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Abstract

In this note, we survey certain known results on the evaluation of values of
Dirichlet L-functions and of their logarithmic derivatives at 1 + it0 for fixed real
number t0.

1 Introduction

Let χ be a Dirichlet character modulo q, let L(s, χ) be the attached Dirichlet L-function,
and let L′(s, χ) denote its derivative with respect to the complex variable s. The values
at 1 of Dirichlet L-functions have received considerable attention since long time, due
to their algebraical or geometrical interpretation. In 1837, Dirichlet produced finite
expansions for L(1, χ) in the form

L(1, χ) =
∑
n≥1

χ(n)

n
= −2τ(χ)

q


2
∑

1≤m≤q/2

χ̄(m) log

∣∣∣∣sin πmq
∣∣∣∣ when χ(−1) = +1,

iπ
∑

1≤m≤q/2

χ̄(m)

(
1− 2m

q

)
when χ(−1) = −1.

where τ(χ) is the Gaussian sum attached to χ. Similar finite expansions for its deriva-
tives form at s = 1 have been obtained by many authors, such as: Berger [2], de
Séguier [29], Selberg and Chowla [30], Gut [8], Deninger [6] and Kanemitsu [12]. In
this paper, we shall restrict our attention to the values L(1, χ) and (L′/L)(1 + it0, χ)
for any fixed real number t0.

One of the important problems in Number Theory is to get good estimates for the
size of L(1, χ). Many mathematicians have been studied upper and lower bounds of
|L(1, χ)|. Several of them have obtained upper bounds for this latter via character sums
estimates, the functional equation and approximate formulas, or a mix of three. The
best bounds known for |L(1, χ)| are of the form:

q−ε �ε |L(1, χ)| � log q.
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Less is known about logarithmic derivatives (L′/L)(s, χ) at s = 1, through these values
are known to be fundamental in studying the distribution of primes.
In this note, we survey certain known results of upper and lower bounds of |L(1, χ)|
and the 2k-th mean values of the Dirichlet L-functions at s = 1 and of their logarithmic
derivatives at 1 + it0 for fixed real number t0 and any positive integer k.

2 Upper bounds of |L(1, χ)|
The classical result on bounds of |L(1, χ)| is due to Littlewood, see [15]. Assuming the
generalized Riemann hypothesis, he proved that

|L(1, χ)| ≤ (2 + o(1)) eγ log log q.

For infinity many real characters χ, we have

|L(1, χ)| ≥ (1 + o(1)) eγ log log q.

After a long while, Chowla [4] proved that this latter lower bound holds unconditionally.
Littlewood bounds give us the correct range of the size of |L(1, χ)|. His upper bound is
still unproven unconditionally.

For q = p is a prime number and χ quadratic characters. Chowla [5] showed that
the following upper bound

|L(1, χ)| ≤
(

1

4
+ o(1)

)
log p.

holds for χ a real non-principal character modulo p. Using an argument of Polya-
Vinogradov, Burgess [3] gave an improvement of Chowla’s result. No analogous im-
provements over the Chowla and Burgess bounds were known for complex characters
χ. In [33], Stephens gave the following upper bound

|L(1, χ)| ≤ 1

2

(
1− 1√

e
+ o(1)

)
log p,

for p sufficiently large. In 1977, Pintz [22] generalized this latter upper bound for every
quadratic character, whose modulus is not necessarily prime. Recently, Granville and
Soundararajan [7] determined the constant c, as small as possible, for which the bound

|L(1, χ)| ≤ (c+ o(1)) log q

holds. They showed that this constant can be 17/70 for a non-principal character χ
and when q is cube-free. We point out that all above bounds are asymptotic and that
explicit error terms are not known. So, in the next section, we are going to focus on
explicit upper bounds of |L(1, χ)|.
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3 Explicit upper bounds of |L(1, χ)|
We recall that the Dirichlet character χ is even if χ(−1) = 1, and that it is odd if
χ(−1) = −1. The best explicit upper bound known up to date for |L(1, χ)| is of the
form

|L(1, χ)| ≤ 1

2
log q + C. (1)

Concerning the constant C, Louboutin [16] and [17] proved that

|L(1, χ)| ≤

{
1
2

log q + 0.009 if χ(−1) = +1,
1
2

log q + 0.716 if χ(−1) = −1.

where χ is a primitive character of conductor q. As a spacial case, when the conductor
q is even, Louboutin showed that

|L(1, χ)| ≤

{
1
4

log q + 0.358 if χ(−1) = +1,
1
4

log q + 0.704 if χ(−1) = −1.

His proof is based on integral representations of the Dirichlet L-function.

Let χ be a primitive Dirichlet character of conductor q > 1. Let F : R −→ R
be such that f(t) = F (t)/t in C2 (R) (even at 0), vanishes at t = ∓∞ and its first
and second derivatives belong to L1(R). We make the following assumptions; F is even
if χ is odd and that F is odd if χ is even. Then for any δ > 0 and under the above
assumptions, Ramaré [25] gave a new approximate formulas for L(1, χ) depending on
Fourier transforms:

L(1, χ) =
∑
n≥1

(1− F (δn))χ(n)

n
+
χ(−1)τ(χ)

q

∑
m≥1

χ(m)

+∞∫
−∞

F (t)

t
e (mt/(δq)) dt. (2)

With a proper choice of the function F in the above formula

F1(t) =
sin(πt)

π

(
log 4 +

∑
n≥1

(−1)n
(

2n

t2 − n2
+

2

n

))
,

F2(t) = 1− sin(πt)

πt
,

F3(t) =

(
sin(πt)

π

)2
(

2

t
+
∑
m∈Z

sgn(m)

(t−m)2

)
,

F4(t) = 1−
(

sin(πt)

πt

)2

.
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He proved that

L(1, χ) =


∑
n≥1

(1− F1(δn))χ(n)

n
− 2τ(χ)

q

∑
1≤m≤δq/2

χ(m) log

∣∣∣∣sin πmδq
∣∣∣∣ if χ(−1) = 1,

∑
n≥1

(1− F2(δn))χ(n)

n
− iπτ(χ)

q

∑
1≤m≤δq/2

χ(m)

(
1− 2m

δq

)
if χ(−1) = −1,

and that

L(1, χ) =


∑
n≥1

(1− F3(δn))χ(n)

n
− τ(χ)

q

∑
1≤m≤δq

χ(m)j

(
m

δq

)
if χ(−1) = 1,

∑
n≥1

(1− F4(δn))χ(n)

n
+
iπτ(χ)

q

∑
1≤m≤δq

χ(m)

(
1− m

δq

)2

if χ(−1) = −1,

where

j(t) = 2

1∫
|t|

(π(1− u) cot(πu) + 1) du.

Taking δ to be around 1/
√
q in the first formula of L(1, χ) above, Ramaré obtained the

following explicit upper bounds

|L(1, χ)| ≤

{
1
2

log q + 0.006 if χ(−1) = +1,
1
2

log q + 0.9 if χ(−1) = −1.

By using the second one, he gave the best upper bound for |L(1, χ)|.

|L(1, χ)| ≤

{
1
2

log q if χ(−1) = +1,
1
2

log q + 0.7082 if χ(−1) = −1.

To understand the difference between these two results, one needs to compare the func-
tion F1 to F3 and F2 to F4. For a nice comparison see [27].

More a general form of Eq. (2) is given by Ramaré [26] in 2004. Let χ be a primitive
Dirichlet character modulo q, and let h be an integer prime to q. Under the same
assumptions, on the function F , given above. Ramaré proved that

∏
p|h

(
1− χ(p)

p

)
L(1, χ) =

∑
n≥1

(n,h)=1

(1− F (δn))χ(n)

n

+
χ(−h)τ(χ)

qh

∑
m≥1

ch(m)χ(m)

+∞∫
−∞

F (t)

t
e (mt/(δqh)) dt.
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Here ch(m) is the Ramanujan sums defined by

ch(m) =
∑

a mod ∗h

e(am/q).

Of course e(x) = e2iπx, and a mod ∗h denotes summation over all invertible residue
classes modulo h. In the case that q is odd, he deduced that

|(1− χ(2)/2)L(1, χ)| ≤ 1

4
(log q + κ(χ)) ,

where κ(χ) = 4 log 2 if χ is even, and κ(χ) = 5− 2 log(3/2) otherwise.

For a particular case when χ(2) = 0 and χ(3) = −1, Le [14] gave the following
upper bound:

|L(1, χ)| ≤ 1

8
log q +

3 log 6 + 8

8
.

This result has been later improved by Louboutin [18].

Let S be a given finite set of pairwise distinct rational primes. Then, for any
primitive Dirichlet character χ of conductor q > 1, Louboutin [19] collected his previous
results in the following formula∣∣∣∣∣
{∏
p∈S

(
1− χ(p)

p

)}
L(1, χ)

∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣
{∏
p∈S

(
1− 1

p

)}∣∣∣∣∣
×

(
log q + κχ + ω log 4 + 2

∑
p∈S

log p

p− 1

)
+ o(1),

where

κχ =

{
κeven = 2 + γ − log(4π) = 0.046191 · · · if χ(−1) = +1,

κodd = 2 + γ − log(π) = 1.432485 · · · if χ(−1) = −1.

Here ω ≥ 0 is the number of primes p ∈ S which does not divide q, and where o(1) is
an explicit error term which tends rapidly to zero when q goes to infinity. Moreover, if
S = φ or if S = 2, then this error term o(1) is always less than or equal to zero, and if
none of the primes in S divides q then this error term o(1) is less than or equal to zero
for q large enough.

In 2013, the author considered the most difficult case when χ(2) = 1 and showed
that the constant C in Eq. (1) can be negative, see [28]. For χ an even primitive
Dirichlet character of conductor q > 1, we proved that

|L(1, χ)| ≤ 1

2
log q − 0.02012.
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This result is the best upper bound of |L(1, χ)| up to date. Which gives us an im-
provement of the Ramaré result. As an example of application, we deduced an explicit
upper bound for the class number for any real quadratic field Q

(√
q
)
, improving on a

result by Le [14]. For every real quadratic field of discriminant q > 1 and χ(2) = 1, we
showed that

h (Q (
√
q)) ≤

√
q

2

(
1− 1

25 log q

)
,

where h
(
Q(
√
q)
)

is the class number of Q
(√

q
)
. Since Oriat [21] has computed the class

number of this field when 1 < q < 24572. We proved the above result for q ≥ 24572.

Using the previous Ramaré formula of L(1, χ), Platt and the author [24] gave a
sharper upper bound of |L(1, χ)| when 3 divides the conductor

|L(1, χ)| ≤ 1

3
log q +

 0.368296 when χ(−1) = 1,

0.838374 when χ(−1) = −1.

We proved this result for q > 2 · 106. To check that it is valid for 1 < q ≤ 2 · 106, Platt
has checked by using his algorithm from his thesis [23], ( which is rigorous and efficient
for computing L(1, χ) for all primitive χ of conductor 2 ≤ q ≤ 2 · 106 ). These bounds
are improvement of the following result, due to Louboutin [19],

|L(1, χ)| ≤ 1

3
log q +

 0.3816 when χ(−1) = 1,

0.8436 when χ(−1) = −1.

4 The mean values of the Dirichlet L-function at

s = 1

The asymptotic properties for the 2k-th power mean value of L-functions at s = 1 have
been studied by many authors. We again consider the case q = p is a prime number.
The classical result of the second power mean value of the Dirichlet L-function at s = 1
is due to Paley and Selberg, see [1]. They proved that∑

χmod p
χ 6=χ0

|L(1, χ)|2 = ζ(2)p+O
(
(log p)2

)
,

where χ runs over all Dirichlet characters modulo p except for the principal character
χ0. This result has been improved by several authors. In this section, we mention some
of them. In 1985, Slavutskii [31] and [32] showed that∑

χmod p
χ 6=χ0

|L(1, χ)|2 = ζ(2)p− (log p)2 +O (log p) .
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Later, the above error term was improved to O(log log p) by Zhang [34]. In 1994,
Katsurada and Matsumoto [13] obtained a sharper asymptotic expansion for the second
power mean value of |L(1, χ)|. For any integer N ≥ 1, they proved that∑

χmod p
χ 6=χ0

|L(1, χ)|2 = ζ(2)p− (log p)2 +
(
γ20 − 2γ1 − 3ζ(2)

)
−
(
γ20 − 2γ1 − 2ζ(2)

)
p−1

+ 2
(
1− p−1

) [N−1∑
n=1

(−1)nζ(1− n)ζ(1 + n)p−n +O
(
p−N

)]
.

Here the O-constant depends only on N , and the constants γ0 and γ1 are the Laurent
expansion coefficients of the zeta function at 1. As for general k, Zhang and Wang [37]
gave the following interesting result, for any q ≥ 3,∑

χmod q
χ 6=χ0

|L(1, χ)|2k = ϕ(q)
∞∑
n=1

d2k(n)

n2
+O

(
exp

(
2k log q

log log q

))
,

where dk(n) =
∑

r1···rk=n 1 is the kth divisor function. In that paper, for k = 2 they
also deduced that∑

χmod q
χ 6=χ0

|L(1, χ)|4 =
5

72
π4ϕ(q)

∏
p|q

(p2 − 1)3

p4(p+ 1)
+O

(
exp

(
4 log q

log log q

))
.

5 The mean values of the logarithmic derivatives of

the Dirichlet L-function at 1 + it0

In this section, we are interested by the values of the logarithmic derivatives of the
Dirichlet L-function at 1 + it0 . We shall only give an announcement of our recent
results in this direction of research. For more details see [20].

In 1992, Zhang [36] studied the fourth power mean value of (L′/L)(s, χ) at s = 1.
For the real number Q > 3, he gave the following asymptotic formula

∑
q≤Q

1

ϕ(q)

∑
χ 6=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣4 = Q
∑
p

(p2 + 1) log4 p

p(p+ 1)(p2 − 1)2
+4Q

(∑
p

log2 p

p2 − 1

)(∑
p

log2 p

p(p+ 1)

)

− 4Q
∑
p

(p2 − p+ 1) log4 p

p2(p2 − 1)2
+ 4Q

(∑
p

log2 p

p(p2 − 1)

)2

+O
(
log5Q

)
,

where
∑

p denotes the summation over all primes. He proved his result by using the
estimates of the character sums and the Bombieri-Vinogradov theorem.
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Ihara and Matsumoto [9], [10] gave a result related to the value-distributions of
{(L′/L)(s, χ)}χ and of {(ζ ′/ζ)(s + iτ)}τ , where χ runs over Dirichlet characters with
prime conductors and τ runs over R.

Let p be a prime and Xp denote the set of all non-principal multiplicative characters
χ such that

χ : (Z/pZ)× −→ C×.
Recently, motivated by connections of the values of (L′/L)(1, χ) with the Euler-Kronecker
invariants of global fields (especially the cyclotomic fields), Ihara, Murty and Shimura [11]
studied the maximal absolute value of the logarithmic derivatives (L′/L)(1, χ) and
showed that the following result

max
χ∈Xp

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣ ≤ (2 + o(1)) log log p,

holds under GRH. For any ε > 0, they Unconditionally proved that

1

|Xp|
∑
χ∈Xp

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k =
∑
m≥1

( ∑
m=m1·m2···mk

Λ(m1) · · ·Λ(mk)

)2

m2
+O

(
pε−1

)
, (3)

where Λ(.) denotes the von Mangoldt function. The proof of this result is based on
the study of distribution of zeros of L-functions. More recently, Matsumoto and the au-
thor [20] gave an asymptotic formula for the 2k-th power mean value of |(L′/L)(1 + it0, χ)|
when χ runs over all Dirichlet characters modulo q and any fixed real number t0. We
proved that,

1

ϕ(q)

∑
χmod q

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k =
∑
m≥1

(m,q)=1

( ∑
m=m1·m2···mk

Λ(m1) · · ·Λ(mk)

)2

m2

+O

(
1

q
(log q)4k+4+ε +

1

ϕ(q)

(
1

|t0|2k−1
+ (log (q(|t0|+ 2)))2k

))
, (4)

for any fixed real number t0 6= 0 and an arbitrary positive integer k. Here ϕ is the Euler
totient function. In the case when t0 = 0, we deduced that

1

ϕ(q)

∑
χmod q
χ 6=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k =
∑
m≥1

(m,q)=1

( ∑
m=m1·m2···mk

Λ(m1) · · ·Λ(mk)

)2

m2
+O

(
(log q)8k+ε

q

)
.

This result provides an improvement (and a generalization to the case of general modu-
lus q) on Eq. (3). In fact, when q = p is a prime, it is shown in [11] that the factor pε in
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the error term in Eq. (3) can be replaced by a certain log-power under the assumption
of the GRH. Our result gives a same type of improvement unconditionally.

As a consequence of those results, we showed that the values |(L′/L)(1 + it0, χ)|2
behave according to a distribution law. Our main result is proved by profiting from the
known zero-free regions of the functions L(s, χ).
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12 no. 3, (1883).

[3] D. A. Burgess, Estimating Lχ(1), Det Kongelige Norske Videnskabers selskabs
Forhandlinger 39 (1966), 101–108.

[4] S. Chowla, On the class-number of the corpus P (
√
−k), Proc. London. Nat. Inst.

Sci. India. 1 (1947), 197–200.

[5] S. Chowla, Bounds for the fundamental unit of a real quadratic field, Norske Vid.
Selsk. Forh. (Trondheim) 37 (1964), 84–87.

[6] C. Deninger, On the analogue of the formula of Chowla and Selberg for real
quadratic fields, J. Reine Angew. Math. 351 (1984), 172–191.

[7] A. Granville and K. Soundararajan, Upper bounds for L(1, χ), Quart. J. Math 53,
(2002), 265–284.

[8] M. Gut, Die Zetafunktion, die Klassenzahl und die Kronecker Grenzformel eines
beliebigen Kreiskorpers, Comment. Math. Hets 1 (1930), 160–226.

[9] Y. Ihara and K. Matsumoto, On certain mean values and the value-distribution of
logarithms of Dirichlet L-functions, Quart. J. Math. (Oxford) 62 (2011), 637–677.

[10] Y. Ihara and K. Matsumoto, On the value-distribution of logarithms derivatives of
Dirichlet L-functions, Analytic Number Theory, Approximation Theory and Special

9



Functions, in Honor of H. M. Srivastava, G. V. Milovanović and M. Th. Rassias
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