This proves the lemma.

We will need two more notions associated to a tower F = (Fi)i≥0. The sets of places

Split (F) = {P ∈ P(F0) | degP = 1 and P splits completely in Fi/F0 for all i ≥ 1} , and

Ram (F) = {P ∈ P(F0) | P is ramified in Fi/F0 for some i ≥ 1}

are called the splitting locus and the ramification locus of F , respectively. Note that N(Fi) ≥
[Fi : F0] · |Split(F)| holds for all i ≥ 0.
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3 Composing a tower B = (Bi)i≥0 with an extension E/B0

Starting from a given tower B = (Bi)i≥0 (called the basic tower), we will construct new towers

by composing B with an extension E/B0. In the next section we will specify the basic tower B
and the field E to prove our main results. We assume that B has the following properties:

(B1) B is an asymptotically good p-tower.

(B2) B is b-bounded.

(B3) The ramification locus Ram(B) is finite and non-empty.

The function field E ⊇ B0 is supposed to satisfy:

(E1) The extension E/B0 is separable of degree [E : B0] = m, and m is relatively prime to p.

(E2) Every place P ∈Ram(B) is totally ramified in the extension E/B0.

The extensions E/B0 and Bi/B0 are linearly disjoint over B0 for all i ≥ 0. Setting Ei := E·Bi

for i ≥ 0, we obtain a tower E = E · B := (Ei)i≥0 over Fq.

Proposition 3.1. With the above notation, the following hold:

(i) E = (Ei)i≥0 is a p-tower.

(ii) For all i ≥ 0, we have [Ei : Bi] = m and [Ei+1 : Ei] = [Bi+1 : Bi].

(iii) Let P ∈ Ram(B) and R ∈ P(Bi) with R|P . Then R is totally ramified in Ei/Bi; i.e.,

R has exactly one extension Q in Ei, and degR = degQ.

(iv) Let Ram(B) = {P1, . . . , Pr}. Then Ram(E) = {Q1, . . . , Qr}, where Qj is the unique

extension of Pj in Ej.

(v) The tower E is c-bounded, with c = mb−m+ 1.

Proof. The proofs of items (i) - (iv) are straightforward, hence we prove only item (v). Let

Q ∈ P(Ei+1) with i ≥ 0 that is ramified over Ei. We set P := Q∩Ei, Q0 := Q∩Bi+1 and P0 :=

Q∩Bi. Then Q0|P0 is ramified, hence P |P0 and Q|Q0 are ramified with e(P |P0) = e(Q|Q0) = m

by (iii). Transitivity of different exponents and b-boundedness of the tower B yield now

d(Q|P0) = d(Q|P ) + (m− 1)e(Q|P ) = mb(e(Q0|P0)− 1) + (m− 1).

Observing that e(Q|P ) = e(Q0|P0), we obtain d(Q|P ) = (mb−m+1)(e(Q|P )−1), as desired.

Proposition 3.2. With the above notation, we have for all i ≥ 0:

g(Ei)− 1 = [Bi : B0](g(E0)− 1) +
mb−m+ 1

b
·
(

(g(Bi)− 1)− [Bi : B0](g(B0)− 1)
)
, and
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s(Ei)− 1 = [Bi : B0](s(E0)− 1) +
(

(s(Bi)− 1)− [Bi : B0](s(B0)− 1)
)
.

Proof. We set

∆i :=
∑

P∈P(B0)

∑
Q∈P(Bi), Q|P

(e(Q|P )− 1)) · degQ

By the Hurwitz genus formula and Proposition 3.1.(v),

g(Bi)−1 = [Bi : B0](g(B0)−1)+
b

2
·∆i and g(Ei)−1 = [Bi : B0](g(E0)−1)+

mb−m+ 1

2
·∆i .

Substituting ∆i from the first equation into the second one, we get the first claim. The second

claim of the proposition follows by the same argument, using Lemma 2.3.

4 Main results

In this section we assume that q = `2 is a square, and we specify the basic tower B and the

extension E ⊇ B0. We take B := G = (Gi)i≥0 as the Garcia–Stichtenoth tower, see [9]. It is

defined as follows: G1 = Fq(x1) is a rational function field, G0 := Fq(x0) with x0 = x`1 +x1, and

for i ≥ 1,

Gi+1 = Gi(xi+1) with x`i+1 + xi+1 =
x`i

x`−1i + 1
.

Its properties that we need here, are:

(GS1) G0 = Fq(x0) is a rational function field.

(GS2) All extensions Gi+1/Gi are Galois p-extensions; i.e., G is a p-tower.

(GS3) G is 2-bounded.

(GS4) The ramification locus of G consists of the zero and the pole of x0 in G0 ,

hence |Ram(G)| = 2.

(GS5) The splitting locus of G consists of the zeros of x0 − a, a ∈ F×` , hence |Split(G)| = `− 1.

(GS6) The tower G is optimal; i.e., its limit is λ(G) = `− 1,

(GS7) lim
i→∞

N(Gi)/[Gi : G0] = |Split(G)| = `− 1 and lim
i→∞

g(Gi)/[Gi : G0] = 1.

(GS8) For a rational place P ∈ P(G0) \ Split(G) , one has

lim
i→∞

|{Q ∈ P(Gi) ; Q is rational and Q|P}|
[Gi : G0]

= 0 .

We will need one more property of the tower G:

(GS9) lim
i→∞

s(Gi)/[Gi : G0] = 1.
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Proof of (GS9). We use the quantity ∆i as in the proof of Proposition 3.2. By Lemma 2.1,

(GS3) and (GS7),

lim
i→∞

∆i/[Gi : G0] = lim
i→∞

g(Gi)/[Gi : G0] + 1 = 2 .

Then we obtain from Lemma 2.3:

lim
i→∞

s(Gi)/[Gi : G0] = −1 + 2 = 1 .

�

An immediate consequence of (GS7) and (GS9) is that G is an ordinary tower; i.e., its asymptotic

p-rank is σ(G) = 1. This fact has already been observed in [2].

The extension field E ⊇ G0 is taken as follows:

E := G0(y) = Fq(x0, y) with ym = x0.

Note that m is relatively prime to q, as in Section 3. It is obvious that G and E satisfy the

conditions (B1)−(B3) and (E1), (E2) from Section 3. Observe also that E = Fq(y) is a rational

function field.

E

E2 = G2(y) G

E1 = G1(y) G2 = Fq(x1, x2)

E0 = Fq(y) G1 = Fq(x1)

G0 = Fq(x0)

ym=x0

Figure 1: The towers G and E

Proposition 4.1. Let E = E · G = (Ei)i≥0 be the composite of the function field E (as defined

above) with the tower G. Then:

(i) [Ei+1 : Ei] = [Gi+1 : Gi] for all i ≥ 0,

(ii) limi→∞ g(Ei)/[Gi : G0] = m ,

(iii) limi→∞ s(Ei)/[Gi : G0] = 1 ,
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Proof. Item (i) is trivial. To prove item (ii), we observe first that the function field E =

Fq(x0, y) = Fq(y) has genus g(E) = 0. Now Proposition 3.2 and (GS3), (GS7) yield

lim
i→∞

g(Ei)

[Gi : G0]
= g(E)− 1 +

m+ 1

2
·
(

lim
i→∞

g(Gi)

[Gi : G0]
− (g(G0)− 1)

)
= −1 +

m+ 1

2
(1 + 1) = m.

(iii) We apply Proposition 3.2 and (GS9) and get

lim
i→∞

s(Ei)

[Gi : G0]
= s(E)− 1 + lim

i→∞

s(Gi)

[Gi : G0]
− (s(G0)− 1) = −1 + 1 + 1 = 1 .

Proposition 4.2. For the tower E as in Proposition 4.1, we have

lim
i→∞

N(Ei)/[Gi : G0] = (`− 1) · gcd(`+ 1,m) .

Proof. In a rational function field Fq(z), we denote by (z = a) the rational place which is the

zero of the element z−a, for a ∈ Fq. Let P ∈ P(E0) be a rational place of E0 = Fq(y) which lies

over a place (x0 = a) ∈ Split(G). Then P = (y = b) with b ∈ Fq and bm = a ∈ F×` , by (GS5).

On the other hand, if P ∈ P(E0) lies above a rational place P0 ∈ P(G0) \ Split(G), then

lim
i→∞

|{Q ∈ P(Ei) ; Q is rational and Q|P}|
[Gi : G0]

= 0 ,

as follows from (GS8). Therefore limi→∞N(Ei)/[Gi : G0] is equal to the cardinality of the set

M := {b ∈ Fq | bm ∈ F×` }.

We observe that for an element b ∈ F̄q,

b ∈M ⇐⇒ bq−1 = bm(`−1) = 1 ⇐⇒ bgcd(q−1,m(`−1)) = 1 .

Therefore, |M | = gcd(q − 1,m(`− 1)) = (`− 1) · gcd((`+ 1),m) , as desired.

Putting together the results of Proposition 4.1 and 4.2, we obtain our main result:

Theorem 4.3. (q = `2) The limit and the asymptotic p-rank of the tower E as defined above,

are

λ(E) = (`− 1) · gcd(`+ 1,m)

m
and σ(E) =

1

m
.

Proof. This follows from Proposition 4.1 and 4.2 since

λ(E) =
limi→∞N(Ei)/[Gi : G0]

limi→∞ g(Ei)/[Gi : G0]
and σ(E) =

limi→∞ s(Ei)/[Gi : G0]

limi→∞ g(Ei)/[Gi : G0]
.
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Corollary 4.4. (q = `2) For any divisor m|(`+ 1) there exists an asymptotically optimal tower

E over Fq , whose asymptotic p-rank is σ(E) = 1/m.

Corollary 4.5. (q = `2) For every ε > 0 there exists an asymptotically good tower E over Fq

whose asymptotic p-rank is less than ε. In other words, there is constant C > 0 such that for

infinitely many integers g ∈ N there exists a function field F/Fq of genus g that satisfies

N(F ) ≥ C · g(F ) and s(F ) ≤ ε · g(F ) .

Remark 4.6. Corollary 4.4 was already known in the case m = `+ 1, see [7].

Remark 4.7. Note that for small ε, the constant C in our construction is also small. We do

not know (but find it unlikely) if for every ε > 0 there exist asymptotically optimal towers whose

p-rank is less than ε.

Remark 4.8. It is easy to construct towers whose asymptotic p-rank is 0. We do not know,

however, if there exist asymptotically good towers whose p-rank is 0.

The extensions Ei+1/Ei in the tower E above are Galois, but the extensions Ei/E0 are not

Galois, for all i ≥ 2. However, a slight modification of our construction will produce a p-tower

having that additional property. For convenience, we will call a tower F = (Fi)i≥0 a Galois

p-tower if for all i ≥ 1, the extension Fi/F0 is a Galois p-extension.

Now we will use as the basic tower the Galois closure G∗ of the Garcia-Stichtenoth tower G.

It is defined as follows: G∗ = (G∗i )i≥0 where G∗i is the Galois closure of Gi over G0. This tower

has all properties as listed in (GS1)− (GS9) if we replace there the fields Gi by G∗i , see [8]. The

composite tower E∗ := E · G∗ is then a Galois p-tower which satisfies:

Theorem 4.9. (q = `2) The limit and the asymptotic p-rank of the tower E∗ are

λ(E∗) = (`− 1) · gcd(`+ 1,m)

m
and σ(E∗) =

1

m
.

Moreover, the automorphism group of E∗i over Fq has order

|Aut(E∗i )| ≥ [E∗i : E∗0 ] ≥ m−1 · g(E∗i ) .

If m is a divisor of (q − 1), then |Aut(E∗i )| ≥ g(E∗i ) .

Proof. The calculation of λ(E∗) and σ(E∗) is done in the same way as in Theorem 4.3. The

inequality g(E∗i ) ≤ m[E∗i : E∗0 ] is shown as in Proposition 4.1.(ii). Finally, if m is a divisor of

(q − 1), then the extension E∗i /G
∗
0 is Galois of order m · [E∗i : E∗0 ].

9



5 Acknowledgment

Nurdagül Anbar was supported by the Austrian Science Fund (FWF): Project F5505–N26 and

Project F5511–N26, which is a part of the Special Research Program “Quasi-Monte Carlo Meth-

ods: Theory and Applications”.

References

[1] N. Anbar, P. Beelen, N. Nguyen, A new tower meeting Zink’s bound with good p-rank, Acta

Arith. 177 (2017), no. 4, 347–374.

[2] A. Bassa, P. Beelen, The Hasse-Witt invariant in some towers of function fields over finite

fields, Bull. Braz. Math. Soc. (N.S.) 41 (2010), no. 4, 567–582.

[3] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, Towers of function fields over non-prime

finite fields, Mosc. Math. J. 15 (1) (2015), 1–29.

[4] A. Bassa, A. Garcia, H. Stichtenoth, A new tower over cubic finite fields, Mosc. Math. J.

8 (3) (2008), 401–418.

[5] J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite

fields and Zink’s lower bound, J. Reine Angew. Math. 589 (2005), 159–199.

[6] N. Caro, A. Garcia, On a tower of Ihara and its limit, Acta Arith. 151 (2) (2012), 191–200.

[7] I. Cascudo, R. Cramer, C. Xing, Torsion limits and Riemann-Roch systems for function

fields and applications, IEEE Trans. Inform. Theory 60 (7) (2014), 3871–3888.

[8] A. Garcia, H. Stichtenoth, On the Galois closure of towers. Recent trends in coding theory

and its applications, 83–92, AMS/IP Stud. Adv. Math., 41, Amer. Math. Soc., Providence,

RI, 2007.

[9] A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of function fields

over finite fields, J. Number Theory 61 (2) (1996), 248–273.

[10] A. Garcia, H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining

the Drinfeld-Vladut bound, Invent. Math. 121 (1) (1995), 211–222.

[11] S. Nakajima, On abelian automorphism groups of algebraic curves. J. London Math. Soc.

(2) 36 (1987), no. 1, 23-32.

[12] H. Popp, The singularities of the moduli schemes of curves, J. Number Theory 1, (1969),

90–107.

10



[13] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei

Primzahlcharakteristik. (German) Math. Z. 117 (1970), 157-163.

[14] H. Stichtenoth, Algebraic function fields and codes, 2nd edition, Graduate Texts in Math-

ematics, 254. Springer-Verlag, Berlin, 2009.

11


