Asymptotically good towers of function fields with small p-rank

Nurdagül Anbar^{1,2}, Henning Stichtenoth², Seher Tutdere³

¹Johannes Kepler University, Altenbergerstrasse 69, 4040-Linz, Austria E-mail: nurdagulanbar2@gmail.com ²Sabancı University, MDBF, Orhanlı, Tuzla, 34956 İstanbul, Turkey E-mail: henning@sabanciuniv.edu ³Gebze Technical University, Department of Mathematics, 41400 Gebze, Kocaeli, Turkey, E-mail: stutdere@gmail.com

Abstract

Over any quadratic finite field we construct function fields of large genus that have simultaneously many rational places, small *p*-rank, and many automorphisms.

keywords: towers of function fields, limit, *p*-rank MSC[2010]: 14H05, 11G20, 14G50

1 Introduction

Let \mathbb{F}_q be the finite field of characteristic p > 0 and cardinality q, where q is a power of p, and let F be a function field over \mathbb{F}_q with full constant field \mathbb{F}_q . We denote by g(F) the genus and by N(F) the number of rational places of F/\mathbb{F}_q . By a *tower of function fields* we mean an infinite sequence $\mathcal{F} = (F_i)_{i\geq 0}$ of function fields over \mathbb{F}_q such that $F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots$, all extensions F_{i+1}/F_i are separable, and $g(F_i) \to \infty$ for $i \to \infty$. It is easy to see that the limit

$$\lambda(\mathcal{F}) := \lim_{i \to \infty} N(F_i) / g(F_i)$$

exists, and it is called the *limit* of the tower [14]. The Drinfeld–Vladut bound states that

$$0 \le \lambda(\mathcal{F}) \le \sqrt{q} - 1.$$

 \mathcal{F} is called asymptotically good if $\lambda(\mathcal{F}) > 0$, and asymptotically optimal if $\lambda(\mathcal{F}) = \sqrt{q} - 1$. The tower is asymptotically bad if $\lambda(\mathcal{F}) = 0$. Asymptotically good towers exist and they have been studied extensively, see [1, 3, 4, 5, 6, 8, 9, 10, 14] and the references therein. We note that it is a non-trivial task to construct asymptotically good towers, 'most' towers are bad.

An important invariant of a function field F/\mathbb{F}_q is its p-rank s(F) (which is sometimes called the Hasse-Witt invariant of F). It is defined as follows: Let \overline{F} be the constant field extension of F with the algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q . The group of divisor classes of degree zero and order p of \overline{F} is a finite abelian group of exponent p, and s(F) is defined as the rank of this group. It is well-known that the inequality $0 \leq s(F) \leq g(F)$ holds for every function field F over \mathbb{F}_q , and 'most' function fields are ordinary; i.e., s(F) = g(F). For a tower $\mathcal{F} = (F_i)_{i\geq 0}$ of function fields over \mathbb{F}_q , the quantity

$$\sigma(\mathcal{F}) := \liminf_{i \to \infty} s(F_i) / g(F_i)$$

is called the *asymptotic p-rank*, or in short the *p-rank* of \mathcal{F} . Clearly we have the inequality

$$0 \le \sigma(\mathcal{F}) \le 1.$$

The asymptotic *p*-rank was introduced by Cramer et al. [7] to analyse the behaviour of various constructions related to multi-party computations and fast multiplication algorithms. According to their construction, it is desirable to have asymptotically good towers \mathcal{F} with $\sigma(\mathcal{F})$ as small as possible. The aim of our paper is to construct such towers. Observe however, since most function fields are ordinary, one expects that for a 'general' tower of function fields, the asymptotic *p*-rank should be 1.

First we recall known results from the literature. The Garcia–Stichtenoth tower over a *quadratic* field \mathbb{F}_q (i.e., q is a square) in [10] is asymptotically optimal and its p-rank is $1/(\sqrt{q}+1)$, see [2, 7]. This is the smallest known p-rank of an asymptotically good tower. The p-rank of some asymptotically good towers over a *cubic* field \mathbb{F}_q (i.e., $q = p^{3a}$) has been determined in [1, 2], it is close to 1/4. In Section 3 below we will construct asymptotically good towers over quadratic fields whose p-rank is significantly less than the p-rank of the above-mentioned towers. More specifically, we show that for any $\epsilon > 0$, there exists an asymptotically good tower \mathcal{F} over \mathbb{F}_q such that its p-rank is $\sigma(\mathcal{F}) < \epsilon$.

We will also consider towers of function fields that have many automorphisms. Recall that the automorphism group $\operatorname{Aut}(F)$ of a function field F/\mathbb{F}_q is always finite, and for a 'general' function field it is trivial; i.e., $|\operatorname{Aut}(F)| = 1$, see [12]. For large classes of function fields (for instance if $\operatorname{Aut}(F)$ is abelian or if the order of $\operatorname{Aut}(F)$ is prime to p), there is a *linear* upper bound

$$|\operatorname{Aut}(F)| \le A \cdot g(F)$$

with an absolute constant A > 0, see [11, 13]. We will show (see Theorem 4.9.) that for every $\epsilon > 0$, there is a constant B > 0 and an asymptotically good tower $\mathcal{F} = (F_i)_{i\geq 0}$ over \mathbb{F}_q (q a square) such that $\sigma(\mathcal{F}) < \epsilon$ and

$$|\operatorname{Aut}(F_i)| \ge B \cdot g(F_i)$$

for all $i \geq 0$. In other words, there exist function fields over \mathbb{F}_q of large genus which have simultaneously many rational points, many automorphisms and small p-rank.

2 Preliminaries

Let $E \supseteq F$ be a finite separable extension of function fields. Denote by $\mathbb{P}(F)$ the set of places of F. For a place $Q \in \mathbb{P}(E)$ lying above $P \in \mathbb{P}(F)$, we write Q|P and denote by e(Q|P) the ramification index and by d(Q|P) the different exponent of Q|P. The genera of F and E are then related as follows:

Lemma 2.1 (Hurwitz genus formula). Let E/F be a finite separable extension of function fields over the same constant field \mathbb{F}_q . Then

$$2g(E) - 2 = [E:F] \cdot (2g(F) - 2) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q \mid P} d(Q|P) \cdot \deg Q$$

For the *p*-ranks of F and E, such a formula does not hold in general. However, in the important special case where E/F is a cyclic extension of degree p, one has:

Lemma 2.2 (Deuring–Shafarevich formula). Let E/F be a cyclic extension of degree p of function fields over the same constant field \mathbb{F}_q . Then the p-ranks of F and E satisfy

$$s(E) - 1 = p \cdot (s(F) - 1) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q \mid P} (e(Q|P) - 1)) \cdot \deg Q .$$

We will need the following generalization of Lemma 2.2:

Lemma 2.3. Let E/F be an extension of function fields of degree $[E:F] = p^m$ over the same constant field \mathbb{F}_q . Assume that there exist intermediate fields $F = F_0 \subseteq F_1 \subseteq \cdots F_{n-1} \subseteq F_n = E$ such that all extensions F_{i+1}/F_i are Galois. Then the p-ranks of F and E satisfy

$$s(E) - 1 = [E:F] \cdot (s(F) - 1) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q \mid P} (e(Q|P) - 1)) \cdot \deg Q .$$

Proof. We can refine the sequence $F = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{n-1} \subseteq F_n = E$ such that all extensions F_{i+1}/F_i are Galois of degree p. Then the claim follows from Lemma 2.2 by induction. \Box

A separable extension E/F of function fields is called *b*-bounded if for every place $P \in \mathbb{P}(F)$ and every $Q \in \mathbb{P}(E)$ lying above P, the different exponent d(Q|P) satisfies the equation

$$d(Q|P) = b \cdot (e(Q|P) - 1).$$

A tower $\mathcal{F} = (F_i)_{i\geq 0}$ is called *b*-bounded if all extensions F_{i+1}/F_i are *b*-bounded. The property of being *b*-bounded is transitive as follows from transitivity of ramification index and different exponent:

Lemma 2.4. Let $F \subseteq E \subseteq H$ be separable extensions of function fields. If H/E and E/F are b-bounded, then H/F is also b-bounded.

A tower $\mathcal{F} = (F_i)_{i\geq 0}$ is called a *p*-tower if all extensions F_{i+1}/F_i are Galois and their degrees $[F_{i+1}:F_i]$ are powers of p. Most towers of function fields that we consider in this paper, will be p-towers.

Lemma 2.5. For an asymptotically good p-tower $\mathcal{F} = (F_i)_{i\geq 0}$, the sequence $(s(F_i)/g(F_i))_{i\geq 0}$ is convergent, hence the p-rank of \mathcal{F} is

$$\sigma(\mathcal{F}) = \lim_{i \to \infty} s(F_i) / g(F_i).$$

Proof. We can assume w.l.o.g. that $g(F_i) > 0$ and $N(F_i) > 0$ for all *i*. We have

$$\frac{s(F_i)}{g(F_i)} = \frac{s(F_i) - 1}{N(F_i)} \cdot \frac{N(F_i)}{g(F_i)} + \frac{1}{g(F_i)}$$

The sequence $(N(F_i)/g(F_i))_{i\geq 0}$ converges to $\lambda(\mathcal{F})$, and $1/g(F_i) \to 0$ as $i \to \infty$. The sequence $((s(F_i) - 1)/N(F_i))_{i\geq 0}$ is bounded from above as $(s(F_i) - 1)/N(F_i) \leq g(F_i)/N(F_i)$ and $\lim_{i\to\infty} g(F_i)/N(F_i) < \infty$ since the tower is asymptotically good. Moreover, it is monotonously increasing which follows easily from the inequalities $N(F_{i+1}) \leq [F_{i+1} : F_i] \cdot N(F_i)$ and $s(F_{i+1}) - 1 \geq [F_{i+1} : F_i] \cdot (s(F_i) - 1)$, see Lemma 2.3. Therefore, the sequence $((s(F_i) - 1)/N(F_i))_{i\geq 0}$ converges as well. This proves the lemma.

We will need two more notions associated to a tower $\mathcal{F} = (F_i)_{i \geq 0}$. The sets of places

Split $(\mathcal{F}) = \{P \in \mathbb{P}(F_0) \mid \deg P = 1 \text{ and } P \text{ splits completely in } F_i/F_0 \text{ for all } i \ge 1\}$, and Ram $(\mathcal{F}) = \{P \in \mathbb{P}(F_0) \mid P \text{ is ramified in } F_i/F_0 \text{ for some } i \ge 1\}$

are called the *splitting locus* and the *ramification locus* of \mathcal{F} , respectively. Note that $N(F_i) \geq [F_i:F_0] \cdot |\text{Split}(\mathcal{F})|$ holds for all $i \geq 0$.

3 Composing a tower $\mathcal{B} = (B_i)_{i \ge 0}$ with an extension E/B_0

Starting from a given tower $\mathcal{B} = (B_i)_{i\geq 0}$ (called the *basic tower*), we will construct new towers by composing \mathcal{B} with an extension E/B_0 . In the next section we will specify the basic tower \mathcal{B} and the field E to prove our main results. We assume that \mathcal{B} has the following properties:

- (B1) \mathcal{B} is an asymptotically good *p*-tower.
- (B2) \mathcal{B} is *b*-bounded.
- (B3) The ramification locus $\operatorname{Ram}(\mathcal{B})$ is finite and non-empty.

The function field $E \supseteq B_0$ is supposed to satisfy:

(E1) The extension E/B_0 is separable of degree $[E:B_0] = m$, and m is relatively prime to p. (E2) Every place $P \in \text{Ram}(\mathcal{B})$ is totally ramified in the extension E/B_0 .

The extensions E/B_0 and B_i/B_0 are linearly disjoint over B_0 for all $i \ge 0$. Setting $E_i := E \cdot B_i$ for $i \ge 0$, we obtain a tower $\mathcal{E} = E \cdot \mathcal{B} := (E_i)_{i\ge 0}$ over \mathbb{F}_q .

Proposition 3.1. With the above notation, the following hold:

- (i) $\mathcal{E} = (E_i)_{i>0}$ is a p-tower.
- (ii) For all $i \ge 0$, we have $[E_i : B_i] = m$ and $[E_{i+1} : E_i] = [B_{i+1} : B_i]$.
- (iii) Let $P \in \text{Ram}(\mathcal{B})$ and $R \in \mathbb{P}(B_i)$ with R|P. Then R is totally ramified in E_i/B_i ; i.e., R has exactly one extension Q in E_i , and $\deg R = \deg Q$.

(iv) Let $\operatorname{Ram}(\mathcal{B}) = \{P_1, \ldots, P_r\}$. Then $\operatorname{Ram}(\mathcal{E}) = \{Q_1, \ldots, Q_r\}$, where Q_j is the unique extension of P_j in E_j .

(v) The tower \mathcal{E} is c-bounded, with c = mb - m + 1.

Proof. The proofs of items (i) - (iv) are straightforward, hence we prove only item (v). Let $Q \in \mathbb{P}(E_{i+1})$ with $i \geq 0$ that is ramified over E_i . We set $P := Q \cap E_i$, $Q_0 := Q \cap B_{i+1}$ and $P_0 := Q \cap B_i$. Then $Q_0|P_0$ is ramified, hence $P|P_0$ and $Q|Q_0$ are ramified with $e(P|P_0) = e(Q|Q_0) = m$ by (iii). Transitivity of different exponents and b-boundedness of the tower \mathcal{B} yield now

$$d(Q|P_0) = d(Q|P) + (m-1)e(Q|P) = mb(e(Q_0|P_0) - 1) + (m-1).$$

Observing that $e(Q|P) = e(Q_0|P_0)$, we obtain d(Q|P) = (mb-m+1)(e(Q|P)-1), as desired. \Box

Proposition 3.2. With the above notation, we have for all $i \ge 0$:

$$g(E_i) - 1 = [B_i : B_0](g(E_0) - 1) + \frac{mb - m + 1}{b} \cdot \left((g(B_i) - 1) - [B_i : B_0](g(B_0) - 1) \right), and$$

$$s(E_i) - 1 = [B_i : B_0](s(E_0) - 1) + \left((s(B_i) - 1) - [B_i : B_0](s(B_0) - 1)\right).$$

Proof. We set

$$\Delta_i := \sum_{P \in \mathbb{P}(B_0)} \sum_{Q \in \mathbb{P}(B_i), Q \mid P} (e(Q|P) - 1)) \cdot \deg Q$$

By the Hurwitz genus formula and Proposition 3.1.(v),

$$g(B_i) - 1 = [B_i : B_0](g(B_0) - 1) + \frac{b}{2} \cdot \Delta_i \text{ and } g(E_i) - 1 = [B_i : B_0](g(E_0) - 1) + \frac{mb - m + 1}{2} \cdot \Delta_i$$

Substituting Δ_i from the first equation into the second one, we get the first claim. The second claim of the proposition follows by the same argument, using Lemma 2.3.

4 Main results

In this section we assume that $q = \ell^2$ is a square, and we specify the basic tower \mathcal{B} and the extension $E \supseteq B_0$. We take $\mathcal{B} := \mathcal{G} = (G_i)_{i \ge 0}$ as the Garcia–Stichtenoth tower, see [9]. It is defined as follows: $G_1 = \mathbb{F}_q(x_1)$ is a rational function field, $G_0 := \mathbb{F}_q(x_0)$ with $x_0 = x_1^{\ell} + x_1$, and for $i \ge 1$,

$$G_{i+1} = G_i(x_{i+1})$$
 with $x_{i+1}^{\ell} + x_{i+1} = \frac{x_i^{\ell}}{x_i^{\ell-1} + 1}$

Its properties that we need here, are:

- (GS1) $G_0 = \mathbb{F}_q(x_0)$ is a rational function field.
- (GS2) All extensions G_{i+1}/G_i are Galois *p*-extensions; i.e., \mathcal{G} is a *p*-tower.
- $(GS3) \mathcal{G}$ is 2-bounded.
- (GS4) The ramification locus of \mathcal{G} consists of the zero and the pole of x_0 in G_0 , hence $|\text{Ram}(\mathcal{G})| = 2$.
- (GS5) The splitting locus of \mathcal{G} consists of the zeros of $x_0 a$, $a \in \mathbb{F}_{\ell}^{\times}$, hence $|\text{Split}(\mathcal{G})| = \ell 1$.
- (GS6) The tower \mathcal{G} is optimal; i.e., its limit is $\lambda(\mathcal{G}) = \ell 1$,

$$(GS7) \quad \lim_{i \to \infty} N(G_i) / [G_i:G_0] = |\mathrm{Split}(\mathcal{G})| = \ell - 1 \text{ and } \lim_{i \to \infty} g(G_i) / [G_i:G_0] = 1.$$

(GS8) For a rational place $P \in \mathbb{P}(G_0) \setminus \text{Split}(\mathcal{G})$, one has

$$\lim_{i \to \infty} \frac{|\{Q \in \mathbb{P}(G_i); Q \text{ is rational and } Q|P\}|}{[G_i:G_0]} = 0.$$

We will need one more property of the tower \mathcal{G} :

$$(GS9)$$
 $\lim_{i \to \infty} s(G_i) / [G_i : G_0] = 1.$

Proof of (GS9). We use the quantity Δ_i as in the proof of Proposition 3.2. By Lemma 2.1, (GS3) and (GS7),

$$\lim_{i \to \infty} \Delta_i / [G_i : G_0] = \lim_{i \to \infty} g(G_i) / [G_i : G_0] + 1 = 2.$$

Then we obtain from Lemma 2.3:

$$\lim_{i \to \infty} s(G_i) / [G_i : G_0] = -1 + 2 = 1.$$

An immediate consequence of (GS7) and (GS9) is that \mathcal{G} is an ordinary tower; i.e., its asymptotic *p*-rank is $\sigma(\mathcal{G}) = 1$. This fact has already been observed in [2].

The extension field $E \supseteq G_0$ is taken as follows:

$$E := G_0(y) = \mathbb{F}_q(x_0, y)$$
 with $y^m = x_0$.

Note that m is relatively prime to q, as in Section 3. It is obvious that \mathcal{G} and E satisfy the conditions (B1) - (B3) and (E1), (E2) from Section 3. Observe also that $E = \mathbb{F}_q(y)$ is a rational function field.

Figure 1: The towers \mathcal{G} and \mathcal{E}

Proposition 4.1. Let $\mathcal{E} = E \cdot \mathcal{G} = (E_i)_{i \geq 0}$ be the composite of the function field E (as defined above) with the tower \mathcal{G} . Then:

- (i) $[E_{i+1}: E_i] = [G_{i+1}: G_i]$ for all $i \ge 0$,
- (ii) $\lim_{i \to \infty} g(E_i) / [G_i : G_0] = m$,
- (iii) $\lim_{i\to\infty} s(E_i)/[G_i:G_0] = 1$,

Proof. Item (i) is trivial. To prove item (ii), we observe first that the function field $E = \mathbb{F}_q(x_0, y) = \mathbb{F}_q(y)$ has genus g(E) = 0. Now Proposition 3.2 and (GS3), (GS7) yield

$$\lim_{i \to \infty} \frac{g(E_i)}{[G_i : G_0]} = g(E) - 1 + \frac{m+1}{2} \cdot \left(\lim_{i \to \infty} \frac{g(G_i)}{[G_i : G_0]} - (g(G_0) - 1)\right) = -1 + \frac{m+1}{2}(1+1) = m.$$

(iii) We apply Proposition 3.2 and (GS9) and get

$$\lim_{i \to \infty} \frac{s(E_i)}{[G_i : G_0]} = s(E) - 1 + \lim_{i \to \infty} \frac{s(G_i)}{[G_i : G_0]} - (s(G_0) - 1) = -1 + 1 + 1 = 1.$$

Proposition 4.2. For the tower \mathcal{E} as in Proposition 4.1, we have

$$\lim_{k \to \infty} N(E_i) / [G_i : G_0] = (\ell - 1) \cdot \operatorname{gcd}(\ell + 1, m).$$

Proof. In a rational function field $\mathbb{F}_q(z)$, we denote by (z = a) the rational place which is the zero of the element z - a, for $a \in \mathbb{F}_q$. Let $P \in \mathbb{P}(E_0)$ be a rational place of $E_0 = \mathbb{F}_q(y)$ which lies over a place $(x_0 = a) \in \text{Split}(\mathcal{G})$. Then P = (y = b) with $b \in \mathbb{F}_q$ and $b^m = a \in \mathbb{F}_{\ell}^{\times}$, by (GS5). On the other hand, if $P \in \mathbb{P}(E_0)$ lies above a rational place $P_0 \in \mathbb{P}(G_0) \setminus \text{Split}(\mathcal{G})$, then

$$\lim_{i \to \infty} \frac{|\{Q \in \mathbb{P}(E_i); Q \text{ is rational and } Q|P\}|}{[G_i:G_0]} = 0,$$

as follows from (GS8). Therefore $\lim_{i\to\infty} N(E_i)/[G_i:G_0]$ is equal to the cardinality of the set

$$M := \{ b \in \mathbb{F}_q \, | \, b^m \in \mathbb{F}_\ell^\times \}.$$

We observe that for an element $b \in \overline{\mathbb{F}}_q$,

$$b \in M \iff b^{q-1} = b^{m(\ell-1)} = 1 \iff b^{\gcd(q-1,m(\ell-1))} = 1$$

Therefore, $|M| = \gcd(q-1, m(\ell-1)) = (\ell-1) \cdot \gcd((\ell+1), m)$, as desired.

Putting together the results of Proposition 4.1 and 4.2, we obtain our main result:

Theorem 4.3. $(q = \ell^2)$ The limit and the asymptotic *p*-rank of the tower \mathcal{E} as defined above, are

$$\lambda(\mathcal{E}) = (\ell - 1) \cdot \frac{\gcd(\ell + 1, m)}{m} \text{ and } \sigma(\mathcal{E}) = \frac{1}{m}.$$

Proof. This follows from Proposition 4.1 and 4.2 since

$$\lambda(\mathcal{E}) = \frac{\lim_{i \to \infty} N(E_i) / [G_i : G_0]}{\lim_{i \to \infty} g(E_i) / [G_i : G_0]} \text{ and } \sigma(\mathcal{E}) = \frac{\lim_{i \to \infty} s(E_i) / [G_i : G_0]}{\lim_{i \to \infty} g(E_i) / [G_i : G_0]}$$

Corollary 4.4. $(q = \ell^2)$ For any divisor $m|(\ell + 1)$ there exists an asymptotically optimal tower \mathcal{E} over \mathbb{F}_q , whose asymptotic p-rank is $\sigma(\mathcal{E}) = 1/m$.

Corollary 4.5. $(q = \ell^2)$ For every $\epsilon > 0$ there exists an asymptotically good tower \mathcal{E} over \mathbb{F}_q whose asymptotic p-rank is less than ϵ . In other words, there is constant C > 0 such that for infinitely many integers $g \in \mathbb{N}$ there exists a function field F/\mathbb{F}_q of genus g that satisfies

$$N(F) \ge C \cdot g(F)$$
 and $s(F) \le \epsilon \cdot g(F)$.

Remark 4.6. Corollary 4.4 was already known in the case $m = \ell + 1$, see [7].

Remark 4.7. Note that for small ϵ , the constant C in our construction is also small. We do not know (but find it unlikely) if for every $\epsilon > 0$ there exist asymptotically *optimal* towers whose p-rank is less than ϵ .

Remark 4.8. It is easy to construct towers whose asymptotic *p*-rank is 0. We do not know, however, if there exist *asymptotically good* towers whose *p*-rank is 0.

The extensions E_{i+1}/E_i in the tower \mathcal{E} above are Galois, but the extensions E_i/E_0 are not Galois, for all $i \geq 2$. However, a slight modification of our construction will produce a *p*-tower having that additional property. For convenience, we will call a tower $\mathcal{F} = (F_i)_{i\geq 0}$ a *Galois p*-tower if for all $i \geq 1$, the extension F_i/F_0 is a Galois *p*-extension.

Now we will use as the basic tower the Galois closure \mathcal{G}^* of the Garcia-Stichtenoth tower \mathcal{G} . It is defined as follows: $\mathcal{G}^* = (G_i^*)_{i\geq 0}$ where G_i^* is the Galois closure of G_i over G_0 . This tower has all properties as listed in (GS1) - (GS9) if we replace there the fields G_i by G_i^* , see [8]. The composite tower $\mathcal{E}^* := E \cdot \mathcal{G}^*$ is then a Galois *p*-tower which satisfies:

Theorem 4.9. $(q = \ell^2)$ The limit and the asymptotic p-rank of the tower \mathcal{E}^* are

$$\lambda(\mathcal{E}^*) = (\ell - 1) \cdot \frac{\gcd(\ell + 1, m)}{m} \text{ and } \sigma(\mathcal{E}^*) = \frac{1}{m}.$$

Moreover, the automorphism group of E_i^* over \mathbb{F}_q has order

$$|\operatorname{Aut}(E_i^*)| \ge [E_i^*: E_0^*] \ge m^{-1} \cdot g(E_i^*).$$

If m is a divisor of (q-1), then $|\operatorname{Aut}(E_i^*)| \ge g(E_i^*)$.

Proof. The calculation of $\lambda(\mathcal{E}^*)$ and $\sigma(E^*)$ is done in the same way as in Theorem 4.3. The inequality $g(E_i^*) \leq m[E_i^*: E_0^*]$ is shown as in Proposition 4.1.(ii). Finally, if m is a divisor of (q-1), then the extension E_i^*/G_0^* is Galois of order $m \cdot [E_i^*: E_0^*]$.

5 Acknowledgment

Nurdagül Anbar was supported by the Austrian Science Fund (FWF): Project F5505–N26 and Project F5511–N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".

References

- N. Anbar, P. Beelen, N. Nguyen, A new tower meeting Zink's bound with good p-rank, Acta Arith. 177 (2017), no. 4, 347–374.
- [2] A. Bassa, P. Beelen, The Hasse-Witt invariant in some towers of function fields over finite fields, Bull. Braz. Math. Soc. (N.S.) 41 (2010), no. 4, 567–582.
- [3] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, Towers of function fields over non-prime finite fields, Mosc. Math. J. 15 (1) (2015), 1–29.
- [4] A. Bassa, A. Garcia, H. Stichtenoth, A new tower over cubic finite fields, Mosc. Math. J. 8 (3) (2008), 401–418.
- [5] J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite fields and Zink's lower bound, J. Reine Angew. Math. 589 (2005), 159–199.
- [6] N. Caro, A. Garcia, On a tower of Ihara and its limit, Acta Arith. 151 (2) (2012), 191–200.
- [7] I. Cascudo, R. Cramer, C. Xing, Torsion limits and Riemann-Roch systems for function fields and applications, IEEE Trans. Inform. Theory 60 (7) (2014), 3871–3888.
- [8] A. Garcia, H. Stichtenoth, On the Galois closure of towers. Recent trends in coding theory and its applications, 83–92, AMS/IP Stud. Adv. Math., 41, Amer. Math. Soc., Providence, RI, 2007.
- [9] A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory 61 (2) (1996), 248–273.
- [10] A. Garcia, H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1) (1995), 211–222.
- [11] S. Nakajima, On abelian automorphism groups of algebraic curves. J. London Math. Soc.(2) 36 (1987), no. 1, 23-32.
- [12] H. Popp, The singularities of the moduli schemes of curves, J. Number Theory 1, (1969), 90–107.

- [13] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik. (German) Math. Z. 117 (1970), 157-163.
- [14] H. Stichtenoth, Algebraic function fields and codes, 2nd edition, Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.