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Abstract We find asymptotic equalities for exact upper bounds of approximations by Fourier
sums in uniform metric on classes of 2r—periodic functions, representable in the form of convo-
lutions of functions ¢, which belong to unit balls of spaces L,, with generalized Poisson kernels.
For obtained asymptotic equalities we introduce the estimates of remainder, which are expressed

in the explicit form via the parameters of the problem.

1 Introduction

Let L,, 1 < p < oo, be the space of 2r—periodic functions f summable to

the power p on [0,27), in which the norm is given by the formula | f||, =

27 1
( [f (t)|pdt>p; L be the space of measurable and essentially bounded 27—
0

periodic functions f with the norm || f|l.c = esssup|f(t)|; C be the space of
t

continuous 27—periodic functions f, in which the norm is specified by the equality

I flle = max (1)

a,r

Denote by 5ps >0, 7>0,1<p< o0, the set of all 2r—periodic functions,
representable for all z € R as convolutions of the form (see, e.g., [1, p. 133])

iy
on 1

) F@) = 2+ = [ Parale —0(0)dt, ay € R, € B,

B)={¢: llell, <1, ¢ L1}, 1 <p < oo,

with fixed generated kernels

e cos (kt — %T), B e R.

NE

Porp(t) =

=~
I

1



The kernels P, , 3(t) are called generalized Poisson kernels. For »r =1 and 5 =0
the kernels P, , s(t) are usual Poisson kernels of harmonic functions.
For any r > 0 the classes C) belong to set of infinitely differentiable 27—

periodic functions D, i.e., O3 C D> (see, e.g., [1, p. 128], [2]). For r > 1 the

classes C’g’; consist of functions f, admitting a regular extension into the strip

Im z| < ¢, ¢> 0 in the complex plane (see, e.g., [1, p. 141]), i.e., are the classes
of analytic functions. For r» > 1 the classes CO‘:; consist of functions regular on
the whole complex plane, i.e., of entire functions (see, e.g., [1, p. 131]). Besides,
it follows from the Theorem 1 in [3] that for any r > 0 the embedding holds

a,r

5p C Ji/r, where J,,a > 0, are known Gevrey classes

- N TGl
ja‘{fED ' i2§< (k)e ) <°O}'

Approximation properties of classes of generalized Poisson integrals C’g”; in
metrics of spaces Ly, 1 < s < oo, were considered in [4]-[10] from the view-
point of order or asymptotic estimates for approximations by Fourier sums, best
approximations and widths.

In the present paper we obtain asymptotic equalities as n — oo for the quanti-
ties
2)  &(Cq)e= sup [If() = Sna(f;)lle, 7>0, >0, 1 <p<oo,

fecyy
where S,,_1(f;+) are the partial Fourier sums of order n — 1 for a function f.

Approximation by Fourier sums on other classes of differentiable functions in
uniform metric were investigated in works [1], [11]-[15].

Nikol’skii [12, p. 221] considered the case r =1, p = oo and established that

following asymptotic equality is true

g E(C5n)e = e (K 0,

where

) QE (07 1)7

g
dt
K(g) = | -
J V1 —¢?sin“t
is a complete elliptic integral of the first kind, and O(1) is a quantity uniformly
bounded in parameters n and (.
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Later, the equality (3) was clarified by Stechkin [16, p. 139], who established
the asymptotic formula

(1) &Cilo=e(

3 Ca e
K(e™) + O(l)m

where O(1) is a quantity uniformly bounded in all analyzed parameters.

P ), OC>O,BER,

In work [8] for 7 = 1 and arbitrary values of 1 < p < oo for quantities £,(C5))c,
a > 0, f € R, the following equality was established

) EnChle = (Shplcostly K e+ O() )

e n(1 — e—a)s)
where p/ = p%l,
1, p = 00,
s(p) := 2, pel,2)U(2,00),
—00, p=2,
K@) = (1= 2qcost + ¢?) L ae0),

and O(1) is a quantity uniformly bounded in n, p, a and 8. For p = oo, by virtue
of the known equality K(1,q) = K(q) (see, e.g., formula 3.674(1) of [17, p. 401]),
the estimate (5) coincides with the estimate (4).

In [23] it was proved that in the case 1 < p’ < oo the following equality takes
place

7_“% N p/ p/ )
K(q) = 5-F7 (2.5 1;¢%) 0,1
(V' a) == 5 g Lid ), a€(0,1),
where F'(a, b; c;d) is Gauss hypergeometric function

oy 1. N (@) 2
F(a,b,c,z)—1%—;—:1 (Or R

() = g(g—l—l) (3—1—2)...(%4-]{— 1).

Note that for p = 2 and r = 1 formula (5) becomes the equality
a,l 1
gn(cﬁz)O -

(see [8]). Moreover, it follows from [18] that for p = 2 and r > 0 for the quantities

M a>0, eER, neN,

Ex(Cj,)c the equalities take place

(6) £.(C7)c = %(;6_20‘”)2, 0>0, BER, neN.
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In the case of r > 1 and p = oo the asymptotic equalities for the quantities
E(Cy)es @ >0, B € R, were obtained by Stepanets [19, Chapter 3, Section 9],

D
who showed that for any n € N

a,r 4 —an”
(7) ENCT)e = (= +m)e™,
where

1 r—1
\yn\<:2(1-% 1)ea”1 .
arn’—

Later Telyakovskii [4] established the asymptotic equality

4 1
a,r _ ~,—an” —a(2(n+1)"—n") —a(n+2)"
() EnlCs)e _ + O(l)(e * (1 * ar(n + 2)7’>6 )’

where O(1) is a quantity uniformly bounded in all analyzed parameters. Formula
(8) contains more exact estimate of remainder in asymptotic decomposition of the

quantity &,(Cy7))c comparing with the estimate (7).

T
P
For » > 1 and for arbitrary values of 1 < p < oo the asymptotic equalities for

the quantities EH(CE‘;)O, a >0, f € R, are found in [8] and have the form

[ cost]ly

FOm(1+ =L )e ),

arn’—1

(9) EC0 = (

where O(1) is a quantity uniformly bounded in all analyzed parameters. For
p = oo the formula (9) follows from (7) and (8).
Concerning the case 0 < r < 1, except the presented above case p = 2, asymp-

m

totic equalities for quantities Sn(Cg’;)c, a > 0, 8 € R, were known only for p = oo

due to the work of Stepanets [20], who showed that

4 T T
10 ECT Vo= —=e " Inn!™" + O(1)e ",
(10) (C5L)e = 5o Inn'™ 4 O(1)e
where O(1) is a quantity uniformly bounded in n and 5.
In case of 0 < r < 1 and 1 < p < oo the following order estimates for quantities

£.(C5))os >0, B € R, hold (see, e.g., [6], [9])

T 1—r

(11) ECS) o = e n'T.

We remark that for 0 < r <1 and 1 < p < oo Fourier sums provide the order
of best approximations of classes C’a’;, a >0, § € R, in uniform metric, i.e. (see,

e.g., [9], [10])

Sn(C’g”;)g = En(ng)C =

(
™
S
S



where
(C’O‘ Jo = sup inf ||f —tu_1llo,

fecsy tn—1€T2n—1

and 75,1 is the subspace of all trigonometric polynomials ¢,,_; of degree not higher
than n — 1.

On the one hand, this fact encourages to research more deeply approximative
properties of Fourier sums in given situations, and on the other hand it separates
the case 1 < p < oo from considered earlier case p = oo, where order equality
En(Cy)e < En(Cy))e, 0 <1 < 1, doesn’t take place.

Besides, as follows from Temlyakov’s work [6] for 2 < p < oo quantities of
approximations by Fourier sums realize order of the linear widths Ao, (definition
of A, see, e.g., 21, Chapter 1, Section 1.2]) of the classes Cy7, i.e.

)\Qn( Op,C)Xgn( g”;)c.

In this paper we establish asymptotically sharp estimates of the quantities
Enl g”;)c, a>0,eR, forany 0 <r <1land 1l <p < oco. In particular, it is
proved, that for » € (0,1), « >0, § € R and 1 < p < 0o as n — oo the following
asymptotic equalities take place

r  1—r t / 1 ]. 3_ ! 3
gn( g:}:)cze—an np( HCOS leFp/ (_ p_1)+

7 (ar)r 27 2 72
0(1) 11
12 _— 1 < -+ —=1
(12) b ) 1<p o0, 4=
1 o(1)
o,r - an” 1—r
(13) 6n< ﬁvl)c =€ n (77047“ + nmin{l—n r})’

where O(1) is a quantity uniformly bounded with respect to n and .

Formulas (12) and (13) together with formulas (3)—(5), (7)—(10) give the solu-
tion of Kolmogoroff-Nikolsky problem about strong asymptotic of quantities (2)
as n — oo for all admissible values of parameters of problem.

Herewith, in this paper we found the estimates for remainders in (12) and (13),
which are expressed via absolute values and the parameters of the problem o, r, p
in the explicit form. These estimates can be used for practical application, since
they allow effectively to estimate errors of uniform approximations of functions
from the classes Cﬂ by their particular Fourier sums.



The proof of aasymptotic formulas (12) and (13) is based on the one result
(Lemma 1), which is some generalized modification of known Fejér Lemma (see
[22]). Proof of this statement is located in the last part of the paper.

The following table contains exact values of constants (Kolmogoroff-Nikolsky

constants) in main term A, of asymptotic expansion of quantities En(C’g’;)c of

the form
E(Chy)e = €™ (An+ 0(Ay)).
r
A
n (0,1) 1 (1, 00)
[20] Stepanets (1984) [12] Nikolsky (1946) [19] Stepanets
%) (1987)
[16] Stechkin (1980) | [4] Telyakovskii
L(1—r)lnn (1989)
K :
Our result 8] Serdyuk (2005) [8] Serdyuk
p
(1, 00) (2005)
cost /Fi %,3_21’/;%;1 1=r cost||,; L/ _2a cost||,
I ||p1+%( : ) I FH Fv(Z,%:1;e 2a) I 7T||
7w P (ar)?P
Our result [8] Serdyuk (2005) 8] Serdyuk
1 (2005)
1 o 1-r 1 1
rar m(l—e9) T

2 Formulation of main results and auxiliary statements

For arbitrary v > 0 and 1 < s < oo assume

(14) L.[00]

J(v) = ”ﬁ\



where

<fb|f(t)\8dt>s, l<s<oo

esssup | f(t)], s = 00,

t€(a,b]
Also for « > 0, 7 € (0,1) and 1 < p < oo we denote by ny = ng(a,r,p) the
smallest integer n such that

If]

Lg[a,b] —

149 :17
15 L1 arx(p) ) 1 T 1<p < o0
(15) arm e S G p < o0,

GBr3’ p = 00,

where x(p) = p for 1 < p < oo and x(p) =1 for p = .
With the notations introduced above, the main result of this paper is formulated
in the following statement:
Theorem 1. Let 0 < r < 1,1 < p < oo, a>0and 8 € R. Then for
n > ng(a,r,p) the following estimate is true
631 = ' (et g i
Bip 71_147(0”)1 P\ ar

P

1—r
(16) +v£f;((a$1+; (2 >ni + nl))

where % + ]% =1, and the quantity %(:1)) = T(L%Z))(cv, r,B) is such that \%(111))| < (14m)%
Now we present some corollaries of Theorem 1.
Theorem 2. Let 0 < r < 1,1 < p<oo, a>0and € R. Then for
1 <p<ooandn > ng(a,r,p) the following estimate is true
T —r t / L 1 3_ ! 3
3o ot (et py (1308

7T1+1%(CYT)I% 2’ 2 'Y

-1 1
7

(17) +7(2)<(1+ (1094/7“)_; )nll N (p);;%))’

" v (ar)

and for p =1 and n > ny(a,r, 1) the estimate is true

r o {1 11 1
(18) E(CG1)e =e " n! <—+%fi( +1—>>

(ar)2n” ' n




where 1 + = =1, and the quantity %(”)) fy,(”))(a r,3) is such that |%p| < (147)2.
The follovvlng statement follows from the Theorem 2 in the case p = 2.
Corollary 1. Let 0 <r <1, a > 0 and 8 € R. Then for n > ng(a,r,2) the

following estimate 1is true

(19) sn(cg;;)c=e‘“”rn1¥<¢;w+m((1+¢_>11 (f)ni)»

where the quantity ’y?(l% fyT(l%(oz r, 3) is such that |fyn2\ < (147)2.

Proof of the Corollary 1. Indeed, setting p = p’ = 2 in the equality (17),
we obtain for n > ng(a, 7, 2)

ar o 1=t [|[costlls 11 1 3
EC55)e = e’ (—1F2(—,—;—;1)+
( ﬂ’2) 7%(047“)5 22 2

(20) 80+ van L+ 2 1Y)

(ar)% n'
Taking into account that (see, e.g., formula 9.121(13) of [17]) F (% 13 1) =7,
from (20) we have (19). Corollary 1 is proved. u

However, it is possible to obtain more accurate estimate than (19) on the basis
of equality (6). Namely, for « > 0, r € (0,1), § € R and n > ng(a,r,2) the
following estimate is true

—an’ nlgr(1+ (2)(Li+ ar ))
orar T 2arn”  ni-r/)/)’

where the quantity 72 = %(12)(04,7") is such that \%(LQ)| < «/52’7‘:?:. In order to

prove (21) we use the following estimate, which will be useful in what follows.

Let v > 0,7 >0, m>1and 6 € R. Then for m > (@) the estimate
takes place

e

(21) E.(C3)e =

o0 .
T

. —rm o+1 1 14
(22) / e = T (14 0, Por1-r 1 ). el <
yr yr m’ ’ 13
Indeed, integrating by parts, we obtain
T r —’ymT 6 ]_ - T T
(23) / ey = & pprior 02T / e L,
yr yr

m m



Since
00 @r,é 00
(24) / e At = 1 [ e 0dE, 0 < @“5 <1,
m
m m
1
by virtue of (23) for m > (%) " we have
o0 oo
—ym" 1
/ —’}/t t5dt < 5+1 - _/ ﬁ/trt(Sdt
yr 14 ’
m m
whence
Ji 14¢7
(25) / e Wt < o pdtir
13~r
m

The estimate (22) follows from (23)—(25).
From the equality (6) and relation

(26) [ewau< 3¢t < [ ewau+em

which takes place for any positive and decreasing function &(u), u > 1, such that

[ &(u)du < oo, we get

0
1

a,T 1 —2at" —2an” \ 2
@) &Ce=—=( [ e ar o) el <1

n

o
In order to estimate the integral [ e 2*"dt it suffices to use the equality (22)

for v = 2a, 6 = 0, m = n and r € (0,1). Then, taking into account that
no(a,r,2) > (M);, for n > ng(a,r,2) from (22) and (27) we get

ar

1 —2an”

En(Ch)o = _(@ nl—f(1 rop U1 i) + @a{;me—%n"f -

2ar 2an 90 nr

(28) =——n"(1+6 (ii+ ) e
Q,T,n QOCT n?" n]_*?" QTN

VS
—_
+
D

L [\
\.ﬁ\—/
3

VR

‘ -
| =
Q
ﬁ
N——
N——
]|
|
—_
N =
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1 1 1 ar
< (oo + ) <

2arn”  nlor

- 5473 ( 11 L or )
— \ Bdrd —1\2arn”  nlor)

then (21) follows from (28).
In the case of p = oo Theorem 1 allows to clarify the asymptotic equality (10).

We set n1 = ni(a, r) be the smallest number n such that
1—r

(29) ii(1+1n(7m ))+ L

arn’ ar nl=r = (3m)3

The following assertion takes place.
Theorem 3. Let 0 <r <1, a > 0 and 5 € R. Then for n > ny(a,r) the
following estimate is true

1—r
(30) ECST Vo = A oy (”

2 ar ) + %(“)’O ",
where the quantity %(122)0 = T(LQ())O(O{, r,3) is such that \fy,%o\ < 207*.

The asymptotic equality (10), which was established by Stepanets (see [20]),
follows from the relation (30).

The next three statements are the crucial part for the proof of Theorem 1.
Section 4 of this paper contains proofs of Lemmas 1-2.

Lemma 1. Let 1 < s < oo, 2m—periodic functions g(t) and h(t) have finite
derivatives and satisfy the conditions:

(31) \/g )+ h2(t

_— VI(g'(#)+ (W(t)?
(32) M= e V) + h2(t)

Then for the function

(33) o(t) = g(t) cos(nt + ) + h(t)sin(nt +v), v€R, n €N,
drsM, 1<
for all numbers n > { ) e =8 <00, the following estimates take place
Y S = OO?
| costHs M
(34) Ills = lirlls( ot 5h—),
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, B || cost]|s (QM

(3) L 19(0) = Alle = Il (TS50 + 007)
lcostlls , s M

36 sup =||¢(t + h s = +03 ),
(36) sup 31600+ 4) = 90, = I (51 +0070)
where
37 oW < 14w, i=1..3.
(37 4L

Assertion 1 [24, Chapter 2, Section 2.8]. Let continuous function ¢(x)

be a function of bounded variation in the interval (0,00), lim ¢(x) =0 and
T—00

/¢ t)dt < oo.
0

Then the following equality takes place

EING L D) e U SEAC-0) )

k:

where ®.(x) is the Fourier cosine transform of the function ¢(x) of the form

2 o
= \/;0/¢(u) cos rudu.

Denote by 9t the set of all convex downwards, continuous functions ¥(t) >
0, t > 1, such that hm ?7/}( ) =
Lemma 2. Let ¢ € o, Then

(39)  0< /W +u)cosvudu < Tl/(), v R {0},

3 Proof of Theorems 1-3.

Proof of the Theorem 1. According to (1) and (2) we have

(40) EC5)e = = sup

m peBY

[ P = pterar

, 1 <p< oo,
C
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where

(41) M@ Ze COS(kt—%) O0<r<l, a>0, geR.

Taking into account the invariance of the sets Bg , 1 < p < o0, under shifts of the
argument, from (40) we conclude that

o,T 1 n
(42) EC5)o =~ sw [ PU ettt

n peB)

On the basis of the duality relation (see, e.g., [21, Chapter 1, Section 1.4))

™

(n) 1 1
) s [ RO = PEIPLW Ny =1

In order to find the estimate for the quantity mf H o 5( ) — M|l we use the

Lemma 1.
We represent the function Po(g)ﬁ(t), which is defined by formula (41), in the
form

() () — _br i (e — BF
(44) P 5(t) = garn(t) cos (nt 5 ) + harn(t) sin (nt 5 ),
where
(45) Garn(t Ze k)" cos kt,
k=0
(46) horn(t) : Ze olk+n)" gin kt.
k=0

Let us show, that for functions g¢,,, and h,,, the following conditions are
satisfied

(47) VPra8) 12, (0) £ 0

and

V hn )% 4 (1 ()
(48) M, = M, (c;r) := sup < 00.

R JGR() + B2 (1)
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Since, for arbitrary o« > 0, 0 < r < 1 the sequence {e o(ktn)” } 1o I8 convex
downwards, then (see, e.g., [25, Chapter 10, Section 2])

| — ,
5670‘" + Z e )" cos kt > 0,
k=1
and
1 ,
2 2 > Zpan
(49) VI ra®) + 12,8 2 Se > 0.
Further, since
(50) Jorn(t) = — Z ke )" gin ket
k=1
(51) Py () = — Z ke )" cos kit
k=1

it is clear that

(52) V G2 + (W (£)2 < D ke < oo,

k=1
On the basis of (49) and (52), the functions g¢n,,(t) and hg,,(t) satisfy the
conditions (47) and (48). Therefore, setting in Lemma 1 ¢(¢) = ga,rn(t), () =

horn(t), s=p and v = —ﬁ— we get that for
drp'M,, 1 <p < oo,
(53) n>q PR
L, p = 090,

the estimate takes place

(54) inf I1PL(1) = My = ||/ (G ()2 + (o (1))?

n

<HCOSt|1|p’ +5(1)%>,
PN (2m)Y n

Where 119 z% 1, quantity M, is defined by equality (48), and the quantity
s (cr, 7, B, p) is such that \(5n | < 147.
Settmg
(55) Poran(t) = Garn(t) = ihapn(t) = Y e "
k=0
we have

V Garn ) + (s (0)? = [Plan(1)|
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and therefore
P
Poranlt)]

Then, by virtue of the formulas (42), (43), (54) and (55), for all numbers n,
which satisfy the condition (53), the estimate holds

(56) M,, = sup

teR

or cos t||, M,
(67)  &(Chy)e= HPam,n(t)Hp/(';l,—H”f +5P=1), 1<p< oo,
P p

where M, is defined by equality (56), and for the quantity 5 = 522)(04, r,B,p) is
such that \57(12)] < 14.

Since

~

2
(58) ‘Pa,r,n(t)‘ - Pa,r,n(t)Pa,r,n(t);
where

Poran(t) = Garan(t) + ihapn(t) =y _ e b e=ikt,

00
k=0

by expanding the product Pa,r,nﬁa,r,n in the Fourier series (see, e.g., [25, Chapter 1,
Section 23]), we get

00 0
Pam( - (Z o~ alktn)” zkt)( Z p—a(—k+n)" zkt) _
k=0 k=—0c0
o0
Z Z a(j+n)" j—|—|k|+n) ikt __
k=—o0 j=
(59) = Z e 2" 42 Z Z e = UHR)" cog kit
j=n k=1 j=n

00 " 00 0 ., . .
Let convert the sum Y e2%" 425 3 e e 2U+h) coskt with a help of
j=n k=1 j=n
Poisson summation formula from Assertion 1.

Let fix t € [-m, 7], « >0, 7 € (0,1) and set
() =2 Z e~ et cosat, x>0

J=n
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. One can easily check that all conditions of the Assertion 1 are satisfied, and
therefore, setting in (38) a = 1, we obtain

oo oo (0. ¢] '
Z e 2" 42 Z Z e e Uth)" cog kit =
j=n k=1 j=n

k=1 Jj=n
(60) = Qn(t) + Rn(t)a
where
(61) Qn(t) = Qula;r;t) =2 Z e~ " / e~ Ut cog utdu,
Jj=n 0

e+’ (cos((t — 2mk)u) + cos((t + 2mk)u))du.

(62) :::QEE::E:e—af

Hence, as a consequence of (58), (59) and (60)

7>a77a7n(t)]2 — Q,(t) + Ru(t).

Denote by ny = na(a, r, p) the smallest number n such that

(63)

11  arx(p) 1
64 - < -
(64) arn’ + nt-r — 14’
where

p, 1 <p<o,
x(p) =

L, p=o0,
and let us show that for the quantity @,(t) for n > ns(a,r,p) and arbitrary
t € [—m, 7] the following estimate takes place

(65) Qult) = ey (14 O (o o+ 15) ) (040 <5

ar n"  nlor
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Making some elementary calculations, one can easily check that

d (i —or(j +u)" " cosut + tsinut
— e
du (ar(j +u) =12 + ¢

i) - o((ar(j +u)"1)?% —t?) cosut — 2tar(j + u) ! sin ut
tar(l—re-attr iy yr-2l . _
(=) () (ar(j + u)y 12 + 12)2

—a(jtu)”

=e cos ut.

So,
/ e~ Ut cosutdu =

—ar(j +u)"!cosut + tsinut
(arG a4
o ((ar(j +u)"1)? —t?) cosut — 2tar(j +u) ! sinut

« /e—a(ﬂ-u)r (] + U) ((Oﬂ’(] n u)r_1)2 n t2)2 du.

—alitu) + ar(l —r)x

=€

Hence, we obtain the equality

o0
r—1
. ar -
/e‘a(”“) cos utdu = o (irjr—1)2€_aj + ar(l —r)x
0

(66)

; r—1\2 _ 42 _ : r—1 3
" /e_a(j+“)T(j N u)r—2((0”’(] +u)" ) —t )cos' ut — 2tar(j + u)" " sin utd
(2 + (ar(j +u)r—1)2)2

U.

0

It is easy to verify that

T : r—1y2 _ 42 _ , rel s
/ea(j+u)r(j+u)r2((04T(]+U) ) t.)cosut 2tar(j + u) smutdu -
(ar(G + )12 + 12)2
0

00 o ) 1 2tar(j + u) !
< a(j+u) r—2 du <
< 0/6 ( +u) (t2 FlarG w02 (@ (ar(+uy D22 S
o0 o . u)r—Q
67 <9 a(j+u) (] du.
( ) < /6 t2 + (OéT(j _l_u)r—l)Q u
0

For fixed o > 0, r € (0,1) and t € [, 7| the function %, v > 1 de-

creases. Besides, according to (25), for 6 =0, v = «, m = j, j > na(a,r,p) the
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estimate takes place

x . r—2 cr—2 x
2+ (ar(j +u)r—1)?2 t2 + (arjr—1)2
0 0
63 [ oo d ¢
(68) (arjr=1)2 /6 us 13 arj(t? + (arjr—1)?%)

j
It follows from relations (66)—(68) that for j > nao(a, 7, p)

[ee]
/e U+0)" cos utdu =
0

r—1

ary _ 1—r1 (5) 28
69 - aj’ (1 o0 —), 0l )<=
( ) 12 + (OéT’jT_l)Z + 73( ) ar jr ‘ a,r,j( )‘ =13
Therefore, taking into account (61), for n > ny(a, r, p) we have

i 6) r 6)
70)  Qu(t) =2 ( 00 (t —), 00 1) < =,
( ) O[T'Z t2 O”n] + a’r,n( ) ar nr | a,r,n( )| — 13
Further, let us find bilateral estimates for the quantities Z Ehn ZZ;J%T 11)2 for

n > no(a,r,p). It can be shown that for fixed a > 0, r € (0, 1) and t € [—m,

the function &(u) = W decreases for u > ny(a,r,p). Therefore, on basis

of (26)
r—l
2 —
arZe ozrj’" 3
(71)
’ /Q%M o CZ+@”(GW6ZWM1 0< O, () <2
=2ar [ e ”
2 + (arur—1)?2 arn\ 3 ()2 = Daralt) =

n

Integrating by parts, we have

—2o0u”, r—1
e U
2ar du =
/t2 + (aru—1)2

n
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6—20m ) x 6—20zuru2r—3 y
72 = 2 1— )
(72) t2 + (arnr—1)?2 +2(ar) T)/ (12 + (arur—1)2)? Y
n
Since
% —2au7 2r 3 x e—2au"u—1
2
du < du <
(ar) / t?2 + (arur—1)?)? “= /zfQ—I—(ozru’"—l)2 v
n
1 X —2au”,,r—1
(& Uu
73 < — d
( ) — nr/t2—|—(0ﬂ’u7a_l)2 U,

n

it follows from (72) that for n > ns(a, 7, p) the following inequalities are true

1 6—20471’” 1—7r1 6—2aurur—1
+ _
~ 20rt?+ (arn™ )2 ar nr / t2

1 —2an 1 e 20 u’ 1
+ R
~ 2art?+ (arn™ )2 14 / 2 + (arur—1)?
Hence, for n > no(a, r,p)

oo

6—2au7'ur—1 7 e—20m"
74 du < :
(74) / t? + (arur—1)? = Bare + (arnr=1)2

n

From (72)—(74) for n > na(a, 7, p) we arrive at the following estimate

%)
r—1

, U
2ar | e 2 du =
/ t?2 + (arur—1)?
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¢~ 2on’ 1—1r1 ar ))

(76) - 2+ (arn—1)? (1

where n > ny(a,r,p) and 0 < @g{%n(t) < 2.
In view of (70) and (76) for all n > ny(a, 7, p) we obtain (65). In particular, it
follows from formulas (64) and (65) that

(77) Qn(t) >0, t € [—m, 7|, n>no(a,7,p).

Let us find upper estimate for the quantity R, (t) of the form (62).
Setting in inequality (39) v =t + 27k, k € N, and 7 = j, we obtain that for
arbitrary ¢ € 9 and t € [—7, 7]

0< i iw(]’) /w(j + u) (cos((t — 2mk)u) + cos((t + 2mk)u))du <

k=1 j=n

= 1 o
”k;( t — 2km)? (t+2k7r)2> ;WW U =

f:( o %W 5 +12kw>z)¢(”>("”’<”)' + 7 W(u)ldu) R

k:

1 & 1 1

T ((Q’f BV RN 1)2>¢(”) (W(”)\ + w(n)> =

T 1

79 = (5 - 2)et (1wl + vw). e

Setting in (78) ¥(t) = e 0 <r <1, a > 0, we get that for the function
R, (t) of the form (62) the following estimate takes place

T2 rooQr ™ 2\15 P v
< (Z_Z —2an V< (= - 2 2an o —2an
(79) 0 < Ry(t) < (2 7T)e (5 +1) < (2 )146 < gem
where n > no(a, r, p).
By virtue of (63)
(80) [Pasan(t)] = \/Qult) + Ru(t).
and therefore, taking into account (77) and (79), we have

(7
(81) HPOéTTl o H \Z Q””L —m,7] g)rpne_omrv 1 < p/ < o0,
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where |@g22«pn\ < % and n > na(a,r,p).
Let us show, that for 1 < p' < oo, % +2% =1, and n > ny(a,r,p) the estimate
is true

1
e o1 [ 20 1=r
Hpozrn /Ze—omn P 1Jp’(ﬂ-n >+
Y p (ar); ar
1—r iy 1 1
; ot (o () L L))
( ) + ,r,p,n (Q{T)H_E P ar nr‘f—n%
where
2 !
(83) oB, < T IEre
bA ) ub ) 1_3, p :m.

Since, on the basis of estimate (65) for n > ns(a,r,p) and 1 < p’ < 00

(1+00..m(

1—r1 3
7“_+ ar) _1‘

ar n"  nloT

5 1 1—r1 ar 5 1—r1 ar
el R ey
we get
Qn(t) =
e " 1—r1 ar 57
84) — (1 010 (4 ( — )) 0u0 (1) < VL
( ) \/t2 &an 1 5 + amn( ) ar n’ + nl-r | a,r,n( )| = 3\/§

For 1 < p' < oo from (84) we have

[ved,,.

: dt v 1—r1
e (f o) (el (A ) -
(2 + (rn™=1)2)% TEEN ar n n

—T

~

1—r

69 =2 () () (st (L L 4 2))

ar ar ar n"  nlr

where |6a7«pn\ < 5\\? and Jy ( e ) is defined by equality (14).
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Combining (81) and (85), we obtain that for 1 < p’ < 0o the following relation
takes place

. 1or 2i nl—r
Pasally =05 (g (T )+
P (ar)® ar
= 1—r (2)
(86) o, — T (%) (1 o )+ Sarpn)
,T,p,n (CK?“)% p ar ar n’ nl_r nl;r
However, for all n > ns(a, 7, p)
1
27 ="\ ar 1
(87) 1Jpl< ar )n1r< = 1 <p < oo
(aur)w nr

Indeed, taking into account (14) and (64), for all 1 < p’ < oo and n > no(a, r, p)

we find )
20 ™mITTN ar i 20 \ 7 !l
( )ljp/( ar )nl—Tnp :(nl—r) Jp,( ar )<
ar)r
(2047“)&(]0 dt >Pl’ (2047“)5/( 7dt>p1’
)\ eyr) W) U
2arp\ . (1\w
(88) = (n1—r> < (?> <1,

and for p’ =1 and n > no(a, r, p), taking into account decreasing on the interval

Inv

e, 00) of the function =, we have

(89) < +-—In

or )51 T1am

Formulas (88) and (89) prove (87). For 1 < p’ < oo estimate (82) follows from
(86) and (87).

Let us verify validity of the estimate (82) for p’ = oco. It follows from (55) and
(26) that

o

(90) HPOMWHOO _ Zefa(kJrn)” _ /eo‘trdt + @S’i’)nefanrj ‘@(11) | < 1.

a,rn
k=0
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Setting in formula (22) v = a, § = 0 and m = n, from (90) we obtain that for
arbitrary n > ns(a, 7, p)

—an”

(91) [Pl = ot (14002, (A0 2 4 21),

o0 ar ar n’  nlor

where \@am <1 14
For p' = oo the Vahdlty of (82) follows from (91) and the equality J, ( —) =1
To complete the proof of Theorem 1 it suffices to find the upper estlmate of the
quantity M, in formula (57). It is clear that

v — g [Prasn \m;n |
teR }Pa,r,n ‘
(92) :max{ sup |7Darn Hpozrn ’ ‘,Pozrn Hparn |}
, |
st |Parn@®)? T amsiizr |Pasa®)]

In view of formulas (64) and (65) and the fact that R, (¢) > 0 for n > ny(a, r, p)

we obtain
9 6—20mr

(93) Parn®) > Qult) > 77 (arnm 1)

It directly follows from (55) that

(94) a T, n < Z e—a (htn)? /a T, n Z ke_a (ktn)”

By virtue of (91) for n > na(a, r, p) we have

(95) arn Z e~ a(k+n)" _4€—anrn

—at”

The function te™*" is monotone decreasing for ¢ > (047“)_%. Therefore, according

0 (26), for n > ny(a, r, p) the following estimate takes place

o0 0 o0
E ek — g ek —n E e N <

(96) <e "+ /eo‘trtdt — n/eo‘trdt.
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Setting in (22) vy =«, 6§ =1, m =n, and also vy = «, § = 0, m = n, from (94)
and (96) we have

/ —an” 42 nl_
(97) ’fP a,r,n(t)‘ <e <1_3< ar

where P, .,(t) is defined by formula (55).
In view of (93), (95) and (97) for n > ns(a,r,p) we arrive at the estimate
|7D a,r, 7?, ’ ‘PO[ r, n ‘ <

sup 5
[t <22 | Parn(t)]

2
) + n)a n Z TLQ(OZ,T,p),

2
< ern sup ‘PO‘T” HPOH”H |(t2 + (nclw—ﬂr) ) =

5488 / /7" 2 n=" o ar \2
< =
— 507 (( ar ) —|—n) ar (nl—T)
9438 (nl T)
507 '
Applying the Abel transformation to the function P, ,(t) for 0 < |t| < 7, and

taking into account the inequallity

(98)

’Ze”t Too<ll<m
|
we get
(99) }Pa,r,n(t)‘ = ) Z(e—a(/ﬁ-n)r _ e—a(k—i—n—kl)r) Z ezyt < me_omr.
k=0 =0

By analogy, for 0 < [t| < 7

- k
k=0 g
k=0
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According to (95) and (100)

2T . 987 T
101 /arn Hl < — E —a(k+n+1)" ~ —an .
o) ‘P o ()’ — |t . 06 - 13\t|€ ar

In view of (93), (99) and (101) we obtain the estimate
!/
a,Tr,n t a,T,mn
‘P a7()HP77(t>’<

sup 2
T <[t <m ‘pa,r,n(t) ‘
14 o0 ar \?
< _€2an sup ‘,Pla,r,n(t)H,Pa’r’n(t)}(tQ + ( 1— ) ) <
9 o1 <|t|<m nr
39272 1" 2+ (45)°  784n2n
(102) < m™n sup (n1 ) < m™n .
117 ar _er cjyj<x t? 117 ar

Combining (92), (98) and (102), we arrive at the estimate
78472 <n1_7"
117
It follows from conditions (15) and (64) that ng(«,r,p) > ne(a,r,p) for ar-
bitrary 1 < p < oo. It means that estimates (82) and (103) are true also for
n > ng(a,r,p). Let us show that for n > ng(«, r, p) the condition (53) is satisfied.
This is obvious for p’ = co. For 1 < p' < oo by virtue of (103), we have

3136 3 1—r 1—r
11; (n + OéTnT>p/ < 27%3(n

According to (15) and (104) for any n > ng(«, r, p) the following inequality is true

(103) M, < + ozrnr), n > na(a,r,p).

ar

/

+ Ozrx(p)nr)p .

(104) 4 M,p' <

ar ar

dmp' M, < n,

which is equivalent to (53) for 1 < p’ < 0.
By using formulas (57), (82) and (103) for n > ng(a,r,p) we arrive at the

estimate

£.(C5)e -
e [ 27 1= 1— vl
— e S < p/<7m )+@a31pn< 17“1 p<7m )_T 1_T)>><
(ar)® ar " Nar) e ar /n" 55
[costlly | 51 1 ar
(105) <2;,7T1+; I (o + i) ) LEP <00,
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where for @Ei},p,n the estimate (83) takes place, and ]57(13)] —10??;”2

For n > ng(a,r,p) the following inequality holds
97 !’ 11 ar
53) Ty <
| n |(Oﬂ“)ll’ p( ar >(oz7“n7”+n1_’“)
2195272 1 N 1
1 / —
(106) < 117 ((ar)lﬂl, I ( ar >n7“ i nl;')’
which follows from (87) for 1 < p’ < 0o, and it is obvious for p’ = co. Besides,
according to (83) and (15) for n > ng(a, 7, p)

1—7r iy 1 1 cost|l, 11 ar
06| (g T (T )+ ) (LS + 91 (o o+ 550)) <
(O/r) p ar n n r 2p,7T Y arn n
36372/ 1 — I=ry 1 1
107 < 2T Y (LLCR P
( 1 p T
50 Nar)ts ar /n"  p

In view of formulas (105)—(107) we arrive at (16). Theorem 1 is proved. [

Proof of the Theorem 2. According to Theorem 1 the following estimate is
trueforall 1l <p<oo,0<r<1,a>0, 66Randn>no(a T, D)

a,r _ _—an’ LT | COSth
En(Cy)o=¢e " n» ( o % gt
ar i

1 dt 1 1
(108) +%(z%g)a(ﬁ( / —p/> — 1t = ));
(ar)™» #2+1)=/ n n

0

=

where ]lj —|—1% = 1, and the quantity %(&,)) = 7,%(04, r, B) is such that \%(111),| < (14m)%
By applying the Lagrange theorem, for n > ng(«, r, p) we obtain

1—r

™

r

([wim) (] &) -

0

S

ar 1 0.9]

1 ( dt vl dt
S o / p’ / p’ <
PN+ 1) (t2+1)z2

—r
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(109) <2 (Wo‘r_r)p/_l.

As follows from (109)

~

o0 dt = @éll " plfl
(110) _ /— o (EE el < 2
(t2 + 1)% p/ _ 1 ﬂ-nl—T TP,
0

In the work [26] (see formula (27)) it was showed, that for arbitrary 1 < p’ < oo
the following equality takes place

(111) (Z(ﬂi—tl)zy = F¥

Taking into account

|~

/N
—
w

I
'B\
I
—_
N——

ar i
Y

(112) (O/(tz g) (0/ t2+1pz)

from formulas (108), (110), (111) and (112) we have

o —onr 1=r [ ||cost|y 1,1 3—p" 3
E(Cp)e = nw <—plF” (— ;5;1>+

7TH1%(047“)5 2" 2
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/

(A L B
p — 1nd-r)@-1) )H]% n’ nlgr ’

where for quantity %(37 = yni)j(oz, r, B) the inequality holds \%(L?’})?\ < (14m)%

—_

3
(113) +%’p(

(ar

Si
1nce 1 B 1 1
nlzr N n(l—r)p;;1 nd-r)(p'-1)’
then
1 (ar) plzjl 1 (ar) p/;1
<
(114) p/ _ 1 n(l_r)(p/_l) + nl;r — (1 + p/ _ 1 )nlgr

From formulas (113) and (114) we obtain (17).

Formula (18) can be obtained from the equality (16) as consequence of substi-
tution p = 1 and elementary transformations. Theorem 2 is proved. [

Proof of the Theorem 3. From definitions (29) and (15) it follows that
ni(a,r) > ng(a,r,00). So, applying the equality (16) for p = oo (p' = 1), we get
for n > ny(a,r)

4 dt 11 dt
115) &£,(C5 )= = e __/ )
(115)  Eu(Ch ) =€ (772 / t2+1+7"’°°<arn" 252+1Jr
0 0

Since 1 ) 17 )
EEESE
t2+1 t t2+1 t
0 1 0 1
1—r
(116) —In (”" ) 0B 0<e® <1,
ar s o
by virtue of (115) and (116) for n > ny(«,r)
-4 L=r 4
ECl)e = (S () + 00+
: 2 ar w2 ®

1 ]' 1_r a,r.n
(117) ﬂ,g{go(__m (m )+ i +1)>.

ar

The results of our calculations show that for n > nj(a,r)

4 11 -y e,
1) Z(nr+08,) + hitkl (ot () + S 1) < 20mt
T e ’ arn’ ar arn’”
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and therefore, in view of (117) and (118) we obtain (30).
Theorem 3 is proved. 0

4 Proof of Lemmas 1-2

Proof of Lemma 1. It is obvious that for 1 < s < o0

; — <
inf [[¢(t) = Alls < [l¢lls;

1 ™ 1
6t + ) = 01l < sup5llo(t + 1) — 6(0)],
and

1
sup 5 16 (¢ + 1) = 6(1) . < inf [l6(8) = Al

Hence, in order to proof Lemma it suffices to verify the validity of formula (34)
and relation

(119) St + ) = (0l > lirl

T — ldm—

|| cost]|s M)
(2m)s n/’

First, we consider the case 1 < s < oo. Let verify the validity of equality (34).
Setting

(120) or(t) = g(l%r) cos(nt +y) + h(%) sin(nt+7), k=-n+1..n,

we get

o= (3 [ tewrar) = (X [ erar) +
k»:_n_|_1M k:—n-i-lw
(121 ol X [ et - aorar) s e <1

k:7n+1 (k—1)m

Let us find the estimate of first term in (121). It is obvious, that according to
(120)

km
n n 1

(> [ tora) -

k==—n+14"1),

n
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n

n

(122) :< zn: r (kg) O/7T00 tsdt)1 ‘l(cgj)tyS(kZ 7’5(]%)%)8,

k=-n+1 =—n+1

where r(t) is defined by formula (31), and ¢ is imaginary unit.
Let us show that for any collection of points &, &k = —n + 1...n, such that

(k nl <& < k” , for n > 4wsM the following estimate is true
(123) Zn: P (6)— ; = HrHs(l + @@)M) 0P| < 4.
n "op )T

k=—n+1

Indeed, since

. Vi)
> @) = e ed ol <

k=—n-+1

and under the condition

2 ()
. "2
p V), Vi)
a2 ( [rwareP=—) — . (1+ 6 %ww>'@ﬂﬁz
hence
. : V)
(126) ( > rS(gk)D = ||l <1+9 nSH H) oW < 2.

k=—n-+1

It is easy to verify that

™

127 Vi) = [ ol < sl S

—T
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r'(t)) 19@)g'(t) +h@)R () _ g+ W (1)
(128) & ‘ - ) =0 ‘ <0 < oM, teR,
therefore
V()
o r'(t)
(129) T ‘ & HOO < 2sM.

By virtue of (129), for n > 4wsM the condition (124) is satisfied. Therefore,
according to (126), the estimate (123) takes place. Setting in (123) & = “Z,
k = —n+ 1..n, in view of (122) we obtain

km
n

o (% / \cb()\w) = il (L2l 020, o) < 4

k=—n+1", ( 7'(') s n

Let us find upper estimate of the second term in (121). On the basis of (33) and
(120)

o(t) — ou(t) =
kr kr
= (r(t) — r<l%r>> (iégi cos(nt +y) + i(§> sin(nt + ”y)>+
() h(5E)y .
(131) +fr(t)<(i$; i(’%)) cos(nt +v) + (ﬁg)) — 7“(%”)) sin(nt + 7)>a
therefore
(132) (v [ oot >8dt)l <1 1)
b=ty
where
(). — g f r —rk—w ) cos(n sin(n s :
- <k2/ )= (22 costat + )] + [singut + )y

n

:< Z / z i(gi\cos(ntJrV)H—

k__n+1 (k— l)ﬂ'

Y
o~
3

3
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1

km s s
il((g — ié&)) |sin(nt—|—7)\) dt) .

Using obvious inequality
(133) |cost| + | sint] < V2,

Lagrange theorem and relation (128), we have

1)§\/§< z": . Dnax r(t)—fr’(l%r) i

k—1)m km
k=—n+1 n st<T

(134)

< v2r sup r’(t)‘< z”: max rs(t)i>s.
T orer T I\ S Gl 0

It follows from (123), (128) and (134), that for n > 4wsM

1 < 2V/an (14 4D < 2V (14 2 =

(135)

1715

_ 2V2M(1+ )
B n
It is easy to see that

I < ( i (max { ggt) — gEZWZ) | cos(nt + )|+

ey N et Ur(8) (SR
QORICOIN o f :
136 - { ()t ) .
(136) oty ~ i 1t + 1)) / (1)
For any t1, ty € R such that [t; — t9] < =~ the following inequalities take place
t1) t 3mM
(137) g(t1) gl 2)‘ < |
tl T(tg) n
h(t
(138) ’ (t1) (2)‘§
r(t)  r(ta) n
Indeed, by virtue of Lagrange theorem, taking into account (32) and (128), we
have , /
‘g(tl) B ’ < up 9 (t)ff’(t)z— g()r'(t) <
r(t1) n teRr r2(t)
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'(t ‘(t 3mM
- T Ol 7] s
ner r(t)  noer 7(t) n
By analogy, we prove the inequality (138). In view of (133), (137), (138) and

(136) we obtain

(140) 12 <

n

I7|ls, n€N.

32 M
T

Combining (132), (135) and (140), we arrive at the estimate

km
n

(141) ( >

k=—n+14"1),

p(t) — ¢k(t)\sdt)s < V2(57 + 2)\|r\|s%, n > 4rsM.

By comparing estimates (121), (130) and (141) we conclude that for n > 4rsM
2) ol = Il (LS8 o050 1 < VB +9) 44, 155 <00
Further, we prove the relation (119) for 1 < s < oco. In view of definition (33)
6(t+ =) = o(t)] =

- ‘ng(t) + g(t + E) cos(nt + ) + h(t + %) sin(nt + 7)—
n(

—(g(t) cos(nt +7) + h(t)si nt+7))‘ _
B ‘2¢(t) + ( ( + %) ) ( :; cos(nt + ) + igig sin(nt + ’Y))+

(143) +r(t) <(i$ i 2 — igg) cos(nt + ) + (ig I 2 — ig))) sin(nt + 7)) ;

therefore for any 1 < s < oo by virtue of (133), (137) and (138), we get

S+ ) = o0, 2

(144) > o = <5 ([Jr(t+ 2) = )] + el ).

By applying the Lagrange theorem, we obtain
dt> <

Hr(t+%) (Z /‘ t+ )= ()

k=—n+1" 1)7r
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g( i . max r(t+g)—r(t)8%>i§

k—1)m ke
k=—n+1" n StST

(145) < Esup Tl(%) ‘( z": max rs(t)%>i, 1 <s<o0.

n r (k=1)m km
teR g1 st

It follows from (123), (128) and (145) that for n > 4wsM

(146) Hr(t+%) —r(t H 27r+2)!|7“|| —
In view of (142), (144) and (146) for n > 4wsM we arrive at the estimate
1 7
o (t+ =) — o(t)||s > . —
o+ ) o)l > o]
|| cost|s 15m+6 M
> |7l — — +4)—) >
> (T~ (S Y )

t M

> 175 (”COS s 14r —) 1 <s< oo
(2m)+ n

Thus, the validity of formula (119) is established for 1 < s < oc.

Let us prove the relation (34) for s = co. Consider a function ¢*(¢) such that

¢*(t) = ¢r(1), u<t<% k=—-n+1.n,

where

(147) o5(t) = g(ty) cos(nt + ) + h(ty) sin(nt + ),

and points tf, t; € [@, %”] are chosen from the condition

r(ty) = max ().

G)m <y bm
n — — n

For the function ¢*(¢) the following equality takes place

(148) 167 ]loc = lI7llc
Indeed,
* — * t —
1670 = max <keisi1:fkw |67 ()]
_ . g(t1) h(t) _
= —n]ﬂ%}ggnr(tk) (’“;11;92(3% ) cos(nt + ) + i) sin(nt + )| =
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= max r(f;) max
—n+1<k<n (16*1)7T<t</€77r

cos (nt + — arg(g(t;) + ih(t})) | =

= i tllc = :
max r(07) [eostle = Irle

It is obvious that in view of (148) we obtain

(149)  [9lloo = [|6"]l00 + 0916 — ¢"||oe = |I7llc + OP || — ¢* [0, [OL] < 1.

Let us find upper estimate for the quantity ||¢ — ¢*||~. By virtue of (33) and
(147), for any t € [(k L , 2] the following equality takes place

6(0) — 65(0)] = |(r(t) — ) (202 o

as0) i (49 - 2 @~ ) e+ )|
(

By using (133), the Lagrange theorem and inequality (128), we get

(r(t) — i) (22 o

r(t;)
V2 r'(t
sup |2 <
n  ier | 7(t)

cos(nt + ) +

sin(nt + 7)) +

) cos(nt +y) + ( b
k

ess sup cos(nt +v) + sin(nt + 7)‘ <

(k—Um <y < b
n — — n

< \/5 ess sup

k=Dm cy bm
n —_ — n

r(t) —r(tp)] <

(151) < Il
Further, it follows from (133), (137) and (138) that
g(t q(t; h(t h(t;
(t)(‘ (1) _ g(t) (1) (f)
k

0 — ) | cos(nt + )| + — )

esssup T | sin(nt 4+ ’y)\) <

Glm <y km
n — — n

r(t) e

M
(152) < 3\/§7TWH7“HC.

In view of (150)—(152), we arrive at the estimate

(153) [0~ ¢ = max_ esssup [o(t) — 6i(0)] < 5v2r - |rle, n e N

—n+1<k<n (k—1)n 1) Ty kn

It follows from (149), (148) and (153) that
M
(154) 6l = lIrlle (1 + 62,25, 10, < 5v/2r.
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Let us prove inequality (119) for s = oo. By using the inequality (144) for
s = 00, by applying Lagrange theorem, formulas (128) and (154), we obtain

S+ ) — 6(t) e 2

> [|llo0 — %(Hr(t + g) - r(t)Hoo + 37‘(‘“7”“0%) >

I () M
> 0 — —(— ‘ +3 —) >
> olle = 75 (5 sup [ il + 3
150 M
> HTHC<1 - ﬁ;)
Lemma 1 is proved. ]

Remark 1. In proof of Lemma 1 we established more exact, than (37) estimates
of quantities 5{&%,2’ = 1...3. Namely, we showed that for

{47rsM, 1 <s< o0,
n 2>
1, 5§ = 00,

the following estimates hold

— —4 <69 < \/2>5m +2 +4, =23, 1< s <00,
\/§ — Ysn — ( ) —=
——15 < 6l <5\/§7T , =2,3 =
, 1=2,3, s=o00.
\/i_ S =

Proof of Lemma 2. We use the scheme of the proof of the estimate (2.4.31)
from the work [27, p. 93]. Let, e.g., consider the case v > 0. Using the method

of integration by parts, we have

o

(155) /?,D(T + u) cos vudu = _71 / Y (T + u) sin vudu.
0 0

We set

I(z) = I(¢;T;v;2) = —/¢’(T+u)sinvudu, x>0, v>0 7€eN.

T
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The function I(z), obviously, is continuous for every fixed v, and on every in-

) 1 .
terval between the consecutive zeros u,, = =" and w11 = @ of the integrand

has one simple zero x,,. Existance of zeros x,, of the function I(z) is a conse-
quence of the Leibniz theorem on alternating series, and uniqueness of zero x,, on
the interval (u,, um,11) follows from the equality

sign I'(z) = —signsinzv, € (U, Ups1) M € Z.
Let xy be the zero closest from the right to the point x = 0. It is obvious that
T
0 S ) S —.
v

Taking into account this fact and also monotone decreasing of the function —’(t)
on the interval [1,00), we have

00 Zo
-1 1
—/¢,(T+u) sin vudu = _/\¢’(T+u)|sinvudu <
» v

. 0

(156)

IA

. v
LW+ e < S0l
0

For v > 0 inequality (39) follows from the formulas (155) and (156). For v < 0
the proof of inequality (39) is analogous. Lemma 2 is proved. O
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