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Abstract

In many applications, as for example physics, economics, finance and computational sciences, high-
dimensional integration and approximation are problems which have to be solved numerically. In this
thesis we study several aspects of high-dimensional solution algorithms for these problems.

In the first part of the thesis we consider tractability of multivariate continuous problems. This
means that we are interested in how much information a numerical algorithm needs to solve the prob-
lem with accuracy ε. We study how fast the number of information evaluations required increases if
the number of variables goes to infinity or the error demand ε tends to zero. We consider the two
examples of a weighted Hermite space and of a hybrid function space.

In the second part of the thesis we investigate the problem of constructing point sets in the s-
dimensional unit cube, which are used in a certain type of numerical algorithms, so-called quasi-Monte
Carlo algorithms, which are widely used to numerically solve high-dimensional integration problems.
We present several fast construction methods which provide point sets having certain good properties.
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Kurzfassung

In vielen Anwendungen, etwa in der Physik, den Wirtschaftswissenschaften, der Finanzmathematik
oder den Computerwissenschaften, sind multivariate Integration und Approximation Probleme, die
häufig auftreten und die numerisch gelöst werden müssen. In der vorliegenden Arbeit betrachten wir
diverse Aspekte hochdimensionaler Lösungsalgorithmen für diese Probleme.

Im ersten Teil der Arbeit studieren wir “Tractability” multivariater, stetiger Probleme. Das be-
deutet, dass wir uns für das Ausmaß an Information interessieren, welches ein numerischer Algorithmus
benötigt um ein gegebenes Problem mit Genauigkeit ε zu lösen. Wir untersuchen die Geschwindigkeit,
mit der die benötigte Informationsmenge zunimmt, wenn die Anzahl der Variablen steigt oder die
Fehlerschranke ε gegen Null konvergiert. Wir betrachten Tractability anhand der beiden Beispiele
eines gewichteten Hermiteraums und eines gemischten Funktionenraums.

Im zweiten Teil der Arbeit betrachten wir das Problem, Punktmengen im s-dimensionalen Ein-
heitsintervall zu konstruieren, welche in sogenannten quasi-Monte Carlo Algorithmen verwendet wer-
den. Quasi-Monte Carlo Algorithmen sind spezielle numerische Algorithmen, die vielfach zur nu-
merischen Lösung hochdimensionaler Integrationsprobleme verwendet werden. Wir analysieren mehre-
re schnelle Konstruktionsmethoden, welche Punktmengen mit bestimmten guten Eigenschaften liefern.
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1 Preface

High-dimensional algorithms are widely used in applications to physics, economics, finance, computa-
tional sciences and others, see also [55, 60, 63].

Thus high-dimensional algorithms are an extensively studied field, and particularly in finance the
number of variables one has to consider can be extremely high or even infinite. In this thesis we want
to cover mainly two aspects of the topic, namely tractability of multivariate problems and construction
of (polynomial) lattice point sets.

Roughly speaking tractability theory studies how much “effort” one has to make to solve a problem
with accuracy ε. In particular it investigates and measures how fast, i.e., with which rate, the amount
of effort required increases, if the error demand ε tends to zero, or the dimension of the problem, that
is the number of variables, goes to infinity. Tractability properties of several multivariate continuous
problems are studied in Section 2 of this thesis.

(Polynomial) lattices are point sets in the s-dimensional unit cube. Such point sets turn out to be a
good choice as sample points in so-called quasi-Monte Carlo (QMC) algorithms which are for instance
used to numerically approximate the s-dimensional integral of some function f . Properties of lattice
point sets influence the quality of the approximation. Thus one wants to have reliable methods at
hand to construct lattice point sets with good properties. This is the content of Section 3 of this thesis.

The concepts of both, tractability of multivariate problems, and construction of (polynomial) lat-
tice point sets, are explained in detail in the introductions of the respective Sections 2 and 3.

The content of this thesis is based on the following papers:

• R. Kritzinger, H. Laimer, A reduced fast component-by-component construction of lattice point
sets with small weighted star discrepancy, Unif. Distrib. Theory. 10, No.2, (2015) 21–47.

• H. Laimer, On combined component-by-component constructions of lattice point sets, J. Com-
plexity 38 (2017) 22–30.

• R. Kritzinger, H. Laimer, M. Neumüller, A reduced fast construction of polynomial lattice point
sets with low weighted star discrepancy, Submitted for publication, 2017.

• P. Kritzer, H. Laimer, F. Pillichshammer, Tractability of L2-approximation in hybrid function
spaces, to appear in Funct. Approx. Comment. Math., 2017.

Furthermore, Section 2.2 contains results which have not been submitted for publication until now:

• C. Irrgeher, P. Kritzer, H. Laimer, On standard tractability notions for integration in Hermite
spaces of analytic functions, unpublished notes.
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The rest of this thesis is organized as follows. At the beginning of Section 2 we introduce tractabil-
ity theory in more detail, and subsequently consider two different problem settings and study their
tractability properties. In Section 3 we move on to constructing generating vectors of (polynomial)
lattice point sets. Here we investigate three different constructions to obtain generating vectors with
several good properties. Finally in the Section 4 we briefly summarize the main results and give an
outlook on possible future research topics.
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2 Tractability

2.1 Introduction

Multivariate continuous problems, defined over function spaces of s variables, can only very seldomly
be solved analytically. A multivariate continuous problem could for instance be the approximation
of functions in s variables from some suitable function space Hs, or numerical integration of such
functions. These are the two main problems we investigate in the following.

Roughly speaking, the field of tractability studies how much information is needed to solve prob-
lems at least with a given accuracy. For more detailed information see also [63, 64, 65].

The founders of tractability theory are Joseph Traub, Grzegorz Wasilkowski and Henryk Woźni-
akowski. After they laid the foundations of this field of research many scientists stepped in, and today
tractability theory is a very active field where a lot of research is done all around the world.

The subsequent introduction to tractability theory follows closely the comprehensive book [63]
about the topic by Novak and Woźniakowski. In particular we use Chapters 4 and 5 of [63]. Other
literature is cited explicitly in the text.

Suppose we have a function space Hs and further let S : Hs → G be some operator, where G is a
normed space. We call S the solution operator. We denote the norm in Hs with ‖·‖Hs and accordingly
the norm in G with ‖·‖G . Similarly, throughout the rest of this thesis, if a norm is indexed with the
name of a function space, then this norm is the norm corresponding to the space in question.

It might not be possible to compute S(f) explicitly for f ∈ Hs. The goal is now, for given ε > 0,
to find an algorithm A such that A(f) lies within an ε neighborhood of S(f).

Such an algorithm A uses N pieces of information about f , say L0(f), . . . , LN−1(f), as input.
That is, A is of the form A(f) = ϕ(L0(f), . . . , LN−1(f)), where ϕ is some suitable function. The
information L0(f), . . . , LN−1(f) usually stems from some class of information Λ ⊆ H∗s , where H∗s
denotes the dual space of Hs, that is the space of all continuous linear functionals L : Hs → K, where
K is the underlying field. We distinguish between information from Λall and from Λstd. Λall contains all
continuous linear functionals in H∗s , i.e., Λall = H∗s , whereas Λstd consists only of function evaluations.
This means that for any Li ∈ Λstd there exists some xi such that Li(f) = f(xi) for all f ∈ Hs. In the
following sections we will consider both, information from Λstd and from Λall.

There is another aspect of information worth considering—we categorize whether we use adaptive
or non-adaptive information. If the previously chosen pieces of information, L0(f), . . . , Ld(f), are
taken into account when choosing Ld+1(f) = Ld+1(f, L1(f), . . . , Ld(f)), we speak of adaptive or
sequential information. If the pieces of information are independent of each other, and thus can be
computed at the same time, we have non-adaptive or parallel information. Intuitively it seems to
be beneficial to use adaptive information. It turns out, however, that there is almost no gain in
using adaptive information, while it is clearly more costly to do so, rather than using non-adaptive
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information. More precisely Bahvalov proved in 1971 [2] that, given some linear functional as solution
operator S and special linear functionals, e.g., function values from Λstd, as information, there is no
gain in using adaptive information. For some arbitrary linear solution operator S, however, one can
obtain an advantage in using adaptive information, though only a small one. For sets of adaptive and
non-adaptive information, Nada and Nnon, respectively, each consisting of N information evaluations,
Gal and Micchelli [24] showed in 1980 that

inf
ϕ

sup
f∈Hs
‖f‖Hs≤1

‖S(f)− ϕ(Nnon(f))‖G ≤ 2 inf
ϕ

sup
f∈Hs
‖f‖Hs≤1

∥∥∥S(f)− ϕ(Nada(f))
∥∥∥
G
.

As explained before, ‖·‖Hs and ‖·‖G denote the norms in Hs and G, respectively. Roughly speaking,
the latter inequality illustrates that the best among all algorithms using non-adaptive information
Nnon evaluated at the function f performing worst of all functions in the unit ball of Hs, is at most
twice as bad as the best of all algorithms using adaptive information Nada also evaluated at the worst
function in Hs.

This means that adaptive information is at most twice as good as non-adaptive information in this
setting. So small a gain might not be worth the extra costs for choosing information adaptively.

Finally we quote one more result in this direction. Creutzig and Wojtaszczyk [6] proved in 2004
that if S : Hs → G is linear and if at least one of the conditions

• G = R,

• G is the L∞ space with a measure µ,

• G is a set of bounded functions on some set K with sup-norm ‖·‖∞,

• S is compact and G is a set of continuous functions on a compact Hausdorff space K with
sup-norm ‖·‖∞,

• Hs is a pre-Hilbert space,

holds, then

inf
ϕ

sup
f∈Hs
‖f‖Hs≤1

‖S(f)− ϕ(Nnon(f))‖G ≤ inf
ϕ

sup
f∈Hs
‖f‖Hs≤1

∥∥∥S(f)− ϕ(Nada(f))
∥∥∥
G
.

Hence for a broad range of problems non-adaptive information is at least as good as adaptive infor-
mation and thus, in this thesis, we only consider non-adaptive information. There exist, however, also
many applications where adaption is of great advantage.

We aim at approximating S(f) by A(f) with an error smaller than ε. There are several possibilities
to measure this error. Here we present the concept of the worst-case error criterion as this is the
criterion we consider in this thesis. It is defined by

ewor
Hs (A) = sup

f∈Hs
‖f‖Hs≤1

‖S(f)−A(f)‖G . (2.1)

Other ways to measure the error one makes when approximating S(f) by A(f), are for example by
means of the average-case error, the randomized error or the error in a probabilistic setting as defined
on p. 137 of [63]. For more information on different error types see for example [63].

As we do not study other error criteria we omit the superscript “wor” and write eHs(A) for the
worst-case error instead of ewor

Hs (A).
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Considering an algorithm A which uses no information at all we define the initial worst-case error

e0 = inf
g∈G

sup
f∈Hs
‖f‖Hs≤1

‖S(f)− g‖G ,

the smallest worst-case error that can be obtained by approximation with constant algorithms. We
measure the quality of our algorithms A either in the normalized error criterion, that means we
normalize the worst-case error by the initial worst-case error to eHs (A)

e0
, or we consider the absolute

error criterion which deals with the unnormalized worst-case error eHs(A). In all the cases studied
in the next sections one can show that e0 = 1, so the normalized and the absolute error criterion
coincide. This, however, need not be true for other settings considered elsewhere.

One question we are interested in is how much effort one has to make to solve the problem with
accuracy at least ε, that means to obtain a worst-case error that does not exceed ε. We measure this
effort by the amount of information used in our algorithms A. To this end we write AN for algorithms
A(f) = AN (f) = ϕ(L0(f), . . . , LN−1(f)) which use N pieces of information. With this notation we
define the N -th minimal worst-case error eHs(N) as the smallest among all worst-case errors induced
by such algorithms AN . That is,

eHs(N) = inf
AN

eHs(AN ), (2.2)

where the infimum is taken over all admissible algorithms AN . To clarify which class of information
is considered one can write eHs,Λ(N). The normalized N -th minimal worst-case error is given by

1
e0
eHs(N).

Using this notation, we define the information complexity NHs(ε) as the minimal number N such
that there exists an algorithm AN which uses N pieces of information and has a worst-case error of
at most ε. Hence we have

NHs(ε) = min{N ∈ N : eHs(N) ≤ ε} (2.3)

for the absolute error criterion and

NHs(ε) = min{N ∈ N : eHs(N) ≤ εe0}

for the normalized error criterion. If we need to clarify which class of information is used, we write
NHs,Λ(ε) for the information complexity.

Note that the two notions of information complexity are the same when the initial error e0 equals
1. This is the case in all settings we study in this thesis. If it is clear which s-variate function space Hs
we are considering we will frequently replace Hs by s in the notation of the different notions introduced
above. So, for example we write es(A) for the worst-case error of algorithm A instead of eHs(A).

Tractability theory studies properties and behavior of the information complexity. As the definition
of information complexity contains the notion of the N -th minimal worst-case error we start by
studying the minimal worst-case error a bit further. We aim at narrowing down the number of
algorithms we need to look at in order to compute

ewor
Hs (N) = inf

AN
eHs(AN ).

Definition 2.1. Let S : Hs → G be a solution operator and let AN be an algorithm which uses N
pieces of information L0(.), . . . , LN−1(.). AN is called linear if it is of the form

AN (f) =
N−1∑
i=0

aiLi(f), (2.4)

where a0, . . . , aN−1 ∈ G.

6



Smolyak proved in his PhD-thesis [76] in 1965 the following result which was first published by
Bahvalov in [1]. Let S : Hs → R or S : H̃s → R be a linear solution operator, where H̃s is the unit
ball of Hs. Further let Aada

N be an algorithm that uses adaptive information Nada. Then there exists
a linear algorithm Anon

N of the form

Anon
N (f) =

N−1∑
i=0

aiLi(f), a0, . . . , aN−1 ∈ R,

which uses non-adaptive information Nnon = [L0(f), . . . , LN−1(f)], such that

eHs(Anon
N ) ≤ eHs(Aada

N ).

This means that for linear functionals S as solution operator, linear algorithms which use non-adaptive
information are optimal. As before, for the question whether to use adaptive or non-adaptive infor-
mation, there exists a result of Creutzig and Wojtaszczyk [6] from 2004 which states that under some
mild conditions linear, non-adaptive algorithms are optimal also for arbitrary linear solution operators.
The conditions required are the same as for the result of Creutzig and Wojtaszczyk on p. 5. These
conditions are fulfilled for all function spaces we consider throughout the rest of this thesis. Thus,
in all our settings we know that we can without loss of generality restrict ourselves to studying only
linear algorithms which use non-adaptive information.

Now we are ready to define the different notions of tractability. We call s the dimension of the
problem Ss : Hs → G. Let ε be the error threshold within which we want to approximate the problem.
Tractability describes how the information complexity depends on s and ε. For a sequence of problems
S = (Ss)s≥1 we consider the sequence (NHs,Λs(ε))s≥1 of their information complexities. Obviously, for
growing dimension s and decreasing ε, the information complexity will grow. Tractability measures
at what rate NHs,Λs(ε) grows.

Definition 2.2. A sequence of problems Ss : Hs → G is called

• intractable for Λs if

lim
s+ε−1→∞

logNHs,Λs(ε)
s+ ε−1 > 0,

• weakly tractable for Λs if

lim
s+ε−1→∞

logNHs,Λs(ε)
s+ ε−1 = 0,

• polynomially tractable for Λs if there exist non-negative constants C, p and q such that

NHs,Λs(ε) ≤ Cε−psq for all s ∈ N and for all ε ∈ (0, 1), (2.5)

• strongly polynomially tractable for Λs if (2.5) holds with q = 0.

Remark 2.3. In the above definition we call the infimum of all p such that (2.5) holds with q = 0 the
exponent of strong polynomial tractability.

Definition 2.2 means that a problem is at least weakly tractable if the information complexity does
not depend exponentially on s and ε−1. Polynomial tractability implies that Ns,Λs(ε) depends at most
polynomially on s and ε−1 and strong polynomial tractability means at most polynomial dependence
on ε−1 and independence of s.
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The goal of the remainder of the chapter on tractability is to find out whether and under which
conditions certain problems are tractable.

Next we want to have a look at a special, well-studied class of problems, for which we know optimal
algorithms and are able to formulate criteria for the different tractability notions to hold. For detailed
information see [63, Chapter 5].

We consider linear problems over Hilbert spaces, i.e., Hs is now assumed to be a Hilbert space.

Definition 2.4. Let S : Hs → G or S : H̃s → G, respectively. We call the approximation of S(f) by
algorithms A a linear problem, if

1. the operator S is linear, and Hs and G are normed spaces,

2. H̃s is a non-empty subset of Hs,

3. H̃s is convex, i.e., tf1 + (1− t)f2 ∈ H̃s for all t ∈ [0, 1] as long as f1, f2 ∈ H̃s,

4. H̃s is symmetric, i.e., f ∈ H̃s implies −f ∈ H̃s, and

5. algorithms A use information from a class Λ ⊆ H∗s.

Remark 2.5. Definition 2.4 is valid for subsets H̃s ⊆ Hs other than the unit ball as well. As we only
ever consider the unit ball in this thesis which fulfills all the conditions on H̃s in the definition above,
and as our algorithms use information from a class Λ ⊆ H∗s, the problems we consider are linear if S
is a linear operator.

Let Hs and G be Hilbert spaces and suppose that Ss : Hs → G or Ss : H̃s → G is a sequence of linear
and compact operators. Here, by compact we mean that each bounded sequence (xn)n≥1 ⊆ Hs or
(xn)n≥1 ⊆ H̃s, respectively, has a subsequence (xnk)k≥1 such that (Ss(xnk))k≥1 is convergent. Define
the adjoint operator S∗s : G → Hs by

〈Ss(f), g〉G = 〈f, S∗s (g)〉Hs , for all f ∈ Hs and all g ∈ G,

where 〈·〉G and 〈·〉Hs denote the respective inner products of G and Hs. Then we can define the
compact, self-adjoint operator Ws = S∗sSs : Hs → Hs with eigenpairs (λs,j , es,j). All the eigenvalues
λs,j are non-negative reals, as S∗S is a positiv operator, and we can number them such that they
are in non-increasing order. That means we have λs,1 ≥ λs,2 ≥ · · · ≥ 0, Ws(es,j) = λs,jes,j and
〈es,i, es,j〉Hs = δij , where the latter property that the eigenvectors are orthonormal, stems from the
spectral theorem for compact operators. In [63, Section 4.2.3] it is proved that within this setting the
optimal algorithm AN using N pieces of information from Λall is given by

Aopt
N (f) =

N∑
j=1
〈f, es,j〉Hs Ss(es,j)

and that we have

es,Λall(Aopt
N ) = es,Λall(N) =

√
λN+1.

Further the following theorem is true. It is Theorem 5.1 in [63].

Theorem 2.6. Suppose we have a sequence of linear and compact operators S = (Ss)s≥1, Ss : Hs → G,
where Hs and G are Hilbert spaces. Consider further the absolute worst-case error criterion and
information from Λall.

8



• The problem is polynomially tractable if and only if there exist positive constants C1, τ and
non-negative constants q1, q2 such that

C2 = sup
s∈N

 ∞∑
j=dC1sq1e

λτs,j

 1
τ

s−q2 <∞. (2.6)

• If (2.6) holds, then

Ns(ε) ≤ (C1 + Cτ2 )smax{q1,q2τ}ε−2τ for all s ∈ N and for all ε ∈ (0, 1].

• The problem is strongly polynomially tractable, iff (2.6) holds with q1 = q2 = 0. The ε-exponent
of strong polynomial tractability is then given by p = inf{2τ : τ fulfills (2.6) with q1 = q2 = 0}.

Remark 2.7. From Theorem 2.6 we know that in this setting the question whether we have (strong)
polynomial tractability or not depends solely on the eigenvalues λs,j. When considering polyno-
mial tractability we can neglect the behavior of a polynomial number in s of initial eigenvalues, as
λs,1, . . . , λs,dC1sq1e−1 do not appear in (2.6). Similarly for strong polynomial tractability we can omit
a constant number of initial eigenvalues.

Similar criteria exist for normalized problems and for weak tractability. Criteria for weak tractabil-
ity are usually rather complicated, though. Such criteria can for example be found in [63, Theorem 5.2,
Theorem 5.3 and Lemma 5.4].

Next we consider another interesting setting, namely linear problems over tensor product spaces.
All problems we consider in the following sections are of this type. Suppose we have H̃1, the unit
ball of some univariate Hilbert space H1; G1 another Hilbert space and S1 : H1 → G1 or S1 : H̃1 → G1
a linear and compact operator. So far, there is no difference to the setting above, except that we
are considering strictly only univariate spaces. Thus, as before, we know the optimal algorithm Aopt

N

using the eigenpairs of the self-adjoint operator W1. Now build the s-fold tensor products, Hs and Gs,
of H1 and G1 and consider the linear and compact operator Ss : Hs → Gs, given as the s-fold tensor
product Ss = S1 ⊗ · · · ⊗ S1. Recall that the eigenvalues and eigenvectors of the self-adjoint operator
Ws are now of product structure. So, for j ∈ Ns we have λs,j = λ1,j1 · · ·λ1,js for the eigenvalues and
es,j = e1,j1 ⊗ · · · ⊗ es,js for the eigenvectors. With this we can write the optimal algorithm as

Aopt
N (f) =

∑
j∈Ns

〈f, es,j〉Hs Ss(es,j).

As before we can formulate criteria for the different tractability notions to hold which depend only on
the eigenvalues of W1. The theorem we want to quote in this direction is a part of the results proved
in [63, Theorem 5.5].

Theorem 2.8. Suppose we have a sequence S = (Ss)s≥1 of linear tensor product problems as described
above with λ1,2 > 0. Consider further the absolute worst-case error criterion and information from
Λall. Then we have:

• For λ1,1 > 1 the problem is intractable.

• For λ1,1 = 1 the problem is polynomially intractable.

– For λ1,1 = λ1,2 = 1 the problem is intractable.
– If S is weakly tractable, then we have λ1,2 < 1 and λ1,n = o((logn)−2) as n→∞.
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– If λ1,2 < 1 and λ1,n = o((logn)−2(log logn)−2) as n → ∞, then the problem is weakly
tractable.

• For λ1,1 < 1 we have:

– Weak tractability implies λ1,n = o((logn)−2) as n→∞.
– If λ1,n = o((logn)−2(log logn)−2) as n→∞, then the problem is weakly tractable.
– Polynomial and strong polynomial tractability are equivalent and hold if and only if there

exists some r > 0 such that λ1,n = O(n−r) as n→∞.

Using these, and other, criteria one finds that many problems are intractable over almost all
classical spaces. Despite these negative results, linear algorithms often yield very good numerical
results even for large dimensions s. In 1998 Sloan and Woźniakowski [74] explained this as follows.
For many problems coming from applications, variables and groups of variables do not all have the
same influence on the problem. If we do not take into account these differences in the influence of the
variables, the problem may seem to be intractable, while numerically the algorithms work well. Thus
it can be beneficial to consider weighted spaces. Weights are designed according to the importance of
each variable or group of variables.

Weights are described by a sequence of (non-negative) numbers γ, occurring in the norm of the
function space. This means that weights change the norm of the space and thus its unit ball. Con-
sidering problems over weighted spaces rather than over their unweighted versions, thus can make
the problem easier, as we take the supremum over all function in the unit ball when calculating the
worst-case error. The insight of Sloan and Woźniakowski was though, that these simplified problems
are indeed often closer to reality than the problems considered over the classical spaces. This is due
to the fact, that problems over weighted spaces arise quite naturally from many applications, such as
finance or physics.

For some weighted space Hs,γ , we also indicate in the notation of the worst-case error and the
information complexity etc. that we are using their weighted versions by using the subscript γ. For
example we write es,γ(AN ) for the worst-case error of algorithm AN in the space Hs,γ . For all the
other notions defined above we proceed analogously.

We distinguish between different types of weights γ = {γs,u}s∈N,u⊆[s], where [s] = {1, . . . , s}. In
this thesis we mostly consider product weights γ = {γs,j}s∈N,j≥1 with 0 < γs,s ≤ · · · ≤ γs,1, where γs,u
is defined by

γs,u =
∏
j∈u

γs,j .

Product weights are ideal for problems where the influence of the variables decreases as their index j
increases. The weight γs,j describes the influence of the j-th variable.

Another type of weights are finite-order weights, where γs,u = 0 if u contains more than w elements,
where w is some non-negative integer. Finite-order weights are used for functions of the form

f =
∑
u⊆[s]

fu,

where f is a sum of functions fu, which depend on w variables at most. For more details and more
different types of weights see [63, Section 5.3]. For many problems which suffer from the curse of
dimensionality (that means, which are intractable) one can obtain tractability by introducing weights.

For fine-tuning purposes more precise tractability notions have been introduced. The following
definition gives some examples. For further information, see for example [26, 69].
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Definition 2.9. A sequence of problems Ss : Hs → G is called

• quasi-polynomially tractable for Λs if there exist non-negative constants C and t such that

Ns,Λs(ε) ≤ C exp(t(1 + log s)(1 + log(ε−1))) for all s ∈ N and for all ε ∈ (0, 1),

• uniformly weakly tractable if

lim
s+ε−1→∞

logNs,Λs(ε)
sα + ε−β

= 0 for all α, β ∈ (0, 1],

• (t1, t2)-weakly tractable if there exist positive t1 and t2 such that

lim
s+ε−1→∞

logNs,Λs(ε)
st1 + ε−t2

= 0.

We use the following abbreviations.

Weak tractability WT
(t1, t2)-weak tractability (t1, t2)-WT
Uniform weak tractability UWT

Quasi-polynomial tractability QPT
Polynomial tractability PT

Strong polynomial tractability SPT

For t1, t2 ∈ (0, 1] one can easily prove that the following line of implications holds true:

SPT⇒ PT⇒ QPT⇒ UWT⇒ (t1, t2)−WT⇒WT.

In the following sections we consider different problems over different function spaces and aim at
finding necessary and sufficient conditions for the different tractability notions to hold.
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2.2 Hermite space

In this section we want to consider tractability of integration in weighted Hermite spaces. They have
first been introduced by Irrgeher and Leobacher in [37]. After that Dick, Irrgeher, Kritzer, Leobacher,
Pillichshammer and Woźniakowski have done further work in this direction [9, 35, 36].

One of the advantages of considering Hermite spaces is that they allow to tackle the problem of
integration and approximation of functions defined on the Rs, whereas many of the classical spaces
consist of functions defined on the s-dimensional unit cube. Functions defined on the whole Rs
naturally arise from many problems coming from applications, in particular those from mathematical
finance. Although these problems can be transformed to ones on the unit cube, one often ends up
with functions that do not belong to spaces for which tractability can be shown. For more detailed
information see [35].

Let us start by defining the class of Hermite spaces. We begin by recalling definitions and results
about standard Gaussian measure, Hermite polynomials and Hermite expansion, as done in [37].

Definition 2.10. The Borel probability measure on the Rs with density ϕs : Rs → R, given by

ϕs(x) = (2π)−
s
2 e−

x·x
2

with respect to the s-dimensional Lebesgue measure is called the standard Gaussian measure. Here
x · y denotes the usual dot product on the Rs.

A measurable function f : Rs → R is called Gaussian square integrable if∫
Rs
f(x)2ϕs(x) dx <∞.

The vector space of Gaussian square integrable functions is denoted by L2(Rs, ϕs).

Remark 2.11. For simplicity we will frequently denote the univariate density function ϕ1 by ϕ.

The linear space L2(Rs, ϕs) of all equivalence classes of Gaussian square integrable functions on
the Rd forms a Hilbert space with inner product

〈f, g〉L2(Rs,ϕs) =
∫
Rs
f(x)g(x)ϕs(x) dx.

Here we say that f and g are equivalent if f = g almost everywhere.
Next we introduce multivariate Hermite polynomials. In the literature there are several related

versions of the definition of Hermite polynomials. Here, as done in [37], we use the definition given in
[5].

Definition 2.12. For k ∈ N0 the k-th (univariate) Hermite polynomial is given by

Hk(x) = (−1)k√
k!

e
x2
2
∂k

∂xk
e−

x2
2 .

12



For k = (k1, . . . , ks) ∈ Ns
0 the k-th Hermite polynomial is defined by

Hk(x) =
s∏
j=1

Hkj (xj).

The (univariate) Hermite polynomials are the Gram-Schmidt orthonormalization of 1, x, x2, . . .
with respect to the standard Gaussian measure. For example, the first three univariate Hermite
polynomials are given by H0(x) = 1, H1(x) = x and H2(x) = x2 − 1.

In [5, Lemma 1.3.2 and Corollary 1.3.3] Bogachev proves the following theorem.

Theorem 2.13. The sequence of Hermite polynomials (Hk(x))k∈Ns0 forms an orthonormal basis of
L2(Rs, ϕs).

Thus, for functions f ∈ L2(Rs, ϕs), the Hermite series

f(x) =
∑
k∈Ns0

f̂(k)Hk(x),

with Hermite coefficients

f̂(k) =
∫
Rs
f(x)Hk(x)ϕs(x) dx,

converges in the L2(Rs, ϕs) norm.
The Cauchy-Schwarz inequality implies that∫

Rs
|f(x)Hk(x)ϕs(x)| dx ≤

(∫
Rs
f(x)2ϕs(x) dx

) 1
2
(∫
Rs
Hk(x)2ϕs(x) dx

) 1
2
<∞.

Hence, the k-th Hermite coefficient exists for every f ∈ L2(Rs, ϕs) and every k ∈ Ns
0 and one can show

that the Hermite expansion is unique for continuous f . The Hermite expansion converges pointwise
if, additionally, the Hermite coefficients are absolutely summable.

Theorem 2.14. For continuous f ∈ L2(Rs, ϕs) with
∑
k∈Ns0

∣∣∣f̂(k)
∣∣∣ <∞, we have

f(x) =
∑
k∈Ns0

f̂(k)Hk(x)

for all x ∈ Rs.

The proof of this theorem can be found in [37, Proposition 2.6].
Now we are ready to define Hermite spaces as done in [37].

Definition 2.15. Let r : Ns0 → R+ be summable, i.e.,
∑
k∈Ns0

r(k) <∞. For f ∈ L2(Rs, ϕs) let

‖f‖r =

 ∑
k∈Ns0

r(k)−1
∣∣∣f̂(k)

∣∣∣2
 1

2

.

Then

Hr = {f ∈ L2(Rs, ϕs) ∩ C(Rs) : ‖f‖r <∞}

is called a Hermite space.
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On L2(Rs, ϕs), ‖·‖r is only a semi-norm, but if we consider only continuous functions f , it is a
norm, see [37]. Then, a Hermite space Hr is a Hilbert space with inner product

〈f, g〉r =
∑
k∈Ns0

r(k)−1f̂(k)ĝ(k).

In a Hermite space, the Hermite expansion converges pointwise. Proof of this fact can be found in [37,
Theorem 3.2]. Irrgeher and Leobacher also show that a Hermite space is a reproducing kernel Hilbert
space with reproducing kernel Kr : Rs × Rs → R,

Kr(x,y) =
∑
k∈Ns0

r(k)Hk(x)Hk(y).

Irrgeher and Leobacher in [37] move on to studying weighted Hermite spaces. They consider two
examples, one with polynomially decaying Hermite coefficients and one with exponentially decaying
coefficients. In the following we study a weighted Hermite space with exponentially decaying coef-
ficients as well. This space was also studied by Irrgeher, Kritzer, Leobacher, Pillichshammer and
Woźniakowski in [35, 36]. It is defined below.

We study standard notions of tractability of integration in a weighted Hermite space H(Ks,a,b,ω)
of analytic functions, constructed as follows. Let a = (aj)j≥0, b = (bj)j≥1 be two weight sequences of
real numbers, such that

a0 = 0, 1 ≤ a1 ≤ a2 ≤ . . . and 1 ≤ b1 ≤ b2 ≤ . . . . (2.7)

Let ω ∈ (0, 1) and for any k = (k1, . . . , ks) ∈ Ns
0 let

ω|k|a,b = ω

s∑
j=1

ajk
bj
j

.

We consider the reproducing kernel Hilbert space H(Ks,a,b,ω) with kernel

Ks,a,b,ω(x,y) =
∑
k∈Ns0

ω|k|a,bHk(x)Hk(y)

and an inner product
〈f, g〉H(Ks,α,γ) =

∑
k∈Ns0

ω−|k|a,b f̂(k)ĝ(k).

This is the weighted Hermite space with r : Ns0 → R+ given by

r(k) = ω

s∑
j=1

ajk
bj

.

In [35] it is shown that the Hermite coefficients of this particular Hermite space are decreasing
very fast. Furthermore, we achieve exponential convergence, which is defined as follows.

Definition 2.16. If there exists some q ∈ (0, 1) and functions p, C1, C2 : N→ (0,∞) such that for all
s,N ∈ N

es(N) ≤ C1(s)q(N/C2(s))p(s)
, (2.8)

we say that we achieve exponential convergence (EXP) for es(N). If p(s) from (2.8) can be taken as
a constant function p(s) = p for all s ∈ N, we speak of uniform exponential convergence (UEXP).
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For more information about (U)EXP we refer to [14, 35, 45, 46]. For problems with this nice
behavior one can study exponential convergence-tractability (EC-tractability), as defined in [14, 17,
35, 45, 46].

Definition 2.17. We speak of

• exponential convergence-weak tractability (EC-WT) if

lim
s+log ε−1

logNs(ε)
s+ log ε−1 = 0 with the convention that log 0 = 0,

• exponential convergence-polynomial tractability (EC-PT) if there exist constants c, τ1, τ2 ≥ 0
such that

Ns(ε) ≤ c(1 + log ε−1)τ1sτ2 for all s ∈ N and all ε ∈ (0, 1),

• exponential convergence-strong polynomial tractability (EC-SPT) if the latter condition is true
for τ2 = 0.

Note that the difference to the standard tractability notions is that for EC-tractability we consider
log ε−1 rather than ε−1. It is possible to consider these more demanding notions, while still obtaining
good results, because functions in this function space are very smooth and thus the error tends to zero
very fast.

We are interested in integration,

Is(f) =
∫
Rs
f(x)ϕsx dx,

of functions f ∈ H(Ks,a,b,ω). As integrals are linear functionals themselves, it is obviously only
interesting to consider information from the class Λstd. We know from a result of Creutzig and
Wojtaszczyk [6] (cf. p. 7), that it is enough to consider linear algorithms

An,s(f) =
n∑
i=1

qkf(xk),

with qk ∈ R and xk ∈ Rs, when numerically approximating the above integrals. For this setting, in
[35, Theorem 1] the following was proven.

Theorem 2.18. Consider integration over H(Ks,a,b,ω) with weight sequences a and b, given as in
(2.7). Then we have:

1. EXP holds for all a and b satisfying (2.7).

2. The following statements are equivalent:

(a) The weight sequence b is summable, i.e.,
∞∑
j=1

1
bj
<∞,

(b) UEXP holds,
(c) EC-PT holds,
(d) EC-SPT holds.

3. A necessary condition for EC-WT is that lim
j→∞

aj2bj =∞.
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4. A suffictient condition for EC-WT is that there exist positive constants η and β such that

aj2bj ≥ βj1+η

for all j ∈ N.

What we are interested in now is what happens if we consider standard notions of tractability,
although we are in a space of analytic functions. We study this for the integration problem as well as
for the approximation problem in the Hermite space. The approximation problem is given as follows.
We want to approximate the embedding operator EMB: H(Ks,a,b,ω)→ L2(Rs, ϕs), EMB(f) = f , by
linear algorithms which use information from Λstd or from Λall.

The hope is that necessary and sufficient conditions for the standard notions to hold are milder than
they are for the EC-tractability notions. This is the content of the rest of this section. Unfortunately
we were not able to prove necessary conditions for many of the standard tractability notions. The
results of this section are yet unpublished and are joint work with Christian Irrgeher and Peter Kritzer
[34].

2.2.1 Tractability of integration and approximation in H(Ks,a,b,ω)

To provide an overview of the known results on standard notions of tractability of integration as well as
approximation in this particular Hermite space, we first present them in the following tables. In these
tables, for conditions which contain a limit, we always assume that this limit exists. This assumption
is mentioned in the theorems on the following pages, where the results presented in the tables are
summarized, but we do not explicitly mention it in the tables to preserve good readability.

Approximation using Λall:
The following table summarizes the results of Theorems 2,3,4 and 5 of [36].

Tractability notion sufficient conditions necessary conditions

SPT lim inf
j→∞

aj
log j > 0 lim inf

j→∞
aj

log j > 0

PT lim inf
j→∞

aj
log j > 0 lim inf

j→∞
aj

log j > 0

QPT no conditions no conditions

UWT no conditions no conditions

(t1, t2)-WT t1 > 1 t1 > 1

WT no conditions no conditions

Approximation using Λstd:
The results outlined in the following table are summarized in Theorem 2.20. The proof stems from
[34].
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Tractability notion sufficient conditions necessary conditions

SPT lim
j→∞

aj
log j >

1
logω−1 aj2bj & log j

logω−1 or

lim
j→∞

aj
log j > 0

PT aj
log j ≥

1
logω−1 for all sufficiently large j lim

j→∞
aj

log j > 0

WT lim
j→∞

aj =∞ nothing known

Integration:
The results presented in the following table stem from [34]. They are summarized in Theorem 2.23.

Tractability notion sufficient conditions necessary conditions

SPT lim
j→∞

aj
log j >

1
logω−1 or aj2bj & log j

logω−1

aj2bj ≥ βj1+η for some β > 0, η > 0

PT aj
log j ≥

1
logω−1 for all sufficiently large j or nothing known

aj2bj ≥ βj1+η for some β > 0, η > 0

QPT aj
log j ≥

1
logω−1 for all sufficiently large j or nothing known

aj2bj ≥ βj1+η for some β > 0, η > 0

UWT lim
j→∞

aj
log j ≥

1
logω−1 or nothing known

aj2bj ≥ βj1+η for some β > 0, η > 0

(t1, t2)-WT t1 > 1 or nothing known
t1, t2 ∈ (0, 1] ∧ aj2bj ≥ βj1+η for some β > 0, η > 0

WT lim
j→∞

aj =∞ or

aj2bj ≥ βj1+η for some β > 0, η > 0 nothing known

2.2.2 Approximation using Λall in Hermite spaces of analytic functions

Summarizing the conditions for the different tractability notions of approximation using the class Λall

from the above table we have the following Theorem 2.19. Its content stems from Theorems 2,3,4 and
5 of [36].
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Theorem 2.19. Consider L2-approximation using information from Λall defined over the Hermite
space H(Ks,a,b,ω) introduced above. Then the following results hold:

• PT and SPT are equivalent.

• A sufficient and necessary condition for SPT is given by lim inf
j→∞

aj
log j > 0.

If we have SPT, the exponent of SPT is

τ∗all = 2
A logω−1

• QPT, UWT, and WT hold for all considered a and b.

• (t1, t2)-WT holds for t1 > 1.

2.2.3 Approximation using Λstd in Hermite spaces of analytic functions

In this section we outline the known conditions for the different notions of tractability of the approx-
imation problem using the class Λstd.

Theorem 2.20. Consider L2-approximation using information from Λstd defined over H(Ks,a,b,ω).
Assume that

A = lim
j→∞

aj
log j

exists. Then the following statements are true:

• SPT holds if
lim
j→∞

aj
log j >

1
logω−1 .

In this case the exponent τ∗ of SPT satisfies

τ∗all ≤ τ∗std = τ∗all + 1
2 (τ∗all)

2 < τ∗all + 2,

where τ∗all and τ∗std denote the exponents of strong polynomial tractability for the cases of using
information from Λall and Λstd, respectively.

Necessary conditions are

aj2bj &
log j

logω−1 and lim
j→∞

aj
log j > 0,

respectively. (Here, for two functions f and g we say f & g, if there exists some constant c > 0
such that f(x) ≥ cg(x) for all x.)

• PT holds if
aj

log j ≥
1

logω−1 for all sufficiently large j.

If we have PT, then
lim
j→∞

aj
log j > 0.

• WT holds if
lim
j→∞

aj =∞.
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Proof. • First we consider SPT. Under the assumption that A = lim
j→∞

aj
log j exists we know from

[36] and Theorem 2.19, respectively that A = limj→∞
aj

log j > 0 implies SPT for approximation
using Λall. The exponent of SPT is then

τ∗all = 2
A logω−1 .

This follows from [36, Theorem 5]. Here if A > 1
logω−1 , we have τ∗all < 2. Then [65, Theo-

rem 26.20] implies that we also have SPT for Λstd with

τ∗all ≤ τ∗std = τ∗all + 1
2 (τ∗all)

2 < τ∗all + 2.

Approximation in Λall is not harder than in Λstd. According to Theorem 2.19, SPT and PT
are equivalent for approximation in Λall and hence they have the same necessary condition,
lim
j→∞

aj
log j . Integration is not harder than approximation in Λstd. Therefore we get the same

necessary condition, aj2bj & log j
logω−1 , as for integration, cf. Theorem 2.23.

• To achieve the sufficient condition for PT we follow exactly the same lines as for the proof of
[46, Theorem 5.2]. We can employ the same argumentation as for SPT to find the necessary
condition for PT.

• The last to consider is the sufficient condition for WT which again is implied by [36, Theorem 7],
where we have that lim

j→∞
aj =∞ implies EC-WT.

2

2.2.4 A lower bound

To obtain necessary conditions for strong polynomial tractability of integration we use some lower
bound on the minimal worst-case error es(n). In the following we provide this lower bound proceeding
analogously to [46].

In order to establish this lower bound we will frequently apply Lemma 1 from [35] which is given
by

Lemma 2.21. Let k, l ∈ N0. Then

∫
R

Hk(x)Hl(x)ϕ(x) dx =
{

1 if k = l

0 otherwise.

Further for k, l,m ∈ N we have

∫
R

Hk(x)Hl(x)Hm(x)ϕ(x) dx =


√
k!l!m!

(t−k)!(t−l)!(t−m)! if k + l +m = 2t and k, l,m ≤ t
0 otherwise.

The lower bound we want to prove is stated in the following lemma.

Lemma 2.22. The n-th minimal worst-case error of integration satisfies

es(n) ≥ 1√
1 + 2ω−as2bs

for all n ≤ s and for all s ∈ N. (2.9)

19



Proof. As said before, without loss of generality, we only consider linear algorithms

An,s(f) =
n∑
k=1

qkf(xk),

with qk ∈ R and xk ∈ Rs to approximate the integral of f . Thus using the definition of the n-th
minimal worst-case error we get

es(n) = inf
qk,xk,
k=1,...,n

sup
f∈H(Ks,a,b,ω)
‖f‖H(Ks,a,b,ω)≤1

∣∣∣∣∣Is(f)−
n∑
k=1

qkf(xk)
∣∣∣∣∣

≥ inf
qk,xk,
k=1,...,n

sup
f∈H(Ks,a,b,ω)
‖f‖H(Ks,a,b,ω)≤1
f(xk)=0,k=1,...,n

∣∣∣∣∣Is(f)−
n∑
k=1

qkf(xk)
∣∣∣∣∣

= inf
xk,k=1,...,n

sup
f∈H(Ks,a,b,ω)
‖f‖H(Ks,a,b,ω)≤1
f(xk)=0,k=1,...,n

|Is(f)|.

(2.10)

Our next goal is to try and find a function g such that g
‖g‖H(Ks,a,b,ω)

satisfies the conditions in the
supremum above for further estimation of es(n). To this end we define

h(j) =
{

(0, . . . , 0) ∈ Ns
0, if j = 0

(0, . . . , 0, 1, 0, . . . , 0) ∈ Ns
0, if j ∈ {1, . . . , s} ,

where the component 1 in the vector above is meant to be on the j-th position.

For arbitrary h ∈ Ns
0, h = (h1, . . . , hs), let

ch(x) = Hh(x) =
s∏
j=1

Hhj (xj) for all x = (x1, . . . , xs).

Clearly ch ∈ H(Ks,a,b,ω) for all h ∈ Ns
0. For the vectors h(j) defined above we obtain

ch(j)(x) =


s∏
j=1

H0(xj) = 1, if j = 0

H1(xj) = xj , if j ∈ {1, . . . , s}.

We proceed by choosing arbitrary x1, . . . ,xs ∈ Rs and constructing the following auxiliary function
g̃ according to the subsequent rule. Let

g̃(x) =
s∑
j=0

αjch(j)(x), x ∈ Rs,

where we define the αj ’s such that

g̃(xk) = 0 for all k ∈ {1, . . . , s}

and
s∑
j=0

α2
j = 1.
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To do so, we have to solve a system of s homogeneous linear equations in s + 1 unknowns, which is
always possible. With the aid of g̃ we are able to define our desired function g by

g(x) = (g̃(x))2 =

 s∑
j=0

αjch(j)(x)

 s∑
j=0

αjch(j)(x)

 =
s∑

j,k=0
αjαkch(j)(x)ch(k)(x).

Obviously g(xk) = 0 for all k = 1, . . . , s. We calculate Is(g) as follows, using Lemma 2.21: For j 6= k
and j, k 6= 0, we have, assuming without loss of generality j < k,

Is(ch(j)ch(k)) =
∫
Rs
ch(j)(x)ch(k)(x)ϕs(x) dx

=
∫
R

ϕ(x1) dx1· · ·
∫
R

ϕ(xj−1) dxj−1

∫
R

H1(xj)ϕ(xj) dxj
∫
R

ϕ(xj+1) dxj+1· · ·

· · ·
∫
R

ϕ(xk−1) dxk−1

∫
R

H1(xk)ϕ(xk) dxk
∫
R

ϕ(xk+1) dxk+1· · ·
∫
R

ϕ(xs) dxs = 0,

whereas for j = k 6= 0 we obtain

Is(ch(j)ch(j)) =
∫
Rs
ch(j)(x)ch(j)(x)ϕs(x) dx

=
∫
R

ϕ(x1) dx1· · ·
∫
R

ϕ(xj−1) dxj−1

∫
R

H1(xj)H1(xj)ϕ(xj) dxj
∫
R

ϕ(xj+1) dxj+1· · ·

· · ·
∫
R

ϕ(xs) dxs = 1.

Similar considerations for j and/or k equal to zero yield

Is(ch(j)ch(k)) =
{

0 if j 6= k,

1 if j = k.

Thus
Is(g) =

∫
Rs

s∑
j,k=0

αjαkch(j)(x)ch(k)(x)ϕs(x) dx =
s∑
j=0

α2
j = 1

and we conclude from (2.10) that

es(s) ≥ inf
xk,k=1,...,s

sup
f∈H(Ks,a,b,ω)
‖f‖H(Ks,a,b,ω)≤1
f(xk)=0,k=1,...,s

|Is(f)| ≥ Is

(
g

‖g‖H(Ks,a,b,ω)

)
= 1
‖g‖H(Ks,a,b,ω)

. (2.11)

To find our desired lower bound we thus have to calculate the norm of g.

‖g‖2H(Ks,a,b,ω) = 〈g, g〉H(Ks,a,b,ω) =
〈

s∑
j,k=0

αjαkch(j)ch(k) ,
s∑

j,k=0
αjαkch(j)ch(k)

〉
H(Ks,a,b,ω)

=
s∑

j1,k1,j2,k2=0
αj1αk1αj2αk2

〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω).

(2.12)
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Let us first investigate
〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω).

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω) =

∑
l∈Ns0

ω−|l|a,b ̂(
ch(j1)ch(k1)

)
(l) ̂(

ch(j2)ch(k2)
)
(l)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b
∫
Rs
ch(j1)(x)ch(k1)(x)Hk(x)ϕs(x) dx

∫
Rs
ch(j2)(x)ch(k2)(x)Hk(x)ϕs(x) dx

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b
∫
Rs
ch(j1)(x)ch(k1)(x)

s∏
m=1

Hl(m)(xm)ϕ(xm) dx

×
∫
Rs
ch(j2)(x)ch(k2)(x)

s∏
n=1

Hl(n)(xn)ϕ(xn) dx.

(2.13)

We distinguish the following four basic cases and split each of them into further subcases.

1. j1 6= k1, j2 6= k2,

2. j1 6= k1, j2 = k2,

3. j1 = k1, j2 6= k2,

4. j1 = k1, j2 = k2.

Case 1: j1 6= k1, j2 6= k2.
Subcase 1.1: We further assume j1, k1, j2, k2 6= 0. Then (2.13) yields

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b


s∏

m=1
m6=j1
m 6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm


∫
R

H1(xj1)Hl(j1)(xj1)ϕ(xj1) dxj1

×
∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1


s∏

n=1
n6=j2
n6=k2

∫
R

Hl(n)(xn)ϕ(xn) dxn


×
∫
R

H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2
∫
R

H1(xk2)Hl(k2)(xk2)ϕ(xk2) dxk2 .

(2.14)

For any l ∈ Ns, the corresponding addend in the above sum reduces to zero, unless all its factors
are simultaneously not equal to zero. That is we only have to consider those l = (l(1), . . . , l(s)) ∈ Ns,
which simultaneously satisfy 

l(m) = 0,∀m ∈ {1, . . . , s} \ {j1, k1}
l(m) = 0,∀m ∈ {1, . . . , s} \ {j2, k2}
l(j1) = 1
l(k1) = 1
l(j2) = 1
l(k2) = 1.
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This leaves the only possibilities j1 = j2, k1 = k2 or j1 = k2, k1 = j2, respectively, and l of the form
l = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0). Inserting this into (2.14) yields〈

ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω) = ω−aj1−ak1 for j1 6= k1, j2 6= k2 and all j1, k1, j2, k2 6= 0.

Subcase 1.2: We still have the assumption j1 6= k1, j2 6= k2 from Case 1. Now we consider the case
where exactly one of the four indices equals zero. We can without loss of generality assume j1 = 0.
This leads to

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

 s∏
m=1
m 6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm

∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1

×


s∏

n=1
n6=j2
n 6=k2

∫
R

Hl(n)(xn)ϕ(xn) dxn


∫
R

H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2

×
∫
R

H1(xk2)Hl(k2)(xk2)ϕ(xk2) dxk2 .

Using basically the same argumentation as above we find that this sum equals zero, since some factors
of the summands need l = (0, . . . , 0, 1, 0, . . . , 0) in order not to vanish, whereas others require l’s with
two components equal to 1, which is not simultaneously possible.

Subcase 1.3: We now investigate the case where two indices are equal to zero. Again without loss
of generality we can assume them to be j1 and j2. Then we have

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

 s∏
m=1
m 6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm

∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1

×

 s∏
n=1
n 6=k2

∫
R

Hl(n)(xn)ϕ(xn) dxn

∫
R

H1(xk2)Hl(k2)(xk2)ϕ(xk2) dxk2 .

Clearly, we obtain the only non-vanishing summand considering k1 = k2 and l = (0, . . . , 0, 1, 0, . . . , 0).
As j1 = 0 and a0 = 0 (2.7) we write〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω) = ω−aj1−ak1 for all j1 6= k1, j2 6= k2, with k1 = k2 and j1 = j2 = 0.

With that we are done with Case 1 as it requires j1 6= k1 and j2 6= k2 which obviously cannot be true
with more than two indices being equal to zero. We move on to

Case 2: j1 6= k1, j2 = k2.
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Subcase 2.1: We further assume j1, k1, j2, k2 6= 0. Then (2.13) yields

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b


s∏

m=1
m6=j1
m6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm


∫
R

H1(xj1)Hl(j1)(xj1)ϕ(xj1) dxj1

×
∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1

 s∏
n=1
n6=j2

∫
R

Hl(n)(xn)ϕ(xn) dxn


×
∫
R

H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 .

This sum equals zero, as can be seen from a similar argumentation as in Subcase 1.2.

Subcase 2.2: Let now j1, k1 6= 0, and j2 = k2 = 0. Then we have

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b


s∏

m=1
m6=j1
m 6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm


∫
R

H1(xj1)Hl(j1)(xj1)ϕ(xj1) dxj1

×
∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1

(
s∏

n=1

∫
R

Hl(n)(xn)ϕ(xn) dxn

)
.

With an analogous argument as above we see that this sum equals zero as well.

Subcase 2.3: Assume j1 = 0, j2 = k2 6= 0. Then

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

 s∏
m=1
m6=k1

∫
R

Hl(m)(xm)ϕ(xm) dxm

∫
R

H1(xk1)Hl(k1)(xk1)ϕ(xk1) dxk1

×

 s∏
n=1
n6=j2

∫
R

Hl(n)(xn)ϕ(xn) dxn

∫
R

H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 .

We first investigate the last factor
∫
R
H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 of this sum. Taking into

account Lemma 2.21 this integral vanishes, except when 2 + l(j2) = 2t and 1, l(j2) ≤ t. Thus we have
t = 1 + l(j2)

2 ≤ 1 + t
2 , or equivalently t ≤ 2 and consequently l(j2) ≤ 2. As 2 + l(j2) has to be even,

l(j2) cannot be 1 and we can once again use an analogous argument as in Subcase 1.2 to find that the
above sum equals zero.

Note that the case where k1 = 0, j2 = k2 6= 0 works completely analogously to Subcase 2.3.

Subcase 2.4: Let j1 = 0, j2 = k2 = 0. We can once again argue in the same way to obtain
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〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω) = 0.

Case 3: j1 = k1, j2 6= k2. This case can be treated entirely analogously to Case 2.

Case 4: j1 = k1, j2 = k2.
Subcase 4.1: Let j1 6= j2 and j1, k1, j2, k2 6= 0. Then

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

 s∏
m=1
m6=j1

∫
R

Hl(m)(xm)ϕ(xm) dxm

∫
R

H1(xj1)H1(xj1)Hl(j1)(xj1)ϕ(xj1) dxj1

×

 s∏
n=1
n6=j2

∫
R

Hl(n)(xn)ϕ(xn) dxn

∫
R

H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 .

As j1 6= j2 all the addends vanish except for l = 0 and thus the sum equals 1.

Subcase 4.2: Assume j1 6= j2 and j1 = 0. We then have

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω) =

∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

(
s∏

m=1

∫
R

Hl(m)(xm)ϕ(xm) dxm

)

×

 s∏
n=1
n6=j2

∫
R

Hl(n)(xn)ϕ(xn) dxn

∫
R

H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 ,

which again is equal to 1, as only the addend for l = 0 is non-zero. Of course the case where j1 6= j2
and j2 = 0 works altogether analogously.

Subcase 4.3: Let j1 = k1 = j2 = k2 = 0. Then

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω) =

∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

(
s∏

m=1

∫
R

Hl(m)(xm)ϕ(xm) dxm

)

×
(

s∏
n=1

∫
R

Hl(n)(xn)ϕ(xn) dxn

)
= 1,

again, as only the addend for l = 0 is non-zero.
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Subcase 4.4: Assume j1 = k1 = j2 = k2 6= 0. Then

〈ch(j1)ch(k1) , ch(j2)ch(k2)
〉
H(Ks,a,b,ω)

=
∑
l∈Ns0

l=(l(1),...,l(s))

ω−|l|a,b

 s∏
m=1
m6=j1

∫
R

Hl(m)(xm)ϕ(xm) dxm

∫
R

H1(xj1)H1(xj1)Hl(j1)(xj1)ϕ(xj1) dxj1

×

 s∏
n=1
n6=j2

∫
R

Hl(n)(xn)ϕ(xn) dxn

∫
R

H1(xj2)H1(xj2)Hl(j2)(xj2)ϕ(xj2) dxj2 .

With an analogous argumentation as in Subcase 2.3 we find that all addends vanish, except for
l = (0, . . . , 0) and l = (0, . . . 0, 2, 0 . . . , 0). Consequently, using Lemma 2.21,

〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω) = 1 +

√
2
√

2ω−|(0,...0,2,0...,0)|a,b = 1 + 2ω−aj12bj1 .

The above case analysis summarizes to

〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω) =



ω−aj1−ak1 , if j1 6= k1, j1 = j2 and k1 = k2

or j1 6= k1, j1 = k2 and k1 = j2, respectively
1, if j1 = k1, j2 = k2 and j1 6= j2

1, if j1 = k1 = j2 = k2 = 0
1 + 2ω−aj12bj1 , if j1 = k1 = j2 = k2 6= 0
0, otherwise.

Inserting this into (2.12) we find the following. Note that, as we now only need two indices any more,
we switch from using j1, k1, j2, k2 to using only j, k from the first to the second line of the following
equation.

‖g‖2H(Ks,a,b,ω) =
s∑

j1,k1,j2,k2=0
αj1αk1αj2αk2

〈
ch(j1)ch(k1) , ch(j2)ch(k2)

〉
H(Ks,a,b,ω)

= 2
s∑
j=0

s∑
k=0
k 6=j

α2
jα

2
kω
−aj−ak +

s∑
j=0

s∑
k=0
k 6=j

α2
jα

2
k +

s∑
j=1

α4
j

(
1 + 2ω−aj2

bj
)

+ α4
0.

(2.15)

Studying the latter expression we find

‖g‖2H(Ks,a,b,ω) = 2
s∑
j=0

s∑
k=0
k 6=j

α2
jα

2
kω
−aj−ak +

s∑
j=0

s∑
k=0
k 6=j

α2
jα

2
k +

s∑
j=0

α4
j + 2

s∑
j=1

α4
jω
−aj2bj

= 2
s∑
j=0

s∑
k=0
k 6=j

α2
jα

2
kω
−aj−ak +

s∑
j=0

α2
j

α2
j +

s∑
k=0
k 6=j

α2
k

+ 2
s∑
j=1

α4
jω
−aj2bj

= 2
s∑
j=0

α2
jω
−aj

(
−α2

jω
−aj +

s∑
k=0

α2
kω
−ak

)
+ 1 + 2

s∑
j=1

α4
jω
−aj2bj
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= 2

 s∑
j=0

α2
jω
−aj

2

+ 1− 2α4
0ω
−2a0 + 2

s∑
j=1

(
α4
jω
−aj2bj − α4

jω
−2aj

)

= 2

 s∑
j=0

α2
jω
−aj

2

+ 1− 2α4
0 + 2

s∑
j=1

α4
jω
−2aj

(
ω−aj2

bj+2aj − 1
)
. (2.16)

To estimate the latter expression we have to be sure that ω−aj2
bj+2aj − 1 ≥ 0 in the above sum. We

sum only over j’s which are greater than or equal 1, therefore the corresponding aj ’s and bj ’s are not
smaller than 1 as well and hence

2bj−1 ≥ 1⇔ aj2bj ≥ 2aj ⇔ aj2bj − 2aj ≥ 0⇔ 1 ≥ ωaj2
bj−2aj ⇔

⇔ ω−aj2
bj+2aj ≥ 1⇔ ω−aj2

bj+2aj − 1 ≥ 0.

Using this fact and (2.16) we bound ‖g‖2H(Ks,a,b,ω) by

‖g‖2H(Ks,a,b,ω) ≤ 2

 s∑
j=0

α2
jω
−as

2

+ 1− 2α4
0 + 2

s∑
j=1

α4
jω
−2as

(
ω−aj2

bj+2aj − 1
)

= 2

 s∑
j=0

α2
jω
−as

2

+ 1− 2α4
0 + 2

s∑
j=1

α4
jω
−2as

(
ω−aj(2

bj−2) − 1
)

≤ 2ω−2as

 s∑
j=0

α2
j

2

+ 1− 2α4
0 + 2ω−2as

(
ω−as(2

bs−2) − 1
) s∑
j=1

α4
j

≤ 2ω−2as + 1 + 2ω−2as
(
ω−as(2

bs−2) − 1
)

= 1 + 2ω−as2bs ,

where we used that 2bj − 2 ≥ 0 to proceed from the second line of the equation to the third.
Thus

‖g‖H(Ks,a,b,ω) ≤
√

1 + 2ω−as2bs

and with (2.11)

es(n) ≥ es(s) ≥
1√

1 + 2ω−as2bs
for all n ≤ s and for all s ∈ N.

Here we obtain es(n) ≥ es(s) for n ≤ s by assuming qn+1 = · · · = qs = 0 in the infimum in (2.10).
This completes the proof. 2

2.2.5 Integration in Hermite spaces of analytic functions

Finally we outline the conditions for tractability of integration.
Here we use the notation “&” several times, by which we indicate that an inequality holds up to

constants.

Theorem 2.23. Consider intergration defined over the Hermite space H(Ks,a,b,ω) with weight se-
quences a and b and assume that

A = lim
j→∞

aj
log j

exists.
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• SPT holds if

A = lim
j→∞

aj
log j >

1
logω−1 or aj2bj ≥ βj1+η for some β > 0, η > 0.

In this case the exponent τ∗ of SPT satisfies

τ∗ ≤ max
{

1,min
{

2, 2
A logω−1

(
1 + 1

A logω−1

)}}
.

A necessary condition, on the other hand, is

aj2bj &
log j

logω−1 .

• PT as well as QPT hold if

aj
log j ≥

1
logω−1 for all sufficiently large j

or
aj2bj ≥ βj1+η for some β > 0, η > 0.

• UWT holds if

lim
j→∞

aj
log j >

1
logω−1 or aj2bj ≥ βj1+η for some β > 0, η > 0.

• (t1, t2)-WT is achieved for all weight sequences a and b as long as

t1 > 1.

Assuming t1, t2 ∈ (0, 1] we again have the sufficient condition

aj2bj ≥ βj1+η for some β > 0, η > 0.

• WT holds if
lim
j→∞

aj =∞ or aj2bj ≥ βj1+η for some β, η > 0.

Remark 2.24. In the theorem above the sufficient condition “aj2bj ≥ βj1+η for some β > 0, η > 0”
can be replaced by “2bj ≥ βj1+η for some β > 0, η > 0” for every considered tractability notion. This
is due to our assumption that aj ≥ 1 for all j ≥ 1.

Proof. As we can apply [63, Theorem 5.2] and [65, Theorem 26.11] we proceed analogously to the
proof of [46, Theorem 4.2] and [46, Theorem 5.2], respectively to obtain the first sufficient condition
for SPT, and the upper bound on the exponent of SPT.

The second sufficient condition is proved in Theorem 2.25 below. This implies the second sufficient
condition for all tractability notions considered in Theorem 2.23.

To establish the necessary condition for SPT we proceed as follows. Assume SPT with exponent
τ∗, i.e.

∀δ > 0 ∃Cδ > 0 such that n(ε, s) ≤ Cδ ε−(τ∗+δ) for all ε ∈ (0, 1) and for all s ∈ N.

28



Defining n =
⌊
Cδ ε

−(τ∗+δ)
⌋
yields es(n) ≤ ε for all s ∈ N. Next we apply Lemma 2.22 for s = n and

obtain
1√

1 + 2ω−as2bs
≤ es(s) ≤ ε,

which leads to
1
2
(
1− ε2

)
ωas2

bs ≤ ε2 for all ε ∈ (0, 1).

Taking logarithms we find

log 1
2 + log

(
1− ε2

)
− as2bs logω−1 ≤ − log ε−2,

thus

as2bs ≥
− log 2 + log

(
1− ε2)+ log ε−2

logω−1

= log
(
ε−2 − 1

)
− log 2

logω−1

≈ 2 log ε−1 − log 2
logω−1

for sufficiently small ε ∈ (0, 1) and for all s ∈ N. As in the proof of Theorem 4.2 in [46] we find

log ε−1 = 1 + o(1)
τ∗ + δ

log s

and hence
as2bs &

log s
logω−1 ,

as claimed.
Now we consider PT and WT. We have already seen, that the eigenvalues of

W = EMB∗EMB : H(Ks,a,b,ω)→ H(Ks,a,b,ω)

are the same as for the corresponding operator in the Korobov space. Thus we proceed once more
analogously as in the proofs of [46, Theorem 4.2] and [46, Theorem 5.2], respectively to establish the
first sufficient condition for PT as well as the condition for WT.
As PT implies QPT we have also established the first sufficient condition for QPT. Of course the first
sufficient condition for UWT is also clear by now, as PT implies UWT as well. Nonetheless we want
to briefly state an alternative proof. The following technique also yields the first sufficient condition
for (t1, t2)-WT as well as an alternative method to obtain the first sufficient condition for WT.

Once again we use the fact, that linear integration rules

An,s(f) =
n∑
k=1

qkf(xk),

where qk ∈ R and xk ∈ Rs for k = 1, . . . , n are optimal for our integration problem. Then, using
arguments as in [75, Equation (3)], [16, Theorem 3.5] or [20, Proposition 2.11], we know that the worst
case error for An,s is given by

es(An,s)2 = 1− 2
n∑
k=1

qk +
n∑

k,i=1
qkqiKs,a,b,ω(xk,xi)
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or, in the special case, where the weights sum up to 1,

es(An,s)2 = −1 +
n∑

k,i=1
qkqiKs,a,b,ω(xk,xi),

respectively. Let the Gaussian-weighted mean-square error be defined as

ēs(An,s)2 =
∫
Rs
· · ·
∫
Rs

[es(An,s)(x1, . . . ,xn)]2ϕ(x1) · · ·ϕ(xn) dx1 · · · dxn,

where es(An,s)(x1, . . . ,xn) indicates the worst case error of An,s which uses integration nodes
x1, . . . ,xn. If we restrict ourselves to quasi-Monte Carlo (QMC) algorithms, i.e. qk = 1/n, k = 1, . . . , n,
(see Section 3.1 for detailed information) we get the following formula,

ēs(An,s)2 = 1
n

∑
k∈Ns0

ω|k|a,b = 1
n

s∏
j=1

∞∑
k=0

ωajk
bj
.

Thus we can estimate the nth minimal worst case error by

es(n)2 ≤ 1
n

s∏
j=1

∞∑
k=0

ωajk
bj

≤ 1
n

s∏
j=1

∞∑
k=0

ωajk

= 1
n

s∏
j=1

1
1− ωaj .

From this we derive upper bound

Ns(ε) ≤

ε−2
s∏
j=1

1
1− ωaj


on the information complexity and consequently,

logNs(ε) ≤ 2 log ε−1 +
s∑
j=1

log 1
1− ωaj + c.

We use this upper bound to obtain sufficient conditions for UWT, (t1, t2)-WT and WT, starting
with UWT. Let t1, t2 ∈ (0, 1] and further assume that limj→∞

aj
log j >

1
logω−1 . So there exists an index

j0 ≥ 2 such that ωaj < 1/j for all j ≥ j0. Then

lim
s+ε−1→∞

logNs(ε)
st1 + ε−t2

≤ lim
ε−1→∞

2 log ε−1

ε−t2
+ lim
s→∞

min{s,j0−1}∑
j=1

log (1− ωaj )−1

st1

+ lim
s→∞

s∑
j=min{s+1,j0}

log (1− ωaj )−1

st1

≤ lim
s→∞

1
st1

s∑
j=min{s+1,j0}

log 1
1− 1/j

= lim
s→∞

1
st1

s∑
j=min{s+1,j0}

log j

j − 1
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≤ lim
s→∞

1
st1

s∑
j=2

(log j − log(j − 1))

= lim
s→∞

1
st1

log s = 0

We have shown that UWT holds, if limj→∞
aj

log j >
1

logω−1 .
As for (t1, t2)-WT, assume that t1 > 1. Then

lim
s+ε−1→∞

logNs(ε)
st1 + ε−t2

≤ lim
ε−1→∞

2 log ε−1

ε−t2
+ lim
s→∞

s∑
j=1

log (1− ωaj )−1

st1

≤ lim
s→∞

s∑
j=1

log (1− ωa1)−1

st1

= lim
s→∞

log (1− ωa1)−1 1
st1−1 = 0.

Therefore, if t1 > 1, (t1, t2)-weak tractability holds for arbitrary weight sequences a and b, satisfying
(2.7).

Finally we consider again WT. Assume that limj→∞ aj = ∞. It follows that ωaj → 0 as well as
log(1 − ωaj )−1 → 0 as j → ∞. Thus, from Cauchy’s limit theorem we know that the Cesàro means
converge to zero as well. Hence, lims→∞

1
s

∑s
j=1 log(1− ωaj )−1 = 0. Therefore,

lim
s+ε−1→∞

logNs(ε)
s+ ε−1 ≤ lim

ε−1→∞

2 log ε−1

ε−1 + lim
s→∞

s∑
j=1

log (1− ωaj )−1

s
= 0.

Thus we have weak tractability, if limj→∞ aj =∞ and b arbitrary and the proof is complete. 2

In the following theorem we show the second sufficient condition for SPT, given in Theorem 2.23.

Theorem 2.25. Assume that there exist η, β > 0 such that

aj2bj ≥ βj1+η for all j ∈ N.

Then we have SPT with exponent τ∗ ≤ 1, and there exists an explicit Gauss-Hermite rule achieving
the corresponding error.

Proof. Assume that the condition in the theorem is satisfied. Then in the proof of Item 4 of Theorem 1
in [35], an explicit Gauss-Hermite rule An,s using n points was given such that

es(An,s) ≤ ε

and
logn ≤ c1(log ε−1)

1
1+η

(
2 + log

(
c2 + 2 log ε−1

logω−1

))
for some positive c1, c2. Hence there exists a constant c3 > 0 such that

log(Ns(ε)) ≤ c3(log ε−1)
1

1+η log log ε−1.

However, for sufficiently small ε,
log log ε−1 ≤ (log ε−1)

η
1+η ,

so
log(Ns(ε)) ≤ c3(log ε−1)

1
1+η (log ε−1)

η
1+η = c3 log ε−1.

It follows that
Ns(ε) ≤ cε−1

for some positive c > 0 for sufficiently small ε. This implies SPT with τ∗ ≤ 1.
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Finally we compare standard tractability results for integration to EC-tractability results for in-
tegration in H(Ks,a,b,ω). We see that the (sufficient) conditions are indeed eased in a sense for the
standard tractability notions, as has been our hope (cf. Theorems 2.23 and 2.18).

For WT we have gained an alternative condition which does not demand a growing rate for a and
is independent of b.

Conditions for PT and SPT are relaxed in the following sense. On the one hand we have now
separate conditions for PT and SPT and on the other hand we have conditions depending only on a,
whereas for EC-(S)PT we have conditions which depend exclusively on b. The conditions on a for
(S)PT are a lot less restrictive than the ones on b for EC-(S)PT.
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2.3 Hybrid approximation

In this section we consider tractability of approximation in hybrid function spaces. The results of
this section are joint work with Peter Kritzer and Friedrich Pillichshammer and are based on [43].
Kritzer and Pillichshammer introduced hybrid function spaces in [44] before, where they worked on
tractability of QMC-integration in these spaces.

We want to start by recalling the definition of these spaces and we also want to give some reasons
why it can be beneficial to have results for hybrid function spaces.

2.3.1 The hybrid function space

The hybrid function space we study is a specific reproducing kernel Hilbert space that was introduced
in [44], namely the tensor product of a Korobov space and a Walsh space.

Fix a prime number b and let i =
√
−1. For k ∈ N0 with b-adic expansion k = κab

a+ · · ·+κ1b+κ0
with κj ∈ {0, . . . , b− 1} and κa 6= 0 we define the k-th Walsh function walk : [0, 1)→ C by

walk(x) = exp
(

2πiξ1κ0 + · · ·+ ξa+1κa
b

)
,

for x ∈ [0, 1) with b-adic expansion x = ξ1
b + ξ2

b2 + · · · (unique in the sense that infinitely many of the
ξi are different from b− 1). Note that a = blogb kc.

For k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s the k-th s-variate Walsh function walk :
[0, 1)s → C is given by

walk(x) =
s∏
j=1

walkj (xj).

Some crucial properties of Walsh functions that we are going to use in the following are that for
x1,x2 ∈ [0, 1)s and k,h ∈ Ns

0 it is true that

walk(x1)walk(x2) = walk(x1 ⊕ x2),
walk(x1)walk(x2) = walk(x1 	 x2) and
walk(x1)walh(x1) = walk⊕h(x1),

where ⊕ denotes digit-wise addition modulo b, and is defined component-wise for vectors; by 	 we
denote (component-wise) digit-wise subtraction modulo b.

We remark that Walsh functions could also be defined for arbitrary integer bases b ≥ 2 (see, e.g.,
[20]), but for the use of our approximation algorithms we additionally require that b is prime.

Further, for l ∈ Zt we define the t-variate l-th trigonometric function el : [0, 1)t → C as

el(y) = exp(2πil · y),
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where · denotes the usual Euclidean inner product.
Let now s, t ∈ N, α, β > 1 and let γ(1),γ(2) be two non-increasing sequences γ(i) = (γ(i)

j )j≥1

for i ∈ {1, 2}, where 0 < γ
(i)
j ≤ 1. We define two functions ρα,γ(1) and rβ,γ(2) as follows: For

k = (k1, . . . , ks) ∈ Ns0 and l = (l1, . . . , lt) ∈ Zt let

ρα,γ(1)(k) =
s∏
j=1

ρ
α,γ

(1)
j

(kj) and rβ,γ(2)(l) =
t∏

j=1
r
β,γ

(2)
j

(lj),

where

ρ
α,γ

(1)
j

(kj) =
{

1 if kj = 0,
γ

(1)
j b−αblogb(kj)c if kj 6= 0,

and

r
β,γ

(2)
j

(lj) =
{

1 if lj = 0,
γ

(2)
j |lj |−β if lj 6= 0.

With the help of these functions we start by defining Walsh spaces [15, 19] and Korobov spaces [16,
56, 64] and subsequently move on to defining the hybrid function spaces we want to study in this
section.

We begin with the Walsh space which was introduced in [19] (see also [20] for further details). Its
reproducing kernel is given by

Ks,α,γ(1)(x,x′) =
∑
k∈Ns0

ρα,γ(1)(k)walk(x)walk(x′) for x,x′ ∈ [0, 1)s,

and its inner product by

〈f, g〉s,α,γ(1) =
∑
k∈Ns0

(
ρα,γ(1)(k)

)−1
f̂wal(k)ĝwal(k),

where

f̂wal(k) =
∫

[0,1]s
f(x)walk(x) dx

is the k-th Walsh coefficient of f . The Walsh space is then defined as the space of all functions that
can be expressed as absolutely convergent Walsh series with finite norm,

H(Ks,α,γ(1)) =

f : f(x) =
∑
k∈Ns0

f̂wal(k)walk(x), ||f ||s,α,γ(1) <∞

 ,
where || · ||s,α,γ(1) denotes the norm induced by the inner product 〈·, ·〉s,α,γ(1) defined above.

The Korobov space which we are going to introduce next has been studied in many papers. We
refer to [64] for detailed information. The reproducing kernel of the Korobov space is

Kt,β,γ(2)(y,y′) =
∑
l∈Zt

rβ,γ(2)(l)el(y)el(y′) for y,y′ ∈ [0, 1)t.

Its inner product is given by

〈f, g〉t,β,γ(2) =
∑
l∈Zt

(
rβ,γ(2)(l)

)−1
f̂trig(l)ĝtrig(l),
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where

f̂trig(l) =
∫

[0,1]t
f(y)el(y) dy

is the l-th Fourier coefficient of f . The Korobov space is then defined as the space of all functions
that can be expressed as absolutely convergent Fourier series with finite norm,

H(Kt,β,γ(2)) =

f : f(y) =
∑
l∈Zt

f̂trig(l)el(y), ||f ||t,β,γ(2) <∞

 ,
where || · ||t,β,γ(2) is the norm induced by the inner product 〈·, ·〉t,β,γ(2) .

Now we are ready to define our hybrid function space as the tensor product of the Walsh and
Korobov spaces. The hybrid space H(Ks,t,α,β,γ), where γ = (γ(1),γ(2)), is the reproducing kernel
Hilbert space with kernel function given by Ks,t,α,β,γ : [0, 1)s+t × [0, 1)s+t → C,

Ks,t,α,β,γ((x,y), (x′,y′)) =
∑
k∈Ns0

∑
l∈Zt

ρα,γ(1)(k)rβ,γ(2)(l)walk(x)walk(x′)el(y)el(y′)

and inner product

〈f, g〉s,t,α,β,γ =
∑
k∈Ns0

∑
l∈Zt

1
ρα,γ(1)(k)

1
rβ,γ(2)(l)

f̂(k, l)ĝ(k, l),

with

f̂(k, l) =
∫

[0,1]s

∫
[0,1]t

f(x,y)walk(x)el(y) dxdy.

The space H(Ks,t,α,β,γ) is the tensor product of a Walsh space and a Korobov space. If s = 0,
then we obtain the Korobov space, if t = 0, then we obtain the Walsh space.

Remark 2.26. For convenience we will in the following use the notation
∫

[0,1]d f(x,y) dxdy, where
d = s+ t, by which we mean

∫
[0,1]s

∫
[0,1]t f(x,y) dxdy.

The hybrid space H(Ks,t,α,β,γ) is the space of all absolutely convergent series f of the form

f(x,y) =
∑

(k,l)∈Ns0×Zt
f̂(k, l)walk(x)el(y) with ‖f‖H(Ks,t,α,β,γ) <∞,

where ‖·‖H(Ks,t,α,β,γ) denotes the norm in H(Ks,t,α,β,γ). For further information on the space
H(Ks,t,α,β,γ) we refer to [44, Section 2.2].

We consider L2-approximation of functions in H(Ks,t,α,β,γ), which is embedded into L2([0, 1]s+t).
To be more precise, we approximate the embedding operator

EMBs+t : H(Ks,t,α,β,γ)→ L2([0, 1]s+t), EMBs+t(f) = f,

and measure the approximation error in the L2-norm. As before, the theorem of Creutzig and Woj-
taszczyk from [6] (cf. also pages 5 and 7) applies, and there is no loss of generality when we restrict
ourselves to linear approximation algorithms of the form AN,s,t(f) =

∑N
k=1 akLk(f) with coefficients

ak ∈ L2([0, 1]s+t) and continuous linear functionals Lk on H(Ks,t,α,β,γ) from a permissible class of
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information Λ. Here N is the number of information evaluations.

In previous papers, several authors have studied approximation problems, similar to the one we
consider in this section, in various reproducing kernel Hilbert spaces, see, e.g., [3, 11, 14, 51, 62, 79].
These investigations have in common that the reproducing kernel Hilbert spaces considered are tensor
products of one-dimensional spaces whose kernels are all of the same type (but maybe equipped with
different weights). In this section we consider the case where the reproducing kernel is a product of
kernels of different type. We call such spaces hybrid spaces. Some results on tractability in general
hybrid spaces can be found in the literature. For example, in [64] multivariate integration is studied
for arbitrary reproducing kernels Kd without relation to Kd+1. Here we consider as a special instance
the tensor product of Walsh and Korobov spaces. The problem of numerical integration in such
spaces was recently considered in [44]. The study of a hybrid of Korobov and Walsh spaces could
be important in view of functions which are periodic with respect to some of the components and,
for example, piece-wise constant with respect to the remaining components. Moreover, it has been
pointed out by several scientists (see, e.g., [39, 53]) that hybrid problems may be relevant for certain
applications. Indeed, communication with the authors of [39] and [53] have motivated our idea for
considering function spaces where we may have very different properties of the elements with respect
to different components, as for example regarding smoothness.

From the analytical point of view, it is very challenging to deal with hybrid spaces. The reason for
this is the rather complex interplay between the different analytic and algebraic structures of the kernel
functions. In the present study we are concerned with Fourier analysis carried out simultaneously with
respect to the Walsh and the trigonometric function systems. The problem is also closely related to the
study of hybrid point sets which received much attention in recent years (see, for example, [28, 33]).
Hence we also have considerable theoretical interest in studying this problem.

2.3.2 L2-approximation

Our goal is to approximate the embedding from the hybrid space H(Ks,t,α,β,γ) to the space
L2([0, 1]s+t), i.e.,

EMBs,t : H(Ks,t,α,β,γ)→ L2([0, 1]s+t), EMBs,t(f) = f. (2.17)

As already mentioned, it is enough to consider linear algorithms AN,s,t of the form

AN,s,t(f) =
N∑
k=1

akLk(f), (2.18)

with ak ∈ L2([0, 1]s+t) and continuous linear functionals Lk on H(Ks,t,α,β,γ) from a permissible class
of information Λ. As already explained in the introduction we consider the two classes Λall and Λstd:

• Λ = Λall , the class of all continuous linear functionals defined onH(Ks,t,α,β,γ). SinceH(Ks,t,α,β,γ)
is a Hilbert space, for every Lk ∈ Λall there exists a function fk from H(Ks,t,α,β,γ) such that
Lk(f) = 〈f, fk〉d,α,β,γ for all f ∈ H(Ks,t,α,β,γ).

• Λ = Λstd, the class of standard information consisting only of function evaluations. That is,
Lk ∈ Λstd if there exists (xk,yk) ∈ [0, 1]s+t such that Lk(f) = f(xk,yk) for all f ∈ H(Ks,t,α,β,γ).

Since H(Ks,t,α,β,γ) is a reproducing kernel Hilbert space, function evaluations are continuous linear
functionals, and therefore Λstd ⊆ Λall. More precisely,

Lk(f) = f(xk,yk) = 〈f,Ks,t,α,β,γ(·, (xk,yk))〉s,t,α,β,γ
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and
‖Lk‖ = ‖Ks,t,α,β,γ‖H(Ks,t,α,β,γ) = K

1/2
s,t,α,β,γ((xk,yk), (xk,yk)).

Recall that the worst-case error in H(Ks,t,α,β,γ) of a linear algorithm as in (2.18) is

es+t(AN,s,t) = sup
f∈H(Ks,t,α,β,γ)
‖f‖H(Ks,t,α,β,γ )≤1

‖EMBs,t(f)−AN,s,t(f)‖L2([0,1]s+t).

As we will sometimes consider the error of the integration problem in the following analysis, we will
use the notation eapp

s+t(AN,s,t) for the worst-case error to avoid ambiguities.
Similarly, the N -th minimal worst-case error is given by

eapp
s+t,Λ(N) = inf

AN,s,t
eapp
s+t(AN,s,t),

where the infimum is extended over all linear algorithms AN,s,t using information from the class Λ.
The information complexity is given as

Napp
s+t,Λ(ε) = min{N : eapp

s+t,Λ(N) ≤ ε}.

Since Λstd ⊆ Λall, it follows that Napp
s+t,Λall(ε) ≤ Napp

s+t,Λstd(ε).

For γ = (γ(1),γ(2)) we define the sum exponent

sγ = inf

κ > 0 :
∞∑
j=1

(γ(1)
j )κ <∞ and

∞∑
j=1

(γ(2)
j )κ <∞

 (2.19)

with the convention that inf ∅ =∞.

Our main goal in this section is to show the following theorem.

Theorem 2.27. Consider the approximation problem EMB as defined in (2.17). Then we have:

1. Strong polynomial tractability and polynomial tractability in the class Λall are equivalent, and
they hold if and only if sγ <∞, where sγ is defined in (2.19). In this case the exponent of strong
polynomial tractability is τ∗(Λall) = 2 max(sγ , 1

α ,
1
β ).

2. The problem is weakly tractable in the class Λall if and only if

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
= 0. (2.20)

3. The problem is strongly polynomially tractable in the class Λstd if
∞∑
j=1

γ
(1)
j <∞ and

∞∑
j=1

γ
(2)
j <∞.

The exponent of strong polynomial tractability in the class Λstd satisfies

τ∗(Λstd) ∈ [2 max( 1
α ,

1
β , sγ), 4 + 2 max( 1

α ,
1
β , sγ)].
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4. The problem is polynomially tractable in the class Λstd if

lim sup
s→∞

∑s
j=1 γ

(1)
j

log s <∞ and lim sup
t→∞

∑t
j=1 γ

(2)
j

log t <∞.

5. The problem is weakly tractable in the class Λstd if and only if

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
= 0.

Remark 2.28. Since it can easily be verified that integration in H(Ks,t,α,β,γ) is not harder than
approximation using Λstd, all sufficifent conditions stated in Theorem 2.27 for approximation are
sufficient for integration in H(Ks,t,α,β,γ) as well. These conditions coincide with the ones given in [44]
for QMC integration.

2.3.3 Proof of Theorem 2.27

We recall that strong polynomial tractability implies polynomial tractability which in turn implies
weak tractability. Furthermore, all sufficient conditions for the class Λstd are also sufficient for the
class Λall with τ∗(Λall) ≤ τ∗(Λstd) in the case of strong polynomial tractability. All necessary conditions
for the class Λall are also necessary for the class Λstd.

Proof of Item 1 In order to give a necessary and sufficient condition for strong polynomial tractabil-
ity for Λall we use a criterion from [63, Section 5.1]. Let us consider the self-adjoint operator
Ws,t := EMB∗s,tEMBs,t : H(Ks,t,α,β,γ)→ H(Ks,t,α,β,γ), which in our case is given by

Ws,tf =
∑

(k,l)∈Ns0×Zt
ρα,γ(1)(k)rβ,γ(2)(l)f̂(k, l)walk(x)el(y).

The eigenvalues are then given by the collection of the numbers

ρα,γ(1)(k)rβ,γ(2)(l) for (k, l) ∈ Ns0 × Zt.

Furthermore, the largest eigenvalue is ρα,γ(1)(0)rβ,γ(2)(0) = 1.
From [63, Theorem 5.2] we find that the problem EMB is polynomially tractable for Λall if and

only if there exist ν > 0 and q ≥ 0 such that

sup
s,t

 ∑
(k,l)∈Ns0×Zt

(ρα,γ(1)(k)rβ,γ(2)(l))ν
1/ν

(s+ t)−q <∞. (2.21)

Furthermore, we have strong polynomial tractability if and only if (2.21) holds with q = 0.
It is easy to check that we require ν > max( 1

α ,
1
β ) in order for (2.21) to hold with q = 0. Let us

now assume that ν is indeed bigger than max( 1
α ,

1
β ). For the sum in (2.21) we have

∑
(k,l)∈Ns0×Zt

(ρα,γ(1)(k)rβ,γ(2)(l))ν =
s∏
j=1

(
1 + (γ(1)

j )νµ(αν)
) t∏
j=1

(
1 + (γ(2)

j )ν2ζ(βν)
)
, (2.22)

where µ(x) = bx(b−1)
bx−b for x > 1 and ζ(·) is the Riemann zeta function.
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Now, using arguments outlined in [75] (see also [56, Section 4.5]), it is easy to see that the existence
of some ν > max( 1

α ,
1
β ) with

∞∑
j=1

(γ(1)
j )ν <∞ and

∞∑
j=1

(γ(2)
j )ν <∞

is a necessary and sufficient condition for (2.21) with q = 0 and therefore for strong polynomial
tractability of the problem EMB.

Again according to [63, Theorem 5.2], the exponent of strong polynomial tractability is
2 max( 1

α ,
1
β , sγ), where sγ is defined in (2.19).

It remains to show the equivalence of strong polynomial and polynomial tractability. Of course, it
suffices to show that polynomial tractability implies strong polynomial tractability. So assume that
the problem EMB is polynomially tractable for the class Λall. Then we obtain polynomial tractability
also for the embedding problem in the pure Walsh space H(Ks,0,α,β,γ) and in the pure Korobov space
H(K0,t,α,β,γ). According to [77, Theorem 2] this is equivalent to strong polynomial tractability for the
embedding problem in the pure Walsh spaceH(Ks,0,α,β,γ) and in the pure Korobov spaceH(K0,t,α,β,γ).
According to [11] and [51] this implies the existence of ν1 > 0 such that

∑
j≥1(γ(1)

j )ν1 < ∞ and the
existence of ν2 > 0 such that

∑
j≥1(γ(2)

j )ν2 < ∞. Hence we have sγ < ∞ and this in turn implies
strong polynomial tractability for the class Λall, as shown above. This completes the proof of Item 1.

Proof of Item 2 Sufficiency of Condition (2.20) follows by Item 5 of Theorem 2.27. Item 5 is proved
on pp. 40.

For showing necessity of Condition (2.20), we use [63, Theorem 5.3] in the following. To keep
notation simple, we shall frequently write d instead of s + t. Theorem 5.3 in [63] states that our
approximation problem is weakly tractable for Λall if and only if

• lim
j→∞

λd,j log2 j = 0 for all d ∈ N and

• there exists some function f : (0, 1
2 ]→ N such that

sup
η∈(0, 1

2 ]

1
η2 sup

d≥f(η)
sup

j≥dexp(d√η)e+1
λd,j log2 j <∞, (2.23)

where λd,j = λs+t,j denotes the jth eigenvalue of Ws,t in non-increasing order.
Let us now assume that the approximation problem is weakly tractable for Λall. This then in

particular implies that
lim
j→∞

λd,j log2 j = 0 for all d ∈ N. (2.24)

We are now going to show that (2.24) implies (2.20). To this end, recall that the eigenvalues of Ws,t

are of the form
ρα,γ(1)(k)rβ,γ(2)(l) for (k, l) ∈ Ns0 × Zt.

Note that we have λd,1 = 1; furthermore, note that ρ
α,γ

(1)
j

(1) = γ
(1)
j for any j ∈ N, and r

β,γ
(2)
i

(1) = γ
(2)
i

for any i ∈ N. Hence, by choosing all components of (k, l) ∈ Ns0 × Zt but one equal to zero, and the
remaining equal to one, we see that

γ
(1)
1 , . . . , γ(1)

s and γ
(2)
1 , . . . , γ

(2)
t
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are eigenvalues of Ws,t. Consequently,

s∑
j=1

γ
(1)
j +

t∑
j=1

γ
(2)
j ≤

d∑
j=1

λd,j ,

and hence

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
≤ lim

d→∞

∑d
j=1 λd,j

d
.

However, due to (2.24), it follows that the latter limit is 0, which shows that indeed (2.20) holds.

Proof of Items 3–5 Any f ∈ H(Ks,t,α,β,γ) can be displayed as

f(x,y) =
∑

(k,l)∈Ns0×Zt
f̂(k, l)walk(x)el(y).

The idea is now to choose some suitable (finite) subset A of Ns
0 × Zt and approximate f by a

truncated series over A, where we approximate f̂(k, l) for every (k, l) ∈ A.
In order to approximate f̂(k, l), we are going to use quasi-Monte Carlo algorithms based on classical

and on polynomial lattice point sets.

Classical lattice point sets. For a detailed definition see also Definition 3.1 and, e.g., [60, Chap-
ter 5].

For N ∈ N and z = (z1, . . . , zt) ∈ ZtN , where ZN := {z ∈ {1, . . . , N − 1} : gcd(z,N) = 1}, the
lattice point set {qv}N−1

v=0 with generating vector z is defined by

qv =
({

vz1
N

}
, . . . ,

{
vzt
N

})
for all 0 ≤ v ≤ N − 1.

Here {·} denotes the fractional part of a real number.

Polynomial lattice point sets. Polynomial lattice point sets are introduced in greater detail in
Section 3.1 on p. 60. Fur further information see also, e.g., [20, Chapter 10]. What follows here, is a
short introduction.

Let Fb be the finite field of prime order b, Fb[x] be the set of polynomials over Fb, and let Fb((x−1))
be the field of formal Laurent series over Fb. The latter contains the field of rational functions as a
subfield. Given m ∈ N, set Gb,m := {a ∈ Fb[x] : deg(a) < m} and define a mapping φm : Fb((x−1))→
[0, 1) by

φm

( ∞∑
l=w

tlx
−l
)

:=
m∑

l=max{1,w}
tlb
−l.

Let f ∈ Fb[x] with deg(f) = m and g = (g1, . . . , gs) ∈ Fb[x]s. The polynomial lattice point set
(pv)v∈Gb,m with generating vector g is defined by

pv :=
(
φm

(
v(x)g1(x)
f(x)

)
, . . . , φm

(
v(x)gs(x)
f(x)

))
for all v ∈ Gb,m.

Note that we can associate the polynomial v(x) =
∑m−1
r=0 vrx

r ∈ Gb,m with the integer v =
∑m−1
r=0 vrb

r,
where, with a slight abuse of notation, the element vr ∈ Fb is associated with the integer vr ∈
{0, 1 . . . , b − 1}. In this way we can index the points of a polynomial lattice point set by integers
ranging from 0 to bm − 1.
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Now suppose that N is of the form bm for some m ∈ N, and let PL = {p0, . . . ,pN−1} ⊆ [0, 1)s be
a polynomial lattice point set and L = {q0, . . . , qN−1} ⊆ [0, 1)t be a lattice point set. We consider the
point set (PL,L) = {(p, q)v = (pv, qv) : v = 0, . . . , N − 1}.

For instance Algorithm 1 in [44] provides a component-by-component method to find a point
set (PL,L) such that a QMC algorithm based on (PL,L) has a low worst-case integration error in
H(Ks,t,α,β,γ). The same point set can also be used for approximation in H(Ks,t,α,β,γ), as we will see
below.

For M ≥ 0 define the set

AM = {(k, l) ∈ Ns0 × Zt : (ρα,γ(1)(k))−1(rβ,γ(2)(l))−1 ≤M}. (2.25)

As ρα,γ(1)(k))−1 and (rβ,γ(2)(l))−1 are always greater than or equal to 1, the set AM is empty for all
0 < M < 1 and we approximate f by 0 for any such M . Thus we only consider M ≥ 1 throughout
the rest of this section.

In order to approximate the embedding EMBs,t(f) = f for f ∈ H(Ks,t,α,β,γ) we use the algorithm

AN,s,t,M (f)(x,y) =
∑

(k,l)∈AM

(
1
N

N−1∑
v=0

f((p, q)v)walk(pv)el(qv)
)

walk(x)el(y). (2.26)

By rearranging (2.26) to

AN,s,t,M (f)(x,y) =
N−1∑
v=0

 1
N

∑
(k,l)∈AM

walk(x	 pv)el(y − qv)

 f((p, q)v),

one can easily see that AN,s,t,M is a linear algorithm of the form (2.18) with

av(x,y) = 1
N

∑
(k,l)∈AM

walk(x	 pv)el(y − qv) and Lv(f) = f((p, q)v), 0 ≤ v ≤ N − 1.

The error of approximation for given f ∈ H(Ks,t,α,β,γ) is then

(f −AN,s,t,M (f))(x,y) =
∑

(k,l)/∈AM

f̂(k, l)walk(x)el(y)

+
∑

(k,l)∈AM

(
f̂(k, l)− 1

N

N−1∑
v=0

f((p, q)v)walk(pv)el(qv)
)

walk(x)el(y).

(2.27)

We use (2.27) and Parseval’s identity to obtain

‖EMBs,t(f)−AN,s,t,M (f)‖2L2([0,1]s+t) = S1 + S2,

where
S1 :=

∑
(k,l)/∈AM

|f̂(k, l)|2,

and

S2 : =
∑

(k,l)∈AM

∣∣∣∣∣
∫

[0,1]s
f(x,y)walk(x)el(y) d(x,y)− 1

N

N−1∑
v=0

f((p, q)v)walk(p)el(q)
∣∣∣∣∣
2
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=
∑

(k,l)∈AM

∣∣∣∣∣
∫

[0,1]s+t
f(k,l)(x,y) dxdy − 1

N

N−1∑
v=0

f(k,l)((p, q)v)
∣∣∣∣∣
2

,

with

f(k,l)(x,y) = f(x,y)walk(x)el(y).

We bound S1 from above by writing

S1 =
∑

(k,l)/∈AM

∣∣∣f̂(k, l)
∣∣∣2 (ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1
ρα,γ(1)(k)rβ,γ(2)(l)

<
1
M

∑
(k,l)∈Ns0×Zt

∣∣∣f̂(k, l)
∣∣∣2 (ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1

= 1
M
‖f‖2H(Ks,t,α,β,γ).

Let us now consider S2. The term in-between the absolute value signs in S2 is the integration
error of the QMC rule using the nodes (PL,L) for the function f(k,l). Since the product of two Walsh
functions is again a Walsh function, and the analogue is true for trigonometric functions, it can easily
be verified that f(k,l) ∈ H(Ks,t,α,β,γ). Hence we can bound S2 by

S2 ≤ (eint
s+t(PL,L))2 ∑

(k,l)∈AM

‖f(k,l)‖2H(Ks,t,α,β,γ),

where eint
s+t(PL,L) is the worst-case integration error in H(Ks,t,α,β,γ) of the QMC rule based on the

nodes (PL,L), i.e.,

eint
s+t(PL,L) = sup

f∈H(Ks,t,α,β,γ)
‖f‖H(Ks,t,α,β,γ )≤1

∣∣∣∣∣
∫

[0,1]s+t
f(x,y) dxdy − 1

N

N−1∑
v=0

f((p, q)v)
∣∣∣∣∣ .

From [44, Theorem 3] it then follows that

S2 ≤
∑

(k,l)∈AM

−1 + 1
N2

N−1∑
k,k′=0

Ks,t,α,β,γ((p, q)k, (p, q)k′)

 ||f(k,l)||2H(Ks,t,α,β,γ)

≤ 2
N

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 ∑
(k,l)∈AM

‖f(k,l)‖2H(Ks,t,α,β,γ). (2.28)

Next we find an estimate for ‖f(k,l)‖2H(Ks,t,α,β,γ) for (k, l) ∈ AM .
By definition we have

||f(k,l)||2H(Ks,t,α,β,γ) =
∑
h∈Ns0

∑
m∈Zt

(
ρα,γ(1)(h)

)−1 (
rβ,γ(2)(m)

)−1 ∣∣∣f̂(k,l)(h,m)
∣∣∣2 .

We start by considering

∣∣∣f̂(k,l)(h,m)
∣∣∣2 =

∣∣∣∣∣
∫

[0,1]s

∫
[0,1]t

f(x,y)walk(x)el(y)walh(x)em(y) dxdy
∣∣∣∣∣
2

=
∣∣∣∣∣
∫

[0,1]s

∫
[0,1]t

f(x,y)walk⊕h(x)el+m(y) dxdy
∣∣∣∣∣
2
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=
∣∣∣f̂(k ⊕ h, l+m)

∣∣∣2 .
Therefore

||f(k,l)||2H(Ks,t,α,β,γ) =
∑
h∈Ns0

∑
m∈Zt

(
ρα,γ(1)(h)

)−1 (
rβ,γ(2)(m)

)−1 ∣∣∣f̂(k ⊕ h, l+m)
∣∣∣2

=
∑
h∈Ns0

∑
m∈Zt

∣∣∣f̂(k ⊕ h, l+m)
∣∣∣2 (ρα,γ(1)(k ⊕ h)

)−1 (
rβ,γ(2)(l+m)

)−1

×
(

ρα,γ(1)(h)rβ,γ(2)(m)
ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

)−1

.

From [51] we know that(
rβ,γ(2)(m)

rβ,γ(2)(l+m)

)−1

≤
(
rβ,γ(2)(l)

)−1 t∏
j=1

max {1, 2βγ(2)
j },

and from [11] that (
ρα,γ(1)(h)

ρα,γ(1)(k ⊕ h)

)−1

≤
(
ρα,γ(1)(k)

)−1
.

Altogether we find(
ρα,γ(1)(h)rβ,γ(2)(m)

ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

)−1

≤
(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1 t∏
j=1

max {1, 2βγ(2)
j },

and

||f(k,l)||2H(Ks,t,α,β,γ) ≤
(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1 t∏
j=1

max {1, 2βγ(2)
j }

×
∑
h∈Ns0

∑
m∈Zt

∣∣∣f̂(k ⊕ h, l+m)
∣∣∣2 (ρα,γ(1)(k ⊕ h)

)−1 (
rβ,γ(2)(l+m)

)−1

=
(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1 t∏
j=1

max {1, 2βγ(2)
j }

×
∑

k⊕h∈Ns0

∑
l+m∈Zt

∣∣∣f̂(k ⊕ h, l+m)
∣∣∣2 (ρα,γ(1)(k ⊕ h)

)−1 (
rβ,γ(2)(l+m)

)−1

=
(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1
||f ||2s,α,γ

t∏
j=1

max {1, 2βγ(2)
j }

≤M‖f‖2H(Ks,t,α,β,γ)

t∏
j=1

max(1, 2βγ(2)
j ).

Plugging this into (2.28) we obtain

S2 ≤
2
N

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 ‖f‖2H(Ks,t,α,β,γ)M |AM |
t∏

j=1
max(1, 2βγ(2)

j ).

(2.29)

Next we study the cardinality of the set AM .
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Lemma 2.29. Let θ = min(α, β). For arbitrary κ > 1/θ = max( 1
α ,

1
β ) we have

|AM | ≤Mκ
s∏
j=1

(
1 + 2ζ(θκ)(bαγ(1)

j )κ
) t∏
j=1

(
1 + 2ζ(θκ)(γ(2)

j )κ
)
.

Proof. For k ∈ N we have

1
ρα,γ(k) = bαblogb kc

γ
≥ bα(−1+logb k)

γ
= kα

γbα
= 1
rα,γbα(k) .

Then we have

AM =
{

(k, l) ∈ Ns0 × Zt : 1
ρα,γ(1)(k)

1
rβ,γ(2)(l)

≤M
}

⊆
{

(k, l) ∈ Ns0 × Zt : 1
rα,γ(1)bα(k)

1
rβ,γ(2)(l)

≤M
}

⊆
{

(k, l) ∈ Zs × Zt : 1
rθ,γ(1)bα(k)

1
rθ,γ(2)(l)

≤M
}

from which the result follows immediately from [51, Lemma 1].

Considering Lemma 2.29, for any κ > 1/θ we obtain

S2 ≤ cs,t,α,β,γ,κ
M1+κ

N
‖f‖2H(Ks,t,α,β,γ),

where

cs,t,α,β,γ,κ := 2

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 t∏
j=1

max(1, 2βγ(2)
j )

×
s∏
j=1

(
1 + 2ζ(θκ)(bαγ(1)

j )κ
) t∏
j=1

(
1 + 2ζ(θκ)(γ(2)

j )κ
)
. (2.30)

Summing up we have

‖EMBs,t(f)−AN,s,t,M (f)‖2L2([0,1]s+t) ≤
(

1
M

+ cs,t,α,β,γ,κ
M1+κ

N

)
‖f‖2H(Ks,t,α,β,γ).

This leads to the following proposition and its corollary, which then concludes the proof of Theorem
2.27.

Proposition 2.30. Let κ > 1/min(α, β) and let cs,t,α,β,γ,κ be defined as in (2.30). The worst-case
error of the algorithm AN,s,t,M as defined in (2.26) using a point set (PL,L) constructed by [44,
Algorithm 1] and with M = (N/cs,t,α,β,γ,κ)1/(2+κ) satisfies

eL2−app(AN,s,t,M ) ≤
√

2
(
cs,t,α,β,γ,κ

N

) 1
4+2κ

.

Proof. We have (
eL2−app(AN,s,t,M )

)2
≤ 1
M

+ cs,t,α,β,γ,κM
1+κ

N
.

44



As we want to have
1
M

= cs,t,α,β,γ,κM
1+κ

N

we end up with

M(N) =
(

N

cs,t,α,β,γ,κ

) 1
2+κ

and consequently

(
eL2−app(AN,s,t,M )

)2
≤ 1(

N
cs,t,α,β,γ,κ

) 1
2+κ

+

(
N

cs,t,α,β,γ,κ

) 1+κ
2+κ cs,t,α,β,γ,κ

N

=
(
cs,t,α,β,γ,κ

N

) 1
2+κ

+ (cs,t,α,β,γ,κ)
1

2+κ N−
1

2+κ

= 2
(
cs,t,α,β,γ,κ

N

) 1
2+κ

and the result follows.

Corollary 2.31. Consider the approximation problem EMB with information from the class Λstd.

• If
∑∞
j=1 γ

(1)
j < ∞ and

∑∞
j=1 γ

(2)
j < ∞, then EMB is strongly polynomially tractable with ε-

exponent at most 4 + 2 max(sγ , 1
α ,

1
β );

• if lim sups→∞
∑s
j=1

γ
(1)
j

log s < ∞ and lim supt→∞
∑t
j=1

γ
(2)
j

log t < ∞, then EMB is polynomially
tractable;

• if lims+t→∞

∑s

j=1 γ
(1)
j +

∑t

j=1 γ
(2)
j

s+t = 0, then EMB is weakly tractable.

Proof. Employing Proposition 2.30, we know that, if

2
(
cs,t,α,β,γ,κ

N

) 1
2+κ
≤ ε2 (2.31)

holds, then we have

eL2−app(AN,s,t,M ) < ε.

Hence we need

N ≥ 22+κcs,t,α,β,γ,κ
ε2(2+κ) . (2.32)

Let pp(x) denote the smallest prime power greater than or equal to x. We define

N = N(ε) := pp

(
22+κcs,t,α,β,γ,κ

ε2(2+κ)

)
≤ 23+κcs,t,α,β,γ,κ

ε2(2+κ) .

This leads to

2
ε2 ≤M(N, ε) ≤

 23+κcs,t,α,β,γ,κ
ε2(2+κ)

cs,t,α,β,γ,κ


1

2+κ

= 2
3+κ
2+κ

ε2 .
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To find the sufficient conditions stated in Corollary 2.31 we study the upper bound on Napp
s+t,Λstd(ε)

which we just found:

Napp
s+t,Λstd(ε) ≤ N(ε) ≤ 23+κcs,t,α,β,γ,κ

ε2(2+κ) .

We estimate cs,t,α,β,γ,κ a bit further.

cs,t,α,β,γ,κ = 2

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 t∏
j=1

max(1, 2βγ(2)
j )

×
s∏
j=1

(
1 + 2ζ(θκ)(bαγ(1)

j )κ
) t∏
j=1

(
1 + 2ζ(θκ)(γ(2)

j )κ
)

≤ 2 exp

2µ(α)
∞∑
j=1

γ
(1)
j

 exp

4ζ(β)
∞∑
j=1

γ
(2)
j

 exp

2β
∞∑
j=1

γ
(2)
j

 exp

2ζ(θκ)bακ
∞∑
j=1

γ
(1)
j


(2.33)

× exp

2ζ(θκ)
∞∑
j=1

γ
(2)
j

 ,
where we have used the well-known estimate

n∏
j=1

(1 + xj) = exp

 n∑
j=1

log(1 + xj)

 ≤ exp

 n∑
j=1

xj

 .
Thus cs,t,α,β,γ,κ is uniformly bounded in s if

∞∑
j=1

γ
(1)
j <∞ and

∞∑
j=1

γ
(2)
j <∞. Consequently

∞∑
j=1

γ
(1)
j <

∞ and
∞∑
j=1

γ
(2)
j <∞ are sufficient conditions for strong polynomial tractability.

From (2.33) we see that we can bound cs,t,α,β,γ,κ by sq if

lim sup
s→∞

s∑
j=1

γ
(1)
j

log s <∞ and lim sup
t→∞

t∑
j=1

γ
(2)
j

log t <∞.

Hence these are sufficient conditions for polynomial tractability.
Finally we show that

lim
s+t→∞

s∑
j=1

γ
(1)
j

s
+

t∑
j=1

γ
(2)
j

t
= 0 (2.34)

is a sufficient condition for weak tractability, i.e. we show that, provided this condition holds, we
always obtain

lim
s+t+ε−1→∞

logNapp
s+t,Λstd(ε)

s+ t+ ε−1 = 0.

Using again (2.33) we have

logNapp
s+t,Λstd(ε) ≤ log 23+κcs,t,α,β,γ,κ

ε2(2+κ)
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≤ (3 + κ) log 2− 2(2 + κ) log ε+ log 2 + 2µ(α)
s∑
j=1

γ
(1)
j + 4ζ(β)

t∑
j=1

γ
(2)
j

+ 2β
t∑

j=1
γ

(2)
j + 2ζ(θκ)bακ

s∑
j=1

γ
(1)
j + 2ζ(θκ)

t∑
j=1

γ
(2)
j . (2.35)

We consider the second summand 2(2 + κ) log ε more closely. We would like to have

lim
s+t+ε−1→∞

2(2 + κ) log ε
s+ t+ ε−1 = 0. (2.36)

If s→∞ or t→∞ this clearly is true. So we study the case where s and t are bounded and only ε−1

tends to infinity. Of course ε−1 →∞ implies ε→ 0. We use L’Hôpital’s rule to find

lim
ε−1→∞

2(2 + κ) log ε
s+ t+ ε−1 = lim

ε−1→∞

2(2 + κ)1
ε

− 1
ε2

= −2(2 + κ) lim
ε−1→∞

ε = 0.

Thus (2.36) holds in any case and, keeping in mind our assumption that (2.34) is fulfilled, we see that
each summand in (2.35) tends to zero as s+ t+ ε−1 →∞. This completes the proof.

2.3.4 Necessary conditions in the class Λstd

We know already that necessary conditions in the class Λall are also necessary in the class Λstd. In the
case of weak tractability we thus have matching necessary and sufficient conditions for Λall and Λstd

due to Theorem 2.27. As for polynomial and strong polynomial tractability, we follow a different track
of argumentation to find other necessary conditions than the ones implied by Theorem 2.27. Even
though we conjecture that the sufficient conditions presented in Corollary 2.31 are also necessary, we
currently only have partial results in this direction.

First we show that approximation by a linear algorithm using information from the class Λstd is
not easier than integration by a linear algorithm of the same order.

Proposition 2.32. L2-Approximation in the space H(Ks,t,α,β,γ) by linear algorithms using N infor-
mation evaluations from Λstd is not easier than integration by quadratures using N function values,
i.e.,

eint
s+t,Λstd(N) ≤ eapp

s+t,Λstd(N),

where eint
s+t,Λstd(N) denotes the N -th minimal worst-case error of integration using linear algorithms

in H(Ks,t,α,β,γ).

Proof. Consider a linear approximation algorithm

AN,s,t(f) =
N∑
v=1

avf(xv,yv)

with av ∈ L2([0, 1]s+t) and (xv,yv) ∈ [0, 1]s+t. Now define an integration algorithm

QN,s,t(f) :=
N∑
v=1

bvf(xv,yv),

where bv :=
∫

[0,1]s+t av(x,y) dxdy. Then,

|Is+t(f)−QN,s,t(f)| =
∣∣∣∣∣
∫

[0,1]s+t
f(x,y) dxdy −QN,s,t(f)

∣∣∣∣∣
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=
∣∣∣∣∣
∫

[0,1]s+t
f(x,y) dxdy −

∫
[0,1]s+t

N∑
v=1

av(x,y)f(xv,yv) dxdy
∣∣∣∣∣

≤

∫
[0,1]s+t

∣∣∣∣∣f(x,y)−
N∑
v=1

av(x,y)f(xv,yv)
∣∣∣∣∣
2

dx dy

1/2

= ||f −AN,s,t(f)||L2 .

The result follows.

Remark 2.33. Note that Proposition 2.32 implies that, given ε > 0,

N int
s+t,Λstd(ε) ≤ Napp

s+t,Λstd(ε),

where N int
s+t,Λstd(ε) denotes the information complexity of integration in H(Ks,t,α,β,γ).

The following result can be viewed as a special case of Proposition 2.32. It implies that certain
linear approximation algorithms, including the algorithm defined in (2.26), cannot have a worst-case
error lower than the worst-case error of arbitrary QMC integration algorithms. As mentioned before
on p. 30 QMC algorithms are equal weight algorithms and they are described in detail in Section 3.1.
Hence we can say that QMC integration in H(Ks,t,α,β,γ) is easier than approximation by means of
(2.26).

Proposition 2.34. Let N ∈ N. Let ΞN,s,t be the class of all approximation algorithms AN,s,t of the
form

AN,s,t(f)(x,y) :=
∑

(k,l)∈A
PN,s,t

(
f,walk, el

)
walk(x)el(y),

where A ⊆ Ns0 × Zt such that (0,0) ∈ A, and where

PN,s,t
(
f,walk, el

)
= 1
N

N∑
v=1

f((p, q)v)walk(pv)el(qv) for (k, l) ∈ A,

with ((p, q)v)Nv=1 = (pv, qv)Nv=1 ⊆ [0, 1)s × [0, 1)t. Furthermore let QN,s,t be the class of all QMC
algorithms with N points for integration in H(Ks,t,α,β,γ).

Then it is true that

inf
QN,s,t∈QN,s,t

eint
s+t(QN,s,t) ≤ inf

AN,s,t∈ΞN,s,t
eapp
s+t(AN,s,t).

Proof. The proof is similar to that of Proposition 2.32. Consider AN,s,t ∈ ΞN,ss,t. Then AN,s,t is a
linear approximation algorithm with

AN,s,t(f) =
N∑
v=1

avf(xv,yv)

where

av(x,y) = 1
N

∑
(k,l)∈A

walk(x	 pv)el(y − qv).

Then, using the elementary properties of Walsh and trigonometric functions, and the fact that (0,0) ∈
A, ∫

[0,1]s+t
av(x,y) dxdy = 1

N

∑
(k,l)∈A

∫
[0,1]s+t

walk(x	 pv)el(y − qv) dx dy
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= 1
N

∑
(k,l)∈A

walk(	pv)el(−qv)
∫

[0,1]s+t
walk(x)el(y) dxdy

= 1
N

∑
(k,l)∈A

walk(	pv)el(−qv)
∫

[0,1]s
walk(x) dx

∫
[0,1]t

el(y) dy

= 1
N

wal0(	pv)e0(−qv)

= 1
N
.

Then the integration algorithm

QN,s,t(f) :=
N∑
v=1

bvf(xv,yv),

where bv :=
∫

[0,1]s+t av(x,y) dxdy, is a QMC algorithm

QN,s,t(f) := 1
N

N∑
v=1

f(xv,yv).

In the same way as in the proof of Proposition 2.32 we see that

|Is+t(f)−QN,s,t(f)| ≤ ||f −AN,s,t(f)||L2 .

This yields the result.

We can now combine Proposition 2.32 with [44, Theorem 1], which gives necessary conditions for
achieving tractability of integration by QMC algorithms in H(Ks,t,α,β,γ). This yields the following
result.

Theorem 2.35. Consider approximation in the space H(Ks,t,α,β,γ) using algorithms from the class
ΞN,s,t. Then it is true that

•
∞∑
j=1

γ
(1)
j <∞ and

∞∑
j=1

γ
(2)
j <∞ is a necessary condition for strong polynomial tractability, and

• lim sup
s→∞

s∑
j=1

γ
(1)
j

log s <∞ and lim sup
t→∞

t∑
j=1

γ
(2)
j

log t <∞ is a necessary condition for polynomial tractability.

Remark 2.36. Note that the algorithm defined in (2.26) lies in the class ΞN,s,t. Hence we cannot hope
to achieve tractability using (2.26) under weaker conditions on the weights than those in Theorem
2.31.

The next proposition implies that integration in H(Ks,t,α,β,γ) is neither easier than integration in
the Walsh space H(Ks,α,γ(1)) (cf. p. 34) nor in the Korobov space H(Kt,β,γ(2)) (cf. p. 34) we defined
in Subsection 2.3.1.

Proposition 2.37. Let s, t ∈ N be given and let eint
s+t(N) denote the N -th minimal worst-case error

of integration using arbitrary linear algorithms in H(Ks,t,α,β,γ). Furthermore, let eint
s (N) denote the

N -th minimal worst-case error of integration using arbitrary linear algorithms in H(Ks,α,γ(1)), and
eint
t (N) denote the N -th minimal worst-case error of integration using arbitrary linear algorithms in
H(Kt,β,γ(2)). Then

(a) eint
s (N) ≤ eint

s+t(N),
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(b) eint
t (N) ≤ eint

s+t(N).

Proof. We show Item (b) of the proposition. Item (a) follows by analogous reasoning. The proof is
based on an inductive argument. More precisely we consider H(K(s−1),t,α,γ) and H(Ks,t,α,β,γ) and
show, roughly speaking, that the error of integrating a function in the unit ball of H(K(s−1),t,α,γ) is
not larger than for integrating a “corresponding” function in the unit ball of H(Ks,t,α,β,γ). Indeed let
f(x1, . . . , xs−1, y1, . . . , yt) be a function in the unit ball of H(K(s−1),t,α,γ), i.e., ||f ||(s−1,t),α,γ ≤ 1. We
show that for each such f ∈ H(K(s−1),t,α,γ) there exists some f̃ in the unit ball of H(Ks,t,α,β,γ) with at
least equally large integration error. For f ∈ H(K(s−1),t,α,γ) we consider f̃(x1, . . . , xs−1, xs, y1, . . . , yt)
= f(x1, . . . , xs−1, y1, . . . , yt) ∈ H(Ks,t,α,β,γ), i.e., f̃ in fact does not depend on xs.

It is easily checked that f̃ lies in the unit ball of H(Ks,t,α,β,γ).
Next we investigate the integration error. We need to show that

|Is−1+t(f)−AN,s−1,t(f)| ≤ |Is+t(f̃)−AN,s,t(f̃)|,

and

AN,s−1,t(f) =
N∑
k=1

akf(zk)

with some ak ∈ C and zk = (xk,1, . . . , xk,s−1, yk,1, . . . , yk,t) ∈ [0, 1](s−1)+t.
Defining z̃k = (xk,1, . . . , xk,s−1, 0, yk,1, . . . , yk,t) ∈ [0, 1]s+t the algorithm AN,s,t(f̃) is given by

AN,s,t(f̃) =
N∑
k=1

akf̃(z̃k).

Then we have

|Is+t(f̃)−AN,s,t(f̃)| =
∣∣∣∣∣
∫

[0,1]s+t
f̃(x1, . . . , xs−1, xs, y1, . . . , yt) d(x1, . . . , xs−1, xs, y1, . . . , yt)

−
N∑
k=1

akf̃(xk,1, . . . , xk,s−1, 0, yk,1, . . . , yk,t)
∣∣∣∣∣

=
∣∣∣∣∣
∫

[0,1](s−1)+t
f(x1, . . . , xs−1, y1, . . . , yt) d(x1, . . . , xs−1, y1, . . . , yt)

−
N∑
k=1

akf(xk,1, . . . , xk,s−1, yk,1, . . . , yk,t)
∣∣∣∣∣

= |Is−1,t(f)−AN,s−1,t(f)|.

Repeated application of this argument yields the result in (b).

Proposition 2.37 implies that necessary conditions for achieving tractability of integration in
H(Ks,α,γ(1)) or H(Kt,β,γ(2)) are also necessary for achieving tractability of approximation using in-
formation from Λstd in H(Ks,t,α,β,γ). It should be emphasized here that Proposition 2.37 allows
arbitrary linear algorithms for integration in H(Ks,α,γ(1)) and H(Kt,β,γ(2)), and is not restricted to
QMC algorithms as in Proposition 2.34. Necessary conditions for tractability of integration by arbi-
trary quadratures in the Korobov space H(Kt,β,γ(2)) are given in [64] (see also [30]). Combining the
latter results with Proposition 2.37 yields the following theorem.

Theorem 2.38. Consider approximation in the space H(Ks,t,α,β,γ) using information from the class
Λstd. Then it is true that
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•
∞∑
j=1

γ
(2)
j <∞ is a necessary condition for strong polynomial tractability, and

• lim sup
t→∞

t∑
j=1

γ
(2)
j

log t <∞ is a necessary condition for polynomial tractability.

Remark 2.39. The obvious gap between the sufficient conditions in Corollary 2.31 and the necessary
conditions in Theorem 2.38 stems from the lack of results on necessary conditions for integration
by arbitrary linear algorithms in the Walsh space H(Ks,α,γ(1)). Such results are available if one
considers only integration by QMC algorithms (see, e.g., [19]), and these even match the sufficient
conditions in Corollary 2.31. However, to the author’s best knowledge there are no results in the
literature regarding more general integration rules. It is possible that such results could be obtained
by proceeding analogously to the methods described in [30] and [64] for the Korobov space. Closing
the gap between Corollary 2.31 and Theorem 2.38 remains open for future research.

2.3.5 The optimal algorithm

In this section we want to consider, once more, algorithms which use arbitrary linear functionals as
information about f , that is, we study Λall as our class of information. In Section 2.3.3 we derived
the results concerning approximation using Λall without specifying the algorithms we are using for
approximating f . In this setting however, given an error threshold ε > 0, we even know the optimal
algorithm (see p. 8 and 9 and also [63, Section 4.2.3]).

It has the form

Aopt
N,s,t,ε−2(f)(x,y) :=

∑
(k,l)∈Aε−2

f̂(k, l)walk(x)el(y), (2.37)

where we have chosen AM = Aε−2 , as defined in (2.25). Note that the functions walk, k ∈ Ns0, form
an orthonormal basis of L2([0, 1]s), and that the functions el, l ∈ Zt, form an orthonormal basis of
L2([0, 1]t). From this it follows that walkel, k ∈ Ns0, l ∈ Zt, is an orthonormal basis of L2([0, 1]s+t).
Furthermore, it is easily checked that the walkel are mutually orthogonal in H(Ks,t,α,β,γ).

Indeed

〈walkel,waljem〉s,t,α,β,γ =


(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1
if (k, l) = (j,m),

0 otherwise.

Hence, using Parseval’s identity, the error can be calculated as∥∥∥EMBs+t(f)− Aopt
N,s,t,ε−2(f)

∥∥∥2

L2([0,1]s+t)
=

∑
(k,l)/∈Aε−2

|f̂(k, l)|2, (2.38)

and we obtain∥∥∥EMBs+t(f)− Aopt
N,s,t,ε−2(f)

∥∥∥2

L2([0,1]s+t)
=

∑
(k,l)/∈Aε−2

|f̂(k, l)|2

=
∑

(k,l)/∈Aε−2

|f̂(k, l)|2
(
ρα,γ(1)(k)

)−1 (
rβ,γ(2)(l)

)−1
ρα,γ(1)(k)rβ,γ(2)(l)

< ε2||f ||2H(Ks,t,α,β,γ),

where we used the definition of the set Aε−2 to see the inequality.
This means that for the algorithm given by (2.37), we always obtain

eapp
s+t,Λall(Aopt

N,s,t,ε−2) < ε.
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3 Componentwise constructions of (polynomial) lattice point sets

3.1 Introduction

Recall that in Section 2.1 we consider multivariate continuous problems. Suppose we have a function
space Hs, a normed space G and a solution operator S : Hs → G. In Section 2.1 we were interested in
how much information is needed to solve such problem at least with a given accuracy.

Now we want to consider specifically the problem of numerical integration in multivariate function
spaces, i.e., the solution operater is given by S : Hs → R, with

S(f) =
∫

[0,1]s
f(x) dx.

This means, in particular that we study the case where G = R. For the integration problem we of
course study algorithms which use information from the class Λstd, i.e., we use function evaluations
as information. In contrast to Section 2.1, now we are mostly interested in how to choose the infor-
mation, that means at which points we evaluate the integrand, rather than in how many information
evaluations are needed to reach a certain error threshold.

As mentioned before in Section 2.1, linear, non-adaptive algorithms are optimal for this type of
problem. Thus we use algorithms of the form

N−1∑
k=0

qkf(pk), (3.1)

with qk ∈ R and pk ∈ [0, 1)s for numerical approximation of integrals of functions over [0, 1]s.
Let us briefly go back to the one-dimensional problem of integrating a univariate function f over

[0, 1], which can be approximated by an algorithm of the form

N∑
k=0

tkf(pk),

with tk ∈ R and pk ∈ [0, 1). For example one could use the trapezoidal rule (cf. [56, Section 1.1]),
which uses t0 = tN = 1

2N and t1 = · · · = tN−1 = 1
N and equidistant sample points pk = k

N .
For dimensions s > 1 one can use the Cartesian product of the trapezoidal rule (or any other one-
dimensional quadrature rule). Then one ends up with a quadrature rule of the form

N∑
k1=0
· · ·

N∑
ks=0

tk1 · · · tksf(pk1 , . . . , pks),

which can of course also be displayed as a quadrature rule of the form (3.1). A quadrature rule like
this, uses (N + 1)s sample points, a number that explodes with growing dimension s.
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A solution to this problem is to use equal-weight quadrature rules to approximate integrals of
functions over [0, 1]s, ∫

[0,1]s
f(x) dx ≈ 1

N

N−1∑
k=0

f(pk). (3.2)

What remains is the problem as to how to choose the sample points. One possibility is to choose them
randomly, which results in a method called Monte Carlo integration.

The other possibility is to choose the sample points deterministically and to try to beat Monte
Carlo. In this case a quadrature rule of the form (3.2) is called quasi-Monte Carlo (QMC) algorithm.
For detailed information on QMC integration see [20, 55, 56, 60].

In what follows we study QMC integration.
Here, the function f belongs to some suitable (weighted) function space or function class, and the

sample points {p0, . . . ,pN−1} are deterministically chosen from [0, 1)s. It turns out that lattice point
sets are often a good choice, see, e.g., [20, 72]. Lattice point sets were introduced for the first time
independently from Hlawka [32] and Korobov [41]. They are usually constructed with the aid of a
generating vector z = (z1, . . . , zs) ∈ Zs and are defined as follows.

Definition 3.1. Let s,N ∈ N and z = (z1, . . . , zs) ∈ Zs. Then

P(N, z) =
{{

kz

N

}
: k = 0, . . . , N − 1

}
is the N -point lattice point set corresponding to z. Here, the braces around kz

N indicate that we consider
the fractional part of each coordinate of kz

N .

Remark 3.2. From [20, p. 84f.] and [56, p. 73f.] we know that we can restrict ourselves to considering
only generating vectors z ∈ {0, 1, . . . , N − 1}s. Additionally, for the generating vector z, one often
requires gcd(zj , N) = 1 for all components zj, with j = 1, . . . , s, to achieve better distributions. Thus
let

ZN = {z ∈ {1, . . . , N − 1} : gcd(z,N) = 1}. (3.3)

We make this additional requirement throughout the rest of this thesis, so, using this notation, we
study generating vectors z ∈ ZsN .

The goal is to construct generating vectors z ∈ ZsN which yield lattice point sets that perform well
in QMC algorithms such as in (3.2). In what follows we want to consider two quality criteria—the
(weighted) star discrepancy criterion and the worst-case error criterion.

We are considering weighted spaces; Let [s] = {1, 2, . . . , s} and let γ = (γu)u⊆[s], with non-negative
reals γu, be weights, i.e., every group of variables {xi : i ∈ u} is equipped with its weight γu. Roughly
speaking, small weights indicate that the corresponding variables contribute little to the integration
problem, whereas for large weights the opposite is true. Here we consider only product weights, as
introduced in Section 2.1 on p. 10.

The weighted star discrepancy was introduced in 1998 by Sloan and Woźniakowski [74], exploiting
the insight that the weights reflect the influence of different coordinates on the integration error.

Definition 3.3. Let γ = (γu)u⊆[s] be a weight sequence and P = {p0, . . . ,pN−1} ⊆ [0, 1)s be an
N -element point set. The local discrepancy ∆(t,P) of the point set P at t = (t1, . . . , ts) ∈ (0, 1]s is
defined as

∆(t,P) = 1
N

N−1∑
k=0

1[0,t)(pk)−
s∏
j=1

tj , (3.4)
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where 1[0,t) denotes the indicator function of [0, t) = [0, t1) × · · · × [0, ts). Then the weighted star
discrepancy D∗N,γ(P) of the point set P is defined as

D∗N,γ(P) = sup
t∈(0,1]s

max
∅6=u⊆[s]

γu |∆((tu,1),P)| , (3.5)

where we denote by (tu,1) the vector (t̃1, . . . , t̃s) with t̃j =
{
tj , if j ∈ u

1 otherwise.

Remark 3.4. For a lattice point set P(N, z) with generating vector z we often write D∗N,γ(z) instead
of D∗N,γ(P(N, z)) for the weighted star discrepancy of P(N, z).

Remark 3.5. One can picture star discrepancy as follows. Suppose we have a point set in the unit
cube and consider boxes in the unit cube anchored in the origin. We compare the volume of these boxes
to the ratio of the points inside the boxes and the overall number of points. The star discrepancy is
then the supremum of all these differences.

In this thesis we consider weighted star discrepancy. Here, as before, weights are a means to
create a setting which is closer to reality. Problems in weighted spaces arise naturally from many
applications and the weights reflect the fact that not all coordinates or groups of coordinates have the
same influence on the problem. We study product weights in this thesis. For product weights the
influence of a coordinate decreases as its index increases.

Given a function f and some point set P = {p0, . . . ,pN−1} the following inequality holds true. It
is called weighted Koksma-Hlawka inequality (cf. [74]),∣∣∣∣∣

∫
[0,1]s

f(x) dx− 1
N

N−1∑
k=0

f(pk)
∣∣∣∣∣ ≤ D∗N,γ(P) ‖f‖γ , (3.6)

where ‖·‖γ is a norm, dependent only on the weight sequence γ, but independent of the point set P.
The Koksma-Hlawka inequality stems from the following identity of Hlawka [31] and Zaremba [78]
(see also [20, 56]), given by

1
N

N−1∑
k=0

f(pk)−
∫

[0,1]s
f(x) =

∑
∅6=u⊆[s]

(−1)uγu
∫

[0,1]|u|
∆((xu,1),PN (z))γ−1

u

∂|u|

∂xu
f (xu,1) dxu.

Applying Hölder’s inequality to the latter identity as done in [20, 74] for integrals and sums yields
(3.6). Inequality (3.6) connects the integration error of QMC algorithms to the weighted star discrep-
ancy. Moreover, it enables us to split the problem into two parts, where the first part purely depends
on the point set used in the QMC rule, and the second part shows the influence of the function f on
the integration error. Obviously, it is beneficial to have lattice point sets with small weighted star
discrepancy and to use them in QMC rules, and thus in Sections 3.2 and 3.3 we consider ways to
construct (polynomial) lattice point sets with small weighted star discrepancy.

Another interesting aspect of the discrepancy of high dimensional point sets is the so-called
tractability of discrepancy (see, e.g., [63, 64, 65] for detailed information). For N, s ∈ N let

disc∞(N, s) := inf
P⊆[0,1)s
#P=N

D∗N,γ(P),

be the Nth minimal star discrepancy. To introduce the concept of tractability of discrepancy we define
the information complexity in this context (also called the inverse of the weighted star discrepancy)
as

N∗(s, ε) := min{N ∈ N | disc∞(N, s) ≤ ε}.
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Thus N∗(s, ε) is the minimal number of points required to achieve a weighted star discrepancy of at
most ε. Note the analogy to tractability of the worst-case error (cf. Section 2.1), where the information
complexity is the minimal number of points required to achieve a worst-case error of at most ε.

Similarly to the worst-case error case, also here, to keep the construction cost of our generating
vector low, it is, of course, beneficial to have a small information complexity and thus to stand a chance
to have a lattice point set of small size. This is why we are interested in how fast the information
complexity grows when s and ε−1 tend to infinity. Tractability describes this dependence of the
information complexity on the dimension s and the error demand ε. The best we can hope for is the
case where N∗(s, ε) is independent of s and depends at most polynomially on ε−1. To be more precise,
we say that we achieve strong polynomial tractability if there exist constants C, τ > 0 such that

N∗(s, ε) ≤ Cε−τ

for all s ∈ N and all ε ∈ (0, 1). Recall from Section 2.1 that a problem is considered tractable if its
information complexity’s dependence on s and ε−1 is not exponential. Taking weights into account
in the definition of discrepancy can sometimes overcome the so-called curse of dimensionality, i.e., an
exponential dependence of N∗(s, ε) on s.

The second quality criterion we want to consider is the worst-case error criterion. As a QMC
algorithm is completely determined by the underlying point set we denote the worst-case error by
eHs,γ(P). Here, Hs denotes the respective function space we are working in and ‖·‖Hs its norm. As
before, if it is clear which function space we consider, we abbreviate our notation to es,γ(P). In this
context the worst-case error es,γ(P) of the point set P = {p0, . . . ,pN−1} introduced in (2.1) takes the
form

es,γ(P) = sup
f∈Hγ
‖f‖Hγ≤1

∣∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

N

N−1∑
j=0

f(pj)

∣∣∣∣∣∣ ,
where Hγ denotes some suitable weighted function space. For lattice point sets PN (z) we often write
es,N,γ(z) instead of es,γ(P). In Section 3.4 we consider the worst-case error as the quality criterion.

Now we take a brief look at how star discrepancy and worst-case error interrelate, see also [20,
Section 2.4]. Let us consider the special reproducing kernel Hilbert H̄s space with kernel

K̄s(x,y) =
s∏
i=1

min{1− xj , 1− yj},

with x = (x1, . . . , xs),y = (y1, . . . , ys) ∈ Rs. For s = 1 this space contains all absolutely continuous
functions f : [0, 1]→ R with f(1) = 0 and square integrable first derivative. If, for example, f1, . . . , fs
are elements of H̄1, then f(x1, . . . , xs) =

∏s
i=1 fi(xi) is in H̄s. Apart from these products and sums of

these products, H̄s contains also its completion with respect to the norm induced by the inner product

〈f, g〉 =
∫

[0,1]s

∂sf

∂x

∂sg

∂x
dx,

where ∂sf
∂x (x) = ∂sf

∂x1···∂xs (x).
Then for an N -point set PN ⊆ [0, 1)s, it is true that

eH̄s,γ(PN ) =
(∫

[0,1]s
|∆(x,PN )|2 dx

)1/2

.
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Note that here γ = (1)j≥1, as we consider an unweighted space.
As for the weighted case consider a weight sequence γ and the weighted Sobolev space

W
(1,...,1)
2 ([0, 1]s), equipped with the norm ‖·‖

W
(1,...,1)
2 ,γ

and

Fs,γ = {f ∈W (1,...,1)
2 ([0, 1]s) : ‖f‖

W
(1,...,1)
2 ,γ

<∞}.

Then we know from [74, Theorem 1] that

ewor
Fs,γ (An,s) =

 ∑
∅6=u⊆[s]

γu

∫
[0,1]s

(∆((tu,1),P))2 dtu

 1
2

,

where An,s is the QMC algorithm using the elements of the n-point set P as sample points.

The goal in the following sections is to construct generating vectors for (polynomial) lattice point
sets with small weighted star discrepancy, and/or worst-case error, respectively. For dimensions
s = 1, 2 explicit constructions are available, see for example [4] and references cited there. For
dimensions s ≥ 3, however, this is not the case, and one usually has to resort to computer search
algorithms, most commonly component-by-component (CBC) algorithms. The standard structure of
a CBC construction is as follows: We start by setting the first component z1 of the generating vector
equal to 1. Then in each step one component is added until we have a full-size generating vector
z = (z1, . . . , zs). When adding one component, all previously chosen components z1, . . . , zd remain
the same and the new component zd+1 is chosen from a search set, e.g., ZN , to minimize the weighted
star discrepancy or the worst-case error, respectively, of (z1, . . . , zd, zd+1) as a function of zd+1. The
algorithm terminates once zs has been chosen.

It is an advantage of CBC constructions that they are extensible in the dimension. This means
that if one has calculated an s-dimensional generating vector for a lattice point set with the aid of a
CBC construction and wants to extend the result to an (s+ 1)-dimensional point set, he only need to
do one more step of the CBC construction, rather than starting again from scratch.

In general, CBC constructions do not result in an optimal generating vector. However, the obtained
vectors are in many settings of optimal order of star discrepancy and worst-case error, respectively
cf., e.g., [38] and [49], and numerical results, e.g., in [49] show that they are also performing well in
terms of implied constants.

As CBC constructions yield good results and a search through all generating vectors z ∈ Zs would
be completely insurmountable even for relatively small values of N and s, we try to improve CBC
constructions even more. (The number of elements in ZsN is φ(N)s ≥ N

2s
3 , for all N ≥ 30, where φ(·)

denotes Euler’s totient function. The estimate for φ(N) stems from [40])
The first CBC construction is due to Korobov [42] and has been rediscovered by Sloan and Reztsov

in 2002 [73]. Sloan and Reztsov constructed lattice point sets for the integration of functions from
unweighted Korobov spaces, based on the worst-case error criterion. (If we set all the weights γj equal
to 1 in the definition of Korobov spaces on p. 34 we obtain the unweighted Korobov space.) Sloan’s
and Reztsov’s CBC algorithm reads as follows.

Algorithm 3.6. Let s ∈ N and let N be a prime. Determine z = (z1, . . . , zs) in the following way.

1. Set z1 = 1.

2. For 1 ≤ d < s assume z1, . . . , zd to be already chosen. Find zd+1 ∈ ZN as minimizer of

ed+1,N,γ(z1, . . . , zd, zd+1)

as a function of zd+1.
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3. Increase d by 1 and repeat Step 2 while d < s.

The condition that N is a prime in Algorithm 3.6 is due to technical reasons and we know from
Bertrand’s postulate that this is not a big restriction.

Algorithm 3.6 yields a generating vector z = (z1, . . . , zs) that fulfills the following worst-case error
bound (cf. [73, Theorem 2.1]). Let β > 1 and N be a prime, with N ≥ 1 + 2ζ(β), where ζ(·) denotes
Riemann’s Zeta function. Then for all s ∈ N and all α ≥ β

es,N,γ(z1, . . . , zs) ≤
(1 + 2ζ(β))

sα
β

N
α
β

.

The computational cost of Algorithm 3.6 is of order sN2.

It was proved in 2001 by Sloan and Woźniakowski [75] that the optimal rate of convergence in
weighted Korobov spaces is given by O(N−

α
2 +δ), with δ > 0 arbitrarily small and the implied constant

independent of s. The error bound quoted above does not reach this rate, as it is true for any 1 < β ≤ α.
In 2003, however, Kuo [49] proved that the same algorithm applied to weighted Korobov spaces rather
than unweighted Korobov spaces as used by Sloan and Reztsov, indeed yields the optimal convergence
rate. She proved the following theorem (cf. [49, Corollary 2 and Theorem 4]).

Theorem 3.7. Let N be prime. For all 1 ≤ d ≤ s find zd as the minimizer of e2
d,N,γ(z1, . . . , zd) over

the set Zs. Then for all 1
α < λ ≤ 1

e2
s,N,γ(z1, . . . , zs) ≤ 2

1
λN−

1
λ

s∏
j=1

(1 + 2γλj ζ(αλ))
1
λ

and

es,N,γ(z1, . . . , zs) = O(N−
α
2 +δ),

for all 0 < δ ≤ α−1
2 . The implied constant is independent of s.

Remark 3.8. Let ε ∈ (0, 1). Then we obtain es,N,γ(z1, . . . , zs) < ε for all N > cε−
2

α−2δ , with a
constant c > 0 independent of the dimension s. Thus we have strong polynomial tractability.

When implementing algorithms like Algorithm 3.6 one has to perform several costly matrix-vector
multiplications. It turns out that the matrices involved are a special form of block matrix, consisting
of identical blocks. This block structure can be exploited using fast Fourier transform (FFT) to re-
duce the construction cost from O(sN2) to O(sN logN). These faster versions are called fast CBC
constructions. They are due to Nuyens and Cools [66, 67].

Algorithms very similar to Algorithm 3.6 have been considered by Sinescu and Joe [38, 70, 71]
using the weighted star discrepancy criterion. The main difference is that in Step 2 of their algo-
rithms the weighted star discrepancy is minimized instead of the worst-case error. The constructions
of Sinescu and Joe reach the optimal order of the weighted star discrepancy, D∗N,γ(z) = O(N−1+δ),
for any δ > 0. Sinescu and Joe already used methods of Nuyens and Cools [66, 67] to reduce the
computational cost to O(sN logN), as described above.

In 2015 Dick, Kritzer, Leobacher and Pillichshammer [13] introduced a method to speed up CBC
constructions in weighted spaces even further. In their paper [13] they consider weighted Korobov
spaces as defined on p. 34.
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It is the nature of weighted spaces that not all coordinates of the generating vector z have equal
amount of influence on the quality of the corresponding lattice point set. In what follows, for simplicity,
we only consider product weights. Recall from p. 10 that these are given via a nonincreasing weight
sequence γ = (γj)j≥1. The weights γu are then defined as γu =

∏
j∈u γj . In product weighted spaces the

components zj of the generating vector have less and less influence on the quality of the approximation
as their index j increases. Roughly speaking, this is due to the weights γj which are diminishing with
increasing index j. We can exploit this property in the following way. As the components’ influence is
decreasing with their indices we want to make less effort and have less computational cost for choosing
these components. To achieve this we choose them from ever smaller search sets, which are defined
as follows. Let w1 ≤ w2 ≤ · · · be a nondecreasing sequence of non-negative integers. We sometimes
assume for technical reasons that w1 = 0. This sequence of wj ’s is determined in accordance with the
weight sequence γ. Loosely speaking, the smaller γj , the bigger wj is chosen. For N = bm, with a
prime b and m ∈ N, the reduced search spaces ZN,wj are defined as

ZN,wj =
{
{z ∈ {1, . . . , bm−wj − 1} : gcd(z, bm) = 1}, if wj < m,

{1}, if wj ≥ m.
(3.7)

The cardinality of these reduced search spaces is

∣∣∣ZN,wj ∣∣∣ =
{
bm−wj−1(b− 1), if wj < m,

1, if wj ≥ m,

as opposed to |ZN | = bm−1(b− 1) for the full search space ZN . This means a reduction of the size by
a factor of b−wj , if wj < m.

The reduced CBC algorithm by Dick et al. [13] is then given by

Algorithm 3.9. Let N = bm, 0 = w1 ≤ w2 ≤ . . . and ZN,wj be defined as above. Construct
z = (bw1z1, . . . , b

wszs) as follows.

1. Set z1 = 1.

2. For 1 ≤ d < s assume that z1, . . . , zd have already been found. Choose zd+1 ∈ ZN,wd+1 such that

ed+1,N,γ((bw1z1, . . . , b
wdzd, b

wd+1zd+1))

is minimized as a function of zd+1.

3. Increase d by 1 and repeat the second step until z = (bw1z1, . . . , b
wszs) is found.

This algorithm can again be implemented using the fast methods of Nuyens and Cools. In this
case it is often called the reduced fast CBC algorithm.

A generating vector z constructed with Algorithm 3.9 yields [13, Corollary 1]

es,N,γ(z) ≤ cs,α,γ,δ,wN−
α
2 +δ,

for any δ ∈ (0, α−1
2 ], where α > 1 is the smoothness parameter of the weighted function space under

consideration, in this case it is the smoothness parameter of the weighted Korobov space. Further w
denotes the weight sequence 0 = w1 ≤ w2 ≤ . . . . The constant cs,α,γ,δ,w is given by

cs,α,γ,δ,w =

2
∑
∅6=u⊆[s]

γ
1

α−2δ
u

(
2ζ
(

α

α− 2δ

))|u|
bmaxj∈u wj

α
2−δ

.
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It takes

O

N logN + min{s, s∗}N +
min{s,s∗}∑
d=1

(m− wd)bm−wd


operations to compute z with Algorithm 3.9. Here, s∗ denotes the smallest j such that wj ≥ m. Thus,
if s∗ is finite and s is large enough, the construction cost is independent of the dimension.

A similar reduced fast CBC construction can be done when using the weighted star discrepancy
criterion. This is the content of Section 3.2.

So far we considered means to speed up the original Algorithm 3.6 by Sloan and Reztsov so that
they are feasible for large dimensions s and large N . Numerical experiments, however, show that these
algorithms tend to produce generating vectors with recurring components, i.e., there exist i, j ∈ [s],
with i 6= j and zi = zj . We quote from [50]:

[. . . ] However, it has been observed that the components start to repeat from some di-
mension onward for product-type weights, hence leading to a practical limit on the value
of d [we remark that d has the role of s in [50]]. This side effect of the CBC algorithm is
yet to be fully understood.

Gantner and Schwab write in [25]:

[. . . ] For large values of the worst-case error, the elements of the generating vector can
repeat, leading to very bad projections in certain dimensions.

As mentioned in the quote from Kuo above this effect is not yet fully understood. It could be due to
numerical problems of the algorithm, see [67, page 386]. There is, however, a way around the problem.
Gantner and Schwab [25] as well as Dick and Kritzer [10] have come up with methods to avoid this
problem. Gantner and Schwab call their method pruning in the CBC construction, while Dick and
Kritzer name their refined version of this method projection-corrected CBC construction. The general
idea is in each step of the CBC algorithm to define some exclusion set E whose elements cannot be
selected as component of the generating vector in this step. By defining the exclusion sets as the sets
consisting of all elements chosen in the previous steps one can effectively avoid components showing
up several times. This method can also be used to avoid other phenomena, like for example all lattice
points lying on an antidiagonal. For detailed information see [10].

The projection-corrected CBC algorithm of Dick and Kritzer is again designed for weighted Ko-
robov spaces (cf. p. 34). It leads to generating vectors with worst-case error

es,N,γ(z) ≤

 1
φ(N)

∑
u⊆[s]

γλu (2ζ(αλ))|u|
∏
j∈u

φ(N)
φ(N)− |Ej |

 1
2λ

,

for all 1
α < λ < 1, where Ej ⊂ ZN are the aforementioned exclusion sets. It is also shown in [10] that, as

long as the relative size of the exclusion sets is uniformly bounded, tractability results are not affected.
When using the fast matrix-vector multiplication of Nuyens and Cools the projection-corrected CBC
algorithm can be implemented using O(sN logN) operations. It is the aim of Section 3.4 to combine
the projection-corrected CBC construction with the reduced fast method to obtain an algorithm that
is fast and yields a generating vector free of recurring components.

Up to now we only considered lattice point sets as choice of sample points in QMC algorithms.
Another good choice are polynomial lattice point sets, which are defined below. They have been
introduced by Niederreiter in [60, Chapter 4], [61]. In fact, it turns out that in some cases lattice
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point sets yield better results, whereas in other situations polynomial lattice point sets are the better
choice. For instance higher-order polynomial lattice point sets work very well for smooth integrands,
whereas lattice point sets turn out to be particularly well suited for smooth periodic functions. For
information on higher-order polynomial lattice point sets see for example [8]. For a detailed comparison
of lattice point sets and polynomial lattice point sets see, e.g., [68]. Thus it is useful to have methods
at hand for the construction of good lattice point sets as well as good polynomial lattice point sets.

Dick et al. [13] considered a version of their reduced fast CBC algorithm for the construction of
polynomial lattices as well. This algorithm also leads to a polynomial lattice point set with small
worst-case error and a construction cost that becomes independent of the dimension eventually. In
Section 3.3 we give a version of a CBC construction for polynomial lattice point sets that uses the
weighted star discrepancy as the quality criterion.

Recall from p. 40 that polynomial lattice point sets are defined as follows. For a prime number p,
let Fp be the finite field of order p. We identify Fp with the set {0, 1, . . . , p − 1} equipped with the
modulo p arithmetic. We denote by Fp[x] the set of polynomials over Fp and by Fp((x−1)) the field
of formal Laurent series over Fp with elements of the form

L =
∞∑
l=ω

tlx
−l,

where ω ∈ Z and tl ∈ Fp for all l ≥ ω. For a given dimension s ≥ 2 and an integer m ≥ 1 we
choose a so-called modulus f ∈ Fp[x] with deg(f) = m, as well as polynomials g1, . . . , gs ∈ Fp[x],
with deg(gj) < m for all 1 ≤ j ≤ s. The vector g = (g1, . . . , gs) is called the generating vector of the
polynomial lattice point set. Further, we introduce the map φm : Fp((x−1))→ [0, 1) such that

φm

( ∞∑
l=ω

tlx
−l
)

=
m∑

l=max{1,ω}
tlp
−l.

With n ∈ {0, 1, . . . , pm − 1} we associate the polynomial

n(x) =
m−1∑
r=0

nrx
r ∈ Fp[x],

as each such n can uniquely be written as n = n0+n1p+· · ·+nm−1p
m−1 with digits nr ∈ {0, 1, . . . , p−1}

for all r ∈ {0, 1, . . . ,m− 1}.

Definition 3.10. With the notation above, the polynomial lattice point set P(g, f) is defined as the
set of N = pm points

xn =
(
φm

(
n(x)g1(x)
f(x)

)
, . . . , φm

(
n(x)gs(x)
f(x)

))
∈ [0, 1)s

for 0 ≤ n ≤ pm − 1.

The name polynomial lattice point sets stems from the fact that their construction resembles very
much that of lattice point sets. Recall that one point of lattice point set is of the form

pn =
({

nz1
N

}
, . . . ,

{
nzs
N

})
.

It is easy to identify the mutually corresponding parts: the map φm and the fractional part {·},
n(x) and n, the components of the generating vectors, gi and zi, and finally the moduli f(x) and N ,
respectively.
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Polynomial lattice point sets are a special case of (t,m, s)-nets, first introduced by Niederreiter
[59]. For an overview on (t,m, s)-nets see also [20, Chapter 4].

For further information on polynomial lattice point sets see [20, Chapter 10].

In the following sections we discuss several CBC constructions that lead to generating vectors with
different good properties.
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3.2 A reduced fast component-by-component construction of lattice point sets
with small weighted star discrepancy

In this section we want to consider a similar algorithm as the reduced fast CBC algorithm of Dick et
al. in [13], but with the weighted star discrepancy as quality criterion instead of the worst-case error.
All the results of this section are based on [47] and are joint work with Ralph Kritzinger.

Let b be an arbitrary prime number and m a positive integer. We consider lattice point sets with
N = bm elements and study their weighted star discrepancy. As said before we construct a generating
vector z one component at a time with the aid of a CBC construction.

When using a standard-type CBC construction as for example in [38, 70, 71], every component
is chosen from ZN = {z ∈ {1, 2, . . . , bm − 1} : gcd(z, bm) = 1}. As done in [13] for the worst-case
error, we speed up the construction of such generating vectors by reducing the search space for each
component according to its importance, while still achieving a small weighted star discrepancy for the
corresponding lattice point set. Recall from (3.7) that the reduced search spaces are defined as

ZN,wj =
{
{z ∈ {1, . . . , bm−wj − 1} : gcd(z, bm) = 1}, if wj < m,

{1}, if wj ≥ m,

where we defined the sequence 0 = w1 ≤ w2 ≤ . . . in accordance with the weight sequence γ = (γj)j≥1.
To illustrate how to choose the weights wj and what can be gained from the reduced fast algorithm

we start by discussing a motivating example. Consider first the standard CBC construction as treated
in [38, 70, 71]. Speaking in terms of the reduced fast CBC construction, this would be the case
where wj = 0 for all j ≥ 0. In this case, a sufficient condition for strong polynomial tractability is∑∞
j=1 γj <∞, which is satisfied for instance for the special choices γj = j−2 and γj = j−1000. However,

in the second example the weights decay much faster than in the first. We can make use of this fact
by introducing the sequence w = (wj)j≥0 such that the condition

∑∞
j=1 γjb

wj < ∞ holds, while still
achieving strong polynomial tractability (see Corollary 3.20). This way, we can reduce the size of the
search sets for the components of the generating vector if the weights γj decay very fast. Consider
for example the weight sequence γj = j−k for some k > 1. For wj = b(k − α) logp jc with arbitrary
1 < α < k we find

∞∑
j=1

γjb
wj ≤

∞∑
j=1

j−kjk−α =
∞∑
j=1

j−α = ζ(α) <∞,

where ζ denotes the Riemann Zeta function. Observe that for large k, i.e., fast decaying weights, we
may choose smaller search sets and thereby speed up the CBC algorithm.

In what follows we denote by ZsN,w the Cartesian product bw1ZN,w1×· · ·×bwsZN,ws , where bwjZN,wj
means that every element of ZN,wj is multiplied by bwj modulo bm. By z ∈ ZsN,w we mean a vector
z = (bw1z1, . . . , b

wszs), with zj ∈ ZN,wj for j ∈ [s]. We study the weighted star discrepancy of lattice
point sets PN (z) with generating vectors z ∈ ZsN,w and will see that for sufficiently fast decreasing
weights we can construct lattice point sets with small weighted star discrepancy, while significantly

62



reducing the construction cost in comparison to the standard CBC construction.

Instead of analyzing the weighted star discrepancy, we study

RsN,γ(z) =
∑
u⊆[s]

γuRN (z, u), (3.8)

where

RN (z, u) = 1
N

N−1∑
k=0

∏
j∈u

1 +
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|

− 1. (3.9)

It is enough to consider RsN,γ(z), since we know from Niederreiter [60, Theorem 3.10 and Theorem 5.6]
that

D∗N,γ(z) ≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+ 1

2R
s
N,γ(z), (3.10)

where the first term of the right hand side is independent of z. We use this estimate to derive our
results in the following sections.

3.2.1 The arithmetic mean over all z ∈ ZsN,w
First of all we estimate the arithmetic mean of the weighted star discrepancy over all possible gener-
ating vectors

z = (bw1z1, . . . , b
wszs) ∈ ZsN,w,

proceeding similarly to [60] and [71]. We prove that the arithmetic mean is small and thus there must
exist at least one lattice point set with weighted star discrepancy smaller than or equal to the mean.
This yields the existence of a lattice point set with small weighted star discrepancy. The upper bound
which we obtain for the arithmetic mean is not the same as for the reduced CBC construction in the
next section. Nonetheless, we need large parts of the calculations of the present section to obtain the
estimate in Section 3.2.2.

Theorem 3.11. Let N = bm, (wj)j≥1 and ZsN,w be as above and let m ≥ 5. Then there exists a
generating vector

z = (bw1z1, . . . , b
wszs) ∈ ZsN,w

such that the weighted star discrepancy of the corresponding lattice point set satisfies

D∗N,γ(z) ≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)

+ 1
2

 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

m−1∑
p=0

bm−p−1(b− 1)
s∏
j=1

wj≥m−p

(βj + γjSN )
s∏
j=1

wj<m−p

βj −
s∏
j=1
βj

 , (3.11)

with βj = 1 + γj for all j ∈ N and
SN =

∑
−N2 <h≤

N
2

h6=0

1
|h|
. (3.12)
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Remark 3.12. Provided that the γjb
wj ’s are summable, the bound in Theorem 3.11 is of order

N δ logN for arbitrary δ ∈ (0, 1) with an implied constant independent of N and s. Furthermore,
note that if all weights wj = 0, then we obtain the result in [71, Theorem 1 and Corollary 1].

Proof. To prove Theorem 3.11 we calculate the arithmetic mean of the weighted star discrepancy over
all possible generating vectors. This mean is smaller than or equal to the bound given in (3.11) and
thus yields the existence of a lattice point set with a weighted star discrepancy not exceeding this
bound.

As the first term in (3.10) is independent of z, it is obviously enough to consider the mean

MN,s,γ = 1
|ZsN,w|

∑
z∈ZsN,w

RsN,γ(z) (3.13)

of the second term.
We have from [38, p. 186, Eq. 9]

RsN,γ(z)= 1
N

N−1∑
k=0

s∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|

−
s∏
j=1

βj

= 1
N

s∏
j=1

(βj+γj SN )+ 1
N

N−1∑
k=1

s∏
j=1

βj+ γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|

−
s∏
j=1

βj .

(3.14)

Thus

MN,s,γ= 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

N−1∑
k=1

s∏
j=1

 1
|ZN,wj |

∑
zj∈ZN,wj

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|


−

s∏
j=1

βj

= 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

N−1∑
k=1

s∏
j=1

βj + γj
|ZN,wj |

∑
zj∈ZN,wj

∑
−N2 <h≤

N
2

h6=0

e2πihkbwj zj/N

|h|

−
s∏
j=1

βj .

To avoid lengthy formulas we use the following abbreviations:

TN,wj (k) =
∑

zj∈ZN,wj

∑
−N2 <h≤

N
2

h6=0

e2πihkbwj zj/N

|h|
, (3.15)

and

LN,s,γ = 1
N

N−1∑
k=1

s∏
j=1

(
βj + γj

|ZN,wj |
TN,wj (k)

)
. (3.16)

Then we have
MN,s,γ = 1

N

s∏
j=1

(βj + γjSN ) + LN,s,γ −
s∏
j=1

βj . (3.17)
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We study TN,wj (k) distinguishing the two cases wj ≥ m and wj < m.

Case 1 : wj ≥ m. This yields ZN,wj = {1} and thus

TN,wj (k) =
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj /N

|h|
=

∑
−N2 <h≤

N
2

h6=0

e2πihkbwj−m

|h|
=

∑
−N2 <h≤

N
2

h6=0

1
|h|

= SN . (3.18)

Case 2 : wj < m. Then ZN,wj = {z ∈ {1, 2, . . . , bm−wj − 1} : gcd (z,N) = 1}. According to (3.16) we
have to calculate TN,wj (k) only for k ∈ {1, . . . , bm − 1}. We display these k as k = qbm−wj + r with
q ∈ {0, . . . , bwj − 1}, r ∈ {0, . . . , bm−wj − 1} and (q, r) 6= (0, 0). Then

TN,wj (k) =
∑

−N2 <h≤
N
2

h6=0

1
|h|

∑
zj∈ZN,wj

e2πih(qbm−wj+r)bwj zj/N

=
∑

−N2 <h≤
N
2

h6=0

1
|h|

∑
zj∈ZN,wj

e2πihqzje2πihrzj/bm−wj

=
∑

−N2 <h≤
N
2

h6=0

1
|h|

∑
zj∈ZN,wj

e2πihrzj/bm−wj . (3.19)

If r = 0, i. e., k is a multiple of bm−wj , this yields

TN,wj (k) =
∑

−N2 <h≤
N
2

h6=0

1
|h|

∑
zj∈ZN,wj

1 = |ZN,wj |SN . (3.20)

Next we investigate r ∈ {1, . . . , bm−wj − 1}. For any zj ∈ {1, . . . , bm−wj − 1} we find gcd (zj , N) =
gcd (zj , bm−wj ) ∈

{
1, b, b2, . . . , bm−wj−1} and hence

∑
d| gcd (zj ,N)

µ(d) =
∑

d| gcd (zj ,bm−wj )

µ(d) =
{

1 if and only if gcd (zj , N) = gcd (zj , bm−wj ) = 1,
0 otherwise,

where µ denotes the Möbius function.

For any zj ∈ {1, . . . , bm−wj − 1} this implies zj ∈ ZN,wj iff
∑

d| gcd (zj ,bm−wj )
µ(d) = 1. Inserting this fact

into (3.19) we have

TN,wj (k) =
∑

−N2 <h≤
N
2

h6=0

1
|h|

bm−wj−1∑
zj=1

e2πihrzj/bm−wj
∑

d| gcd (zj ,bm−wj )

µ(d). (3.21)

Studying the two inner sums we find

bm−wj−1∑
zj=1

e2πihrzj/bm−wj
∑

d| gcd (zj ,bm−wj )

µ(d) =
∑

d|bm−wj
µ(d)

bm−wj−1∑
zj=1
d|zj

e2πihrzj/bm−wj

=
∑

d|bm−wj
µ(d)

b
m−wj
d∑

a=1
e2πihrad/bm−wj,

(3.22)
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where the latter equality holds since a ∈
{

1, . . . , b
m−wj
d

}
yields

ad ∈
{
d, 2d, . . . , bm−wj

}
=
{
1 ≤ zj ≤ bm−wj − 1 : d|zj

}
∪
{
bm−wj

}
and ∑

d|bm−wj
µ(d) = 0,

since wj < m.
Changing the order of summation we obtain with (3.22)

bm−wj−1∑
zj=1

e2πihrzj/bm−wj
∑

d| gcd (zj ,bm−wj )

µ(d) =
∑

d|bm−wj
µ

(
bm−wj

d

)
d∑
a=1

e2πihra/d

=
∑

d|bm−wj
d|hr

dµ

(
bm−wj

d

)
.

With (3.21) this leads to

TN,wj (k) =
∑

−N2 <h≤
N
2

h6=0

1
|h|

∑
d|bm−wj
d|hr

dµ

(
bm−wj

d

)
=
∑

d|bm−wj
dµ

(
bm−wj

d

) ∑
−N2 <h≤

N
2

h6=0
d|hr

1
|h|
.

Using that d|hr is equivalent to d
gcd (d,r) |h we display TN,wj (k) as

TN,wj (k) =
∑

d|bm−wj
dµ

(
bm−wj

d

) ∑
−N2 <h≤

N
2

h6=0
d

gcd (d,r) |h

1
|h|
. (3.23)

To further investigate TN,wj (k), we first study sums of the same type as the inner sum in (3.23).
For any positive integer a we have∑

−N2 <h≤
N
2

h6=0
a|h

1
|h|

=
∑

−N2 <ap≤
N
2

p 6=0

1
a|p|

= 1
a

∑
− N

2a<p≤
N
2a

p 6=0

1
|p|

= 1
a
SN
a
, (3.24)

where SN
a

is defined analogously to (3.12). Combining (3.24) and (3.23) and the property of µ that
µ(1) = 1, µ(b) = −1 and µ(bi) = 0 for i ∈ N, i ≥ 2 we obtain

TN,wj (k) =
∑

d|bm−wj
dµ

(
bm−wj

d

)
gcd (d, r)

d
SN
d

gcd (d,r)

=
∑

d|bm−wj
µ

(
bm−wj

d

)
gcd (d, r)SN

d
gcd (d,r)

=
m−wj∑
i=0

µ

(
bm−wj

bi

)
gcd (bi, r)S bm

bi
gcd (bi,r)

= gcd (bm−wj, r)Sbwj gcd (bm−wj,r)−gcd (bm−wj−1, r)S
bwj+1 gcd (bm−wj−1,r)

= bν(S
bwj+ν − Sbwj+ν+1),

(3.25)
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with ν ∈ {0, . . . ,m− wj − 1}.
Summarizing, we have for k ∈ {1, . . . , bm − 1}

TN,wj (k) =


SN if wj ≥ m,
|ZN,wj |SN if wj < m and k ≡ 0 (mod bm−wj ),
bν(S

bwj+ν − Sbwj+ν+1)
with bν = gcd (bm−wj , r) if wj < m and k 6≡ 0 (mod bm−wj ).

(3.26)

Let us choose t ∈ N0 such that wj < m for all j ≤ t and wt+1 ≥ m. (If t = 0, then wj ≥ m for all
j ∈ N. In this case we obtain the generating vector z = (bw1 , . . . , bws).) With this fact we are able to
write LN,s,γ from formula (3.16) as

LN,s,γ = 1
N

N−1∑
k=1

min{t,s}∏
j=1

(
βj + γj

|ZN,wj |
TN,wj (k)

)
s∏

j=t+1

(
βj + γj

|ZN,wj |
TN,wj (k)

)

= 1
N

s∏
j=t+1

(βj + γjSN )
N−1∑
k=1

min{t,s}∏
j=1

(
βj + γj

|ZN,wj |
TN,wj (k)

)
. (3.27)

Next we aim at finding bounds for
TN,wj (k)
|ZN,wj |

for wj < m.
If k is a multiple of bm−wj we see immediately from (3.26) that

TN,wj (k)
|ZN,wj |

=
|ZN,wj |SN
|ZN,wj |

= SN .

If k is not a multiple of bm−wj , we use a formula from Niederreiter [58, Lemma 1 and Lemma 2]
for Sn with arbitrary n ∈ N, given by

Sn = 2 logn+ 2γ − log 4 + ε(n), (3.28)

where γ denotes the Euler-Mascheroni constant

γ = lim
l→∞

(
l∑

k=1

1
k
− log l

)
≈ 0.577216 . . .

and {
− 4
n2 < ε(n) ≤ 0, if n is even,
− 3
n2 < ε(n) < 1

n2 , if n is odd.
(3.29)

From (3.26) we know

TN,wj (k) = bν(S
bwj+ν − Sbwj+ν+1) < 0. (3.30)

With m ≥ 5 we find −2 <
TN,wj (k)
|ZN,wj |

< 0 for wj < m and k not a multiple of bm−wj as follows. The
upper bound follows immediately from (3.30). It remains to show the lower bound. First we consider
TN,wj (k) using (3.28). We have

TN,wj (k) = bν(S
bwj+ν − Sbwj+ν+1)

= bν
(
−2 log b+ ε(bwj+ν)− ε(bwj+ν+1)

)
= −2bν log b+ bν

(
ε(bwj+ν)− ε(bwj+ν+1)

)
.
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With (3.29) we obtain∣∣∣bν (ε(bwj+ν)− ε(bwj+ν+1)
)∣∣∣ ≤ ∣∣∣bν (ε(bwj+ν)

)∣∣∣+ ∣∣∣bν (ε(bwj+ν+1)
)∣∣∣

≤ 4b−2wj−ν
(

1 + 1
b2

)
.

Thus
TN,wj (k)
|ZN,wj |

≥ −b
wj−m+1

b− 1 2bν log b− bwj−m+1

b− 1 4b−2wj−ν
(

1 + 1
b2

)
.

Recall from (3.26) that ν = logb
(
gcd (bm−wj , r)

)
∈ {0, 1, . . . ,m− wj − 1}. Thus

TN,wj (k)
|ZN,wj |

≥ −2bwj−m+1+m−wj−1 log b
b− 1 − 4b−wj−m+1−ν 1

b− 1

(
1 + 1

b2

)
≥ −2 log b

b− 1 − 4b−m+1 1
b− 1

(
1 + 1

b2

)
.

Now, with the assumption m ≥ 5,

TN,wj (k)
|ZN,wj |

≥ −2 log b
b− 1 − 4b−5+1 1

b− 1

(
1 + 1

b2

)
≥ −2 log 2

2− 1 − 4 · 2−5+1
(

1 + 1
22

)
> −2,

and hence

−2 <
TN,wj (k)
|ZN,wj |

< 0 for wj < m and bm−wj - k.

For any integer p ∈ {0, . . . ,m − 1} with bp | k and bp+1 - k the condition bm−wj - k is equivalent to
m− wj > p or wj < m− p, respectively. Thus we can display (3.27) as

LN,s,γ = 1
N

s∏
j=t+1

(βj + γjSN )

×
m−1∑
p=0

N−1∑
k=1
bp|k
bp+1- k

min{t,s}∏
j=1

wj≥m−p

(
βj+

γj
|ZN,wj |

TN,wj (k)
) min{t,s}∏

j=1
wj<m−p

(
βj+

γj
|ZN,wj |

TN,wj (k)
)

≤ 1
N

s∏
j=t+1

(βj + γjSN )
m−1∑
p=0

N−1∑
k=1
bp|k
bp+1- k

min{t,s}∏
j=1

wj≥m−p

(βj + γjSN )
min{t,s}∏
j=1

wj<m−p

βj ,

where the latter estimate holds since

βj > 1, −2 <
TN,wj (k)
|ZN,wj |

< 0 and γj ≤ 1.

From

|{k ∈ {1, . . . , N − 1} : bp | k and bp+1 - k
}∣∣∣

= |{k ∈ {1, . . . , bm − 1} : bp | k}| −
∣∣∣{k ∈ {1, . . . , bm − 1} : bp+1 | k

}∣∣∣
= bm−p − 1−

(
bm−p−1 − 1

)
= bm−p−1(b− 1)

(3.31)
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we get

LN,s,γ ≤
1
N

s∏
j=t+1

(βj + γjSN )
m−1∑
p=0

bm−p−1(b− 1)
min{t,s}∏
j=1

wj≥m−p

(βj + γjSN )
min{t,s}∏
j=1

wj<m−p

βj .

Inserting this into (3.17) we obtain for the arithmetic mean

MN,s,γ = 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

s∏
j=t+1

(βj + γjSN )
m−1∑
p=0

bm−p−1(b− 1)
min{t,s}∏
j=1

wj≥m−p

(βj + γjSN )
min{t,s}∏
j=1

wj<m−p

βj

−
s∏
j=1

βj .

(3.32)

This proves, with (3.10), the existence of a vector z ∈ ZsN,w such that the weighted star discrepancy
D∗N,γ(z) fulfills

D∗N,γ(z) ≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+ 1

2

 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

s∏
j=t+1

(βj + γjSN )
m−1∑
p=0

bm−p−1(b− 1)
min{t,s}∏
j=1

wj≥m−p

(βj + γjSN )
min{t,s}∏
j=1

wj<m−p

βj−
s∏
j=1

βj

 (3.33)

≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+ 1

2

 1
N

s∏
j=1

(βj + γjSN )

+ 1
N

m−1∑
p=0

bm−p−1(b− 1)
s∏
j=1

wj≥m−p

(βj + γjSN )
s∏
j=1

wj<m−p

βj −
s∏
j=1

βj

 . (3.34)

3.2.2 The reduced CBC construction

In this section we give a component-by-component construction for the generating vector and an upper
bound for the weighted star discrepancy of the corresponding lattice rule.

Algorithm 3.13. Let N = bm and (wj)j≥1 be as above and construct z = (bw1z1, . . . , b
wszs) ∈ ZsN,w

as follows :

1. Set z1 = 1.

2. For d ∈ [s− 1] assume z1, . . . , zd to be already found. Choose zd+1 ∈ ZN,wd+1 such that

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1z)

is minimized as a function of z.

3. Increase d by 1 and repeat the second step until z = (bw1z1, . . . , b
wszs) is found.
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In the algorithm above the search space is reduced for each coordinate of z according to its
importance, as the wj ’s are chosen in accordance to the γj ’s. This results in a considerable reduction
of the construction cost as we will see in Section 3.2.3. This is why we call this algorithm a reduced
CBC-algorithm.

The following theorem gives an upper bound for the figure of merit, RdN,γ , of lattice point sets with
generating vectors obtained from the algorithm above.

Theorem 3.14. Let z = (bw1z1, . . . , b
wszs) be constructed according to Algorithm 3.13. Then for every

d ∈ [s],

RdN,γ(bw1z1, . . . , b
wdzd) ≤

1
N

d∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
. (3.35)

Corollary 3.15. Let N = bm and (wj)j≥1 be as above and let

z = (bw1z1, . . . , b
wszs) ∈ ZsN,w

be constructed using Algorithm 3.13. Then the corresponding lattice point set has a weighted star
discrepancy

D∗N,γ(z) ≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+ 1

2N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
.

Proof. Combining (3.10), (3.12) and Theorem 3.14 we immediately obtain the result.

To prove Theorem 3.14 we use the the following

Lemma 3.16. Let N = bm, (wj)j≥1 and ZN,wj be defined as above and recall from (3.15) the notation

TN,wj (k) =
∑

zj∈ZN,wj

∑
−N2 <h≤

N
2

h6=0

e2πihkbwj zj/N

|h|
.

Then
N−1∑
k=1

|TN,wj (k)|
|ZN,wj |

≤ 2bmin {wj ,m}SN for all j ≥ 1. (3.36)

Proof. As before, we distinguish the two cases wj ≥ m and wj < m.

Case 1: wj ≥ m. Then (3.26) yields

N−1∑
k=1

|TN,wj (k)|
|ZN,wj |

=
N−1∑
k=1

SN = (N − 1)SN ≤ 2NSN = 2bmin {wj ,m}SN .

Case 2: wj < m. We use (3.26) and (3.19) to find

N−1∑
k=1

|TN,wj (k)|
|ZN,wj |

=
N−1∑
k=1

bm−wj |k

|TN,wj (k)|
|ZN,wj |

+
N−1∑
k=1

bm−wj - k

|TN,wj (k)|
|ZN,wj |

= (bwj − 1)SN + bwj
bm−wj−1∑
r=1

|TN,wj (r)|
|ZN,wj |

.
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For any r ∈ {1, . . . , bm−wj − 1} the condition gcd (r, bm−wj ) = bν is equivalent to bν | r and bν+1 - r
simultaneously. Using this we investigate the last sum in the above equation

bm−wj−1∑
r=1

|TN,wj (r)|
|ZN,wj |

= 1
|ZN,wj |

m−wj−1∑
ν=0

bm−wj−1∑
r=1
bν |r
bν+1- r

|TN,wj (r)|.

Once more with the aid of (3.26) this yields

bm−wj−1∑
r=1

|TN,wj (r)|
|ZN,wj |

= 1
|ZN,wj |

m−wj−1∑
ν=0

bm−wj−1∑
r=1
bν |r
bν+1- r

∣∣∣bν(S
bwj+ν − Sbwj+ν+1)

∣∣∣

= 1
|ZN,wj |

m−wj−1∑
ν=0

bm−wj−1∑
r=1
bν |r
bν+1- r

bν(S
bwj+ν+1 − Sbwj+ν ).

Analogously to (3.31) we find∣∣∣{r ∈ {1, . . . , bm−wj − 1
}

: bν | r and bν+1 - r
}∣∣∣ = bm−wj−ν−1(b− 1)

and hence

bm−wj−1∑
r=1

|TN,wj (r)|
|ZN,wj |

=
m−wj−1∑
ν=0

(S
bwj+ν+1 − Sbwj+ν ) = SN − Sbwj .

Altogether we have
N−1∑
k=1

|TN,wj (k)|
|ZN,wj |

= (bwj − 1)SN + bwj (SN − Sbwj )

≤ 2bwjSN = 2bmin {wj ,m}SN

and the proof is complete.

With the aid of Lemma 3.16 we are able to prove Theorem 3.14 using induction on d.

Proof. According to Algorithm 3.13 we set z1 =1 in Step 1. We have to show that

R1
N,γ(bw1) ≤ 1

N

(
β1 +

(
1 + 2bmin{w1,m}

)
γ1SN

)
.

With (3.14) we have

R1
N,γ(bw1) = 1

N

N−1∑
k=0

β1 + γ1
∑

−N2 <h≤
N
2

h6=0

e2πihkbw1/N

|h|

− β1

= 1
N

N−1∑
k=0

γ1
∑

−N2 <h≤
N
2

h6=0

e2πihkbw1/N

|h|
.
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Again, we consider the two cases w1 ≥ m and w1 < m separately.

Case 1: w1 ≥ m. Then

R1
N,γ(bw1) = 1

N

N−1∑
k=0

γ1
∑

−N2 <h≤
N
2

h6=0

e2πihkbw1−m

|h|
= 1
N
γ1NSN ≤

1
N

(1 + γ1 + 2Nγ1SN )

= 1
N

(
β1 + 2bmin{w1,m}γ1SN

)
≤ 1
N

(
β1+

(
1 + 2bmin{w1,m}

)
γ1SN

)
,

which is the desired result.

Case 2: w1 < m. After interchanging the two sums, we once more split up the inner sum as follows,

R1
N,γ(bw1) = γ1

N

∑
−N2 <h≤

N
2

h6=0

1
|h|

N−1∑
k=0

e2πihk/bm−w1

= γ1
N

∑
−N2 <h≤

N
2

h6=0
bm−w1 |h

1
|h|

N−1∑
k=0

e2πihk/bm−w1 + γ1
N

∑
−N2 <h≤

N
2

h6=0
bm−w1 -h

1
|h|

N−1∑
k=0

e2πihk/bm−w1
.

Now we are able to compute the inner sums. The first one sums to N , whereas the second one equals
zero. Thus

R1
N,γ(bw1) = γ1

∑
−N2 <h≤

N
2

h6=0
bm−w1 |h

1
|h|
.

We use (3.24) to find

R1
N,γ(bw1) = γ1

1
bm−w1

S N

bm−w1
= γ1
N
bw1Sbw1

≤ γ1
N
bw1SN ≤

1
N

(β1 + 2bw1γ1SN )

≤ 1
N

(
β1 +

(
1 + 2bmin{w1,m}

)
γ1SN

)
,

as claimed.
Let d ∈ [s− 1] and assume that we have a z ∈ ZdN,w, such that

RdN,γ(bw1z1, . . . , b
wdzd) ≤

1
N

d∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
.

We have to prove the existence of a zd+1 ∈ ZN,wd+1 with

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1zd+1) ≤ 1

N

d+1∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
.

Using again (3.14) we have for any zd+1 ∈ ZN,wd+1 that

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1zd+1)
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= 1
N

N−1∑
k=0

d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|



×

βd+1 + γd+1
∑

−N2 <h≤
N
2

h6=0

e2πihkbwd+1zd+1/N

|h|

− βd+1

d∏
j=1

βj

= βd+1R
d
N,γ(bw1z1, . . . , b

wdzd)

+ γd+1
N

N−1∑
k=0


d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|


 ∑
−N2 <h≤

N
2

h6=0

e2πihkbwd+1zd+1/N

|h|

= βd+1R
d
N,γ(bw1z1, . . . , b

wdzd) + γd+1SN
N

d∏
j=1

(βj + γjSN )

+ γd+1
N

N−1∑
k=1

∑
−N2 <h≤

N
2

h6=0

e2πihkbwd+1zd+1/N

|h|

d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|

.
(3.37)

Next we consider the arithmetic mean of

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1z) over all z ∈ ZN,wd+1 .

As only the third summand in (3.37) depends on the (d+1)-st coordinate, and thus on zd+1, it suffices
to investigate the mean of this summand. Clearly, if we have some upper bound for the mean over all
z ∈ ZN,wd+1 there exists zd+1 ∈ ZN,wd+1 which satisfies this bound.

In fact, for technical reasons, we study the absolute value of the third term in (3.37):∣∣∣∣∣∣∣∣∣
1

|ZN,wd+1 |
∑

z∈ZN,wd+1

γd+1
N

N−1∑
k=1

∑
−N2 <h≤

N
2

h6=0

e2πihkbwd+1z/N

|h|

×
d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|


∣∣∣∣∣∣∣∣∣

≤ γd+1
N

N−1∑
k=1

1
|ZN,wd+1 |

∣∣∣∣∣∣∣∣∣
∑

z∈ZN,wd+1

∑
−N2 <h≤

N
2

h6=0

e2πihkbwd+1z/N

|h|

∣∣∣∣∣∣∣∣∣
×

d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

∣∣∣e2πihkbwj zj/N
∣∣∣

|h|


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≤ γd+1
N

N−1∑
k=1

|TN,wd+1(k)|
|ZN,wd+1 |

d∏
j=1

(βj + γjSN )

≤ γd+1
N

2bmin{wd+1,m}SN

d∏
j=1

(βj + γjSN ),

where the last estimate stems from an application of Lemma 3.16. Combining this with (3.37) we
have shown the existence of a zd+1 ∈ ZN,wd+1 such that

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1zd+1) ≤ βd+1R

d
N,γ(bw1z1, . . . , b

wdzd) + γd+1SN
N

d∏
j=1

(βj + γjSN )

+ γd+1
N

2bmin{wd+1,m}SN

d∏
j=1

(βj + γjSN ).

We use the induction hypothesis to find

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1zd+1) ≤ βd+1

N

d∏
j=1

(
βj+

(
1+2bmin {wj ,m}

)
γjSN

)

+ γd+1SN
N

 d∏
j=1

(βj+γjSN )

(1+ 2bmin{wd+1,m}
)

≤
(
βd+1 +

(
1 + 2bmin{wd+1,m}

)
γd+1SN

)

× 1
N

d∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)

= 1
N

d+1∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
,

which completes the proof.

3.2.3 The reduced fast CBC construction

By now we have seen how we can construct a generating vector of a lattice point set with low weighted
star discrepancy with a reduced CBC construction as in the previous section. Now we study the
construction cost of this algorithm. In fact the CBC algorithm given in Section 3.2.2 can be made
faster to construct generating vectors for relatively large N and s. To show this we follow closely [13]
and [56].

Let d ∈ [s − 1] and assume that we have already found (bw1z1, . . . , b
wdzd). Then we have (cf.

(3.14))

RdN,γ(bw1z1, . . . , b
wdzd) = 1

N

N−1∑
k=0

d∏
j=1

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|

−
d∏
j=1

βj .

Define r(h) = max {1, |h|}. Then

βj + γj
∑

−N2 <h≤
N
2

h6=0

e2πihkbwj zj/N

|h|
= βj + γj

 ∑
−N2 <h≤

N
2

e2πihkbwj zj/N

r(h) − 1


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= 1 + γj
∑

−N2 <h≤
N
2

e2πihkbwj zj/N

r(h) .

Hence we have

RdN,γ(bw1z1, . . . , b
wdzd) = 1

N

N−1∑
k=0

d∏
j=1

1 + γj
∑

−N2 <h≤
N
2

e2πihkbwj zj/N

r(h)

− d∏
j=1

βj

= 1
N

N−1∑
k=0

ηd(k)−
d∏
j=1

βj , (3.38)

where we have defined

ηd(k) =
d∏
j=1

(
1 + γjϕ

(
kbwjzj
N

))

and

ϕ(x) =
∑

−N2 <h≤
N
2

e2πihx

r(h) .

However, this is exactly the situation, dealt with in [56, Section 4.2]. Thus we know that ϕ
(
kbwj zj
N

)
takes on at most N different values, namely

ϕ(0), ϕ
( 1
N

)
, . . . , ϕ

(
N − 1
N

)
,

which can be computed in O(N logN) operations and stored in a memory space of size O(N), as
demonstrated in [56, Section 4.2].

Next we investigate one actual step of the CBC construction. Assuming that we have already
found (bw1z1, . . . , b

wdzd) ∈ ZdN,w we have to minimize

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1z)

as a function of z ∈ ZN,wd+1 to find zd+1 ∈ ZN,wd+1 . For wd+1 ≥ m we just set zd+1 = 1 and we are
done. Therefore let wd+1 < m. Considering (3.38) we have

Rd+1
N,γ (bw1z1, . . . , b

wdzd, b
wd+1zd+1) = 1

N

N−1∑
k=0

ηd+1(k)−
d+1∏
j=1

βj

= 1
N

N−1∑
k=0

ηd(k)
(

1 + γd+1ϕ

(
kbwd+1zd+1

N

))
−
d+1∏
j=1

βj

= 1
N

N−1∑
k=0

ηd(k)
(

1 + γd+1ϕ

({
kbwd+1zd+1

N

}))
−
d+1∏
j=1

βj .

It is obviously enough to minimize
N−1∑
k=0

ηd(k)ϕ
({

kbwd+1zd+1
N

})
. To do this we proceed analogously to

[13]. We define the matrix

A =
(
ϕ

({
kbwd+1z

N

}))
z∈ZN,wd+1
k∈{0,...,N−1}

,
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the vector
ηd = (ηd(0), ηd(1), . . . , ηd(N − 1))>

and
Td(z) =

N−1∑
k=0

ηd(k)ϕ
({
kbwd+1z

N

})
.

Then
Aηd = T d(z) = (Td(z))z∈ZN,wd+1

.

We can display the matrix A as
A =

(
Ω(m−wd+1), . . . ,Ω(m−wd+1)

)
,

with

Ω(l) =
(
ϕ

({
kz

bl

}))
z∈Z

bl,0
k∈{0,...,bl−1}

.

Again analogously to [13] we obtain the following reduced fast CBC algorithm.

Algorithm 3.17.

a) Compute ϕ
(
r
N

)
for all r = 0, . . . , N − 1.

b) Set η1(k) = 1 + γ1ϕ
({

kbw1z1
N

})
for k = 0, . . . , N − 1.

c) Set z1 = 1. Set d = 2 and recall that we have defined t = max{j : wj < m}.
While d ≤ min{s, t},

1. partition ηd−1 into bwd vectors η
(1)
d−1, . . . ,η

(bwd )
d−1 of length bm−wd and let

η′ = η
(1)
d−1 + · · ·+ η(bwd )

d−1 denote their sum,
2. let Td(z) = Ω(m−wd)η′,
3. let zd = arg minzTd(z),

4. let ηd(k) = ηd−1(k)
(
1 + γdϕ

({
kbwdzd
N

}))
for k = 0, . . . , N − 1,

5. increase d by 1.

If s > t, then set zt+1 = · · · = zs = 1. Then we have

RsN,γ (bw1z1, . . . , b
wszs) = 1

N

N−1∑
k=0

ηs(k)−
s∏
j=1

βj .

Remark 3.18. Note that Algorithms 3.13 and 3.17 both yield the same generating vector z.

Using [13, 56, 66, 67] we find that Algorithm 3.17 has a construction cost of

O

N logN + min{s, t}N +N

min{s,t}∑
d=1

(m− wd)b−wd


operations, in comparison to O(sN logN) operations for the standard CBC algorithm used for example
in [71].

Remark 3.19. As we are interested in high-dimensional problems, we also consider s → ∞. In this
case we always have min{s, t} = t and the construction cost is independent of the dimension.
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3.2.4 Conditions for strong polynomial tractability

Let z= (bw1z1, . . . , b
wszs)∈ZsN,w be constructed with Algorithm 3.13 or 3.17 and consider the corre-

sponding lattice rule. We are interested in conditions for tractability of the weighted star discrepancy
of such lattice point sets. From (3.10) and (3.8) we know

D∗N,γ(z) ≤
∑
u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+ 1

2R
s
N,γ(z).

For now, let us assume that the γjbwj ’s are summable, i. e.,
∞∑
j=1

γjb
wj <∞.

Similar to Joe and Sinescu in [38] and [71], we see that in this case

D∗N,γ(z) ≤
max{1,Γ} exp (

∑∞
j=1 γj)

N
+ 1

2R
s
N,γ(z),

where

Γ =
∞∑
j=1

γj
1 + γj

<∞.

In particular, considering our assumption that the γjbwj ’s are summable, the constant

max{1,Γ} exp

 ∞∑
j=1

γj


is indeed finite.

Theorem 3.14 yields

RsN,γ(z) ≤ 1
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
and hence we have

D∗N,γ(z) ≤
1 + max{1,Γ} exp

(∑∞
j=1 γj

)
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)

= cγ
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
, (3.39)

with cγ = 1 + max{1,Γ} exp
(∑∞

j=1 γj
)
independent of s.

We study the right-hand side of (3.39)

cγ
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
≤ cγ
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γj2

(
log

⌊
N

2

⌋
+ 1

))

≤ cγ
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γj4 logN

)

= cγ
N

s∏
j=1

(
1 + γj

(
1 + 4

(
1 + 2bmin {wj ,m}

)
logN

))
, (3.40)
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where we have used

SN =
∑

−N2 <h≤
N
2

h6=0

1
|h|
≤ 2
bN2 c∑
h=1

1
h
≤ 2 log

⌊
N

2

⌋
+ 2 ≤ 4 logN,

where the penultimate inequality is a well-known estimate for partial sums of the harmonic series.
Now we have

cγ
N

s∏
j=1

(
βj +

(
1 + 2bmin {wj ,m}

)
γjSN

)
≤ cγ
N

s∏
j=1

(
1 + γj

(
1 + 4

(
1 + 2bwj

)
logN

))

≤ cγ
N

s∏
j=1

(1 + 13γjbwj logN).

Define

σd = 13
∞∑

j=d+1
γjb

wj for d ∈ N0.

From [20, p. 222] or [29, Lemma 3] we know that
s∏
j=1

(1 + 13γjbwj logN) ≤
(
1 + σ−1

d

)d
N (σ0+1)σd for all d ∈ N0.

For 0 < δ < 1 choose d large enough such that σd ≤ δ
σ0+1 . Then

s∏
j=1

(1 + 13γjbwj logN) ≤ c̃γ,δN δ,

where c̃γ,δ is independent of s and N . Thus we have

D∗N,γ(z) ≤ cγ,δN δ−1, (3.41)

with cγ,δ = cγ · c̃γ,δ independent of s and N . We obtain cγ,δN δ−1 ≤ ε and thus

D∗N,γ(z) ≤ ε if N ≥ (cγ,δε−1)
1

1−δ .

With this we have proved the following

Corollary 3.20. Let N = bm and let γ and w be weight sequences, defined as above and consider the
problem of constructing generating vectors for lattice point sets with small weighted star discrepancy.
Then

∞∑
j=1

γjb
wj <∞

is a sufficient condition for strong polynomial tractability.

Remark 3.21. Whether the conditions on the γj’s and wj’s can be mitigated while at least polynomial
or weak tractability still hold remains for future research.
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3.3 A reduced fast component-by-component construction of polynomial lattice
point sets with small weighted star discrepancy

As mentioned before, for many problems lattice point sets yield good results, when used as sample
points for QMC algorithms. There exist situations, however, for which polynomial lattice point sets
provide better approximations than lattice point sets. For example, when considering a Walsh space
as defined on p. 34, polynomial lattice point sets are superior to lattice point sets, see [68]. Thus, in
the following section, we extend our results for reduced fast CBC constructions of lattice point sets
with small weighted star discrepancy to similar constructions of polynomial lattice point sets. For the
worst-case error criterion there already exists a reduced fast construction for polynomial lattice point
sets by Dick, Kritzer, Leobacher and Pillichshammer [13].

The results of this section are based on the paper [48] and have been developed in joint work with
Ralph Kritzinger and Mario Neumüller.

In [15] Dick et al. construct polynomial lattice point sets using the worst-case error criterion. As
for the star discrepancy criterion, standard-type CBC constructions for polynomial lattice point sets
were provided in [18] for an irreducible modulus f and in [12] for a reducible f . In these papers, the
authors considered the unweighted star discrepancy as well as its weighted version, which we study
here. It is the aim of this section to speed up these constructions by reducing the search sets for the
components of the generating vector g according to each component’s importance.

In the following, by Gp,m we denote the set of all polynomials g over Fp with deg(g) < m. Further
we define

Gp,m(f) := {g ∈ Gp,m | gcd(g, f) = 1}. (3.42)

Let w1 ≤ w2 ≤ · · · be a non-decreasing sequence of non-negative integers, determined in accordance
with the weight sequence γ, as described in the previous sections. Loosely speaking, the smaller γj ,
the bigger wj is chosen. For an example as to how to choose the wj ’s see p. 62. For w ∈ N0 with
w < m we define Gp,m−w and Gp,m−w(f) analogously to Gp,m and Gp,m(f), respectively. Further we
set the reduced search spaces to

Gp,m−w(f) :=
{
Gp,m−w(f) ifw < m,

{1 ∈ Fp[x]} ifw ≥ m

for any w ∈ N0. For w < m these sets have cardinality pm−w − 1 in the case of an irreducible
modulus f and pm−w−1(p − 1) for the special case f : Fp → Fp, x 7→ xm. We will consider these
two cases in the following sections. The reason not to use a general reducible modulus f , but rather
f : Fp → Fp, x 7→ xm is twofold. Firstly, this is what is used in practice, as in this case for g ∈ Fp((x−1))
computing the Laurent series g/f comes down to shifting the coefficients of g m times to the left, which
saves many technicalities. Secondly, for general reducible moduli f the analysis becomes rather difficult
and tedious, while it is not to be expected that the outcome is much better than for f(x) = xm.
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Further, for d ∈ [s], we define Gdp,m−w(f) := Gp,m−w1(f)× · · · × Gp,m−wd(f). The idea is to choose
the ith component xwigi of g, with gi ∈ Gp,m−wi(f) instead of gi ∈ Gp,m(f), i.e., the search set for the
ith component is reduced by a factor p−min{wi,m} in comparison to the standard CBC construction.
We will show that a polynomial lattice point set constructed according to our reduced CBC algorithm
has a low weighted star discrepancy of order N−1+δ for all δ > 0, under certain conditions on the
weights γ and on w.

For the weighted star discrepancy of a polynomial lattice point set we write D∗N,γ(g, f).

3.3.1 A reduced CBC construction

In this section we present a CBC construction for the vector (xw1g1, . . . , x
wsgs) and an upper bound

for the weighted star discrepancy of the corresponding polynomial lattice point set.
First note that if g ∈ Gsp,m, then it is known (see [18]) that

D∗N,γ(g, f) ≤
∑
∅6=u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
+Rsγ(g, f), (3.43)

where in the case of product weights we have

Rsγ(g, f) =
∑

h∈Gsp,m\{0}
h·g≡0 mod f

s∏
i=1

rp(hi, γi). (3.44)

Note that (3.43) and (3.44) are in analogy to the case of lattice point sets (cf. (3.10)).
For elements h = (h1, . . . , hs) and g = (g1, . . . , gs) in Gsp,m we define the scalar product by

h · g = h1g1 + · · ·+ hsgs. The numbers rp(h, γ) for h ∈ Gp,m and γ ∈ R are defined as

rp(h, γ) =
{

1 + γ if h = 0,
γrp(h) otherwise,

where for h = h0 + h1x+ · · ·+ hax
a ∈ Gp,m with ha 6= 0 we set

rp(h) = 1
pa+1 sin2

(
π
pha

) .
Thus, in order to analyze the weighted star discrepancy of a polynomial lattice point set, it suffices
to investigate the quantity Rsγ(g, f). This is due to the result of Joe [38], who proved that for any
summable weight sequence (γj)j≥1 we have

∑
∅6=u⊆[s]

γu

(
1−

(
1− 1

N

)|u|)
≤ max(1,Γ)e

∑∞
i=1 γi

N
,

with Γ :=
∑∞
i=1

γi
1+γi .

Remark 3.22. We have used the same result on p. 77 to establish tractability results for the case of
lattice point sets.

Then the reduced CBC algorithm reads as follows:

Algorithm 3.23. Let p be a prime, m ∈ N, f ∈ Fp[x] with deg f = m and let (wj)j≥1 be a non-
decreasing sequence of non-negative integers. Consider product weights (γj)j≥1. Construct
(g1, . . . , gs) ∈ Gsp,m−w(f) as follows:
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1. Set g1 = 1.

2. For d ∈ [s−1] assume (g1, . . . , gd) ∈ Gdp,m−w(f) to be already found. Choose gd+1 ∈ Gp,m−wd+1(f)
such that

Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1gd+1), f)

is minimized as a function of gd+1.

3. Increase d by 1 and repeat the second step until (g1, . . . , gs) is found.

Remark 3.24. Of course we have Gsp,m−w(f) ⊆ Gsp,m, and thus in Algorithm 3.23 it indeed suffices
to consider Rd+1

γ rather than the weighted star discrepancy.

In the algorithm above, the search sets are reduced for each coordinate of (g1, . . . , gs) according
to their importance, as with increasing wj the search sets become smaller, as the weights γj and
thus their corresponding components’ influence on the quality of the generating vector decrease. For
this reason we call Algorithm 3.23 a reduced CBC algorithm. We will now study Algorithm 3.23 for
different choices of f .

3.3.2 Polynomial lattice point sets for f(x) = xm

We will now study the interesting case where f : Fp → Fp, x 7→ xm. This is virtually the only case
used in practice. Throughout the rest of this section we write xm instead of f to emphasize our special
choice of f . Note that for g ∈ Fp((x−1)) the Laurent series g/f can be easily computed in this case
by shifting the coefficients of g m times to the left. It is the aim of this section to prove the following
theorem:

Theorem 3.25. Let γ = (γj)j≥1 and w with 0 = w1 ≤ w2 ≤ · · · . Let further (g1, . . . , gs) ∈
Gsp,m−w(xm) be constructed using Algorithm 3.23. Then we have for every d ∈ [s]

Rdγ((xw1g1, . . . , x
wdgd), xm) ≤ 1

pm

d∏
i=1

(
1 + γi + γi2pmin{wi,m}m

p2 − 1
3p

)
.

As a direct consequence we obtain the following discrepancy estimate.

Corollary 3.26. Let N = pm and γ, w and (g1, . . . , gs) as in Theorem 3.25. Then the polynomial
lattice point set P ((xw1g1, . . . , x

wsgs), xm) has a weighted star discrepancy

D∗N,γ ((xw1g1, . . . , x
wsgs), xm)

≤
∑
u⊆[s]
u6=∅

γu

(
1−

(
1− 1

N

)|u|)
+ 1
N

s∏
i=1

(
1 + γi + γi2pmin {wi,m}m

p2 − 1
3p

)
. (3.45)

Knowing the above discrepancy bound, we are now ready to ask about the size of the polynomial
lattice point set required to achieve a weighted star discrepancy not exceeding some ε threshold. In
particular, we would like to know how this size depends on the dimension s and on ε.

Corollary 3.27. Let N = pm, γ, and w as in Theorem 3.25 and consider the problem of constructing
generating vectors for polynomial lattice point sets with small weighted star discrepancy. Then

∞∑
j=1

γjp
wj <∞

is a sufficient condition for strong polynomial tractability. This condition further implies
D∗N,γ ((xw1g1, . . . , x

wsgs), xm) = O(N−1+δ), with the implied constant independent of s, for any δ > 0,
where (g1, . . . , gs) ∈ Gsp,m−w(xm) is constructed using Algorithm 3.23.
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Proof. Construct a generating vector (g1, . . . , gs) ∈ Gsp,m−w(xm) applying Algorithm 3.23 and con-
sider its weighted star discrepancy, bounded by (3.45). Following closely the lines of the argumen-
tation in Section 3.2.4 and noticing that 2mp2−1

3p = O(logN) we obtain the result. More precisely,
provided that the γjp

wj ’s are summable, we have a means to construct polynomial lattice point
sets P(g, f) with D∗N,γ(g, f) ≤ ε, whose sizes grow polynomially in ε−1 and are independent of
the dimension. As a result the problem is strongly polynomially tractable. The discrepancy result
D∗N,γ ((xw1g1, . . . , x

wsgs), xm) = O(N−1+δ) follows directly from [47]. It can be computed analogously
to the result (3.41) in Section 3.2.

Remark 3.28. Recall from p. 67 that t = max{j ∈ N : wj < m} and note that setting wj = m for all
j > t does neither change the bound on the weighted star discrepancy nor the computational cost of
Algorithm 3.23. It might change the generating vector though. If so, however, only components with
very little influence on the quality of the point set are altered. Defining wj = m for all j > t, it suffices
to have a summable weight sequence γ in order to achieve strong polynomial tractability, as long as t
is finite.

In order to show Theorem 3.25 we need several auxiliary results.

Lemma 3.29. Let a ∈ Fp[x] be monic. Then we have

∑
h∈Gp,m\{0}

a|h

rp(h) = (m− deg(a)) p
2 − 1
3p p−deg(a).

In particular, for a = 1 this formula yields

∑
h∈Gp,m\{0}

rp(h) = m
p2 − 1

3p .

Proof. This fact follows from [12, p. 1055] (by setting γd+1 = 1). The special case a = 1 also follows
from [18, Lemma 2.2] by setting s = 1.

For our purposes, it is convenient to write Rsγ(g, f) from (3.44) in an alternative way. To this end,
we introduce some notation. For a Laurent series L ∈ Fp((x−1)) we denote by c−1(L) its coefficient
of x−1, i.e., its residuum. Further, we set Xp(L) := χp(c−1(L)), where χp is a non-trivial additive
character of Fp. One could for instance choose χp(n) = e

2πi
p
n for n ∈ Fp (see, e.g., [57]). It is clear

(see [57, p. 78]) that Xp(L) = 1 if L is a polynomial and that Xp(L1 + L2) = Xp(L1)Xp(L2) for
L1, L2 ∈ Fp((x−1)). From [60, p. 78] we know that

∑
v∈Gp,m

Xp

(
v

f
g

)
=
{
pm if f | g,
0 otherwise.

(3.46)

Lemma 3.30. We have

Rsγ(g, f) = −
s∏
i=1

(1 + γi) + 1
pm

∑
v∈Gp,m

s∏
i=1

1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

f
hgi

) .
Proof. We employ the properties of Xp as stated above to obtain from (3.44)

Rsγ(g, f) =−
s∏
i=1

(1 + γi) + 1
pm

∑
h∈Gsp,m

(
s∏
i=1

rp(hi, γi)
) ∑
v∈Gp,m

Xp

(
v

f
h · g

)
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=−
s∏
i=1

(1 + γi) + 1
pm

∑
v∈Gp,m

s∏
i=1

 ∑
hi∈Gp,m

rp(hi, γi)Xp

(
v

f
higi

)
=−

s∏
i=1

(1 + γi) + 1
pm

∑
v∈Gp,m

s∏
i=1

1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

f
hgi

) ,
and the claimed formula is verified.

Now we study a sum which will appear later in the proof of Theorem 3.25 and show an upper
bound for it.

Lemma 3.31. Let w ∈ N0 and v ∈ Gp,m. Let

Ypm,w(v, xm) :=
∑

g∈Gp,m−w(xm)

∑
h∈Gp,m\{0}

rp(h)Xp

(
v

xm
hxwg

)
,

where xw denotes the polynomial f̃(x) = xw. Then we have

1
#Gp,m−w(xm)

∑
v∈Gp,m

|Ypm,w(v, xm)| ≤ 2pmin{w,m}m
p2 − 1

3p .

Proof. Let us first assume that w ≥ m. Then we have Gp,m−w(xm) = {1} and therefore

Ypm,w(v, xm) =
∑

h∈Gp,m\{0}
rp(h)Xp(vhxw−m) =

∑
h∈Gp,m\{0}

rp(h) = m
p2 − 1

3p

with Lemma 3.29. This leads to

1
#Gp,m−w(xm)

∑
v∈Gp,m

|Ypm,w(v, xm)| = pmm
p2 − 1

3p ≤ 2pmin{w,m}m
p2 − 1

3p

in this case. For the rest of the proof let w < m and additionally we abbreviate #Gp,m−w(xm) by #G.
We write

1
#G

∑
v∈Gp,m

|Ypm,w(v, xm)| = 1
#G

∑
v∈Gp,m
xm−w|v

|Ypm,w(v, xm)|+ 1
#G

∑
v∈Gp,m
xm−w-v

|Ypm,w(v, xm)|.

In what follows, we refer to the latter sums as

S1 := 1
#G

∑
v∈Gp,m
xm−w|v

|Ypm,w(v, xm)| and S2 := 1
#G

∑
v∈Gp,m
xm−w-v

|Ypm,w(v, xm)|.

Wemay uniquely write any v ∈ Gp,m\{0} in the form v = qxm−w+`, where q, ` ∈ Fq[x] with deg(q) < w
and deg(`) < m−w. Using the properties of Xp it is clear that Ypm,w(v, xm) = Ypm,w(`, xm) and hence

S1 = 1
#G

∑
v∈Gp,m
xm−w|v

|Ypm,w(0, xm)| =
∑

v∈Gp,m
xm−w|v

1
#G

∑
g∈Gp,m−w(xm)

∑
h∈Gp,m\{0}

rp(h)

=
∑

v∈Gp,m
xm−w|v

m
p2 − 1

3p = pmin{w,m}m
p2 − 1

3p .
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We move on to S2. Let for ` ∈ Fq[x] with deg(`) < m−w, e(`) = max{k ∈ {0, 1, . . . ,m−w− 1} :
xk | `}. With this definition we may display S2 as

S2 = pw

#G

m−w−1∑
k=0

∑
`∈Gp,m−w\{0}

e(`)=k

|Ypm,w(`, xm)|. (3.47)

In the following, we compute Ypm,w(`, xm) for ` ∈ Gp,m−w \ {0} with e(`) = k. Let µp be the Möbius
function on the set of monic polynomials over Fp, i.e., µp : Fp[x]→ {−1, 0, 1} and

µp(h) =
{

(−1)ν if h is squarefree and has ν irreducible factors,
0 otherwise.

The fact that µp(1) = 1, µp(x) = −1 and µp(xi) = 0 for i ∈ N, i ≥ 2, yields the equivalence of∑
t|gcd(xm−w,g) µp(t) = 1 and gcd(xm−w, g) = 1. Therefore we can write

Ypm,w(`, xm) =
∑

h∈Gp,m\{0}
rp(h)

∑
g∈Gp,m−w

Xp

(
`

xm−w
hg

) ∑
t|gcd(xm−w,g)

µp(t)

=
∑

h∈Gp,m\{0}
rp(h)

∑
t|xm−w

µp(t)
∑

g∈Gp,m−w
t|g

Xp

(
`

xm−w
hg

)

=
∑

h∈Gp,m\{0}
rp(h)

∑
t|xm−w

µp(t)
∑

a∈Gp,m−w−deg(t)

Xp

(
`

xm−w
hat

)

=
∑

h∈Gp,m\{0}
rp(h)

∑
t|xm−w

µp

(
xm−w

t

) ∑
a∈Gp,deg(t)

Xp

(
a

t
h`

)

=
∑

h∈Gp,m\{0}
rp(h)

∑
t|xm−w
t|h`

µp

(
xm−w

t

)
pdeg(t)

=
∑

t|xm−w
µp

(
xm−w

t

)
pdeg(t) ∑

h∈Gp,m\{0}
t|h`

rp(h).

The equivalence of the conditions t | h` and t
gcd(t,`) | h yields

Ypm,w(`, xm) =
∑

t|xm−w
µp

(
xm−w

t

)
pdeg(t) ∑

h∈Gp,m\{0}
t

gcd(t,`) |h

rp(h).

We investigate the inner sum and use Lemma 3.29 with a = t
gcd(t,`) to find

∑
h∈Gp,m\{0}

t
gcd(t,`) |h

rp(h) =
(
m− deg

(
t

gcd(t, `)

))
p2 − 1

3p p
− deg

(
t

gcd(t,`)

)
.

Now we have

Ypm,w(`, xm) =p2 − 1
3p

∑
t|xm−w

µp

(
xm−w

t

)(
m− deg

(
t

gcd(t, `)

))
pdeg(gcd(t,`))
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=p2 − 1
3p m

∑
t|xm−w

µp

(
xm−w

t

)
pdeg(gcd(t,`))

− p2 − 1
3p

∑
t|xm−w

µp

(
xm−w

t

)
deg

(
t

gcd(t, `)

)
pdeg(gcd(t,`)).

From the facts that deg(l) < m − w and that e(`) = k ≤ m − w − 1 we obtain gcd(xm−w, `) =
gcd(xm−w−1, `) = xk. This observation leads to

∑
t|xm−w

µp

(
xm−w

t

)
pdeg(gcd(t,`)) = pdeg(gcd(xm−w,`)) − pdeg(gcd(xm−w−1,`)) = 0

and

∑
t|xm−w

µp

(
xm−w

t

)
deg

(
t

gcd(t, `)

)
pdeg(gcd(t,`))

= deg
(

xm−w

gcd(xm−w, `)

)
pdeg(gcd(xm−w,`)) − deg

(
xm−w−1

gcd(xm−w−1, `)

)
pdeg(gcd(xm−w−1,`))

=(m− w − k)pk − (m− w − k − 1)pk = pk.

Altogether we have

Ypm,w(`, xm) = −p
2 − 1
3p pk.

Inserting this result into (3.47) yields

S2 = pw

#G
p2 − 1

3p

m−w−1∑
k=0

pk
∑

`∈Gp,m−w\{0}
e(`)=k

1.

Since

#{` ∈ Gp,m−w \ {0} : e(`) = k}
=#{` ∈ Gp,m−w \ {0} : xk | `} −#{` ∈ Gp,m−w \ {0} : xk+1 | `}
=pm−w−k − 1− (pm−w−k−1 − 1) = pm−w−k−1(p− 1),

we have

S2 = pw

pm−w−1(p− 1)
p2 − 1

3p

m−w−1∑
k=0

pkpm−w−k−1(p− 1)

=pw p
2 − 1
3p (m− w) ≤ pmin{w,m}m

p2 − 1
3p .

Summarizing, we have shown

1
#G

∑
v∈Gp,m

|Ypm,w(v, xm)| = S1 + S2 ≤ 2pmin{w,m}m
p2 − 1

3p ,

which completes the proof.
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Now we are ready to prove Theorem 3.25 using induction on d.

Proof. We show the result for d = 1. From Lemma 3.30 we have

R1
γ((xw1), xm) =− (1 + γ1) + 1

pm

∑
v∈Gp,m

1 + γ1 + γ1
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

xm
hxw1

)
= γ1
pm

∑
v∈Gp,m

∑
h∈Gp,m\{0}

rp(h)Xp

(
v

xm
hxw1

)
.

If w1 ≥ m, then

R1
γ((xw1), xm) = γ1

pm

∑
v∈Gp,m

∑
h∈Gp,m\{0}

rp(h) = γ1
pm

pmin{w1,m}m
p2 − 1

3p

≤ 1
pm

(
1 + γ1 + γ12pmin{w1,m}m

p2 − 1
3p

)
.

If w1 < m, then we can write

R1
γ((xw1), xm) = γ1

pm

∑
v∈Gp,m

∑
h∈Gp,m\{0}

rp(h)Xp

(
v

xm
hxw1

)

= γ1
pm

∑
h∈Gp,m\{0}
xm−w1 |h

rp(h)
∑

v∈Gp,m
Xp

(
v

xm
hxw1

)

+ γ1
pm

∑
h∈Gp,m\{0}
xm−w1 -h

rp(h)
∑

v∈Gp,m
Xp

(
v

xm
hxw1

)

=γ1
∑

h∈Gp,m\{0}
xm−w1 |h

rp(h),

where we used (3.46) in the latter step. We regard Lemma 3.29 with a = xm−w1 to compute

∑
h∈Gp,m\{0}
xm−w1 |h

rp(h) = 1
pm

pw1w1
p2 − 1

3p ≤ 1
pm

pmin{w1,m}m
p2 − 1

3p ,

which leads to the desired result in this case as well.
Now let d ∈ [s− 1]. Assume that we have (g1, . . . , gd) ∈ Gdp,m−w(xm) such that

Rdγ((xw1g1, . . . , x
wdgd), xm) ≤ 1

pm

d∏
i=1

(
1 + γi + γi2pmin{wi,m}m

p2 − 1
3p

)
.

Let g∗ ∈ Gp,m−wd+1(xm) be such that Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1gd+1), xm) is minimized as a

function of gd+1 for gd+1 = g∗. Then we have, using Lemma 3.30

Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1g∗), xm) = −(1 + γd+1)

d∏
i=1

(1 + γi)
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+ 1
pm

∑
v∈Gp,m

d∏
i=1

1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

xm
hxwigi

)
×

1 + γd+1 + γd+1
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

xm
hxwd+1g∗

)
=(1 + γd+1)Rdγ((xw1g1, . . . , x

wdgd), xm) + L(g∗), (3.48)

where

L(g∗) =γd+1
pm

∑
v∈Gp,m

∑
h∈Gp,m\{0}

rp(h)Xp

(
v

xm
hxwd+1g∗

)

×
d∏
i=1

1 + γi + γi
∑

u∈Gp,m\{0}
rp(u)Xp

(
v

xm
uxwigi

) .
A minimizer g∗ of Rd+1

γ ((xw1g1, . . . , x
wdgd, x

wd+1gd+1), xm) is also a minimizer of L(gd+1). Combining
(3.44) and (3.48) we obtain thatRdγ(g, f) ∈ R for all d ∈ [s]. Moreover with equation (3.51), established
later on in Section 3.3.3, and the fact that rp(h, γ) > 0 for all h ∈ Gp,m and γ ∈ (0, 1], we get
that L(g) ∈ R+ for all g ∈ Gp,m−wd+1(xm). Thus we may bound L(g∗) by the mean over all g ∈
Gp,m−wd+1(xm). Hence

L(g∗) ≤ 1
#Gp,m−wd+1(xm)

∑
gd+1∈Gp,m−wd+1 (xm)

L(gd+1)

≤γd+1
pm

∑
v∈Gp,m

1
#Gp,m−wd+1(xm)

×

∣∣∣∣∣∣∣
∑

gd+1∈Gp,m−wd+1 (xm)

∑
h∈Gp,m\{0}

rp(h)Xp

(
v

xm
hxwd+1gd+1

)∣∣∣∣∣∣∣
×

d∏
i=1

1 + γi + γi
∑

u∈Gp,m\{0}
rp(u)

∣∣∣∣Xp

(
v

xm
uxwigi

)∣∣∣∣


≤γd+1
pm

d∏
i=1

(
1 + γi + γim

p2 − 1
3p

) ∑
v∈Gp,m

|Ypm,wd+1(v, xm)|
#Gp,m−wd+1(xm) ,

where we used the estimate
∣∣Xp

(
v
xmhx

wigi
)∣∣ ≤ 1 in the last step. With the induction hypothesis and

Lemma 3.31 this leads to

Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1g∗), xm)

≤(1 + γd+1) 1
pm

d∏
i=1

(
1 + γi + γi2pmin{wi,m}m

p2 − 1
3p

)

+ γd+1
pm

d∏
i=1

(
1 + γi + γim

p2 − 1
3p

)
2pmin{wd+1,m}m

p2 − 1
3p

≤ 1
pm

d∏
i=1

(
1 + γi + γi2pmin{wi,m}m

p2 − 1
3p

)(
1 + γd+1 + γd+12pmin{wd+1,m}m

p2 − 1
3p

)

= 1
pm

d+1∏
i=1

(
1 + γi + γi2pmin{wi,m}m

p2 − 1
3p

)
.
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The reduced fast CBC construction
So far we have seen how to construct a generating vector g of the point set P(g, xm). In fact Algorithm
3.23 can be made much faster using results from [13, 66, 67]. In this section we are investigating
and improving Algorithm 3.23 and additionally analyzing the computational cost of the improved
algorithm.

As explained in the following lines, Walsh functions are a suitable tool for analyzing the compu-
tational cost of CBC algorithms for constructing polynomial lattice point sets. Recall from p. 33 that
Walsh functions are defined as follows. Let ω = e2πi/p, x ∈ [0, 1) and h a non-negative integer with
base p representations x = x1/p + x2/p

2 + . . . and h = h0 + h1p + . . . + hrp
r, respectively. Then we

define
walh : [0, 1)→ C,walh(x) := ωh0x1+...+hrxr+1 .

The Walsh function system {walh | h = 0, 1, . . .} is a complete orthonormal basis in L2([0, 1)) which has
been used in the analysis of the discrepancy of digital nets (an important class of low-discrepancy point
sets which contains polynomial lattice point sets) several times before, see for example [18, 27, 54].
For further information on Walsh functions see [20, Appendix A].
Let d ≥ 1, N = pm. For P (g, f) = {x0, . . . ,xpm−1} with xn = (x(1)

n , . . . , x
(s)
n ) we have the formula

(see [18, Section 4])

1
pm

pm−1∑
n=0

s∏
i=1

walhi(x(i)
n ) =

{
1 if g · h ≡ 0 (mod f),
0 otherwise,

(3.49)

where hi are non-negative integers with base p representation hi = h
(i)
0 +h(i)

1 p+· · ·+h(i)
r pr. We identify

these non-negative integers hi with the polynomials hi(x) = h
(i)
0 +h(i)

1 x+· · ·+h(i)
r xr. These polynomial

are elements of Gp,m. The vectors h in (3.49) are then from Gsp,m such that h = (h1(x), . . . , hs(x)).
Equation (3.49) allows us to rewrite Rdγ((xw1g1, . . . , x

wdgd), xm) in the following way

Rdγ((xw1g1, . . . , x
wdgd), xm) = −

d∏
i=1

(1 + γi) + 1
pm

pm−1∑
n=0

d∏
i=1

pm−1∑
h=0

rp(h, γi)walh
(
φm

(
nxwigi
xm

))
.

Note that rp(h, γ) is defined as in (3.44) and we identify the integer in base p representation h =
h0 + h1p + . . . + hrp

r with the polynomial h(x) = h0 + h1x + . . . + hrx
r. If we set ψ(nx

wigi
xm ) :=∑pm−1

h=1 rp(h)walh(φm(nx
wigi
xm )) we get that

Rdγ((xw1g1, . . . , x
wdgd), xm) = −

d∏
i=1

(1 + γi) + 1
pm

pm−1∑
n=0

d∏
i=1

(
1 + γi + γiψ

(
nxwigi
xm

))

= −
d∏
i=1

(1 + γi) + 1
pm

pm−1∑
n=0

ηd(n), (3.50)

where ηd(n) =
∏d
i=1

(
1 + γi + γiψ(nx

wigi
xm )

)
.

In [18, Section 4] it is proved that we can compute the at most N different values of ψ( r
xm ) for r ∈ Gp,m

in O(N) operations.
Let us now analyze one step of the reduced CBC Algorithm 3.23. Assuming that we already found
(g1, . . . , gd) ∈ Gdp,m−w(xm) we have to minimize

Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), xm)
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as a function of gd+1 ∈ Gp,m−wd+1(xm). If wd+1 ≥ m then gd+1 = 1 and we are done. Let now
wd+1 < m. From (3.50) we have that

Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), xm) = −
d+1∏
i=1

(1 + γi) + 1
pm

pm−1∑
n=0

ηd+1(n)

= −
d+1∏
i=1

(1 + γi) + 1
pm

pm−1∑
n=0

(
1 + γd+1

+ γd+1ψ

(
nxwd+1gd+1

xm

))
ηd(n).

In order to minimize Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), xm) it is enough to minimize

Td(g) :=
pm−1∑
n=0

ψ(nx
wd+1g

xm
)ηd(n).

As in [13, Section 4] we can represent this quantity using some specific (pm−wd+1−1(p−1)×N)-matrix
A and exploiting its additional structure. Let, to this end,

A =
(
ψ

(
nxwd+1g

xm

))
g∈Gp,m−wd+1 (xm),
n∈{0,...,N−1}

and ηd = (ηd(0), . . . , ηd(N − 1))>.

First of all observe that we get (T (g))g∈Gp,m−wd+1 (xm) = Aηd. Secondly the matrix A is a block matrix
and can be written in the following form

A =
(
Ω(m−wd+1) . . .Ω(m−wd+1)

)
, where Ω(l) =

(
ψ

(
nxwd+1g

xm

))
n∈{0,...pl−1}
g∈Gp,m−wd+1 (xm)

.

If x is any vector of length pm then we compute

Ax = Ω(m−wd+1)x1 + . . .+ Ω(m−wd+1)xpwd+1 = Ω(m−wd+1)(x1 + . . .+ xpwd+1 ).

With this representation we can apply the machinery of [66, 67] and get that multiplication with
Ω(m−wd+1) can be done in O((m− wd+1)pm−wd+1) operations. Summarizing we have:

Algorithm 3.32.

1. Compute ψ( r
xm ) for r ∈ Gp,m.

2. Set η1(n) = ψ(nx
w1g1
xm ) for n = 0, . . . , pm − 1.

3. Set g1 = 1, d = 2 and t = max{j ∈ [s] | wj < m}.
While d ≤ min{s, t},

(a) Partition ηd−1 into pwd vectors η(1)
d−1, . . . , η

(pwd )
d−1 of length pm−wd and let η′ =

∑pwd
i=1 η

(i)
d−1.

(b) Let (Td(g))g∈Gp,m−wd = Ω(m−wd)η′.

(c) Let gd = argmingTd(g).

(d) Let ηd(n) = ηd−1(n)
(
1 + γd + γdψ(nx

wdgd
xm )

)
(e) Increase d by 1.
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4. If s ≥ t then set gt = gt+1 = . . . = gs = 1.

Similar to [13] we obtain the following theorem from the observations in this section:

Theorem 3.33. The cost of Algorithm 3.32 is

O

N + min{s, t}N +
min{s,t}∑
d=1

(m− wd)Np−wd
 .

3.3.3 Polynomial lattice point sets for irreducible f

Finally we want to consider the case where f is an irreducible polynomial. So, for this section let f
be an irreducible polynomial over Fp with deg(f) = m.

Theorem 3.34. Let γ and w as in Theorem 3.25 and let f ∈ Fp[x] be an irreducible polynomial with
deg(f) = m. Let further (g1, . . . , gs) ∈ Gsp,m−w(f) be constructed according to Algorithm 3.23. Then
we have for every d ∈ [s]

Rdγ((xw1g1, . . . , x
wdgd), f) ≤ 1

pm

d∏
i=1

(
1 + γi + γip

min{wi,m}m
p+ 1

3

)
.

Proof. We will prove this result by induction on d. According to Algorithm 3.23 we know that g1 = 1
for d = 1. Therefore R1

γ((xw1g1), f) = 0 since for all h ∈ Gp,m we have deg(h) < m and hence the
congruence hxw1 ≡ 0 (mod f) has no solutions.
Let d ∈ [s − 1] and assume that we have already found (g1, . . . , gd) ∈ Gdp,m−w(f). For
g = (xw1g1, . . . , x

wdgd) we have from (3.44) that

Rd+1
γ ((g, xwd+1gd+1), f) = (1 + γd+1)Rdγ(g, f) + θ(gd+1), (3.51)

where we proceeded similarly as in the proof of Theorem 3.25. Here we have

θ(gd+1) =
∑

hd+1∈Gp,m\{0}
rp(hd+1, γd+1)

∑
h∈Gdp,m

h·g≡−hd+1x
wd+1gd+1 (mod f)

d∏
i=0

rp(hi, γi).

Let g∗ ∈ Gp,m−wd+1(f) be a minimizer of Rd+1
γ ((g, xwd+1gd+1), f) as a function of gd+1. Therefore g∗

also minimizes θ(gd+1). Bounding θ(g∗) by its mean we obtain

θ(g∗) ≤ 1
#Gp,m−wd+1(f)

∑
hd+1∈Gp,m\{0}

rp(hd+1, γd+1)

×
∑

h∈Gdp,m

(
d∏
i=1

rp(hi, γi)
) ∑

gd+1∈Gp,m−wd+1 (f)

h·g≡−hd+1x
wd+1gd+1 (mod f)

1.

Observe that gcd(f, hd+1x
wd+1) = 1. Therefore the congruence hd+1x

wd+1gd+1 ≡ −h · g (mod f) has
a unique solution in Gp,m but not necessarily in Gp,m−wd+1(f). In the case that −h · g 6≡ 0 (mod f)
we conclude that the congruence has at most one solution in Gp,m−wd+1(f). If −h ·g ≡ 0 (mod f) the
congruence has no solution in Gp,m−wd+1(f) since 0 6∈ Gp,m−wd+1(f). Hence we find by an application
of [18, Lemma 3.3] that
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θ(g∗) ≤ 1
#Gp,m−wd+1(f)

∑
hd+1∈Gp,m\{0}

rp(hd+1, γd+1)
∑

h∈Gdp,m

d∏
i=1

rp(hi, γi)

= 1
#Gp,m−wd+1(f)

[
d∏
i=1

(
1 + γi + γim

p2 − 1
3p

)](
γd+1m

p2 − 1
3p

)
.

By (3.51) and the induction hypothesis we have that

Rd+1
γ ((g, xwd+1gd+1), f) = (1 + γd+1)Rdγ(g, f) + θ(gd+1)

≤ 1
pm

d∏
i=1

(
1 + γi + γip

min{wi,m}m
p+ 1

3

)

×
(

1 + γd+1 + γd+1
pm

#Gp,m−wd+1(f)m
p2 − 1

3p

)

≤ 1
pm

d+1∏
i=1

(
1 + γi + γip

min{wi,m}m
p+ 1

3

)
,

where we used in the latter step that pm

#Gp,m−wd+1 (f) ≤
p
p−1p

min{wd+1,m}. This follows from the fact that
#Gp,m−wd+1(f) = pm−wd+1 − 1 if wd+1 < m and #Gp,m−wd+1(f) = 1 if wd+1 ≥ m. This finishes the
proof of Theorem 3.34.

As an immediate consequence of (3.43) and Theorem 3.34 we obtain the following result.

Corollary 3.35. Let N = pm, (wj)j≥1 be a non-decreasing sequence of non-negative integers and
let (g1, . . . , gs) ∈ Gsp,m−w(f) for irreducible f ∈ Gp,m be constructed using Algorithm 3.23. Then the
polynomial lattice point set P ((xw1g1, . . . , x

wsgs), f) has a weighted star discrepancy

D∗N,γ ((xw1g1, . . . , x
wsgs), f)

≤
∑
u⊆[s]
u6=∅

γu

(
1−

(
1− 1

N

)|u|)
+ 1
N

s∏
i=1

(
1 + γi + γip

min {wi,m}m
p+ 1

3

)
.

Remark 3.36. Using the same argumentation as in Corollary 3.27 we again obtain the sufficient con-
dition

∞∑
j=1

γjp
wj < ∞ for strong polynomial tractability and for the discrepancy bound

D∗N,γ ((xw1g1, . . . , x
wsgs), f) = O(N−1+δ), with the implied constant independent of s, for any δ > 0.
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3.4 Combined CBC

The CBC constructions presented in the previous sections all have the aim to speed up the construction
in order to be able to tackle large dimensions s. As already mentioned in the introduction (see p. 59),
with all these constructions, there is another issue that leads to a practical limit on the dimension s.
Numerical experiments [50] show that from some dimension onward the components produced by the
CBC construction tend to recur. This could be due to rounding errors that occur when implementing
the CBC construction, but the definite reason is yet unknown. However, there is a way around it—the
projection-corrected CBC construction by Dick and Kritzer [10].

In the present section we combine the reduced and the reduced fast, respectively, with the
projection-corrected CBC construction to get a construction which pools the advantages of these
two constructions, that is, being considerably faster than the standard CBC construction and being
free of recurring components. As the quality criterion we consider the worst-case error in this section.
All results presented here are based on [52].

Recall from (3.7) the definition of the reduced search spaces as

ZN,wj =
{
{z ∈ {1, . . . , bm−wj − 1} : gcd(z, bm) = 1} if wj < m,

{1} otherwise,

where 0 = w1 ≤ w2 ≤ . . . is a nondecreasing sequence of non-negative integers, defined in accordance
to the weight sequence γ = (γj)j≥1 as done before.

3.4.1 Definition of the function space

With our combined CBC algorithm we would like to construct generating vectors for lattice point
sets used in QMC algorithms applied to functions in certain weighted Korobov spaces. The Korobov
spaces we want to consider are the ones defined on p. 34. As we change the names of the parameters
in this section, in the following lines, we briefly recapitulate the definition of the spaces.

Let α > 1. The product-weighted Korobov spaces H(Ks,α,γ) we want to consider are defined
as follows. They are reproducing kernel Hilbert spaces of functions defined on [0, 1]s, with their
reproducing kernel given by

Ks,α,γ(x,y) =
∑
h∈Zs

rα(γ,h) exp (2πih · (x− y)), x,y ∈ [0, 1)s,

where, for h = (h1, . . . , hs) ∈ Zs, we have

rα(γ,h) =
s∏
j=1

rα(γj , hj), (3.52)
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with

rα(γj , hj) =

1 if hj = 0,
γj
|hj |α otherwise.

(3.53)

For f, g ∈ H(Ks,α,γ) the inner product is then given by

〈f, g〉H(Ks,α,γ) =
∑
h∈Zs

(rα(γ,h))−1 f̂(h)ĝ(h),

where f̂(h) =
∫

[0,1]s f(x) exp(−2πih · x) dx denotes the h-th Fourier coefficient of f . Note that we
changed the notation of the Fourier coefficients here. On p. 34, where we first introduced them, the
where denoted by f̂trig, whereas here, for simplicity, we abbreviate this notation to f̂ . The norm in
H(Ks,α,γ) is the norm induced by this inner product.

As a quality measure for a generating vector constructed with our algorithm we want to consider
the (squared) worst-case error of integration in H(Ks,α,γ) by a QMC rule using the lattice point set
as integration nodes. Recall from (2.1) that the worst-case error of z = (z1, . . . , zs) is given by

es,N,γ(z) = es,N,γ(z1, . . . , zs) = sup
f∈H(Ks,α,γ)
‖f‖H(Ks,α,γ )≤1

∣∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

N

N−1∑
j=0

f(pj)

∣∣∣∣∣∣,
where {p0, . . . ,pN−1} denotes the lattice point set, generated by z. Here, again, we write es,N,γ(z)
instead of es,γ(AN ) as a QMC algorithm is fully determined by the generating vector of the underlying
lattice point set.

It is known (see for example [13, 22]) that for a generating vector z ∈ {0, . . . , N − 1}s the squared
worst-case error in the weighted Korobov space H(Ks,α,γ) is given by

e2
s,N,γ(z) =

∑
h∈Zs\{0}

z·h≡0 (mod N)

rα(γ,h). (3.54)

3.4.2 The combined CBC algorithm

Before we describe the combined CBC construction let us first introduce a little more notation. We
denote by t1 = max{j ∈ N : wj = 0} the index up to which we consider the whole set ZN as the search
space and by t2 = min{j ∈ N : wj ≥ m} the first index for which the search space is reduced to {1}.
Note that t1 ≥ 1, t2 ≥ 2, and t1 < t2. Furthermore, let for sets E ⊆ Z, |E| denote their cardinality.

Now we are ready to state the combined CBC algorithm. Recall from p. 59 that the idea to avoid
recurrence of the components is to define exclusion sets, for each step of the CBC construction, whose
elements cannot be chosen in this step.

Algorithm 3.37. Let s ∈ N, b ∈ P, m ∈ N, N = bm, 0 = w1 ≤ w2 ≤ · · · , and ZN ,ZN,wj , t1 and t2
as above.

1. Set z1 = 1 and set E1 = ∅. Set z̃1 = z1.

2. For d ∈ {1, . . . ,min{t1 − 1, s − 1}} do the following: Assume that z1, . . . , zd have already been
found and choose Ed+1 ( ZN . (If no coordinates are to be excluded in this step, we define
Ed+1 = ∅.) Now choose zd+1 ∈ ZN \ Ed+1 such that

e2
d+1,Nγ(z1, . . . , zd, zd+1)

is minimized as a function of zd+1. Set z̃d+1 = zd+1.
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3. Increase d by 1 and repeat Step 2 until d = min{t1 − 1, s− 1}. (The last repetition of Step 2 is
for d = min{t1 − 1, s− 1}.)

4. If t1 ≥ s the algorithm terminates with d + 1 = s. Else, for d ∈ {t1, . . . ,min{t2 − 2, s − 1}} do
the following: Assume that z1, . . . , zt1 , zt1+1, . . . , zd have already been found and choose Ed+1 (
ZN,wd+1. (If no coordinates are to be excluded in this step, we define Ed+1 = ∅.) Now choose
zd+1 ∈ ZN,wd+1 \ Ed+1 such that

e2
d+1,N,γ(z1, . . . , zt1 , b

wt1+1zt1+1, . . . , b
wdzd, b

wd+1zd+1)

is minimized as a function of zd+1. Set z̃d+1 = bwd+1zd+1.

5. Increase d by 1 and repeat Step 4 until d = min{t2 − 2, s− 1}. (The last repetition of Step 2 is
for d = min{t2 − 2, s− 1}.)

6. If t2 > s the algorithm terminates with d+ 1 = s. Else, for d ∈ {t2 − 1, . . . , s− 1} set zd+1 = 1.
(The corresponding exclusion set is the empty set.) Set z̃d+1 = zd+1.

7. Increase d by 1 and repeat Step 6 until d = s− 1.

To avoid lengthy case analyses let us here and, if not stated otherwise, for the rest of this section,
assume that t2 ≤ s. The proofs of Theorem 3.39 for the cases where t2 or even t1 > s are easy
modifications of the proof stated below.

Remark 3.38. Algorithm 3.37 produces a vector

z̃ = (z̃1, . . . , z̃s) = (z1, . . . , zt1 , b
wt1+1zt1+1, . . . , b

wt2−1zt2−1, 1, . . . , 1)

with the last s− t2 + 1 components equal to 1. That means, zt1 , . . . , zt2−1 are multiplied by the factors
bwt1 , . . . , bwt2−1 in the generating vector. The reason is the following: The reduced search sets ZN,wj
contain only elements of ZN which are smaller than bwj . So, roughly speaking, all elements of ZN,wj
lie on the “left side” of ZN , whereas the elements in bwjZN,wj are spread all over ZN , where the
notation bwjZN,wj means, as already before in Section 3.2, that each element of ZN,wj is multiplied by
bwj modulo N .

As mentioned before we consider the squared worst-case error e2
s,N,γ(z̃1, . . . , z̃s) defined above as a

quality measure for the generating vector z̃ produced by Algorithm 3.37. Thus we would like to find
upper bounds for e2

s,N,γ(z̃1, . . . , z̃s). Note that the coordinates z̃j of z̃ do not necessarily belong to
ZN . However, the formula (3.54) for the squared worst-case error used in [10] is also true for arbitrary
coordinates z̃j ∈ {0, . . . , N − 1}, see for example [13]. Thus we end up with the following theorem.

Theorem 3.39. Let s ∈ N, b ∈ P, m ∈ N, N = bm, 0 = w1 ≤ w2 ≤ · · · , and ZN ,ZN,wj , t1 and t2 as
above. Further let z̃ = (z̃1, . . . , z̃s) be constructed by Algorithm 3.37, with exclusion sets Ej. Then for
all 1 ≤ d ≤ s and 1

α < λ ≤ 1 we have

e2
d,Nγ(z̃1, . . . , z̃d) ≤

∑
u⊆[d]

γλu (4ζ(αλ))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |


1
λ

,

where we set max ∅ = 0.

Proof. The proof of Theorem 3.39 is inspired by the proof in [10]. We use induction on d to show
the result. Recall our assumptions that w1 = 0 and z1 = 1, and that we consider product weights
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γu =
∏
j∈u γj . Then (3.52), (3.53), and (3.54) together with Jensen’s inequality, (

∑
k ak)

λ ≤
∑
k a

λ
k for

non-negative ak and 0 < λ ≤ 1, yield

e2
1,N,γ(z1) = γ1

∑
h∈Z\{0}

|Nh|−α = γ1
Nα

2ζ(α) ≤
(
γλ1
bm

4ζ(αλ)
) 1
λ

≤

 γλ{1} (4ζ(αλ))|{1}|

φ(bmax{0,m−maxj∈{1} wj})

 1
λ

≤

∑
u⊆[1]

γλu (4ζ(αλ))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |


1
λ

,

as claimed.

Now let d ∈ {1, . . . , s− 1}, and let z̃1, . . . , z̃d be chosen with Algorithm 3.37 and assume that

e2
d,Nγ(z̃1, . . . , z̃d) ≤

∑
u⊆[d]

γλu (4ζ(αλ))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |


1
λ

holds for any λ ∈ ( 1
α , 1]. We distinguish two cases, namely

1. d+ 1 ∈ {2, . . . , t1},

2. d+ 1 ∈ {t1 + 1, . . . , s}.

Let us start with the first case where d + 1 ∈ {2, . . . , t1}. As then w1 = · · · = wd+1 = 0, we
effectively consider the case of the projection-corrected CBC construction as in [10]. Note that for
wj = 0, we have ZN,wj = ZN and thus φ(N) =

∣∣∣ZN,wj ∣∣∣. Using this, we already know that

e2
d+1,Nγ(z̃1, . . . , z̃d, z̃d+1) ≤

 1
φ(N)

∑
u⊆[d+1]

γλu (2ζ(αλ))|u|
∏
j∈u

φ(N)
φ(N)− |Ej |

 1
λ

≤

 ∑
u⊆[d+1]

γλu (4ζ(αλ))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |


1
λ

for any λ ∈ ( 1
α , 1] and we are done with this case.

Next we deal with the second case where we have d + 1 ∈ {t1 + 1, . . . , s}. Using (3.54) we easily
obtain that for any z ∈ ZN

e2
d+1,N,γ(z̃1, . . . , z̃d, z) = e2

d,Nγ(z̃1, . . . , z̃d) + θN,d+1,α,γ(z),

where

θN,d+1,α,γ(z) =
∑

h∈Zd+1
hd+1 6=0

h·(z̃1,...,z̃d,z)≡0 (mod N)

rα(γ,h).

By setting βj = 1 in [7, Eq. (5)], we obtain

θN,d+1,α,γ(z) = 2γd+1ζ(α)N−α(1 + e2
d,Nγ(z̃1, . . . , z̃d)) + γd+1κN,d+1,α,γ(z), (3.55)
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with

κN,d+1,α,γ(z) =
∑

hd+1∈Z
N -hd+1

∑
h∈Zd

h·(z̃1,...,z̃d)≡−hd+1z (mod N)

|hd+1|−α rα(γ,h). (3.56)

Thus we have

e2
d+1,N,γ(z̃1, . . . , z̃d, z) = e2

d,Nγ(z̃1, . . . , z̃d) + 2γd+1ζ(α)N−α(1 + e2
d,Nγ(z̃1, . . . , z̃d)) + γd+1κN,d+1,α,γ(z)

= (1 + 2γd+1ζ(α)N−α)e2
d,Nγ(z̃1, . . . , z̃d) + 2γd+1ζ(α)N−α + γd+1κN,d+1,α,γ(z).

(3.57)

Recall that we want to show

e2
d+1,Nγ(z̃1, . . . , z̃d, z̃d+1) ≤

 ∑
u⊆[d+1]

γλu (4ζ(αλ))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |


1
λ

(3.58)

for any λ ∈ ( 1
α , 1].

Now choose λ∗ ∈ ( 1
α , 1] such that the right hand side of (3.58) is minimized as a function of λ.

Applying Jensen’s inequality to (3.57) we obtain

(e2
d+1,N,γ(z̃1, . . . , z̃d, z))λ

∗

≤ (1 + 2γd+1ζ(α)N−α)λ∗(e2
d,Nγ(z̃1, . . . , z̃d))λ

∗ + 2λ∗γλ∗d+1ζ(α)λ∗N−αλ∗ + γλ
∗

d+1(κN,d+1,α,γ(z))λ∗

≤ (1 + 2λ∗γλ∗d+1ζ(αλ∗)N−αλ∗)(e2
d,Nγ(z̃1, . . . , z̃d))λ

∗ + 2λ∗γλ∗d+1ζ(αλ∗)N−αλ∗ + γλ
∗

d+1(κN,d+1,α,γ(z))λ∗ .
(3.59)

Next we apply Jensen’s inequality to (3.56) and find

1∣∣∣ZN,wd+1

∣∣∣
∑

l∈ZN,wd+1

(κN,d+1,α,γ(l))λ∗ ≤ 1∣∣∣ZN,wd+1

∣∣∣
∑

l∈ZN,wd+1

κN,d+1,αλ∗,γλ∗ (l) =: κN,d+1,αλ∗,γλ∗ ,

where we used the notation γλ∗ = (γλ∗j )j≥1.
In the following we use methods similar to [21, 22]. Recall that Markov’s inequality states that

for a non-negative random variable X with E(X) < ∞ and any real number c ≥ 1 we have P(X <
cE(X)) > 1 − 1

c . We use the normalized counting measure µ on ZN,wd+1 as the probability measure
and apply Markov’s inequality as follows. For cd+1 ≥ 1 let

Gcd+1 :=
{
z ∈ ZN,wd+1 : (κN,d+1,α,γ(z))λ∗ ≤ cd+1κN,d+1,αλ∗,γλ∗

}
⊇

z ∈ ZN,wd+1 : (κN,d+1,α,γ(z))λ∗ ≤ cd+1∣∣∣ZN,wd+1

∣∣∣
∑

l∈ZN,wd+1

(κN,d+1,α,γ(l))λ∗
 =: Acd+1 .

Then Markov’s inequality yields

µ(Gcd+1) =
∣∣Gcd+1

∣∣∣∣∣ZN,wd+1

∣∣∣ ≥ µ(Acd+1) =
∣∣Acd+1

∣∣∣∣∣ZN,wd+1

∣∣∣ > 1− 1
cd+1

,

that is, for any cd+1 ≥ 1, there exists a subset Gcd+1 ⊆ ZN,wd+1 of size strictly bigger than∣∣∣ZN,wd+1

∣∣∣ (1− 1
cd+1

)
, such that

(κN,d+1,α,γ(z))λ∗ ≤ cd+1κN,d+1,αλ∗,γλ∗ for all z ∈ Gcd+1 .
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By choosing cd+1 ≥ 1 such that ∣∣∣ZN,wd+1

∣∣∣ (1− 1
cd+1

)
= |Ed+1| ,

it is ensured that the set Gcd+1 \ Ed+1 is not empty. Thus we have

cd+1 =

∣∣∣ZN,wd+1

∣∣∣∣∣∣ZN,wd+1

∣∣∣− |Ed+1|
.

As z̃d+1 is chosen by Algorithm 3.37 such that the error e2
d+1,Nγ(z̃1, . . . , z̃d, z̃d+1) is minimal, we obtain

together with (3.59)

( e2
d+1,Nγ(z̃1, . . . , z̃d, z̃d+1)

)λ∗
≤ (1 + 2λ∗γλ∗d+1ζ(αλ∗)N−αλ∗)(e2

d,Nγ(z̃1, . . . , z̃d))λ
∗ + 2λ∗γλ∗d+1ζ(αλ∗)N−αλ∗ + γλ

∗
d+1κN,d+1,αλ∗,γλ∗

≤ (1 + cd+12γλ∗d+1ζ(αλ∗)N−αλ∗)(e2
d,Nγ(z̃1, . . . , z̃d))λ

∗ + cd+12γλ∗d+1ζ(αλ∗)N−αλ∗

+ cd+1γ
λ∗
d+1κN,d+1,αλ∗,γλ∗ . (3.60)

Using the induction assumption with λ = λ∗, we obtain

(
e2
d,Nγ(z̃1, . . . , z̃d)

)λ∗
≤
∑
u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej | . (3.61)

Furthermore, from the proof of [7, Lemma 5], we obtain

κN,d+1,αλ∗,γλ∗ ≤ 2ζ(αλ∗)(1−N−αλ∗)φ(N)−1 ∑
∅6=u⊆[d]

γλ
∗

u (2ζ(αλ∗))|u|

≤ 2ζ(αλ∗)(1−N−αλ∗)
∑
∅6=u⊆[d]

γλ
∗

u (2ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})

≤ 2ζ(αλ∗)(1−N−αλ∗)
∑
∅6=u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej | . (3.62)

Plugging (3.61) and (3.62) into (3.60) we have

( e2
d+1,Nγ(z̃1, . . . , z̃d, z̃d+1)

)λ∗
≤

≤ (1 + cd+12γλ∗d+1ζ(αλ∗)N−αλ∗)
∑
u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
+ cd+12γλ∗d+1ζ(αλ∗)N−αλ∗

+ cd+1γ
λ∗
d+12ζ(αλ∗)(1−N−αλ∗)

∑
∅6=u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
=
∑
u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
+ cd+1γ

λ∗
d+12ζ(αλ∗)N−αλ∗ 1

φ(N)
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+ cd+1γ
λ∗
d+12ζ(αλ∗)N−αλ∗

+ cd+1γ
λ∗
d+12ζ(αλ∗)

∑
∅6=u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
≤
∑
u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
+

∣∣∣ZN,wd+1

∣∣∣∣∣∣ZN,wd+1

∣∣∣− |Ed+1|
4γλ∗d+1ζ(αλ∗)N−αλ∗

+

∣∣∣ZN,wd+1

∣∣∣∣∣∣ZN,wd+1

∣∣∣− |Ed+1|
4γλ∗d+1ζ(αλ∗)

∑
∅6=u⊆[d]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u wj})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej |
≤

∑
u⊆[d+1]

γλ
∗

u (4ζ(αλ∗))|u|

φ(bmax{0,m−maxj∈u{wj}})
∏
j∈u

∣∣∣ZN,wj ∣∣∣∣∣∣ZN,wj ∣∣∣− |Ej | ,
as claimed. Thus the result holds for the special case of λ∗. As we have chosen λ∗ such that the right
hand side of (3.58) is minimized the estimate is true for arbitrary λ ∈ ( 1

α , 1] as well. 2

Theorem 3.39 enables us to combine the reduced with the projection-corrected CBC construction,
while still achieving a small worst-case error. The reduced fast CBC construction can be used here as
well. Indeed, in this case one has to perform the additional step of checking whether a component is
in the respective exclusion set. Hence, in the process of choosing component d one has to carry out
|Ed| checks for exclusions at most, that is a total of at most

min{s,t2}∑
j=2

|Ej | ≤ min{s, t2}N

checks for the entire process of finding a generating vector, where one only has to sum up to j =
min{s, t2} as for all subsequent steps the search space is reduced to {1}. Hence the overall complexity
of the reduced fast CBC algorithm, which is (cf. [13])

O

N logN + min{s, t2}N +
min{s,t2}∑
j=1

(m− wj)Nb−wd
 ,

is not increased. This proves the following corollary.

Corollary 3.40. Let s ∈ N, b ∈ P, m ∈ N, N = bm, 0 = w1 ≤ w2 ≤ · · · , and ZN ,ZN,wj , t1 and t2 as
above. Then Algorithm 3.37 takes at most

O

N logN + min{s, t2}N +
min{s,t2}∑
j=1

(m− wj)Nb−wd


steps to construct a generating vector z̃ which satisfies the error bound of Theorem 3.39.
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4 Conclusion and Outlook

The last section of this thesis consists of a brief summary of our main results as well as concluding
remarks and ideas for further research projects.

In the first part of this thesis we studied tractability theory. In particular we considered two
different settings for which we tried to find necessary and sufficient conditions for several tractability
notions to hold.

In Section 2.2 we considered integration in a Hermite space of analytic functions and found neces-
sary and sufficient conditions for SPT, as well as sufficient conditions for PT, QPT, UWT, (t1, t2)-WT
and WT.

In Section 2.3 we studied a hybrid function space which is the tensor product of a Walsh and a
Korobov space. For this space we found necessary and sufficient conditions for the standard tractabil-
ity notions of L-approximation using information from Λall and Λstd, respectively.

Concerning the sections on tractability there remain two unresolved problems within close prox-
imity of the problems studied in Sections 2.2 and 2.3.

To the author’s best knowledge, necessary conditions for integration in the Hermite spaces for all
tractability notions, except strong polynomial tractability, are yet unknown.

As for hybrid functions spaces, the problem of finding necessary conditions for the standard
tractability notions for approximation in the Walsh spaces remains unresolved. Once these condi-
tions are found one could complete the alternative approach to find necessary conditions in the hybrid
function spaces, as described in Section 2.3.4. It is to be expected that these necessary conditions
would match the sufficient conditions already found.

These problems remain to be solved.

In the second part of this thesis we studied the construction of (polynomial) lattice point sets as
sample points in QMC algorithms for integration.

In Section 3.2 we managed to apply the reduced fast CBC construction to finding lattice point
sets with small weighted star discrepancy, while having a small computational cost. Previously this
construction was used for finding lattice point sets with small worst-case error. The reduced CBC
construction uses the fact that in weighted function spaces not all components of the generating vector
have the same amount of influence on the quality of the corresponding lattice point set. The idea is
to reduce the size of the search set for each component according to its importance.

In Section 3.3 we extended this to constructing polynomial lattice point sets with small weighted
star discrepancy.

Finally, in Section 3.4 we studied the following problem. As numerical experiments of Kuo, Gant-
ner and Schwab show, the components of generating vectors obtained from CBC constructions tend to
have recurring components from some dimension onwards. In [25] Gantner and Schwab presented nu-
merical experiments with a CBC construction which avoids such recurrences. In [10] Dick and Kritzer
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showed that a generating vector constructed with such an algorithm yields a lattice point set with
good worst-case error. In this thesis we combined this construction with the reduced fast concept and
found a CBC construction for lattice point sets free of recurring components with small worst-case
error and small computational cost.

When it comes to construction of lattice point sets, there is one possible future project which we
would like to describe in a greater detail. Recently Ebert, Leövey and Nuyens [23] have come up with
a whole different approach to the problem of constructing lattice point sets.

In a CBC construction we determine the generating vector z = (z1, . . . , zs) one component at a
time. This means that we start with (z1) and in each step of the algorithm we add one component of
our generating vector until we end up with a full-size generating vector z = (z1, . . . , zs). When adding
the d-th component of the generating vector, we minimize the worst-case error of the d-dimensional
integration problem to choose zd.

Ebert, Leövey and Nuyens in contrast consider a successive coordinate search algorithm which
works as follows. They choose an s-dimensional starting vector z0 = (z0

1 , . . . , z
0
s ) and in each step of

the algorithm one component of z0 is altered. In the first step z1 is chosen as the minimizer of the
s-dimensional worst-case integration error as a function of z0

1 when all other components are fixed.
Similarly in the d-th step zd is chosen as

zd = argminz∈ZseHs,N (z1, . . . , zd−1, z, z
0
d+1, . . . , z

0
s ).

This process terminates after s steps once z = (z1, . . . , zs) has been chosen. The crucial point in
this algorithm is how to choose the starting vector z0. It can be shown (cf. [23]) that the successive
coordinate search algorithm and a CBC construction yield the same generating vector if the starting
vector is the zero vector. Numerical experiments [23] show that the successive coordinate search
algorithm provides better results then CBC constructions if the starting vector is good. (For exampe,
one idea would be to choose a generating vector obtained by a CBC construction as starting vector
in the successive coordinate search algorithm.)

As a possible future project one could now try to speed up the successive coordinate search algo-
rithm by reducing the search spaces similarly as for the reduced fast CBC constructions presented in
this thesis. The hope would be to find a fast algorithm which produces better results than CBC.
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