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Abstract

In many applications, as for example physics, economics, finance and computational sciences, high-
dimensional integration and approximation are problems which have to be solved numerically. In this
thesis we study several aspects of high-dimensional solution algorithms for these problems.

In the first part of the thesis we consider tractability of multivariate continuous problems. This
means that we are interested in how much information a numerical algorithm needs to solve the prob-
lem with accuracy . We study how fast the number of information evaluations required increases if
the number of variables goes to infinity or the error demand € tends to zero. We consider the two
examples of a weighted Hermite space and of a hybrid function space.

In the second part of the thesis we investigate the problem of constructing point sets in the s-
dimensional unit cube, which are used in a certain type of numerical algorithms, so-called quasi-Monte
Carlo algorithms, which are widely used to numerically solve high-dimensional integration problems.
We present several fast construction methods which provide point sets having certain good properties.
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Kurzfassung

In vielen Anwendungen, etwa in der Physik, den Wirtschaftswissenschaften, der Finanzmathematik
oder den Computerwissenschaften, sind multivariate Integration und Approximation Probleme, die
haufig auftreten und die numerisch gelést werden miissen. In der vorliegenden Arbeit betrachten wir
diverse Aspekte hochdimensionaler Losungsalgorithmen fiir diese Probleme.

Im ersten Teil der Arbeit studieren wir “Tractability” multivariater, stetiger Probleme. Das be-
deutet, dass wir uns fiir das Ausmaf} an Information interessieren, welches ein numerischer Algorithmus
bendtigt um ein gegebenes Problem mit Genauigkeit € zu 16sen. Wir untersuchen die Geschwindigkeit,
mit der die benétigte Informationsmenge zunimmt, wenn die Anzahl der Variablen steigt oder die
Fehlerschranke ¢ gegen Null konvergiert. Wir betrachten Tractability anhand der beiden Beispiele
eines gewichteten Hermiteraums und eines gemischten Funktionenraums.

Im zweiten Teil der Arbeit betrachten wir das Problem, Punktmengen im s-dimensionalen Ein-
heitsintervall zu konstruieren, welche in sogenannten quasi-Monte Carlo Algorithmen verwendet wer-
den. Quasi-Monte Carlo Algorithmen sind spezielle numerische Algorithmen, die vielfach zur nu-
merischen Lésung hochdimensionaler Integrationsprobleme verwendet werden. Wir analysieren mehre-
re schnelle Konstruktionsmethoden, welche Punktmengen mit bestimmten guten Eigenschaften liefern.
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1 Preface

High-dimensional algorithms are widely used in applications to physics, economics, finance, computa-
tional sciences and others, see also [55, 60, 63].

Thus high-dimensional algorithms are an extensively studied field, and particularly in finance the
number of variables one has to consider can be extremely high or even infinite. In this thesis we want
to cover mainly two aspects of the topic, namely tractability of multivariate problems and construction
of (polynomial) lattice point sets.

Roughly speaking tractability theory studies how much “effort” one has to make to solve a problem
with accuracy €. In particular it investigates and measures how fast, i.e., with which rate, the amount
of effort required increases, if the error demand ¢ tends to zero, or the dimension of the problem, that
is the number of variables, goes to infinity. Tractability properties of several multivariate continuous
problems are studied in Section 2 of this thesis.

(Polynomial) lattices are point sets in the s-dimensional unit cube. Such point sets turn out to be a
good choice as sample points in so-called quasi-Monte Carlo (QMC) algorithms which are for instance
used to numerically approximate the s-dimensional integral of some function f. Properties of lattice
point sets influence the quality of the approximation. Thus one wants to have reliable methods at
hand to construct lattice point sets with good properties. This is the content of Section 3 of this thesis.

The concepts of both, tractability of multivariate problems, and construction of (polynomial) lat-
tice point sets, are explained in detail in the introductions of the respective Sections 2 and 3.

The content of this thesis is based on the following papers:

e R. Kritzinger, H. Laimer, A reduced fast component-by-component construction of lattice point
sets with small weighted star discrepancy, Unif. Distrib. Theory. 10, No.2, (2015) 21-47.

e H. Laimer, On combined component-by-component constructions of lattice point sets, J. Com-
plexity 38 (2017) 22-30.

e R. Kritzinger, H. Laimer, M. Neumiiller, A reduced fast construction of polynomial lattice point
sets with low weighted star discrepancy, Submitted for publication, 2017.

e P. Kritzer, H. Laimer, F. Pillichshammer, Tractability of ILs-approximation in hybrid function
spaces, to appear in Funct. Approx. Comment. Math., 2017.

Furthermore, Section 2.2 contains results which have not been submitted for publication until now:

e C. Irrgeher, P. Kritzer, H. Laimer, On standard tractability notions for integration in Hermite
spaces of analytic functions, unpublished notes.



The rest of this thesis is organized as follows. At the beginning of Section 2 we introduce tractabil-
ity theory in more detail, and subsequently consider two different problem settings and study their
tractability properties. In Section 3 we move on to constructing generating vectors of (polynomial)
lattice point sets. Here we investigate three different constructions to obtain generating vectors with
several good properties. Finally in the Section 4 we briefly summarize the main results and give an
outlook on possible future research topics.



2 Tractability

2.1 Introduction

Multivariate continuous problems, defined over function spaces of s variables, can only very seldomly
be solved analytically. A multivariate continuous problem could for instance be the approximation
of functions in s variables from some suitable function space Hs, or numerical integration of such
functions. These are the two main problems we investigate in the following.

Roughly speaking, the field of tractability studies how much information is needed to solve prob-
lems at least with a given accuracy. For more detailed information see also [63, 64, 65].

The founders of tractability theory are Joseph Traub, Grzegorz Wasilkowski and Henryk WozZni-
akowski. After they laid the foundations of this field of research many scientists stepped in, and today
tractability theory is a very active field where a lot of research is done all around the world.

The subsequent introduction to tractability theory follows closely the comprehensive book [63]
about the topic by Novak and Wozniakowski. In particular we use Chapters 4 and 5 of [63]. Other
literature is cited explicitly in the text.

Suppose we have a function space Hs and further let S: Hs — G be some operator, where G is a
normed space. We call S the solution operator. We denote the norm in H; with ||-||,, and accordingly
the norm in G with |[|-[|. Similarly, throughout the rest of this thesis, if a norm is indexed with the
name of a function space, then this norm is the norm corresponding to the space in question.

It might not be possible to compute S(f) explicitly for f € H,. The goal is now, for given £ > 0,
to find an algorithm A such that A(f) lies within an e neighborhood of S(f).

Such an algorithm A uses N pieces of information about f, say Lo(f),...,Ly-1(f), as input.
That is, A is of the form A(f) = @(Lo(f),...,Ln-1(f)), where ¢ is some suitable function. The
information Lo(f),...,Ly—1(f) usually stems from some class of information A C H}, where H}
denotes the dual space of Hg, that is the space of all continuous linear functionals L: H; — K, where
KK is the underlying field. We distinguish between information from A*! and from A9, A2l contains all
continuous linear functionals in H, i.e., A*! = H*, whereas AS*! consists only of function evaluations.
This means that for any L; € AS'? there exists some x; such that L;(f) = f(;) for all f € H,. In the
following sections we will consider both, information from AS*d and from A2

There is another aspect of information worth considering—we categorize whether we use adaptive
or non-adaptive information. If the previously chosen pieces of information, Lo(f),...,Lq(f), are
taken into account when choosing Lgi1(f) = Lgs1(f, L1(f),..., La(f)), we speak of adaptive or
sequential information. If the pieces of information are independent of each other, and thus can be
computed at the same time, we have non-adaptive or parallel information. Intuitively it seems to
be beneficial to use adaptive information. It turns out, however, that there is almost no gain in
using adaptive information, while it is clearly more costly to do so, rather than using non-adaptive



information. More precisely Bahvalov proved in 1971 [2] that, given some linear functional as solution
operator S and special linear functionals, e.g., function values from A4, as information, there is no
gain in using adaptive information. For some arbitrary linear solution operator S, however, one can
obtain an advantage in using adaptive information, though only a small one. For sets of adaptive and
non-adaptive information, N292 and N respectively, each consisting of N information evaluations,
Gal and Micchelli [24] showed in 1980 that

it sup [IS(F) = oVl < 2inf sup - [|S() - eV ()

[[fll3¢ <1 1113 <1

g

As explained before, [|-[|,, and ||-[|g denote the norms in Hs and G, respectively. Roughly speaking,
the latter inequality illustrates that the best among all algorithms using non-adaptive information
N evaluated at the function f performing worst of all functions in the unit ball of H;, is at most
twice as bad as the best of all algorithms using adaptive information N2 also evaluated at the worst
function in H,.

This means that adaptive information is at most twice as good as non-adaptive information in this
setting. So small a gain might not be worth the extra costs for choosing information adaptively.

Finally we quote one more result in this direction. Creutzig and Wojtaszczyk [6] proved in 2004
that if S: Hs — G is linear and if at least one of the conditions

g =R,

e (G is the L., space with a measure p,

G is a set of bounded functions on some set K with sup-norm |||,

e S is compact and G is a set of continuous functions on a compact Hausdorff space K with
sup-norm |||,

e H, is a pre-Hilbert space,
holds, then

inf sup [IS() (N (Pllg <inf sup [[S() - e ()]

fEHs
£l <1 £l <t

Hence for a broad range of problems non-adaptive information is at least as good as adaptive infor-
mation and thus, in this thesis, we only consider non-adaptive information. There exist, however, also
many applications where adaption is of great advantage.

We aim at approximating S(f) by A(f) with an error smaller than €. There are several possibilities
to measure this error. Here we present the concept of the worst-case error criterion as this is the
criterion we consider in this thesis. It is defined by

ey, (A) = sup 1S(f) = A(H)lg- (2.1)
1 £ll3, <1

Other ways to measure the error one makes when approximating S(f) by A(f), are for example by
means of the average-case error, the randomized error or the error in a probabilistic setting as defined
on p. 137 of [63]. For more information on different error types see for example [63].

As we do not study other error criteria we omit the superscript “wor” and write ey, (A) for the
worst-case error instead of e3> (A).



Considering an algorithm A which uses no information at all we define the initial worst-case error
eo = inf sup ||S(f)— ,
int s 1S0) ~ glg
1115, <1

the smallest worst-case error that can be obtained by approximation with constant algorithms. We
measure the quality of our algorithms A either in the normalized error criterion, that means we
normalize the worst-case error by the initial worst-case error to 6”27(‘@, or we consider the absolute
error criterion which deals with the unnormalized worst-case error ey, (A). In all the cases studied
in the next sections one can show that ey = 1, so the normalized and the absolute error criterion
coincide. This, however, need not be true for other settings considered elsewhere.

One question we are interested in is how much effort one has to make to solve the problem with
accuracy at least €, that means to obtain a worst-case error that does not exceed €. We measure this
effort by the amount of information used in our algorithms A. To this end we write Ay for algorithms
A(f) = An(f) = @(Lo(f), ..., Lny—1(f)) which use N pieces of information. With this notation we
define the N-th minimal worst-case error ey, (V) as the smallest among all worst-case errors induced
by such algorithms Ap. That is,

en,(N) = gle en,(An), (2.2)

where the infimum is taken over all admissible algorithms Ay. To clarify which class of information
is considered one can write ey, A(N). The normalized N-th minimal worst-case error is given by

1

— N).
6067-[5( )

Using this notation, we define the information complexity Ny, (¢) as the minimal number N such
that there exists an algorithm Apx which uses IV pieces of information and has a worst-case error of
at most €. Hence we have

Ny (e) =min{N € N: ey (N) <¢} (2.3)
for the absolute error criterion and
Ny, () =min{N € N: ey (N) < eeg}

for the normalized error criterion. If we need to clarify which class of information is used, we write
Ny, A(e) for the information complexity.

Note that the two notions of information complexity are the same when the initial error ey equals
1. This is the case in all settings we study in this thesis. If it is clear which s-variate function space Hy
we are considering we will frequently replace Hs by s in the notation of the different notions introduced
above. So, for example we write es(A) for the worst-case error of algorithm A instead of ey, (A).

Tractability theory studies properties and behavior of the information complexity. As the definition
of information complexity contains the notion of the N-th minimal worst-case error we start by
studying the minimal worst-case error a bit further. We aim at narrowing down the number of
algorithms we need to look at in order to compute
ey (N) =infey, (An).

AN

S

Definition 2.1. Let S: Hs; — G be a solution operator and let Ay be an algorithm which uses N

pieces of information Lo(.),...,Ly—1(.). AN is called linear if it is of the form
N-1
An(f) =D aiLi(f), (2.4)
=0
where ag, ..., an_1 € G.



Smolyak proved in his PhD-thesis [76] in 1965 the following result which was first published by
Bahvalov in [1]. Let S: H, — R or S: #, — R be a linear solution operator, where 7, is the unit
ball of H,. Further let A?\}ia be an algorithm that uses adaptive information N2, Then there exists
a linear algorithm A" of the form

N-1
AN (f) = Z a;i Li(f), ag,...,an—1 € R,
1=0
which uses non-adaptive information N"" = [Lo(f),...,Ly-1(f)], such that

en. (AR") < e, (AR®).

This means that for linear functionals S as solution operator, linear algorithms which use non-adaptive
information are optimal. As before, for the question whether to use adaptive or non-adaptive infor-
mation, there exists a result of Creutzig and Wojtaszczyk [6] from 2004 which states that under some
mild conditions linear, non-adaptive algorithms are optimal also for arbitrary linear solution operators.
The conditions required are the same as for the result of Creutzig and Wojtaszczyk on p. 5. These
conditions are fulfilled for all function spaces we consider throughout the rest of this thesis. Thus,
in all our settings we know that we can without loss of generality restrict ourselves to studying only
linear algorithms which use non-adaptive information.

Now we are ready to define the different notions of tractability. We call s the dimension of the
problem Ss: Hs — G. Let € be the error threshold within which we want to approximate the problem.
Tractability describes how the information complexity depends on s and €. For a sequence of problems
S = (Ss)s>1 we consider the sequence (Ny, a,(€))s>1 of their information complexities. Obviously, for
growing dimension s and decreasing e, the information complexity will grow. Tractability measures
at what rate Ny (e) grows.

Definition 2.2. A sequence of problems Ss: Hs — G is called

e intractable for Ay if

log N
i 08Nl (E) 0
stelooo S+ e7t
e weakly tractable for A if
log N.
lim 2 HsAslE) ©) =0,

s+e~l—oo s+e1

e polynomially tractable for Ag if there exist non-negative constants C,p and q such that

Ny, a,(e) < CePs? forall s € N and for all € € (0,1), (2.5)

e strongly polynomially tractable for Ag if (2.5) holds with ¢ = 0.

Remark 2.3. In the above definition we call the infimum of all p such that (2.5) holds with ¢ = 0 the
exponent of strong polynomial tractability.

Definition 2.2 means that a problem is at least weakly tractable if the information complexity does
not depend exponentially on s and e~!. Polynomial tractability implies that XV, s,A, (€) depends at most
polynomially on s and e~! and strong polynomial tractability means at most polynomial dependence
on e~ and independence of s.



The goal of the remainder of the chapter on tractability is to find out whether and under which
conditions certain problems are tractable.

Next we want to have a look at a special, well-studied class of problems, for which we know optimal
algorithms and are able to formulate criteria for the different tractability notions to hold. For detailed
information see [63, Chapter 5.

We consider linear problems over Hilbert spaces, i.e., Hs is now assumed to be a Hilbert space.

Definition 2.4. Let S: Hy — G or S: Hy — G, respectively. We call the approximation of S(f) by
algorithms A a linear problem, if

1. the operator S is linear, and Hs and G are normed spaces,

Hs is a non-empty subset of Hs,

Hs is conver, i.e., tfi + (1 —1t)f2 € H, for allt € [0,1] as long as f1, fa € Hs,

H, is symmetric, i.e., f € H, implies —f € 7—75, and

Gvo e e

algorithms A use information from a class A C H.

Remark 2.5. Definition 2.4 is valid for subsets H, C Hs other than the unit ball as well. As we only
ever constder the unit ball in this thesis which fulfills all the conditions on 775 in the definition above,
and as our algorithms use information from a class A C HY, the problems we consider are linear if S
is a linear operator.

Let Hs and G be Hilbert spaces and suppose that Ss: Hs — G or Ss: 778 — @ is a sequence of linear
and compact operators. Here, by compact we mean that each bounded sequence (x,)n>1 C Hs or
(@n)n>1 C 775, respectively, has a subsequence (&, )r>1 such that (Sg(xn,))r>1 is convergent. Define
the adjoint operator S¥: G — Hs by

<SS(f)vg>g = <f7 S:(g»’}-[& ) for all f € HS and all g € g7

where (-)g and (-),, denote the respective inner products of G and Hs. Then we can define the
compact, self-adjoint operator Wy = S;Ss: H, — H, with eigenpairs (As j,es5). All the eigenvalues
As,j are non-negative reals, as S*S is a positiv operator, and we can number them such that they
are in non-increasing order. That means we have A\s1 > As2 > -+ > 0, Wi(es;) = A jes; and
(€s,is 637j>H3 = 0;j, where the latter property that the eigenvectors are orthonormal, stems from the
spectral theorem for compact operators. In [63, Section 4.2.3] it is proved that within this setting the
optimal algorithm Ay using N pieces of information from A?! is given by
N
A(j)\?t(f) = Z (f, es,j>7-[s Ss(es,j)

Jj=1

and that we have

€S7Aall(A§)\?t) = esyAall(N) = 1/AN11-

Further the following theorem is true. It is Theorem 5.1 in [63].

Theorem 2.6. Suppose we have a sequence of linear and compact operators S = (Ss)s>1, Ss: Hs — G,
where Hs and G are Hilbert spaces. Consider further the absolute worst-case error criterion and
information from A,



e The problem is polynomially tractable if and only if there exist positive constants Ci,7 and
non-negative constants qi,qe such that

S

Cy = sup ( Z )\;]) s < oo. (2.6)

EN \j=[Crsn1]
e If (2.6) holds, then

Ny(e) < (C) + CF)smaxta@mhe =27 for il s € N and for all € € (0,1].

e The problem is strongly polynomially tractable, iff (2.6) holds with g1 = g2 = 0. The e-exponent
of strong polynomial tractability is then given by p = inf{27: 7 fulfills (2.6) with ¢1 = g2 = 0}.

Remark 2.7. From Theorem 2.6 we know that in this setting the question whether we have (strong)
polynomial tractability or not depends solely on the eigenvalues A ;. When considering polyno-
mial tractability we can neglect the behavior of a polynomial number in s of initial eigenvalues, as
As,1s -+ A [Cysa1]—1 do mot appear in (2.6). Similarly for strong polynomial tractability we can omit
a constant number of initial eigenvalues.

Similar criteria exist for normalized problems and for weak tractability. Criteria for weak tractabil-
ity are usually rather complicated, though. Such criteria can for example be found in [63, Theorem 5.2,
Theorem 5.3 and Lemma 5.4].

Next we consider another interesting setting, namely linear problems over tensor product spaces.
All problems we consider in the following sections are of this type. Suppose we have Hi, the unit
ball of some univariate Hilbert space H1; G1 another Hilbert space and Sy: Hi1 — Gy or Sy: 771 — G
a linear and compact operator. So far, there is no difference to the setting above, except that we
are considering strictly only univariate spaces. Thus, as before, we know the optimal algorithm A;’\?t
using the eigenpairs of the self-adjoint operator Wi. Now build the s-fold tensor products, Hs and G,
of H1 and G; and consider the linear and compact operator Ss: Hs — G, given as the s-fold tensor
product Sg = 51 ® --- ® S1. Recall that the eigenvalues and eigenvectors of the self-adjoint operator
W are now of product structure. So, for j € N* we have A\g j = A1 j, -+ Ay, for the eigenvalues and
€sj = €15 @ - ® ey j, for the eigenvectors. With this we can write the optimal algorithm as

A?\I/)t(f) = Z <f> es,j>'Hs Ss(es,j)-

jENs

As before we can formulate criteria for the different tractability notions to hold which depend only on
the eigenvalues of Wi. The theorem we want to quote in this direction is a part of the results proved
in [63, Theorem 5.5].

Theorem 2.8. Suppose we have a sequence S = (Ss)s>1 of linear tensor product problems as described
above with A1 2 > 0. Consider further the absolute worst-case error criterion and information from
AL Then we have:

e For A11 > 1 the problem is intractable.
e For A1 =1 the problem is polynomially intractable.

— For M\i;1 = M2 =1 the problem is intractable.

— If S is weakly tractable, then we have A\12 < 1 and A1, = o((logn)~2) as n — co.



— If M2 < 1 and M\, = o((logn)~2(loglogn)=2) as n — oo, then the problem is weakly
tractable.

e For A1 <1 we have:

— Weak tractability implies A1, = o((logn)™2) as n — oo.
— If M1, = o((logn) ~2(loglogn)~2) as n — oo, then the problem is weakly tractable.

— Polynomial and strong polynomial tractability are equivalent and hold if and only if there
exists some r > 0 such that A1, = O(n™") as n — oo.

Using these, and other, criteria one finds that many problems are intractable over almost all
classical spaces. Despite these negative results, linear algorithms often yield very good numerical
results even for large dimensions s. In 1998 Sloan and Wozniakowski [74] explained this as follows.
For many problems coming from applications, variables and groups of variables do not all have the
same influence on the problem. If we do not take into account these differences in the influence of the
variables, the problem may seem to be intractable, while numerically the algorithms work well. Thus
it can be beneficial to consider weighted spaces. Weights are designed according to the importance of
each variable or group of variables.

Weights are described by a sequence of (non-negative) numbers =y, occurring in the norm of the
function space. This means that weights change the norm of the space and thus its unit ball. Con-
sidering problems over weighted spaces rather than over their unweighted versions, thus can make
the problem easier, as we take the supremum over all function in the unit ball when calculating the
worst-case error. The insight of Sloan and Wozniakowski was though, that these simplified problems
are indeed often closer to reality than the problems considered over the classical spaces. This is due
to the fact, that problems over weighted spaces arise quite naturally from many applications, such as
finance or physics.

For some weighted space H,~, we also indicate in the notation of the worst-case error and the
information complexity etc. that we are using their weighted versions by using the subscript <. For
example we write es (An) for the worst-case error of algorithm Ay in the space H,~. For all the
other notions defined above we proceed analogously.

We distinguish between different types of weights v = {7su}senuc[s), Where [s] = {1,...,s}. In
this thesis we mostly consider product weights v = {75 j}sen,j>1 With 0 < v5 5 < -+ < 7,1, where v,
is defined by

VYsu = H Vs,5
J€Eu

Product weights are ideal for problems where the influence of the variables decreases as their index j
increases. The weight 75 ; describes the influence of the j-th variable.

Another type of weights are finite-order weights, where v, ,, = 0 if u contains more than w elements,
where w is some non-negative integer. Finite-order weights are used for functions of the form

[= Z Jus
uCls]

where f is a sum of functions f,, which depend on w variables at most. For more details and more
different types of weights see [63, Section 5.3]. For many problems which suffer from the curse of
dimensionality (that means, which are intractable) one can obtain tractability by introducing weights.

For fine-tuning purposes more precise tractability notions have been introduced. The following
definition gives some examples. For further information, see for example [26, 69].

10



Definition 2.9. A sequence of problems Ss: Hs — G is called

e quasi-polynomially tractable for A if there exist non-negative constants C' and t such that

N a,(e) < Cexp(t(1 +logs)(1 +1log(e™))) for all s € N and for all € (0,1),

o uniformly weakly tractable if

log N
i 108 Ne(©)

—0 la,Be (0,1,
s+e~1—o00 Sa—‘r&_ﬁ fora Oéﬁ ( ]

o (t1,t2)-weakly tractable if there exist positive t1 and ta such that

log N,
im 8 NenlE)

ste—looo st e t2

We use the following abbreviations.

Weak tractability WT
(t1,t2)-weak tractability (t1,t2)-WT
Uniform weak tractability UWT
Quasi-polynomial tractability QPT
Polynomial tractability PT
Strong polynomial tractability SPT

For t1,t2 € (0, 1] one can easily prove that the following line of implications holds true:
SPT = PT = QPT = UWT = (t1,t2)-WT = WT.

In the following sections we consider different problems over different function spaces and aim at
finding necessary and sufficient conditions for the different tractability notions to hold.

11



2.2 Hermite space

In this section we want to consider tractability of integration in weighted Hermite spaces. They have
first been introduced by Irrgeher and Leobacher in [37]. After that Dick, Irrgeher, Kritzer, Leobacher,
Pillichshammer and WoZniakowski have done further work in this direction [9, 35, 36].

One of the advantages of considering Hermite spaces is that they allow to tackle the problem of
integration and approximation of functions defined on the R®, whereas many of the classical spaces
consist of functions defined on the s-dimensional unit cube. Functions defined on the whole R®
naturally arise from many problems coming from applications, in particular those from mathematical
finance. Although these problems can be transformed to ones on the unit cube, one often ends up
with functions that do not belong to spaces for which tractability can be shown. For more detailed
information see [35].

Let us start by defining the class of Hermite spaces. We begin by recalling definitions and results
about standard Gaussian measure, Hermite polynomials and Hermite expansion, as done in [37].

Definition 2.10. The Borel probability measure on the R® with density ¢s: R®* = R, given by

_zz
2

ps(@) = (2m) " 7e

with respect to the s-dimensional Lebesgue measure is called the standard Gaussian measure. Here
x -y denotes the usual dot product on the R®.
A measurable function f: R° — R is called Gaussian square integrable if

/ f(@)?ps(x) de < oo,
Rs

The vector space of Gaussian square integrable functions is denoted by L2(R?, ps).
Remark 2.11. For simplicity we will frequently denote the univariate density function o1 by .

The linear space L?(R?, ¢s) of all equivalence classes of Gaussian square integrable functions on
the R? forms a Hilbert space with inner product

Dz = [ F@@s(@) do.

Here we say that f and g are equivalent if f = ¢g almost everywhere.

Next we introduce multivariate Hermite polynomials. In the literature there are several related
versions of the definition of Hermite polynomials. Here, as done in [37], we use the definition given in
[5].

Definition 2.12. For k € Ny the k-th (univariate) Hermite polynomial is given by

[N

—DF 2 98 22
Hk(x):(\/kf)'e 5ake -

12



For k = (k1,...,ks) € N{ the k-th Hermite polynomial is defined by
H() = [ Hi, ().
j=1

The (univariate) Hermite polynomials are the Gram-Schmidt orthonormalization of 1,x,z2, ...
with respect to the standard Gaussian measure. For example, the first three univariate Hermite
polynomials are given by Ho(x) = 1, Hy(z) = 2 and Ha(z) = 2% — 1.

In [5, Lemma 1.3.2 and Corollary 1.3.3] Bogachev proves the following theorem.

Theorem 2.13. The sequence of Hermite polynomials (Hg(x))kenyg forms an orthonormal basis of
L2 (Rsv (PS)

Thus, for functions f € L2(IR%, ), the Hermite series

f@) =" fk)Hy(z),

kENg

with Hermite coefficients
f) = | @ @)@ da.

converges in the L?(R*, ¢,) norm.
The Cauchy-Schwarz inequality implies that

@) H(z) s ()] dae < . f(x)2ps(x) de : ) Hy(x)%ps(x) de ¥ < .
R R R

Hence, the k-th Hermite coefficient exists for every f € L2(IR*, ) and every k € N§ and one can show
that the Hermite expansion is unique for continuous f. The Hermite expansion converges pointwise
if, additionally, the Hermite coefficients are absolutely summable.

Theorem 2.14. For continuous f € L*(R®, s) with Y
kENS

fl@)= > f(k)Hy(x)

kENS

f(k)‘ < 00, we have

for all x € R®.

The proof of this theorem can be found in [37, Proposition 2.6].
Now we are ready to define Hermite spaces as done in [37].

Definition 2.15. Let r: N§ — Rt be summable, i.e., 2 keN: r(k) < co. For f € L*(R®, ;) let

[NIES

wm=<zrmlﬂwﬁ
keNg

Then
H, ={f € L2(R®, 0s) NC(R*): || f], < oo}

is called a Hermite space.
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On L2(R?%, ¢s), |||, is only a semi-norm, but if we consider only continuous functions f, it is a
norm, see [37]. Then, a Hermite space H, is a Hilbert space with inner product

A

(fog)y = D r(k)" f(R)g(K).

keNG

In a Hermite space, the Hermite expansion converges pointwise. Proof of this fact can be found in [37,
Theorem 3.2]. Irrgeher and Leobacher also show that a Hermite space is a reproducing kernel Hilbert
space with reproducing kernel K, : R* x R®* — R,

Ko (z,y) = Y r(k)Hy(x)Hy(y).
keNS

Irrgeher and Leobacher in [37] move on to studying weighted Hermite spaces. They consider two
examples, one with polynomially decaying Hermite coefficients and one with exponentially decaying
coefficients. In the following we study a weighted Hermite space with exponentially decaying coef-
ficients as well. This space was also studied by Irrgeher, Kritzer, Leobacher, Pillichshammer and
Wozniakowski in [35, 36]. It is defined below.

We study standard notions of tractability of integration in a weighted Hermite space H (K5 q )
of analytic functions, constructed as follows. Let a = (a;);j>0, b = (bj)j>1 be two weight sequences of
real numbers, such that

GQIO, 1§a1§a2§... and 1§51§b2§.... (27)

Let w € (0,1) and for any k = (ki,...,ks) € N§ let

s b
Z ajkj]

w|k|a7b — wj:l
We consider the reproducing kernel Hilbert space H (K qp.,) with kernel

Ks,a,b,w(xay) = Z Wlk'a’ka(m)Hk(y)
kEN

and an inner product

PPy = O w Hae f(k)3(k).

kENS

This is the weighted Hermite space with r: N§ — RT given by

f: ajk’bj
r(k) = wi=t .

In [35] it is shown that the Hermite coefficients of this particular Hermite space are decreasing
very fast. Furthermore, we achieve exponential convergence, which is defined as follows.

Definition 2.16. If there exists some q € (0,1) and functions p,C1,Cs: N — (0,00) such that for all
s,NeN

65<N) < Cl(s)q(N/CQ(s))P(S)’ (28)

we say that we achieve exponential convergence (EXP) for es(N). If p(s) from (2.8) can be taken as
a constant function p(s) = p for all s € N, we speak of uniform exponential convergence (UEXP).

14



For more information about (U)EXP we refer to [14, 35, 45, 46]. For problems with this nice
behavior one can study exponential convergence-tractability (EC-tractability), as defined in [14, 17,
35, 45, 46].

Definition 2.17. We speak of
e cxponential convergence-weak tractability (EC-WT) if
log N;(e)

1 s+ lopel 0 with the convention that log0 = 0,
s+loge=* S oge

e cxponential convergence-polynomial tractability (EC-PT) if there exist constants ¢, 171,72 > 0
such that

Ny(e) < ¢(1+loge ™)™ s™ for all s € N and all € € (0,1),

e czponential convergence-strong polynomial tractability (EC-SPT) if the latter condition is true
for 9 =0.

Note that the difference to the standard tractability notions is that for EC-tractability we consider
loge~! rather than e~!. It is possible to consider these more demanding notions, while still obtaining
good results, because functions in this function space are very smooth and thus the error tends to zero
very fast.

We are interested in integration,

L) = [ f@eada,

of functions f € H(K;qpw). As integrals are linear functionals themselves, it is obviously only
interesting to consider information from the class A**Y. We know from a result of Creutzig and
Wojtaszczyk [6] (cf. p. 7), that it is enough to consider linear algorithms

n
Aps(f) = anf (),
i=1
with ¢r € R and x; € R®, when numerically approximating the above integrals. For this setting, in
[35, Theorem 1] the following was proven.

Theorem 2.18. Consider integration over H(K qp.) with weight sequences a and b, given as in
(2.7). Then we have:

1. EXP holds for all a and b satisfying (2.7).

2. The following statements are equivalent:
[e.e]
(a) The weight sequence b is summable, i.e., > bij < 00,
j=1

(b) UEXP holds,
(¢) EC-PT holds,
(d) EC-SPT holds.

3. A necessary condition for EC-WT is that lim aj2bﬂ' = 00.

Jj—o0
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4. A suffictient condition for EC-WT is that there exist positive constants nn and B such that
;2% > Bt
for all j € N.

What we are interested in now is what happens if we consider standard notions of tractability,
although we are in a space of analytic functions. We study this for the integration problem as well as
for the approximation problem in the Hermite space. The approximation problem is given as follows.
We want to approximate the embedding operator EMB: H (K qpw) = L2(R?, ¢s), EMB(f) = f, by
linear algorithms which use information from A®*d or from A2l

The hope is that necessary and sufficient conditions for the standard notions to hold are milder than
they are for the EC-tractability notions. This is the content of the rest of this section. Unfortunately
we were not able to prove necessary conditions for many of the standard tractability notions. The
results of this section are yet unpublished and are joint work with Christian Irrgeher and Peter Kritzer
[34].

2.2.1 Tractability of integration and approximation in H(K;4p.)

To provide an overview of the known results on standard notions of tractability of integration as well as
approximation in this particular Hermite space, we first present them in the following tables. In these
tables, for conditions which contain a limit, we always assume that this limit exists. This assumption
is mentioned in the theorems on the following pages, where the results presented in the tables are
summarized, but we do not explicitly mention it in the tables to preserve good readability.

Approximation using A®!:
The following table summarizes the results of Theorems 2,3,4 and 5 of [36].

Tractability notion || sufficient conditions | necessary conditions
SPT lbrglogf logj >0 lbrglogf logj >0

PT hjmmflogj >0 hjmmflogj >0
QPT no conditions no conditions

UWT no conditions no conditions
(t1,t2)-WT t1 >1 t1 > 1

WT no conditions no conditions

Approximation using AS:
The results outlined in the following table are summarized in Theorem 2.20. The proof stems from
[34].
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Tractability notion || sufficient conditions necessary conditions
1 b _logj
SPT Jliglo log] > logw—1 a32 ! > ~ logw~1 or
Jim logJ >0
-
PT o] = logw—l for all sufficiently large j jlgglo ogj > 0
WT lim a; = oo nothing known
j*}OO
Integration:

The results presented in the following table stem from [34]. They are summarized in Theorem 2.23.

Tractability notion || sufficient conditions necessary conditions
SPT lim > 1 _or ;20 > logj
=500 logy logw— J ~ logw™

a;2% > B for some B > 0,1 > 0

PT 1§gj 25 gw ——1 for all sufficiently large j or nothing known

aj2bj > B4 for some 3> 0,17 > 0

QPT 1§ég > logw —— for all sufficiently large j or nothing known

a;2% > B for some B > 0,1 > 0

UWT lim 2 > —L _ or nothing known

j—ro0 logj = logw
a;2% > B for some B > 0,1 > 0

(t1,t2)-WT t1 >1or nothing known
t1,t2 € (0,1] Aa;2% > B4 for some B> 0,n7 > 0

WT lim a; = oo or
j—00
a;2% > B for some B > 0,1 > 0 nothing known

2.2.2 Approximation using A*! in Hermite spaces of analytic functions

Summarizing the conditions for the different tractability notions of approximation using the class A?!!
from the above table we have the following Theorem 2.19. Its content stems from Theorems 2,3,4 and
5 of [36].

17



Theorem 2.19. Consider Lo-approzimation using information from A*' defined over the Hermite
space H(Ks qp.) introduced above. Then the following results hold:

o PT and SPT are equivalent.

aj

L > 0.

o A sufficient and necessary condition for SPT is given by lim inf
Jj—o0
If we have SPT, the exponent of SPT is
. 2
= g
o QPT, UWT, and WT hold for all considered a and b.
o (t1,t2)-WT holds for ty > 1.

2.2.3 Approximation using A%'? in Hermite spaces of analytic functions

In this section we outline the known conditions for the different notions of tractability of the approx-
imation problem using the class ASt.

Theorem 2.20. Consider Lo-approzimation using information from AS'Y defined over H(Ksabw)-
Assume that

A= lim 4
j—oo log j
exists. Then the following statements are true:
e SPT holds if
7 1

li > .
e logj = logw™!

In this case the exponent T of SPT satisfies

1
* * * * \2 *
Tall < Totd = Tan + B (7an)” < 7an +2,

where T}y and T34 denote the exponents of strong polynomial tractability for the cases of using
information from A and ASY, respectively.

Necessary conditions are

. a;
and  lim —

- > 0,
j—oo log j

respectively. (Here, for two functions f and g we say f 2 g, if there exists some constant ¢ > 0
such that f(x) > cg(z) for all z.)

e PT holds if
7 >
log7 ~ logw™!

for all sufficiently large j.

If we have PT, then

lim &', > 0.
j—oo log j

e WT holds if

lim a; = oo.
Jj—00
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Proof. e First we consider SPT. Under the assumption that A = lim lg“gjj exists we know from
J—00

36] and Theorem 2.19, respectively that A = lim;_,o 2~ > 0 implies SPT for approximation
J log j
using A*!. The exponent of SPT is then

_ 2
Alogw—1"

* —
Tall =

This follows from [36, Theorem 5]. Here if A > log%, we have 7)), < 2. Then [65, Theo-
rem 26.20] implies that we also have SPT for AS*d with

1 2
Tan < Tawd = Tan + B (Tan)” < 7o + 2.
Approximation in A*! is not harder than in AS*d. According to Theorem 2.19, SPT and PT
are equivalent for approximation in A*! and hence they have the same necessary condition,

lim lggjj. Integration is not harder than approximation in A**d. Therefore we get the same
J—00

necessary condition, aj2bj > 1o8d as for integration, cf. Theorem 2.23.

~ logw=1>

e To achieve the sufficient condition for PT we follow exactly the same lines as for the proof of
[46, Theorem 5.2]. We can employ the same argumentation as for SPT to find the necessary
condition for PT.

e The last to consider is the sufficient condition for WT which again is implied by [36, Theorem 7],
where we have that lim a; = oo implies EC-W'T.

j—ro0
O

2.2.4 A lower bound

To obtain necessary conditions for strong polynomial tractability of integration we use some lower
bound on the minimal worst-case error es(n). In the following we provide this lower bound proceeding
analogously to [46].

In order to establish this lower bound we will frequently apply Lemma 1 from [35] which is given
by

Lemma 2.21. Let k,l € Ng. Then

1 ifk=1

0 otherwise.

[ Hi@) Hi@)p(a) de = {
R

Further for k,1,m € N we have

VE!!m! . _
/ Hi () Hy () o (2) () it = === ifk+1l4+m=2t and k,l,m <t
R 0 otherwise.

The lower bound we want to prove is stated in the following lemma.

Lemma 2.22. The n-th minimal worst-case error of integration satisfies

1
es(n) > ——— forall n <s and for all s € N. (2.9)

T V14 2wmas2"
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Proof. As said before, without loss of generality, we only consider linear algorithms

Al = 3 s (@),
k=1

with g € R and x; € R® to approximate the integral of f. Thus using the definition of the n-th
minimal worst-case error we get

n
es(n) = g%fk sup I(f) — Z Qi f(xy)
k:i7:n fEH(Ks,a,b,w) k‘Zl
”fHH(Ks,a,b,w)Sl

n
> inf sup I(f) — Z qif (k)
kiviwk:n fEH(Ks,a,b,w) k=1
”f”H(Ks,a,,b,w)Sl

S (@) =0k=1,...m
_ ll'lf Sup |Is(f)’
Tk =L fEH(K, b0
1 eracy g gy <1
F@)=0k=1...n

(2.10)

Our next goal is to try and find a function g such that ———2—— satisfies the conditions in the

EIFTa.

supremum above for further estimation of e5(n). To this end we define

o) _ [0....,0) € NG, if j=0
(0,...,0,1,0,...,0) e Ng, if je{l,...,s},

where the component 1 in the vector above is meant to be on the j-th position.

For arbitrary h € N§, h = (hq, ..., hs), let

cp(x) = Hp(x) = H Hp, (z;) for all © = (21, ..., 7).
j=1
Clearly cp € H(Ks,qp.) for all h € N§. For the vectors h) defined above we obtain
H Ho(xj) = 1, lfj = 0
e (x) = {i=1

Hi(xj) = xj, if je{l,...,s}.

We proceed by choosing arbitrary x,...,xs € R® and constructing the following auxiliary function
g according to the subsequent rule. Let

S
gl@) = aje,m(x),  ®eR’,
=0

where we define the «;’s such that
g(xy)=0forall k€ {1,...,s}

and
S

Za?zl.

J=0
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To do so, we have to solve a system of s homogeneous linear equations in s + 1 unknowns, which is
always possible. With the aid of § we are able to define our desired function g by

9(x) = (g(w))Q = (Z Oéjchm(ﬂﬁ)) (Z ajch<j>(w)) = Z Oéjakch<j>($)ch<k>($)-
=0 J=0 J,k=0

Obviously g(xg) =0 for all k =1,...,s. We calculate Is(g) as follows, using Lemma 2.21: For j # k
and j, k # 0, we have, assuming without loss of generality j < k,

Is(Cthh(k)) Z/Rs ch<j)(w)ch(k>(a:)cps(m) de
:/Rsﬁ(ml)dxl"'/RSO(zjfl)dejfl/]I{Hl(:vj)w(wj)dﬂﬁj/]Rw(xm)dxm---
ey dos [ Hi@oe@n) do [ o) doga [ o) de = o,

whereas for j = k # 0 we obtain

Is(ch(j)ch(j)) :/IRS Ch(j)(w)ch(j)(x)@s(w) dx
=/Rw(m)dxr--/]Rw(wj—l)dwj—l AHl(wj)H1($j)¢(wj)d$j/RSO(%H)dxjH'"

/ o(zs)drs = 1.
R
Similar considerations for j and/or k equal to zero yield

0if j # k,

Is(c, e =
( h(7) h(k)) {1 ifj — L.

Thus

S

Is(g9) = /]Rs > ey o) (®)epm (B)ps(@) de =Y _aj =1

7,k=0 j=0

and we conclude from (2.10) that

1
es(s) >  inf sup IL(f)| > I, ( g ) - . (2.11)
T k=18 FeH (K, apw) HQHH(KS,Q’,,’W) HQHH(KS’,L,,,W)
”fHH(KS,a’b’w)Sl

f(Ek):O,k:].,...,S

To find our desired lower bound we thus have to calculate the norm of g.

S S
2
190 (5, 000) = 9 D HE ap) = < > ajonciicum, Y ajakch<j)ch(k)>
k=0 j k=0
s J J H(Ks,a,b,w) (212)
= Z Qjy Oy Ao Oy <Ch<j1)ch<k1>,Ch<j2)0h<k2>>H(K
j17k17j27k2:0

s,a,,b,w)‘
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Let us first investigate <Ch(j1)ch(k1),Ch(jQ)Ch(k2)>H(K

s,a,b,w) ’

—_—

(Chon Chten) Ch<j2)ch(k2)>H(Ks abw) Z w s (chuncpen ) (D) (cpua cpmn ) ()
o lENG
= Z w_ma’b /IRS Ch(h)( )Ch kl)( )Hk( ) ( )d:l) ./]RS Chi2) (m)ch(k2) (iB)Hk(il})(ps(l‘) de

leINj
=01 ,... 1))

-
- Z W Ha‘b/ Ch(h)( )Ch(h) H HZ(M) xm)@(wm) dx
IEN R m=1
1= .10y

X/R Cpin) (T )Cprg) (T HHM) zp)(zy) de.

(2.13)
We distinguish the following four basic cases and split each of them into further subcases.
L g1 # ki, j2 # ko,
2. j1 # k1, j2 = ko,
3. J1 = k1, g2 # ko,
4. j1 = k1, j2 = ka.
Case 1: j1 # k1, jo # ko.
Subcase 1.1: We further assume ji, k1, ja2, k2 # 0. Then (2.13) yields
<Ch(j1) Cpk1) 5 Cpli2) Cp(ka) >H(K5,a,b,w)
l S
= > wlaf TT / Hyom) (zm)p(xm) dm / Hy(xj) Hyo (5,) (25, ) day
IEN; m=1 R R
s m
1=, 1) miﬁ
(2.14)

X/RH1<xk1)Hl(k1)(xk1)90(xk1)dxlﬂ H /H{Hl(")(xn)(p(xn)dxn
n=1

n#ja
n#ka

< [ ) o (@)@ o, | Hy(1) Hyep (0 (0) das.
For any I € N® the corresponding addend in the above sum reduces to zero, unless all its factors

are simultaneously not equal to zero. That is we only have to consider those I = (l(l), . ,l(s)) € IN®,
which simultaneously satisfy

1(m) = 0,¥Ym € {1, sk \ {j1, k1 }
1) = 0,¥m e {1,...,s}\ {jo, ko}
1G1) =

(k1) — 1

162) =1

[(k2) = 1.
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This leaves the only possibilities j1 = jo, k1 = ko or j1 = ko, k1 = ja, respectively, and [ of the form
l=(0,...,0,1,0,...,0,1,0,...,0). Inserting this into (2.14) yields
<Ch<a‘1>0h<k1>7Ch(j2>0h(k2>>H(K = w 917 % for j1 # k1, jo # k2 and all jy, k1, j2, k2 # 0.

s,a,b,w)

Subcase 1.2: We still have the assumption ji # k1, j2 # ko from Case 1. Now we consider the case
where exactly one of the four indices equals zero. We can without loss of generality assume j; = 0.
This leads to

(€0 e Cp) Cpka) ) prge

s,a,b,w)

= Z wima’b H /]RHl(m)(fL‘m)QD(l’m)de‘m /]RHl(xlﬁ)Hl(kl)(mk’l)(p(l‘/ﬂ)dxk‘l
m=1

IENS =
IO RNION m#k

X Hl/qu’(n)($")¢(x")dx” /RHl(fﬂjz)Hlug)(ﬂﬁjz)@(ﬂfjg)d%

n#jz
n#ko

< [ Hy @) Hsy (1) (a,) da
Using basically the same argumentation as above we find that this sum equals zero, since some factors

of the summands need I = (0,...,0,1,0,...,0) in order not to vanish, whereas others require I’s with
two components equal to 1, which is not simultaneously possible.

Subcase 1.3: We now investigate the case where two indices are equal to zero. Again without loss
of generality we can assume them to be j; and jo. Then we have

(Chtin Chk1) 5 Chiin) Chtha) ) (i

s,a,b,w)

Z w Map H /]I{Hl(m)($m)90(xm)dxm /]RHl(xku)Hl(’ﬂ)($k1)90($k1)dxkl
m=1

lEN} =
=), 1() m#k

< [ 11 | Hiow (@n)e(zn) dz,, Hy(@hy) Hyrg) (T ) (T k) Ay -
LR R
n#ks

Clearly, we obtain the only non-vanishing summand considering k; = k3 and I = (0,...,0,1,0,...,0).
As j; =0 and ap = 0 (2.7) we write
<Ch(j1)ch(kl),Ch(jQ)Ch(k2)>H(K = w17 %1 for all j1 75 kl,jg 75 kz, with k1 = kg and j1 = j2 =0.

s,a,b,w)

With that we are done with Case 1 as it requires j; # k1 and ja # ko which obviously cannot be true
with more than two indices being equal to zero. We move on to

Case 2: ji # ki, jo = ko.

23



Subcase 2.1: We further assume ji, k1, jo, k2 # 0. Then (2.13) yields

{ Cp 1) Cp(k1) 5 Cpia) Cpk2) >H(K

S,u,b,w)

= Z w_ll‘“vb H /Hl(m)(xm)()p(xm)dxm /Hl(mjl)Hl(h)(xh)@('le)dle
IENG m=1 "R R

=), 1)) ;’Zjﬁ

< [ ) iy (@) ot da, | TT [ Hio (@ade(@n) da
n=1
n#j2

< [ Hy @) @) oo (21)0(as) das.

This sum equals zero, as can be seen from a similar argumentation as in Subcase 1.2.

Subcase 2.2: Let now j1, k1 # 0, and jo = k9 = 0. Then we have

(€0 et Cp2) Chka) ) prse

s,a,b,w)

S
= Y wler | TT [ Hiow@m)plan) don | [ Hilos) Hiop(oi)e(@;) doj,
lEN] m=1 "R R
0 A
=, 1)) :g;ﬁﬁ

X /RHl(xh)Hl(kl)(xM)(p(l‘h)dxlﬂ (,];[1~/IRHl(n)(xN)s0(xn) dCCn) .

With an analogous argument as above we see that this sum equals zero as well.

Subcase 2.3: Assume j; =0, jo = ko # 0. Then

(€60 etk CRe2) Chtka) ) pr(sc

s,a,b,w)

= Z w_ll‘a’b H /I;Hl(m)(xm)(p(xm)dxm /IRH1($k1)Hl(k1)(xkl)@(xkl)dxkl
m=1

leNg
1= 1) m#ky

S
<[ 11 /]RHum (@n)p(2n) dn /RHl(ﬂsz)Hl(%)Hmz)(%)@(%‘2)dﬂfj2~
=1
7?753'2
We first investigate the last factor [p Hi(xj,)H1(2j,)H,; iy (%),)¢(x),) daj, of this sum. Taking into

account Lemma 2.21 this integral vanishes, except when 2 +1 (72) = 2¢ and 1,1U2) < t. Thus we have
t=1+ W;) <1+ %, or equivalently ¢t < 2 and consequently 102 < 2. As 2 + [U2) has to be even,
12) cannot be 1 and we can once again use an analogous argument as in Subcase 1.2 to find that the

above sum equals zero.

Note that the case where k1 = 0, jo = ko # 0 works completely analogously to Subcase 2.3.

Subcase 2.4: Let j; = 0, jo = ky = 0. We can once again argue in the same way to obtain
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<Ch(j1)ch(k1)>Ch(jz)ch(k2)>H(K =0.

s,a,b,w)
Case 3: j; = ki1, j2 # ko. This case can be treated entirely analogously to Case 2.

Case 4: j1 = ]{31, j2 = k‘g.
Subcase 4.1: Let j; # jo and j1, k1, jo, ko # 0. Then

(Chun ChkD s Chlin) Chtha) ) (i

s,a,b,w)

S

= Y wler | ] / Hym) (2m) (%) A, /Hl(le)Hl(%)Hlm)(fﬁjl)@(wjl)dﬂfjl

IENS m=1 'R R
1=, 1) m#i

< [ ] AHl<n>($n)¢(xn)dxn /RHl(l‘jz)Hl(sz)Hm)(933'2)90(%)d%-
n=1
n#j2

As j1 # jo all the addends vanish except for I = 0 and thus the sum equals 1.

Subcase 4.2: Assume j; # js and j; = 0. We then have

S
Z w—|l|a,b<H / Hl(m)(xm)cp(xm)dxm>
IEN;, m=1"R
=1, 1))

(Chtin Cin» Cplin) Cptka) ) gy g

s,a,b,w)

S
< 1T [ Hio @aeten) don | [ Hi@p) Hylan) Hiop (1) plas) da,
=1
77117@2
which again is equal to 1, as only the addend for I = 0 is non-zero. Of course the case where j; # jo

and jo = 0 works altogether analogously.

Subcase 4.3: Let j; = k1 = jo = ko = 0. Then

(Cpin Chkn) s Ch<j2)0h<k2>>H(K

s,a,b,w)

Z w Wb (H / Hl<m)(:vm)cp(a:m)dxm>
IEN] m=1"R
1= ,..1()

X (TE/JRHZ(") (mn)cp(xn)dxn> =1,

again, as only the addend for I = 0 is non-zero.

25



Subcase 4.4: Assume j; = k1 = jo = ko # 0. Then

(Cp Chkn) s Ch(j2>ch(k2)>H(KS,a,b7w)

= Y ol [ T] /}RHum)(a?m)sO(M)dxm /]RHl(mjl)Hl(wjl)qun(%)w(%)d%
m=1

leINg =1
=M ... 1) m#EG

S
<[ I /RHl(m(ﬂfn)sﬁ(Sﬂn)du’Un /RHl(%)Hl(%)quz)(%)@(%)dfﬁj2~
=1
7?¢j2
With an analogous argumentation as in Subcase 2.3 we find that all addends vanish, except for

l=(0,...,0)and I = (0,...0,2,0...,0). Consequently, using Lemma 2.21,

1(0,...0,2,0...,0)| b

<Ch(j1)ch(k1),Ch(jg)ch(k2)>H(Ks =1+ V2v2w I ab =14 2w %

The above case analysis summarizes to

w1 Tk if j1 # k1,71 = jo and k1 = kg
or j1 # ki1,j1 = ko and ki = jo, respectively
<Ch(j1)ch(k1)aCh(jQ)Ch(k2)>H(K = b %f ]~1 s : o and g 7 gz
s,a,b,w) 1, ifji=ki=jo=ko=0
142027 i i =k = o= k2 #£0
0, otherwise.

Inserting this into (2.12) we find the following. Note that, as we now only need two indices any more,
we switch from using j1, k1, j2, k2 to using only 7, k from the first to the second line of the following
equation.

s

2
90 e (ks ) = Y ajanajan <Ch<j1)ch(k1)’Ch(j2)ch(k2)>H(Ksya’b,w)
jl,k17j2uk2_0
2.15
aj—ay 2 2 —a;2% 4 ( )
—QZZaakw Y +ZZaak+Z 14 2w™% + ag.
j= Ok?éO j= Ok#O

Studying the latter expression we find

S S
0,0 =23 3 b2+ 3 S oot + 3 +23 i

Jj=0k=0 7=0 k=0
k#j k#j
S S b
aj—ag 2 4 —a;2%
—2ZZaakw J +Za a'—i—Zak —|—2Zozjw g
j=0k=0 k=0 j=1
k#j k#j
S
—ZZawaJ< aw“f—i—Zakw a’“>+1+22a§w a2
k=0 j=1
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=1

2
S S
b
=2 ( E a?w“j) +1 — 204w 42 E (a?wfaﬂ T - a?w72aj>
J=0

2
S S
=2 (Z a?w—%’) +1-2a5+2)  ajw ¥ (w—“ﬂbj 25 1). (2.16)
j=0

Jj=1

b .
To estimate the latter expression we have to be sure that w™%27%2% — 1 > 0 in the above sum. We
sum only over j’s which are greater than or equal 1, therefore the corresponding a;’s and b;’s are not
smaller than 1 as well and hence

b
27t > 1 & a;2% > 2a; © a;2% — 20, > 0 1> w%? 72 o

b b
PN wfaj2 J+2a; 2 1< wfaj2 J4+2a; _ 1 Z 0.

Using this fact and (2.16) we bound HgH%’(Ks apw) Y

2
S S
b
Hg”l%I(Ks,a,b,w) <2 (Z a?w—as) +1-2a8+23 ako2e (w—a]-Q i 42a; _ 1)

J=0 j=1

J=1

2
S S
= (z ) 12023 a2 (w2 )
=0

s

2
S
< 22 (z ag.) 11— 208+ 2072 (w727 1) Yo
J=0

7=1
S 2w—2a5 + 1 + 2w—2a5 (w—aS(Qbs —2) _ 1)

= 142w %",

where we used that 2% — 2 > 0 to proceed from the second line of the equation to the third.

Thus
900,y < V1 207002

and with (2.11)

1
es(n) > es(s) > —=———==—== for all n < s and for all s € N.
V1 4 2-as2"
Here we obtain es(n) > es(s) for n < s by assuming gp+1 = --- = ¢s = 0 in the infimum in (2.10).
This completes the proof. O

2.2.5 Integration in Hermite spaces of analytic functions

Finally we outline the conditions for tractability of integration.
Here we use the notation “2” several times, by which we indicate that an inequality holds up to
constants.

Theorem 2.23. Consider intergration defined over the Hermite space H(Kqp.) with weight se-
quences a and b and assume that

exists.
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e SPT holds if

; 1
A= lim @

. - > or a;2% > BN for some B> 0,m > 0.
j—oologj ~ logw™!

In this case the exponent T of SPT satisfies

2 1
< 1, min<2, ——m (1 4+ ——m— .
’ _max{ ,mm{ ’Alogw_l( +Alogw_1)}}

A necessary condition, on the other hand, is

aj2bj> log] .
~ logw—1!

PT as well as QPT hold if

a;j

- > for all sufficiently large j
logj ~— logw—1

or
a;2% > B for some B > 0,1 > 0.

UWT holds if
a; 1
li J

vt log j > logw~1

or ;2% > B for some B> 0,n > 0.

(t1,t2)-WT is achieved for all weight sequences a and b as long as
t1 > 1.
Assuming t1,ts € (0,1] we again have the sufficient condition

a;2% > B for some B > 0,1 > 0.

WT holds if

lim a; = o0 or anbj > 85147 for some B,n > 0.

j*)OO
Remark 2.24. In the theorem above the sufficient condition “a;2% > Bj1*" for some B> 0, > 0"
can be replaced by “2% > B for some > 0,1 > 07 for every considered tractability notion. This
is due to our assumption that a; > 1 for all j > 1.

Proof. As we can apply [63, Theorem 5.2] and [65, Theorem 26.11] we proceed analogously to the
proof of [46, Theorem 4.2] and [46, Theorem 5.2], respectively to obtain the first sufficient condition
for SPT, and the upper bound on the exponent of SPT.

The second sufficient condition is proved in Theorem 2.25 below. This implies the second sufficient
condition for all tractability notions considered in Theorem 2.23.

To establish the necessary condition for SPT we proceed as follows. Assume SPT with exponent
T, i.e.

V6 > 0 3C5 > 0 such that n(e,s) < C5e~ T+ for all e € (0,1) and for all s € N.
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Defining n = {Cg 5_(T*+5)J yields eg(n) < e for all s € N. Next we apply Lemma 2.22 for s = n and
obtain
1
< 65(3) <eg,

V14 2w—as2

which leads to
(1 — 52) w2 <2 forall ee€ 0,1).

N

Taking logarithms we find

1 2

1
log 3 + log (1 — 52) — a2 logw™! < —loge~2,
thus
o > = log2 + log (1 — &%) + loge ™
as2” > .
ogw

~log(e7?—1) —log2
N logw~1!

N 2loge™! —log2
- logw—1

for sufficiently small € € (0,1) and for all s € N. As in the proof of Theorem 4.2 in [46] we find

1 140(1)

1 =]
oge p——— 0g s
and hence 1
a2z B
logw~1
as claimed.

Now we consider PT and WT. We have already seen, that the eigenvalues of
W =EMB*EMB : H(K; qp.0) = H(Ksabw)

are the same as for the corresponding operator in the Korobov space. Thus we proceed once more
analogously as in the proofs of [46, Theorem 4.2] and [46, Theorem 5.2], respectively to establish the
first sufficient condition for PT as well as the condition for WT.

As PT implies QPT we have also established the first sufficient condition for QPT. Of course the first
sufficient condition for UWT is also clear by now, as PT implies UWT as well. Nonetheless we want
to briefly state an alternative proof. The following technique also yields the first sufficient condition
for (t1,t2)-WT as well as an alternative method to obtain the first sufficient condition for WT.

Once again we use the fact, that linear integration rules

Ans(f) = E": Qe f (),
k=1

where g € R and xp € R® for £k = 1,...,n are optimal for our integration problem. Then, using
arguments as in [75, Equation (3)], [16, Theorem 3.5] or [20, Proposition 2.11], we know that the worst
case error for A,  is given by

n n
€s (An,s)2 =1-2 Z qx + Z quiKs,a,b,w(mka ml)
k=1 k=1
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or, in the special case, where the weights sum up to 1,
n
65(1471,5)2 =-1+ Z QinKs,a,b,w(mk,mi)7
kyi=1

respectively. Let the Gaussian-weighted mean-square error be defined as

Es(Ans)? = /S--./S[es(An,S)(ml,...,a;n)]%(ml)--.go(mn)dml...dmn,

where eg(Aps)(x1,...,x,) indicates the worst case error of A, s which uses integration nodes
Z1,...,&T,. If werestrict ourselves to quasi-Monte Carlo (QMC) algorithms, i.e. g = 1/n, k=1,...,n,
(see Section 3.1 for detailed information) we get the following formula,

. 21 klay — LTT S 0k
eS(A”vS)_nZw »—nHZw )

keNg j=1k=0

Thus we can estimate the nth minimal worst case error by

9 1 S oo kb]
es(n)” < - H Zw“ﬂ'
7J=1k=0
1 S oo &
o
< 2w
j=1k=0

B
_njzll—w“j‘

From this we derive upper bound

Ng(e) < {52 ﬁ ! l

on the information complexity and consequently,

1
1—w%

S
log N,(e) < 2loge™! + Zlog +c.
j=1

We use this upper bound to obtain sufficient conditions for UWT, (¢1,t2)-WT and WT, starting

with UWT. Let t1,t3 € (0,1] and further assume that lim;_,oo -2

Tons > —L . So there exists an index
0ogJ log w
jo > 2 such that w% < 1/j for all j > jo. Then

log N 2log e min{sjo=Lb 00 (1 — a5)1
i 08 NeE) o, Zlogem g s s wt)T
ste-looo S fe7l2 T omlne  eTh2 §—00 = sh
S
log (1 — w%)~!
+ SIL>I£IO Z Stl
j=min{s+1.jo}
s 1
= sll>rgo ng Z & — 1/

1 a J

= lim — E log
t i
SO et} Y 1
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. 1< . .
< lim =% (logj —log(j — 1))

S§—r00
S =2

We have shown that UWT holds, if lim;_,+ loa—gjj pg——
As for (t1,t2)-WT, assume that t; > 1. Then

lim + lim

ste-1o00 SM1 4 712 elco €712 §—00 =

*log (1 —w™)~t

log Ny(¢) lim 2loge™! zs:log(l—waﬂ')_1

Ssgngoz Stl
7=1
= lim log (1 — w™)™! L _
$—00 & sti—1

Therefore, if t; > 1, (t1,t2)-weak tractability holds for arbitrary weight sequences a and b, satisfying
(2.7).

Finally we consider again WT. Assume that lim; .o, a; = oco. It follows that w% — 0 as well as
log(1 —w%)~! — 0 as j — oco. Thus, from Cauchy’s limit theorem we know that the Cesaro means
converge to zero as well. Hence, limg_, % > 5=11og(1 — w%)~1 = 0. Therefore,

log N, 2loge™! °.log (1 —w®)~!
i 08Na(E) oy, ZlogeT g galos (W)
s+e—losco S+ el e 100 g1 S_)Oszl S
Thus we have weak tractability, if lim;_,., a; = oo and b arbitrary and the proof is complete. O

In the following theorem we show the second sufficient condition for SPT, given in Theorem 2.23.
Theorem 2.25. Assume that there exist n, 8 > 0 such that
a;2% > B for all j € N.

Then we have SPT with exponent ™™ < 1, and there exists an explicit Gauss-Hermite rule achieving
the corresponding error.

Proof. Assume that the condition in the theorem is satisfied. Then in the proof of Item 4 of Theorem 1
in [35], an explicit Gauss-Hermite rule A,, s using n points was given such that

es(An,s) <e

- 2loge™!
logn < ¢1(log 871)1i’7 (2 + log <02+0g5>>

and

log w1
for some positive c1, co. Hence there exists a constant ¢z > 0 such that

log(Ns(e)) < e3(log efl)ﬁ logloge ™.

However, for sufficiently small e,

n

logloge™ < (loge™!) T,

SO

log(Ns(e)) < 03(loge_1)ﬁ(logs_1)ﬁ = c3loget.

It follows that
Ny(e) < ce™t

for some positive ¢ > 0 for sufficiently small . This implies SPT with 7* < 1. O
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Finally we compare standard tractability results for integration to EC-tractability results for in-
tegration in H(K;qp.w). We see that the (sufficient) conditions are indeed eased in a sense for the
standard tractability notions, as has been our hope (cf. Theorems 2.23 and 2.18).

For WT we have gained an alternative condition which does not demand a growing rate for a and
is independent of b.

Conditions for PT and SPT are relaxed in the following sense. On the one hand we have now
separate conditions for PT and SPT and on the other hand we have conditions depending only on a,
whereas for EC-(S)PT we have conditions which depend exclusively on b. The conditions on a for
(S)PT are a lot less restrictive than the ones on b for EC-(S)PT.
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2.3 Hybrid approximation

In this section we consider tractability of approximation in hybrid function spaces. The results of
this section are joint work with Peter Kritzer and Friedrich Pillichshammer and are based on [43].
Kritzer and Pillichshammer introduced hybrid function spaces in [44] before, where they worked on
tractability of QMC-integration in these spaces.

We want to start by recalling the definition of these spaces and we also want to give some reasons
why it can be beneficial to have results for hybrid function spaces.

2.3.1 The hybrid function space

The hybrid function space we study is a specific reproducing kernel Hilbert space that was introduced
in [44], namely the tensor product of a Korobov space and a Walsh space.

Fix a prime number b and let i = v/—1. For k € Ny with b-adic expansion k = kb%+ - - -+ K1b+ Ko
with x; € {0,...,b— 1} and k, # 0 we define the k-th Walsh function wal, : [0,1) — C by

&iko + -+ §a+1f€a)

walg(x) = exp <27ri 2

for x € [0,1) with b-adic expansion z = %1 + l% + -+ (unique in the sense that infinitely many of the
&; are different from b — 1). Note that a = [log k.

For k = (k1,...,ks) € Nj and @ = (z1,...,25) € [0,1)° the k-th s-variate Walsh function waly, :
[0,1)* — C is given by

walg(x) = H waly, (z;).
j=1

Some crucial properties of Walsh functions that we are going to use in the following are that for
x1,x2 € [0,1)° and k, h € N§ it is true that

waly (z1)walg (z2) = walg(z1 © @2),
walg (1) walg (x2) = walg(x; © x2) and

walg (x1)walp (1) = walggp (1),

where @ denotes digit-wise addition modulo b, and is defined component-wise for vectors; by & we
denote (component-wise) digit-wise subtraction modulo b.

We remark that Walsh functions could also be defined for arbitrary integer bases b > 2 (see, e.g.,
[20]), but for the use of our approximation algorithms we additionally require that b is prime.

Further, for I € Z! we define the t-variate I-th trigonometric function e;: [0,1)! — C as

er(y) = exp(27il - y),
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where - denotes the usual Euclidean inner product.

(9)y
A (’7]' )j>1
for i € {1,2}, where 0 < ’yj(»l) < 1. We define two functions p, ) and 74 as follows: For
k= (ki,...,ks) eNjand L = (I1,...,1l;) € Z' let

Let now s,t € N, o, > 1 and let ¥, ) be two non-increasing sequences v =

t

Parm (k) =TI r, L (kj) and rg (1) = I L@ (1),
=t 7 j=1 7

where
1 if k; =0,
p ,vj(”(k )= {Vj(l)b—atlogb(kj)J if k; # 0,
and
1 ifl;, =0
r l;) = J ’
5’”('2)( 2 {%('2)|lj|_5 if I; # 0.
With the help of these functions we start by defining Walsh spaces [15, 19] and Korobov spaces [16,
56, 64] and subsequently move on to defining the hybrid function spaces we want to study in this
section.

We begin with the Walsh space which was introduced in [19] (see also [20] for further details). Its
reproducing kernel is given by

K oo (@ Z Do (K)wWalg(z)walg(z') for x,2' € [0,1)7
keN§

and its inner product by

s = 2 (b (B)) " Funt(B) (),

keNg

where
fwa1(k) = / f(x)walg(x) dx
[0,1]¢

is the k-th Walsh coefficient of f. The Walsh space is then defined as the space of all functions that
can be expressed as absolutely convergent Walsh series with finite norm,

H(Ks,a,'y<1)) = { Z fwal Wa‘lk ) ||f”s,a,7(1) < OO} )

keN§

where || - || denotes the norm induced by the inner product (-, ), ) defined above.

s,y

The Korobov space which we are going to introduce next has been studied in many papers. We
refer to [64] for detailed information. The reproducing kernel of the Korobov space is

K, 5o y) =Y ra@Bea(yealy) for yy €[0,1)"
le7Zt

Its inner product is given by

(f, g>t,ﬂ;y(2) = Z (Tﬂﬂ(z) (l))_l ftrig(l)gtrig(l)y

lezt
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where
fuul) = | S@)au)ay

is the I-th Fourier coefficient of f. The Korobov space is then defined as the space of all functions
that can be expressed as absolutely convergent Fourier series with finite norm,

H(K, ;) = {f: F) =Y Fue@er®). £l 0 < oo} :
lezt

where || - ”tﬁq@) is the norm induced by the inner product (-, '>t”87,7(2).

Now we are ready to define our hybrid function space as the tensor product of the Walsh and
Korobov spaces. The hybrid space H(K;tq8~), Where v = (7(1),7(2)), is the reproducing kernel
Hilbert space with kernel function given by K¢ 45~ : [0,1)° x [0,1)5t — C,

Kotapy(@,9), (@ 4) = D D poryw (k)rs o @) wal(z)waly, (@ )er (y)er(y')
keNg ezt

and inner product

(kg (k, 1),

1 1
<fag>s,t,a,ﬂ,"y = Z Z

weris feze Pany (R) 1540 (1)

with

~

Fev=[ [ f@ywk@aly) dedy.
[0,1]* J[0,1]*
The space H(Ks¢.q,~) is the tensor product of a Walsh space and a Korobov space. If s = 0,

then we obtain the Korobov space, if t = 0, then we obtain the Walsh space.

Remark 2.26. For convenience we will in the following use the notation f[o,l]d f(x,y) dedy, where
d = s+ t, by which we mean f[o,l}s f[O,l]t f(z,y) dedy.

The hybrid space H (K ¢.q,8~) is the space of all absolutely convergent series f of the form

fley) = > fkDwalg(@)e(y) with [ flla, ... < 0
(k1) ENS X Zt

where H~HH(K5¢_’&!6Y7) denotes the norm in H(K ;). For further information on the space
H(Kst.a,8) We refer to [44, Section 2.2].

We consider Lo-approximation of functions in H (K, g.~), which is embedded into La(]O0, 157,
To be more precise, we approximate the embedding operator

EMBs+t : H(KS,t,a,Bﬁ) — LQ([(L 1}5—”)’ EMBs+t(f) = f>

and measure the approximation error in the Lo-norm. As before, the theorem of Creutzig and Woj-
taszezyk from [6] (cf. also pages 5 and 7) applies, and there is no loss of generality when we restrict
ourselves to linear approximation algorithms of the form Ay (f) = Z{C\;l ar Ly (f) with coefficients
ar € Lo([0,1]*%") and continuous linear functionals Ly on H(Ksta ~) from a permissible class of

35



information A. Here N is the number of information evaluations.

In previous papers, several authors have studied approximation problems, similar to the one we
consider in this section, in various reproducing kernel Hilbert spaces, see, e.g., [3, 11, 14, 51, 62, 79].
These investigations have in common that the reproducing kernel Hilbert spaces considered are tensor
products of one-dimensional spaces whose kernels are all of the same type (but maybe equipped with
different weights). In this section we consider the case where the reproducing kernel is a product of
kernels of different type. We call such spaces hybrid spaces. Some results on tractability in general
hybrid spaces can be found in the literature. For example, in [64] multivariate integration is studied
for arbitrary reproducing kernels Ky without relation to K;11. Here we consider as a special instance
the tensor product of Walsh and Korobov spaces. The problem of numerical integration in such
spaces was recently considered in [44]. The study of a hybrid of Korobov and Walsh spaces could
be important in view of functions which are periodic with respect to some of the components and,
for example, piece-wise constant with respect to the remaining components. Moreover, it has been
pointed out by several scientists (see, e.g., [39, 53]) that hybrid problems may be relevant for certain
applications. Indeed, communication with the authors of [39] and [53] have motivated our idea for
considering function spaces where we may have very different properties of the elements with respect
to different components, as for example regarding smoothness.

From the analytical point of view, it is very challenging to deal with hybrid spaces. The reason for
this is the rather complex interplay between the different analytic and algebraic structures of the kernel
functions. In the present study we are concerned with Fourier analysis carried out simultaneously with
respect to the Walsh and the trigonometric function systems. The problem is also closely related to the
study of hybrid point sets which received much attention in recent years (see, for example, [28, 33]).
Hence we also have considerable theoretical interest in studying this problem.

2.3.2 Ls-approximation

Our goal is to approximate the embedding from the hybrid space H (K, aqp~) to the space
Lo ([0, 1]5%1), i.e.,

EMBs,t : /H(Ks,t,oc,ﬁ,’y) — LZ([Ov 1}8—”)’ EMBs,t(f) = f (217)

As already mentioned, it is enough to consider linear algorithms Ay s of the form

N
Ansi(f) =D arLi(f), (2.18)
k=1

with aj, € La([0,1]57*) and continuous linear functionals Ly on H(K;ta6+) from a permissible class
of information A. As already explained in the introduction we consider the two classes A*! and ASY:

e A = A the class of all continuous linear functionals defined on H (K sita,By)- Since H(Ks i)
is a Hilbert space, for every L, € A?! there exists a function f; from H(Ksta,8~) such that

Lk(f) = <f7 fk>d,a,6,’y for all f € H(Ks,t,a,ﬁ,'y)-

e A = Astd the class of standard information consisting only of function evaluations. That is,
Ly, € A5 if there exists (zx, y;,) € [0, 1]57! such that Li(f) = f(zk, yy,) for all f € H(Ks1.0,5-)-

Since H (K t,a,8~) is a reproducing kernel Hilbert space, function evaluations are continuous linear
functionals, and therefore AS*d C A2, More precisely,

Lk(f) = f(mka yk:) = <f7 Ks,t,a,ﬂ,‘y('7 (wkv yk))>s,t,a,5,‘y
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and
1/2
1Lkl = 1K s tasnlltnis o n ) = Kobon s (@ yi), (@, y5))-

Recall that the worst-case error in H (K q5,~) of a linear algorithm as in (2.18) is

estt(ANst) = sup IEMB;:(f) = AN,s,t (Lo (o,5+0)-
FEH(Ks t,0,8,4)
[N

As we will sometimes consider the error of the integration problem in the following analysis, we will
use the notation et (An ;) for the worst-case error to avoid ambiguities.
Similarly, the N-th minimal worst-case error is given by

CornaN) = N eilAnise),
3Sy

where the infimum is extended over all linear algorithms Ay s; using information from the class A.
The information complexity is given as

NE—E?A(E) = min{N : eiﬁ—i,A(N) <e}

. a d 11 .
Since AS*Y C A2l it follows that N:J}:?,Aa“ (e) < Njﬁ?/\std (e).

For v = (v, v(?)) we define the sum exponent

S = inf {/@ >0 : Z(fy](»l))” < oo and Z(WJ@)” < oo} (2.19)
=1 j=1

with the convention that inf @ = co.

Our main goal in this section is to show the following theorem.
Theorem 2.27. Consider the approximation problem EMB as defined in (2.17). Then we have:

1. Strong polynomial tractability and polynomial tractability in the class A*! are equivalent, and
they hold if and only if sy < 0o, where s is defined in (2.19). In this case the exponent of strong
polynomial tractability is 7*(A™) = 2max(s,, <, %)

2. The problem is weakly tractable in the class A* if and only if

1) t 2)
lim j:l vt Zj:l 75
s+t—o0 s+t

= 0. (2.20)

3. The problem is strongly polynomially tractable in the class A4 if

ny](-l) < oo and Z’yj@ < 0.
j=1 j=1

The exponent of strong polynomial tractability in the class A5 satisfies

T(AS) e [2 max (1, %, 5+),4 + 2max(L %, 54)]-

o’
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4. The problem is polynomially tractable in the class AS'9 if

1) t A2
17 _

S
Jl < oo and limsup

lim sup :
og s t—00 logt

S5—00
5. The problem is weakly tractable in the class A if and only if

1 2
lim 251 ’Yj( '+ i 73(' )
s+t—r00 s+t

=0.

Remark 2.28. Since it can easily be verified that integration in H (K qa5,~) is not harder than
approximation using AS'd, all sufficifent conditions stated in Theorem 2.27 for approximation are
sufficient for integration in H (Kt qa,5.~) as well. These conditions coincide with the ones given in [44]
for QMC integration.

2.3.3 Proof of Theorem 2.27

We recall that strong polynomial tractability implies polynomial tractability which in turn implies
weak tractability. Furthermore, all sufficient conditions for the class A**d are also sufficient for the
class A with 7 (A1) < 7% (ASt?) in the case of strong polynomial tractability. All necessary conditions
for the class A are also necessary for the class ASY.

Proof of Item 1 In order to give a necessary and sufficient condition for strong polynomial tractabil-
ity for A?! we use a criterion from [63, Section 5.1]. Let us consider the self-adjoint operator
Wi = EMB;tEMBS’t tH(Kspa8y) = H(Ksta,p8+~), which in our case is given by

Werf = Y. panym (k)rg o) (K, Dwaly(z)er(y).
(k,1)eNg x 2t

The eigenvalues are then given by the collection of the numbers
paﬁu)(k)rﬁﬁ(g) (1) for (k,l) € N§ x Z'.

Furthermore, the largest eigenvalue is p,, 1) (0)7r5 42 (0) = 1.
From [63, Theorem 5.2] we find that the problem EMB is polynomially tractable for A*! if and
only if there exist v > 0 and ¢ > 0 such that

1/v
sup ( Y Py (F)rs e (0)") (s +1)77 < o0 (2.21)
(k1)

sit ENg xZt

Furthermore, we have strong polynomial tractability if and only if (2.21) holds with ¢ = 0.
It is easy to check that we require v > max(é, %) in order for (2.21) to hold with ¢ = 0. Let us

now assume that v is indeed bigger than max (1, %) For the sum in (2.21) we have
t )
(1+G)2¢(Br)),  (222)

1

J

S Parn®rsam @) = T (1+ 68 ue)
j=1

(k,l)ENg X Zt

b® (b—1)
b*—b

where p(x) = for z > 1 and ((+) is the Riemann zeta function.
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Now, using arguments outlined in [75] (see also [56, Section 4.5]), it is easy to see that the existence
1

of some v > max(, B> with

(7()) < oo and Z (2)

’MS

1

J

is a necessary and sufficient condition for (2.21) with ¢ = 0 and therefore for strong polynomial
tractability of the problem EMB.

Again according to [63, Theorem 5.2], the exponent of strong polynomial tractability is
2max(2, %, sy), where sy is defined in (2.19).

It remains to show the equivalence of strong polynomial and polynomial tractability. Of course, it
suffices to show that polynomial tractability implies strong polynomial tractability. So assume that
the problem EMB is polynomially tractable for the class A?l. Then we obtain polynomial tractability
also for the embedding problem in the pure Walsh space (K .q,3,,) and in the pure Korobov space
H(Kot,a,8~) According to [77, Theorem 2| this is equivalent to strong polynomial tractability for the
embedding problem in the pure Walsh space H (K o 3,y) and in the pure Korobov space H(Ko ¢ a,5,)-

According to [11] and [51] this implies the existence of 11 > 0 such that >=.5, (v (1))”1 < 0o and the
(2)

existence of vo > 0 such that Zj21(’yj )"? < co. Hence we have sy < oo and this in turn implies
strong polynomial tractability for the class A*!, as shown above. This completes the proof of Item 1.

Proof of Item 2 Sufficiency of Condition (2.20) follows by Item 5 of Theorem 2.27. Item 5 is proved
on pp. 40.

For showing necessity of Condition (2.20), we use [63, Theorem 5.3] in the following. To keep
notation simple, we shall frequently write d instead of s 4+ ¢t. Theorem 5.3 in [63] states that our
approximation problem is weakly tractable for A®! if and only if

o lim Ay log?j =0 for all d € N and
J—00
e there exists some function f: (0, 1] — N such that

1
sup — sup sup )\d,j log2j < 00, (2-23)
n€(0,51 1" d=f(n) j> [exp(dy/m)]+1

where A\g; = Asyyj denotes the 7t eigenvalue of W+ in non-increasing order.
Let us now assume that the approximation problem is weakly tractable for A2, This then in
particular implies that
lim \g;log?j =0 forall deN. (2.24)
J—00

We are now going to show that (2.24) implies (2.20). To this end, recall that the eigenvalues of W ¢
are of the form
pa77<1)(k)7“5’,y(2)(l) for (k, l) S NS x Zt.

Note that we have g1 = 1; furthermore, note that p e (1) = ’yj( ) for any j € N, and T8y (1) = ( )
j

for any i € N. Hence, by choosing all components of (k,l) € N§ x Z' but one equal to zero, and the
remaining equal to one, we see that

(2) (2)

(1 (M and B EEEEEN

71 7"’778
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are eigenvalues of W ;. Consequently,

s t d
IRTAED BT LED I
=1 j=1 j=1

and hence

d
lim ] I’Y] + Zj er] < lim Ej:]_ )\d7.7
s+t—o00 s+t d—o0 d '
However, due to (2.24), it follows that the latter limit is 0, which shows that indeed (2.20) holds.

Proof of Items 3-5 Any f € H(K,1.q,8+~) can be displayed as

flmy)= > Fk, Dywaly (@)e; (y).

(k,1)ENg x Zt

The idea is now to choose some suitable (finite) subset A of N§ x Z' and approximate f by a
truncated series over A, where we approximate f(k,1) for every (k,l) € A.

In order to approximate f(k, 1), we are going to use quasi-Monte Carlo algorithms based on classical
and on polynomial lattice point sets.

Classical lattice point sets. For a detailed definition see also Definition 3.1 and, e.g., [60, Chap-
ter 5.

For N € Nand z = (21,.. ,zt) € ZY, where Zy = {z € {1,...,N — 1} : ged(2, N) = 1}, the
lattice point set {qv} -0 ! with generating vector z is defined by

vz1 VZ¢
= — e, —— <v <N -1
q, ({N}’ ’{N}) forall 0<v<N-1

Here {-} denotes the fractional part of a real number.

Polynomial lattice point sets. Polynomial lattice point sets are introduced in greater detail in
Section 3.1 on p. 60. Fur further information see also, e.g., [20, Chapter 10]. What follows here, is a
short introduction.

Let Fy, be the finite field of prime order b, Fy[z] be the set of polynomials over Fy, and let Fy((z71))
be the field of formal Laurent series over F,. The latter contains the field of rational functions as a
subfield. Given m € N, set Gy, := {a € Fy[z] : deg(a) < m} and define a mapping ¢, : Fp((z1)) —
[0,1) by

Pm (Z tll‘_l> = > bl
I=w l=max{1,w}

Let f € Fy[z] with deg(f) = m and g = (g1,...,9s) € Fp[z]°. The polynomial lattice point set
(Py)vea, ., With generating vector g is defined by

v = <¢m (W) seees Om (W)) for all v € Gy .-

Note that we can associate the polynomial v(z) = 0 vrx" € Gy With the integer v = :,”;01 0",
where, with a slight abuse of notation, the element v, € Ty is associated with the integer v, €
{0,1...,b— 1}. In this way we can index the points of a polynomial lattice point set by integers
ranging from 0 to b — 1
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Now suppose that N is of the form 6™ for some m € N, and let PL = {py,...,py_1} C [0,1)° be
a polynomial lattice point set and L = {qq,...,qn_1} C [0,1)! be a lattice point set. We consider the

point set (PL,L) = {(p,q)v» = (P,,q,): v=0,...,N —1}.

For instance Algorithm 1 in [44] provides a component-by-component method to find a point
set (PL,L) such that a QMC algorithm based on (PL,L) has a low worst-case integration error in
H(Ksta,8~) The same point set can also be used for approximation in H (Kt q8+~), as we will see
below.

For M > 0 define the set
An = {(k, 1) e N§ X Z" : (p, o (k) (rg 4 (1) < M} (2.25)

As paﬁu)(k))_l and (75 42 (1))~! are always greater than or equal to 1, the set Ay is empty for all
0 < M < 1 and we approximate f by 0 for any such M. Thus we only consider M > 1 throughout
the rest of this section.

In order to approximate the embedding EMBy ;(f) = f for f € H(K1a,8~) We use the algorithm
1 N1
Ansem(f)(®y) = Y <N > fllp, q)v)walk(pv)ez(qy)> waly()e; (y)- (2.26)
(k) eAm v=0
By rearranging (2.26) to
N-1 (Y
Avsen(H@y) =3 | 5 > wak(@op)ay —a,) | f(p,q)w),
=0
v (k,HeAns

one can easily see that Ay ¢ is a linear algorithm of the form (2.18) with

1
av(w7y) = N Z Walk(ﬂj @pv)el(y - qv) and Lv(f) = f((p7 q)v)v 0<v<N-1
(k,HeAns

The error of approximation for given f € H (K q,~) is then

(f = Ansen (M@ y) = > flk,walg(@)er(y)

(kD¢AM
N-1
+ > <f(k:,l) - % > fl(p, q)’u)walk(p'u)el(qv)> walg (z)er(y).
(k) eAnr v=0

(2.27)
We use (2.27) and Parseval’s identity to obtain

IEMBs ¢(f) = Anse,m (FIIF 5 j0.17041) = S1+ S2,

where R
Sii= Y [k
(k)¢ An
and
1 N1 2
Syi= > / f(z,y)walp(z)e(y) d(z,y) — — Y f((p, @))walk(p)ei(q)
0,1]5 N &=
(k,l)G.A]u v=0
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-

(kD)EeAN

I

f x,y)dedy — — E f (p,q
/[0,1]5 Ik l)( ' Y) Yy (kl
with

foeny (@ y) = f(z, y)walg(z)e(y).

We bound S; from above by writing

S1 = Z ‘f(k, l)‘2 (pa,»y(l)(k))il (7’6’7(@ (l))il pa’,\/u)(k)T’B’,y(z)(l)
(kD) EAM
<t Y FED (paro®) T (e )

(k,0)ENS X Zt

-1

o 2
MHfHH(KS,t,a,ﬁ,q)'

Let us now consider S;. The term in-between the absolute value signs in Sy is the integration
error of the QMC rule using the nodes (PL, L) for the function f4 ;). Since the product of two Walsh
functions is again a Walsh function, and the analogue is true for trigonometric functions, it can easily
be verified that f 1) € H(Ks t,a,8,). Hence we can bound Sy by

So < (el (PL,L))* Y
(k,H)eAps

(Ks,t,a,B,‘Y),
where e, (PL, L) is the worst-case integration error in H(Kjq5~) of the QMC rule based on the
nodes (PL,L), i.e

FPLL) = s
FEH(Ks t,a,8,~)
[RAEMIG NP RS

x,y)dedy — — E f((p,q
/[0,115 . f(z,y) Y
From [44, Theorem 3| it then follows that

SH< 3 ( 1+ Z Kot (P, @1 (P ) >)|f(kl||H )

(k,HeAns k.k'=

(2.28)

st Biy)”

g;(H(l—F’Y(l) ())) (H(lﬂ C(ﬂ))) )
(

Jj=1 Jj=1 kleAn

Next we find an estimate for Hf(k,l)”%{(;( ) for (k1) € Ay

s,t,a, B,y
By definition we have

—1 -1 ~
ety Biks sy = 2 D (Pa,7<1>(h)) (7“5,7@)(?’"1)) ‘f(k,z)(mm)

heNg meZt

We start by considering

‘]?(k,l) (h,m) ‘2

/ / f(x, y)walg(x)e;(y)walp (x)em (y) dedy
[0,1]* J[0,1]*

2

[ ]ty welen(@erm(y) dedy
[0,1]= J[0,1]¢
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f(k@hum)f.

Therefore
ey BiKs o) = Z Z (pow“) )_1 (rﬁm@) (m)) B ‘f(k S h,l+m) ’2
heNG m
Z Z (k@ h,l+ m)‘ (pa,,yu) (ko h)) - (7”577(% 1+ m)) B
heNS me?Z

N Pan B )\
Parw (kD R)Tg 2 (L+m) )

From [51] we know that

-1
75~ (M)
<’8’7> < (7“5,7(2) ) Hmax{l 257] )},

T8~ (I+m) jaie

and from [11] that

Pa, (k) -1 »
(W) < (paqr (k)

Altogether we find

-1 t
( Panyw (M7 @ (M) )) < (pa,ﬂy(l)(k))il (Tﬂ,py(m(l))il II max{l,Qﬁ’Yg@}a

pa,ﬁy(l) (k D h)rﬂ’fy@) (l +m j=1

and

t
-1 —1
100 B ) < (Pam@ () (1 @) T]max {1,297}
j=1

x>y ‘f(k S h,l+ m)’2 (Pa,7<1> (k® h))_l (7'577@) 1+ m))_l

hENS meZt
- ot
= (Pa,7<1>(’<7)) 1 (7“,3,7<2> (U) 1 H max {1,2°9]%}

Z Z ’ f(k® h,l+ m)‘ (paﬁu) (ko h))_l (7”577(% 1+ m))_l

kDheENS l+meZt

= (pa,—y(l)(k)>_l (rﬁ,‘r(?) (l)>_1 73(2)}

Jj=1

t
2
< M| fI3yx. ..y [] max(1,29).
j=1

s,t,0,B,

Plugging this into (2.28) we obtain

S t ‘
Sy < % (H(l + 7§1>2u(a))) (H(l + 7§2)4C(ﬁ))) 1 Boe .o sy MIAMI TT max(1,2%2).
(2.29)

Next we study the cardinality of the set Ajy.
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Lemma 2.29. Let 0 = min(a, 3). For arbitrary £ > 1/6 = max(Z, %) we have

s

|«4M|§M”H( + 2¢(0k)( ba )ﬁ(1+2C 0r)( (2)))

j=1 Jj=1
Proof. For k € N we have
1 pellogy k| pa(—1+4log, k) e 1
pen® 7 A e ()
Then we have
AM:{(kz,l)eNSth: ! }
P (k) T, 7<2>
s 1
- {(k, 1) e Nj x Z': e (BT 7(2)(” M}
. 1 1
c {(k:,l) €7 x 7 ro o () romD < M}
from which the result follows immediately from [51, Lemma 1]. O

Considering Lemma 2.29, for any « > 1/6 we obtain

MH—H
2 < Csafym—— I Ik

s t a,,ﬁ,’)‘)7

where

S t
Co,ty, By 1= 2 (H (1 +73 2,u ) (H (1 +73 4( ) H max (1 2/37]( ))
S

j=1 j=1 Jj=1
< T (1 + 2660072 00) TT (1 + 200 2). (2.30)
Jj=1 j=1

Summing up we have

1 Ml—&-n
||EMBs,t(f) - AN,s,t,M( >H]L2( 0 1}s+t) > M + ¢ 4o BY, 6T A ||f”7—[ Kstapm)

This leads to the following proposition and its corollary, which then concludes the proof of Theorem
2.27.

Proposition 2.30. Let £ > 1/min(o, 8) and let ¢s.08~, be defined as in (2.30). The worst-case
error of the algorithm An i as defined in (2.26) using a point set (PL,L) constructed by [{4,
Algorithm 1] and with M = (N/c&t,a”gm,g)l/(”“) satisfies

1
2T (A i) < V2 (Cs’t’oj“\’f’%“) e
Proof. We have
1 Cs7t’a7ﬁ777ﬁM1+li
- M N




As we want to have
1
_ CS7t1a7677)K‘M +K:

1
M N

vy = (—N )
Cs7tvo‘7ﬁv’77’€

we end up with

and consequently

1tk
N 24K
: 1 ()" conapan
(= (A ) < 4 s
(i)™ "
Cs,t,a,B,v,k
1
C's?t’a? K 7"{ 2+K/ # _#
= ( EELYEN T - (Coain) TFE N7 T
N
_1
- 2 CS,t,Oé,ﬁ,’Y,N 24w
N
and the result follows. O

Corollary 2.31. Consider the approzimation problem EMB with information from the class A9,

o [If Z] 1% < 0o and Z] 173( ) < o0, then EMB is strongly polynomially tractable with e-

exponent at most 4 4+ 2 max(s., é, %),

(1) (2)
e if limsup, . Z] 111ng < oo and limsup,;_, Z] 1170]gt < o0, then EMB is polynomially
tractable;
s (1) t (2)
. 4 . .
o if limgis oo 2= SHZJ:l'YJ =0, then EMB is weakly tractable.

Proof. Employing Proposition 2.30, we know that, if

1
Cst,a, By, | 2HF 2
2 = < 2.31
( N > =€ (2.31)

holds, then we have
TP (AN i) <€
Hence we need

22+HCS t, o, B,k

Let pp(x) denote the smallest prime power greater than or equal to 2. We define

N = N(g) = pp (22+ncszt»a:ﬁ77zﬁ> < 23+H637t7a7/8:7"'€.

22(2+~) £2(2++)

This leads to

1
23+rc + 24k 3+k
2 752?‘24’_0:)/3’7’” 92%w
S <M< | —0 ) -1
6 CS7t7a7ﬁ777’</
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To find the sufficient conditions stated in Corollary 2.31 we study the upper bound on N ot t Astd ()
which we just found:

23+Hc
app s,t,0,8,7,K
Ny asa(e) < N(e) < 2024wy

We estimate ¢, ¢ 8.+, & bit further.

s t
Cotiafrmm = 2 ( (1 +’y](-l)2ﬂ(a))) (Hu +P4¢(8)) ) [T max(1,2%4)
J

=1 j=1 j=1

I (4200000 ) T (1+ 266000 2))

]:

< 2exp i ) exp | 4¢(8 i ) exp (25 i73( )) exp (ZC(Gm)bom i%('l))

j=1 j=1
(2.33)

—

X exp (2C (0r) i%@)) :
j=1

where we have used the well-known estimate

ﬁ (1+z;) =exp (ilog(l + x])> < exp (i acj) ]

j=1 J=1
i N )] = (2 = (1)
Thus ¢s,t,0,8,7,x is uniformly bounded in s if 3° ;" <ocand > 7,7 < co. Consequently > v;
j=1 j=1 j=1

o0
oo and Y 73(2) < oo are sufficient conditions for strong polynomial tractability.
j=1

From (2.33) we see that we can bound ¢, a,8~,x by s? if

(1) t 7(2)

lim su < oo and limsu —— < 00
s%oop Z < log s t—>oop Jz_: logt

Hence these are sufficient conditions for polynomial tractability.
Finally we show that

=1
is a sufficient condition for weak tractability, i.e. we show that, provided this condition holds, we

always obtain

h log Nsit Astd ( )

m T = 0.
sHt+e— 100 S+HT+e~

Using again (2.33) we have

93+k ¢
log N%PP <lo s,t,0,8,7,K
g s+t, A td( ) — g c
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s t
< (3+k)log2 —2(2+ k)loge +log2 + 2u(c) Z’y](-l) +4¢(B) Z 'yj@)
j=1

j=1
t s t
+ 28 Z 7;2) + 2¢(0k)b" Z 'y](-l) +2¢(0k) Z 75-2). (2.35)
j=1 j=1 j=1

We consider the second summand 2(2 + k) log e more closely. We would like to have

lim 224 k)loge _0

2.36
stttelooo S+t +e1 (2.36)

If s — oo or t — oo this clearly is true. So we study the case where s and ¢ are bounded and only ¢!
tends to infinity. Of course e ! — oo implies € — 0. We use L’Hopital’s rule to find

2(2 1 2(2 1

—( +r)loge _ lim 7( +lﬂ)€ =—-2(2+k) lim e=0.

e lsoo S+t+e7! e~ l—o0 —= e~ 1500

Thus (2.36) holds in any case and, keeping in mind our assumption that (2.34) is fulfilled, we see that
each summand in (2.35) tends to zero as s+t + e~ 1 — oo. This completes the proof. O

2.3.4 Necessary conditions in the class AS'd

We know already that necessary conditions in the class A% are also necessary in the class AS'd. In the
case of weak tractability we thus have matching necessary and sufficient conditions for A2l and Astd
due to Theorem 2.27. As for polynomial and strong polynomial tractability, we follow a different track
of argumentation to find other necessary conditions than the ones implied by Theorem 2.27. Even
though we conjecture that the sufficient conditions presented in Corollary 2.31 are also necessary, we
currently only have partial results in this direction.

First we show that approximation by a linear algorithm using information from the class A% is
not easier than integration by a linear algorithm of the same order.

Proposition 2.32. Ly-Approzimation in the space H(Ks i a5~) by linear algorithms using N infor-
mation evaluations from A9 is not easier than integration by quadratures using N function values,
i.€.,

e'lsrit’/\std (N) S ez‘ili,AStd (N)?

where eﬁt asta (V) denotes the N-th minimal worst-case error of integration using linear algorithms

Z'n H (KS,tva,B;’Y) °

Proof. Consider a linear approximation algorithm

N
AN,s,t(f) = Z avf(wvv yv)

v=1

with a, € Lo([0,1)57) and (x,,y,) € [0, 1]**!. Now define an integration algorithm

N
QN,s,t(f) = Z bvf(a:wyv)?

v=1

where by := [ 554+ au(2, y) dz dy. Then,

’IS-I—t(f) - QN,s,t(f)’ = ‘/[O st f(w7y) dx dy - QN7s,t(f)
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N
— || Seydedy— [ S a@y)f(@.y.)dedy
[0,1]5+ [0,1]5+1 o1

2 1/2
< ( [ @ dz dy)
[0,1]34—1,

= |If = Anst(F)l]L,-
The result follows. O

N
= > av(@,y) f(@o,y,)
=1

Remark 2.33. Note that Proposition 2.32 implies that, given € > 0,

N8+t Astd( ) < Njﬁf; Astd (6)

where NIt bt asta (€) denotes the information complexity of integration in H(Ks.q.5~)-

The following result can be viewed as a special case of Proposition 2.32. It implies that certain
linear approximation algorithms, including the algorithm defined in (2.26), cannot have a worst-case
error lower than the worst-case error of arbitrary QMC integration algorithms. As mentioned before
on p. 30 QMC algorithms are equal weight algorithms and they are described in detail in Section 3.1.
Hence we can say that QMC integration in H (K qa,5+~) is easier than approximation by means of
(2.26).

Proposition 2.34. Let N € N. Let Sy be the class of all approzimation algorithms Ay s of the
form

Ansa(F)(@y) = > P (f walk, &) walg(@)er(y),
(k,HeA

where A C N§ x Z! such that (0,0) € A, and where

N
Py s (£ 50000) = 1 D F((p @) walk(p,)eala,) for (k,1) € A
v=1

with ((p,q)v)Y1 = (py,q,)).; C [0,1)° x [0,1)!. PFurthermore let Qn s be the class of all QMC
algomthms with N points for integration in H(Kst.a,8+~)-
Then it is true that

. : app
v B, W) S L i As)
,8, )8, 38,6 =—IN,s,

Proof. The proof is similar to that of Proposition 2.32. Consider Ans; € En s, Then Ayng; is a
linear approximation algorithm with

N
AN,S,t(f) = Z avf(xva yv)
v=1
where

Z walg(x © p,)e(y — q,).

1
N kl)e

Then, using the elementary properties of Walsh and trigonometric functions, and the fact that (0,0) €
A,

/ ay(z,y)dedy = Z / walg(x © p,e(y — q,) dedy
[0, 1]+ kl)eA [0,1]+¢
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> lkepal-a,) Jo . Vel (@)en ) a2y

Z walg (Op,)er(— qv)/

waly(@)de [ aly)dy
) [0’]_13

[0,1]¢

Walo(@pv)eo(_qv)

z_wzw == =l

Then the integration algorithm
N
QN,s,t(f) = Z bvf(mva yv)7

where b, := f[oﬂsﬂ ay(x,y) dx dy, is a QMC algorithm

1 N
QNst NZ (v, Yy)-

In the same way as in the proof of Proposition 2.32 we see that

Ls4¢(f) = Qs (N < If = An s ()] Lo-
This yields the result. O

We can now combine Proposition 2.32 with [44, Theorem 1], which gives necessary conditions for
achieving tractability of integration by QMC algorithms in H (K a,3~). This yields the following
result.

Theorem 2.35. Consider approzimation in the space H(Ks4.a.8~) using algorithms from the class
EN,st. Then it is true that

(e.0) (o ¢]
o > 71(.1) < oo and Y, 'yj@) < 00 is a necessary condition for strong polynomial tractability, and
- =

s (1) t (2)
v, 7;
e limsup Z logs < 00 and lim sup Z logt < 00 is a necessary condition for polynomial tractability.
§—00  j=1 t—oo  j=

Remark 2.36. Note that the algorithm defined in (2.26) lies in the class Zy s ;. Hence we cannot hope

to achieve tractability using (2.26) under weaker conditions on the weights than those in Theorem
2.31.

The next proposition implies that integration in H (K s,t,a,8,y) 1s neither easier than integration in
the Walsh space H (K, ,m) (cf. p. 34) nor in the Korobov space H (K, 5.) (cf. p. 34) we defined
in Subsection 2.3.1.

Proposition 2.37. Let s,t € N be given and let ei;ﬁt(N) denote the N-th minimal worst-case error
of integration using arbitrary linear algorithms in H(Ksta,p~). Furthermore, let e™(N) denote the

N-th minimal worst-case error of integration using arbitrary linear algorithms in H(Ks,a77(1)), and
e™(N) denote the N-th minimal worst-case error of integration using arbitrary linear algorithms in

H(Ktyﬁﬁ(z)). Then

(a) ef*(N) < ey (N),
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(b) e (N) < ey (N).

Proof. We show Item (b) of the proposition. Item (a) follows by analogous reasoning. The proof is
based on an inductive argument. More precisely we consider H (K(S_l)i,aﬂ) and H(Kta,8+~) and
show, roughly speaking, that the error of integrating a function in the unit ball of H(K(;_1)4q4,) 18
not larger than for integrating a “corresponding” function in the unit ball of H (K ). Indeed let
f(x1,...,25-1,91,...,9t) be a function in the unit ball of H(K(;_1)4a.~)s i-€ |[flls=1,) 0y < 1. We

show that for each such f € H(K(,_1)4q,) there exists some f in the unit ball of H(K ¢ 4,5,) With at

least equally large integration error. For f € H(K(s_1)¢ ) We consider f(z1,...,Ts—1,Ts, Y1, Y1)

= f(x1, o1, Y15 -, Yt) € H(Kst.a,8~), i-€., f in fact does not depend on .
It is easily checked that f lies in the unit ball of H(K,3,y)-
Next we investigate the integration error. We need to show that

s 144(f) — Ans—10(FH)| < [Tse(f) — Ansi(F)],

and
N
ANns—14(f) = D arf(zx)
k=1
with some a; € C and 2y, = (Tg1,- -+, Ths—1, Yk 1» - - > Ykt) € [0, 1]E7DFE

Defining 2 = (Zk.1,- -+ Tks—1,0, Yk 15 - - -, Ykt) € [0, 157 the algorithm AN,syt(f) is given by

N
Ansi(f) = anf(Zr)-
k=1
Then we have

|Is+t(f) - AN,s,t(f)‘ = |/[O st f(xla" <3 Ls—1,Ts, Y15 - 'ayt) d(xlw . 'amsflvx&yla'--,yt)

N
= apf(@rts s Ths—15 0, Yk 1y - - Ykot)
k=1

= ‘\/[0 1](s—l)+t f(xlw sy Ls—1,Y1y - - - 7yt) d(xlv"' 7m8—17y17"'7yt)

N
= f(@ts s T 15 Ykds - - Ykit)
k=1

= |Is—1,t(f) - AN,sfl,t(f)‘-
Repeated application of this argument yields the result in (b). ]

Proposition 2.37 implies that necessary conditions for achieving tractability of integration in
H(K 87a77(1)) or H (Ktﬁ,,y(z)) are also necessary for achieving tractability of approximation using in-
formation from At in H(Ktap)- It should be emphasized here that Proposition 2.37 allows
arbitrary linear algorithms for integration in H(K&a’,y(l)) and H(Ktﬁﬂ(z)), and is not restricted to
QMC algorithms as in Proposition 2.34. Necessary conditions for tractability of integration by arbi-
trary quadratures in the Korobov space H (K, 5. )) are given in [64] (see also [30]). Combining the

latter results with Proposition 2.37 yields the following theorem.

Theorem 2.38. Consider approxzimation in the space H(Ks i a5~) using information from the class
A Then it is true that
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[e.e]
e > 7](2) < 00 15 a necessary condition for strong polynomial tractability, and
j=1

2)
° ligisoljpjil 11]% < o0 is a necessary condition for polynomial tractability.
Remark 2.39. The obvious gap between the sufficient conditions in Corollary 2.31 and the necessary
conditions in Theorem 2.38 stems from the lack of results on necessary conditions for integration
by arbitrary linear algorithms in the Walsh space H(K s,a77(1)). Such results are available if one
considers only integration by QMC algorithms (see, e.g., [19]), and these even match the sufficient
conditions in Corollary 2.31. However, to the author’s best knowledge there are no results in the
literature regarding more general integration rules. It is possible that such results could be obtained
by proceeding analogously to the methods described in [30] and [64] for the Korobov space. Closing

the gap between Corollary 2.31 and Theorem 2.38 remains open for future research.

2.3.5 The optimal algorithm

In this section we want to consider, once more, algorithms which use arbitrary linear functionals as
information about f, that is, we study A®! as our class of information. In Section 2.3.3 we derived
the results concerning approximation using A*!' without specifying the algorithms we are using for
approximating f. In this setting however, given an error threshold € > 0, we even know the optimal
algorithm (see p. 8 and 9 and also [63, Section 4.2.3]).

It has the form

AP L(Day) = Y fleDwaly@)el(y), (2.37)

(kul) 6A572

where we have chosen Ay = A.-2, as defined in (2.25). Note that the functions wal, k € N§, form
an orthonormal basis of Ly([0,1]*), and that the functions e, I € Z!, form an orthonormal basis of
Ly([0,1]"). From this it follows that walge;, k € N§, I € Z', is an orthonormal basis of La([0,1]577).
Furthermore, it is easily checked that the walge; are mutually orthogonal in H (K a3, )-

Indeed

(walger, waljem) = {(paﬁ(l)(k))l (rﬂﬁ(” (l))il it (k,1)=(4,m),

S7t?a761 - .
K 0 otherwise.

Hence, using Parseval’s identity, the error can be calculated as

HEMBert(f) - A(J)\?Z,t,a_z(f)’ 2

= Flk, )%, 2.38
o= 3 VD) @9

and we obtain
opt 2
[EMB, () = AR, 2 (f)

La([0,1]5F)

= > kP

(kD)EA_—o

= > |fkDP (ﬂaﬁm(k))_l (7“5,7@) (l))_1 Pay (R)T5 42 (1)

(k7l)¢A€_2
< 52||f||3{(Ks,t,am)’

where we used the definition of the set A_—2 to see the inequality.
This means that for the algorithm given by (2.37), we always obtain

app opt
es+t,Aall (AN,s,t,a*Q) <E€.
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3 Componentwise constructions of (polynomial) lattice point sets

3.1 Introduction

Recall that in Section 2.1 we consider multivariate continuous problems. Suppose we have a function
space Hs, a normed space G and a solution operator S: Hs; — G. In Section 2.1 we were interested in
how much information is needed to solve such problem at least with a given accuracy.

Now we want to consider specifically the problem of numerical integration in multivariate function
spaces, i.e., the solution operater is given by S: Hs — R, with

S(f) = /MS /(@) da.

This means, in particular that we study the case where G = R. For the integration problem we of
course study algorithms which use information from the class AS', i.e., we use function evaluations
as information. In contrast to Section 2.1, now we are mostly interested in how to choose the infor-
mation, that means at which points we evaluate the integrand, rather than in how many information
evaluations are needed to reach a certain error threshold.

As mentioned before in Section 2.1, linear, non-adaptive algorithms are optimal for this type of
problem. Thus we use algorithms of the form

N-1
Z Qkf(pk)7 (31)
k=0

with g € R and p;, € [0,1)*® for numerical approximation of integrals of functions over [0, 1]°.
Let us briefly go back to the one-dimensional problem of integrating a univariate function f over
[0, 1], which can be approximated by an algorithm of the form

N
> tef (),
k=0

with ¢, € R and pg € [0,1). For example one could use the trapezoidal rule (cf. [56, Section 1.1]),
which uses tg = ty = ﬁ and 1 = -+ = ty_1 = % and equidistant sample points pp = %
For dimensions s > 1 one can use the Cartesian product of the trapezoidal rule (or any other one-

dimensional quadrature rule). Then one ends up with a quadrature rule of the form

N N
Z Z tk1 -"tksf<pk17- -~7pks)7

k1=0 ks=0

which can of course also be displayed as a quadrature rule of the form (3.1). A quadrature rule like
this, uses (N + 1)® sample points, a number that explodes with growing dimension s.
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A solution to this problem is to use equal-weight quadrature rules to approximate integrals of
functions over [0, 1]°,

1 N-1
[RICEES WAL (32)

What remains is the problem as to how to choose the sample points. One possibility is to choose them
randomly, which results in a method called Monte Carlo integration.

The other possibility is to choose the sample points deterministically and to try to beat Monte
Carlo. In this case a quadrature rule of the form (3.2) is called quasi-Monte Carlo (QMC) algorithm.
For detailed information on QMC integration see [20, 55, 56, 60].

In what follows we study QMC integration.

Here, the function f belongs to some suitable (weighted) function space or function class, and the
sample points {pg,...,Py_;1} are deterministically chosen from [0,1)%. It turns out that lattice point
sets are often a good choice, see, e.g., 20, 72]. Lattice point sets were introduced for the first time
independently from Hlawka [32] and Korobov [41]. They are usually constructed with the aid of a
generating vector z = (z1,...,2s) € Z° and are defined as follows.

Definition 3.1. Let s, N € N and z = (z1,...,25) € Z°. Then

P(N,z):{{’j\f}:k:o,...,zv_1}

s the N -point lattice point set corresponding to z. Here, the braces around %z indicate that we consider
the fractional part of each coordinate of %z

Remark 3.2. From [20, p. 84f.] and [56, p. 73f.] we know that we can restrict ourselves to considering

only generating vectors z € {0,1,..., N — 1}%. Additionally, for the generating vector z, one often
requires ged(z;, N) =1 for all components z;, with j =1,...,s, to achieve better distributions. Thus
let

Zy={z€{l,...,N —1}: ged(z,N) = 1}. (3.3)

We make this additional requirement throughout the rest of this thesis, so, using this notation, we
study generating vectors z € Zy;.

The goal is to construct generating vectors z € Z3; which yield lattice point sets that perform well
in QMC algorithms such as in (3.2). In what follows we want to consider two quality criteria—the
(weighted) star discrepancy criterion and the worst-case error criterion.

We are considering weighted spaces; Let [s] = {1,2,...,s} and let v = (7)uc|s], With non-negative
reals -y, be weights, i.e., every group of variables {x;: i € u} is equipped with its weight ~,. Roughly
speaking, small weights indicate that the corresponding variables contribute little to the integration
problem, whereas for large weights the opposite is true. Here we consider only product weights, as
introduced in Section 2.1 on p. 10.

The weighted star discrepancy was introduced in 1998 by Sloan and WoZniakowski [74], exploiting
the insight that the weights reflect the influence of different coordinates on the integration error.

Definition 3.3. Let v = (y)uc(s) be a weight sequence and P = {py,...,py_1} € [0,1)° be an
N-element point set. The local discrepancy A(t,P) of the point set P at t = (t1,...,ts) € (0,1]° is
defined as

1 N— s
=N Z 0,t)(Pr) H tj, (3.4)
k=0 j=1
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where 1jgy) denotes the indicator function of [0,t) = [0,t1) X --- x [0,t5). Then the weighted star
discrepancy D}k\,’,y(P) of the point set P is defined as

Dy~ (P)= sup max A((ty,1),P)], 3.5
NalP) = s s s |A (8 1), ) (35)

t;, ifjeu

where we denote by (ty, 1) the vector (t1,...,ts) with t; =
1 otherwise.

Remark 3.4. For a lattice point set P(N,z) with generating vector z we often write DY, (z) instead
of Dy ~(P(N, z)) for the weighted star discrepancy of P(N, z).

Remark 3.5. One can picture star discrepancy as follows. Suppose we have a point set in the unit
cube and consider bozes in the unit cube anchored in the origin. We compare the volume of these boxes
to the ratio of the points inside the boxes and the overall number of points. The star discrepancy is
then the supremum of all these differences.

In this thesis we consider weighted star discrepancy. Here, as before, weights are a means to
create a setting which is closer to reality. Problems in weighted spaces arise naturally from many
applications and the weights reflect the fact that not all coordinates or groups of coordinates have the
same influence on the problem. We study product weights in this thesis. For product weights the
influence of a coordinate decreases as ils index increases.

Given a function f and some point set P = {py, ..., py_1} the following inequality holds true. It
is called weighted Koksma-Hlawka inequality (cf. [74]),

N-1

1 *
‘_/[07115 f(m) dz — N kz:;] f(pk) < DN,'Y(P) ||f||fya (36)

where ||| , is a norm, dependent only on the weight sequence «, but independent of the point set P.
The Koksma-Hlawka inequality stems from the following identity of Hlawka [31] and Zaremba [78]
(see also [20, 56]), given by

1 = u
N ig) Je) = /[0,1}S fl@)= > (-1) ’Yu/

0#uCls] 0,1]1

lu|

A((zy, 1), PN(z))'yu_lgmuf (xy, 1) dxy,.

Applying Holder’s inequality to the latter identity as done in [20, 74] for integrals and sums yields
(3.6). Inequality (3.6) connects the integration error of QMC algorithms to the weighted star discrep-
ancy. Moreover, it enables us to split the problem into two parts, where the first part purely depends
on the point set used in the QMC rule, and the second part shows the influence of the function f on
the integration error. Obviously, it is beneficial to have lattice point sets with small weighted star
discrepancy and to use them in QMC rules, and thus in Sections 3.2 and 3.3 we consider ways to
construct (polynomial) lattice point sets with small weighted star discrepancy.

Another interesting aspect of the discrepancy of high dimensional point sets is the so-called
tractability of discrepancy (see, e.g., [63, 64, 65] for detailed information). For N,s € N let

discoo (N, 8) 1= PCi[r(lJfl)s Dy (P),
#_p;N

be the Nth minimal star discrepancy. To introduce the concept of tractability of discrepancy we define
the information complexity in this context (also called the inverse of the weighted star discrepancy)
as

N*(s,e) := min{N € N | discoo (N, s) < e}.
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Thus N*(s,¢) is the minimal number of points required to achieve a weighted star discrepancy of at
most . Note the analogy to tractability of the worst-case error (cf. Section 2.1), where the information
complexity is the minimal number of points required to achieve a worst-case error of at most ¢.

Similarly to the worst-case error case, also here, to keep the construction cost of our generating
vector low, it is, of course, beneficial to have a small information complexity and thus to stand a chance
to have a lattice point set of small size. This is why we are interested in how fast the information
complexity grows when s and ¢! tend to infinity. Tractability describes this dependence of the
information complexity on the dimension s and the error demand €. The best we can hope for is the
case where N*(s, ¢) is independent of s and depends at most polynomially on e~!. To be more precise,
we say that we achieve strong polynomial tractability if there exist constants C, 7 > 0 such that

N*(s,e) < Ce™ "

for all s € N and all € € (0,1). Recall from Section 2.1 that a problem is considered tractable if its
information complexity’s dependence on s and €' is not exponential. Taking weights into account
in the definition of discrepancy can sometimes overcome the so-called curse of dimensionality, i.e., an
exponential dependence of N*(s,¢) on s.

The second quality criterion we want to consider is the worst-case error criterion. As a QMC
algorithm is completely determined by the underlying point set we denote the worst-case error by
e31,~(P). Here, H; denotes the respective function space we are working in and ||-||,,  its norm. As
before, if it is clear which function space we consider, we abbreviate our notation to es ~(P). In this
context the worst-case error e, 4(P) of the point set P = {py,...,py_1} introduced in (2.1) takes the
form

1 N-1
es~(P)= su / z)dxr — — I,
||f||7-t,7§1

where 1~ denotes some suitable weighted function space. For lattice point sets Pn(2) we often write
es,N~(2) instead of es4(P). In Section 3.4 we consider the worst-case error as the quality criterion.

Now we take a brief look at how star discrepancy and worst-case error interrelate, see also [20,
Section 2.4]. Let us consider the special reproducing kernel Hilbert H space with kernel

S
Ks(mvy) = Hmln{l - xjv 1- y]}7
i=1

with & = (z1,...,2s),y = (y1,...,Ys) € Rs. For s = 1 this space contains all absolutely continuous
functions f: [0,1] — R with f(1) = 0 and square integrable first derivative. If, for example, fi,..., fs
are elements of M1, then f(z1,...,x5) = [[;_; fi(x;) is in Hs. Apart from these products and sums of

these products, H contains also its completion with respect to the norm induced by the inner product

(f,g) = /[ 104y,

0,1 Ox Oz

BS aS
where 8—{(3:) = 8361_”%15 (x).

Then for an N-point set Py C [0, 1), it is true that
1/2
eq,~(Pn) = (/[0 " |A(z, Py)|? da:) .
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Note that here v = (1);>1, as we consider an unweighted space.
As for the weighted case consider a weight sequence ~ and the weighted Sobolev space

W2(1""’1)([O, 1]%), equipped with the norm ||-|| D, and

Then we know from [74, Theorem 1] that

1
2
)= | X ] (A1)
[s] ’

P#uCls
where A,, 5 is the QMC algorithm using the elements of the n-point set P as sample points.

The goal in the following sections is to construct generating vectors for (polynomial) lattice point
sets with small weighted star discrepancy, and/or worst-case error, respectively. For dimensions
s = 1,2 explicit constructions are available, see for example [4] and references cited there. For
dimensions s > 3, however, this is not the case, and one usually has to resort to computer search
algorithms, most commonly component-by-component (CBC) algorithms. The standard structure of
a CBC construction is as follows: We start by setting the first component z; of the generating vector
equal to 1. Then in each step one component is added until we have a full-size generating vector
z = (z1,...,2s). When adding one component, all previously chosen components z1, ..., zg remain
the same and the new component zg,1 is chosen from a search set, e.g., Zn, to minimize the weighted
star discrepancy or the worst-case error, respectively, of (z1,..., 24, 24+1) as a function of z411. The
algorithm terminates once z; has been chosen.

It is an advantage of CBC constructions that they are extensible in the dimension. This means
that if one has calculated an s-dimensional generating vector for a lattice point set with the aid of a
CBC construction and wants to extend the result to an (s + 1)-dimensional point set, he only need to
do one more step of the CBC construction, rather than starting again from scratch.

In general, CBC constructions do not result in an optimal generating vector. However, the obtained
vectors are in many settings of optimal order of star discrepancy and worst-case error, respectively
cf., e.g., [38] and [49], and numerical results, e.g., in [49] show that they are also performing well in
terms of implied constants.

As CBC constructions yield good results and a search through all generating vectors z € Z° would
be completely insurmountable even for relatively small values of N and s, we try to improve CBC
constructions even more. (The number of elements in Z3; is ¢(N)® > N7, for all N > 30, where o(+)
denotes Euler’s totient function. The estimate for ¢(N) stems from [40])

The first CBC construction is due to Korobov [42] and has been rediscovered by Sloan and Reztsov
in 2002 [73]. Sloan and Reztsov constructed lattice point sets for the integration of functions from
unweighted Korobov spaces, based on the worst-case error criterion. (If we set all the weights ~; equal
to 1 in the definition of Korobov spaces on p. 34 we obtain the unweighted Korobov space.) Sloan’s
and Reztsov’s CBC algorithm reads as follows.

Algorithm 3.6. Let s € N and let N be a prime. Determine z = (z1,...,2s) in the following way.
1. Set zZ1 = 1.

2. For1 <d < s assume z1,...,2q to be already chosen. Find zq11 € ZN as minimizer of

ed+1,N~ (21, s 2ds Zd41)

as a function of zgy1.
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3. Increase d by 1 and repeat Step 2 while d < s.

The condition that N is a prime in Algorithm 3.6 is due to technical reasons and we know from
Bertrand’s postulate that this is not a big restriction.

Algorithm 3.6 yields a generating vector z = (z1,.. ., z5) that fulfills the following worst-case error
bound (cf. [73, Theorem 2.1]). Let § > 1 and N be a prime, with N > 1 4 2{(3), where ((-) denotes
Riemann’s Zeta function. Then for all s € N and all o > 3

142 7
esNy(21,. 00y 25) < (]\th((;))
The computational cost of Algorithm 3.6 is of order sN2.

It was proved in 2001 by Sloan and WozZniakowski [75] that the optimal rate of convergence in
weighted Korobov spaces is given by O(NN 7%%), with § > 0 arbitrarily small and the implied constant
independent of s. The error bound quoted above does not reach this rate, as it is true forany 1 < g < a.
In 2003, however, Kuo [49] proved that the same algorithm applied to weighted Korobov spaces rather
than unweighted Korobov spaces as used by Sloan and Reztsov, indeed yields the optimal convergence
rate. She proved the following theorem (cf. [49, Corollary 2 and Theorem 4]).

Theorem 3.7. Let N be prime. For all 1 < d <s find zq as the minimizer of 6317N,7(Zl7 ...y 2q) over
the set Z5. Then for all é <A<1

1 1
ez,N,'y(zla"'a <2 X H 1 +2FYJC a)\»x

and
es Ny (21, -0y 25) = O(N7270)
forall0 <6 < C“T_l The implied constant is independent of s.

2
Remark 3.8. Let ¢ € (0,1). Then we obtain es n~(21,...,25) < € for all N > ce”a=%, with a
constant ¢ > 0 independent of the dimension s. Thus we have strong polynomial tractability.

When implementing algorithms like Algorithm 3.6 one has to perform several costly matrix-vector
multiplications. It turns out that the matrices involved are a special form of block matrix, consisting
of identical blocks. This block structure can be exploited using fast Fourier transform (FFT) to re-
duce the construction cost from O(sN?) to O(sN log N). These faster versions are called fast CBC
constructions. They are due to Nuyens and Cools [66, 67].

Algorithms very similar to Algorithm 3.6 have been considered by Sinescu and Joe [38, 70, 71]
using the weighted star discrepancy criterion. The main difference is that in Step 2 of their algo-
rithms the weighted star discrepancy is minimized instead of the worst-case error. The constructions
of Sinescu and Joe reach the optimal order of the weighted star discrepancy, D} . (z) = O(N —140)
for any § > 0. Sinescu and Joe already used methods of Nuyens and Cools [66, 67| to reduce the
computational cost to O(sN log N), as described above.

In 2015 Dick, Kritzer, Leobacher and Pillichshammer [13] introduced a method to speed up CBC

constructions in weighted spaces even further. In their paper [13] they consider weighted Korobov
spaces as defined on p. 34.
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It is the nature of weighted spaces that not all coordinates of the generating vector z have equal
amount of influence on the quality of the corresponding lattice point set. In what follows, for simplicity,
we only consider product weights. Recall from p. 10 that these are given via a nonincreasing weight
sequence ¥ = (7;);>1. The weights v, are then defined as v, =[] jew V- In product weighted spaces the
components z; of the generating vector have less and less influence on the quality of the approximation
as their index j increases. Roughly speaking, this is due to the weights «; which are diminishing with
increasing index j. We can exploit this property in the following way. As the components’ influence is
decreasing with their indices we want to make less effort and have less computational cost for choosing
these components. To achieve this we choose them from ever smaller search sets, which are defined
as follows. Let wy < wg < --- be a nondecreasing sequence of non-negative integers. We sometimes
assume for technical reasons that wy = 0. This sequence of w;’s is determined in accordance with the
weight sequence . Loosely speaking, the smaller v;, the bigger w; is chosen. For N = b™, with a
prime b and m € N, the reduced search spaces Zy ,,, are defined as

{{z e{l,...,bm ™ —1}: ged(z,0™) =1},  if wj <m,
Naw; — . (37)
{1}, if w; > m.

The cardinality of these reduced search spaces is

prwi—l(p — 1), if w; < m,
‘ZN,wj :{ ( ) J

1, it w; > m,

as opposed to |Zx| = b™1(b— 1) for the full search space Zy. This means a reduction of the size by
a factor of b=/, if w; < m.
The reduced CBC algorithm by Dick et al. [13] is then given by

Algorithm 3.9. Let N = b, 0 = w; < wy < ... and ZN,wj be defined as above. Construct
z=(b""z,...,0%2) as follows.
1. Set z1 = 1.
2. For 1 <d < s assume that z1, ..., 25 have already been found. Choose zgy11 € ZNwgy, Such that
ed+1, N~ (0" 21, ..., 0" d2g, 0" 21 1))

is minimized as a function of zqy1.
3. Increase d by 1 and repeat the second step until z = (b*'z1,...,0"sz,) is found.

This algorithm can again be implemented using the fast methods of Nuyens and Cools. In this
case it is often called the reduced fast CBC algorithm.
A generating vector z constructed with Algorithm 3.9 yields [13, Corollary 1]

estvfy(z> S csva77»§7wN_§+67
for any d € (0, O‘T_l], where a > 1 is the smoothness parameter of the weighted function space under
consideration, in this case it is the smoothness parameter of the weighted Korobov space. Further w
denotes the weight sequence 0 = wy < ws < ... . The constant ¢, .6 is given by

C)

1 o [ul A _
Cs,ay,6,w = 2 Z Y~ (2( (a — 25)) pmaX;cu w;

PFuC|s]
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It takes

min{s,s*}
O | Nlog N +min{s, s'}N + Y (m —wg)b™ ™
d=1

operations to compute z with Algorithm 3.9. Here, s* denotes the smallest j such that w; > m. Thus,
if s* is finite and s is large enough, the construction cost is independent of the dimension.

A similar reduced fast CBC construction can be done when using the weighted star discrepancy
criterion. This is the content of Section 3.2.

So far we considered means to speed up the original Algorithm 3.6 by Sloan and Reztsov so that
they are feasible for large dimensions s and large N. Numerical experiments, however, show that these
algorithms tend to produce generating vectors with recurring components, i.e., there exist 7,5 € [s],
with ¢ # j and z; = z;. We quote from [50]:

[...] However, it has been observed that the components start to repeat from some di-
mension onward for product-type weights, hence leading to a practical limit on the value
of d [we remark that d has the role of s in [50]]. This side effect of the CBC algorithm is
yet to be fully understood.

Gantner and Schwab write in [25]:

[...] For large values of the worst-case error, the elements of the generating vector can
repeat, leading to very bad projections in certain dimensions.

As mentioned in the quote from Kuo above this effect is not yet fully understood. It could be due to
numerical problems of the algorithm, see [67, page 386]. There is, however, a way around the problem.
Gantner and Schwab [25] as well as Dick and Kritzer [10] have come up with methods to avoid this
problem. Gantner and Schwab call their method pruning in the CBC construction, while Dick and
Kritzer name their refined version of this method projection-corrected CBC construction. The general
idea is in each step of the CBC algorithm to define some exclusion set & whose elements cannot be
selected as component of the generating vector in this step. By defining the exclusion sets as the sets
consisting of all elements chosen in the previous steps one can effectively avoid components showing
up several times. This method can also be used to avoid other phenomena, like for example all lattice
points lying on an antidiagonal. For detailed information see [10].

The projection-corrected CBC algorithm of Dick and Kritzer is again designed for weighted Ko-
robov spaces (cf. p. 34). It leads to generating vectors with worst-case error

U B T VR R SR e\ N
sVl )g( T 2 @M ] ¢(N)_‘gj‘) ,

uC[s] JEu

for all % < X < 1, where £ C Zy are the aforementioned exclusion sets. It is also shown in [10] that, as
long as the relative size of the exclusion sets is uniformly bounded, tractability results are not affected.
When using the fast matrix-vector multiplication of Nuyens and Cools the projection-corrected CBC
algorithm can be implemented using O(sN log N) operations. It is the aim of Section 3.4 to combine
the projection-corrected CBC construction with the reduced fast method to obtain an algorithm that
is fast and yields a generating vector free of recurring components.

Up to now we only considered lattice point sets as choice of sample points in QMC algorithms.

Another good choice are polynomial lattice point sets, which are defined below. They have been
introduced by Niederreiter in [60, Chapter 4], [61]. In fact, it turns out that in some cases lattice

99



point sets yield better results, whereas in other situations polynomial lattice point sets are the better
choice. For instance higher-order polynomial lattice point sets work very well for smooth integrands,
whereas lattice point sets turn out to be particularly well suited for smooth periodic functions. For
information on higher-order polynomial lattice point sets see for example [8]. For a detailed comparison
of lattice point sets and polynomial lattice point sets see, e.g., [68]. Thus it is useful to have methods
at hand for the construction of good lattice point sets as well as good polynomial lattice point sets.

Dick et al. [13] considered a version of their reduced fast CBC algorithm for the construction of
polynomial lattices as well. This algorithm also leads to a polynomial lattice point set with small
worst-case error and a construction cost that becomes independent of the dimension eventually. In
Section 3.3 we give a version of a CBC construction for polynomial lattice point sets that uses the
weighted star discrepancy as the quality criterion.

Recall from p. 40 that polynomial lattice point sets are defined as follows. For a prime number p,
let ), be the finite field of order p. We identify IF), with the set {0,1,...,p — 1} equipped with the
modulo p arithmetic. We denote by F,[z] the set of polynomials over I, and by F,((z~!)) the field
of formal Laurent series over I, with elements of the form

00
L= Z tlm_l,
l=w

where w € Z and ¢; € IF), for all | > w. For a given dimension s > 2 and an integer m > 1 we
choose a so-called modulus f € Fp[z] with deg(f) = m, as well as polynomials gi,...,gs € Fplz],
with deg(g;) < m for all 1 < j < s. The vector g = (g1,...,9s) is called the generating vector of the
polynomial lattice point set. Further, we introduce the map ¢, : F,((z71)) — [0,1) such that

Pm (Z tzﬂﬁ_l> = > uph.
l=w l=max{1,w}

With n € {0,1,...,p™ — 1} we associate the polynomial
m—1
n(zx) = Z nex’ € Fplz],
r=0
as each such n can uniquely be written as n = ng+nip-+- - -+nm_1p™ ! with digits n, € {0,1,...,p—1}

for all r € {0,1,...,m — 1}.

Definition 3.10. With the notation above, the polynomial lattice point set P(g, f) is defined as the

set of N = p™ points
2n= (on (5E57) oo (N5E57)) € oy

for0<n <p™—1.

The name polynomial lattice point sets stems from the fact that their construction resembles very
much that of lattice point sets. Recall that one point of lattice point set is of the form

o= ({3 {5))

It is easy to identify the mutually corresponding parts: the map ¢,, and the fractional part {-},
n(x) and n, the components of the generating vectors, g; and z;, and finally the moduli f(z) and N,
respectively.
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Polynomial lattice point sets are a special case of (¢,m, s)-nets, first introduced by Niederreiter
[59]. For an overview on (t,m, s)-nets see also [20, Chapter 4].
For further information on polynomial lattice point sets see [20, Chapter 10].

In the following sections we discuss several CBC constructions that lead to generating vectors with
different good properties.

61



3.2 A reduced fast component-by-component construction of lattice point sets
with small weighted star discrepancy

In this section we want to consider a similar algorithm as the reduced fast CBC algorithm of Dick et
al. in [13], but with the weighted star discrepancy as quality criterion instead of the worst-case error.
All the results of this section are based on [47] and are joint work with Ralph Kritzinger.

Let b be an arbitrary prime number and m a positive integer. We consider lattice point sets with
N = b™ elements and study their weighted star discrepancy. As said before we construct a generating
vector z one component at a time with the aid of a CBC construction.

When using a standard-type CBC construction as for example in [38, 70, 71], every component
is chosen from Zy = {z € {1,2,...,0™ — 1}: ged(z,0™) = 1}. As done in [13] for the worst-case
error, we speed up the construction of such generating vectors by reducing the search space for each
component according to its importance, while still achieving a small weighted star discrepancy for the
corresponding lattice point set. Recall from (3.7) that the reduced search spaces are defined as

2 C Hze L, 0 = 1) ged(2,0™) =1}, if wy <m,
M= g, if w; > m,

where we defined the sequence 0 = wy; < wp < ... in accordance with the weight sequence v = (;);>1.

To illustrate how to choose the weights w; and what can be gained from the reduced fast algorithm
we start by discussing a motivating example. Consider first the standard CBC construction as treated
in [38, 70, 71]. Speaking in terms of the reduced fast CBC construction, this would be the case
where w; = 0 for all 7 > 0. In this case, a sufficient condition for strong polynomial tractability is
Z‘;‘;l 7; < 0o, which is satisfied for instance for the special choices v; = j ~2 and v = 571000 However,
in the second example the weights decay much faster than in the first. We can make use of this fact
by introducing the sequence w = (w;);j>o such that the condition 3772, ;6" < oo holds, while still
achieving strong polynomial tractability (see Corollary 3.20). This way, we can reduce the size of the
search sets for the components of the generating vector if the weights ; decay very fast. Consider
for example the weight sequence v; = j~* for some k > 1. For w; = |[(k — «) log, j| with arbitrary
1 < a <k we find

o o0 [e.o]

Dobh <D iR =) = () < oo,

j=1 j=1 j=1

where ¢ denotes the Riemann Zeta function. Observe that for large k, i.e., fast decaying weights, we
may choose smaller search sets and thereby speed up the CBC algorithm.

In what follows we denote by Z fvw the Cartesian product b*! Zy , X+ - - xb"s Zn 4, , where b7 Z Now;
means that every element of Zy,,, is multiplied by "7 modulo b™. By z € 2§, we mean a vector
z = (b"z1,..., 0" 2), with z; € Zn,4, for j € [s]. We study the weighted star discrepancy of lattice
point sets Py(z) with generating vectors z € Z} 4 and will see that for sufficiently fast decreasing
weights we can construct lattice point sets with small weighted star discrepancy, while significantly
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reducing the construction cost in comparison to the standard CBC construction.

Instead of analyzing the weighted star discrepancy, we study
Ry (2 Z YWwRN(z,u), (3.8)
uCls]
where

e?ﬂ'ihk’bwj zj /N

N—
Ry(z,u) = % ]; I+ > | 1. (3.9)

—J<n<f
h;éo

It is enough to consider RY . (), since we know from Niederreiter [60, Theorem 3.10 and Theorem 5.6]

that
[u]
<Y (1 (1- %) >+ SR (2), (3.10)

uCls]
where the first term of the right hand side is independent of z. We use this estimate to derive our
results in the following sections.

3.2.1 The arithmetic mean over all z € mew

First of all we estimate the arithmetic mean of the weighted star discrepancy over all possible gener-
ating vectors

z=(b""21,...,0" 25) € 2 4y,

proceeding similarly to [60] and [71]. We prove that the arithmetic mean is small and thus there must
exist at least one lattice point set with weighted star discrepancy smaller than or equal to the mean.
This yields the existence of a lattice point set with small weighted star discrepancy. The upper bound
which we obtain for the arithmetic mean is not the same as for the reduced CBC construction in the
next section. Nonetheless, we need large parts of the calculations of the present section to obtain the
estimate in Section 3.2.2.

Theorem 3.11. Let N = b™, (wj)j21 and va,w be as above and let m > 5. Then there exists a
generating vector

z=(b""21,...,0"2) € ZX,,

such that the weighted star discrepancy of the corresponding lattice point set satisfies

D)< 3 2 (1 B (1 ) &))

uCls]

;( 1:[ ﬁj Jr’YJSN

1 m—1 - s s s
+ - Z P o -1) I Bi+vsSy) I 8 -118 ] - (3.11)
p 0 j=1 j=1 j=1
wj>m—p w;<m—p
with Bj =1+ y; for all j € N and
1
Sy = Z m (3.12)
—J<h<f
h£0



Remark 3.12. Provided that the ;b7 ’s are summable, the bound in Theorem 3.11 is of order
Nolog N for arbitrary § € (0,1) with an implied constant independent of N and s. Furthermore,
note that if all weights w; = 0, then we obtain the result in [71, Theorem 1 and Corollary 1].

Proof. To prove Theorem 3.11 we calculate the arithmetic mean of the weighted star discrepancy over
all possible generating vectors. This mean is smaller than or equal to the bound given in (3.11) and
thus yields the existence of a lattice point set with a weighted star discrepancy not exceeding this
bound.

As the first term in (3.10) is independent of z, it is obviously enough to consider the mean

Moy =177 2. Rl (3.13)
N“’ zeZS
of the second term.
We have from [38, p. 186, Eq. 9]
. 1 N1 s e2mihkb™I zj /N s
N,'y(z)zﬁ Bi + ZT —Hﬁj
k=0 j=1 —Nep<l i=1
h#0
7 (3.14)
1L 1 N=lbos Q2mihkb iz /N | s
=N (6y+'7jSN)+N B+ ZT —Hﬁj-
j=1 k=1 j=1 —Nep<l i=1
h£0
Thus
1 S
My s ~ N H (5] + 'YJSN)
j=1
N-1 s 2mihkb"d z; /N s
1 1 e J
+Nz Z | Z Bi +; Z 7] _Hﬁj
k=1 j=1 Now; ZjE€ZN,w; —J<h<l j=1
h+£0
1 S
=N (Bj +7;Sn)
j=1
N-1 s . 2mihkb"d z; /N S
1 y e J
+N H ﬁj+|ZNJ | Z Z ] _Hﬁj'
k=1 ]21 yWj ZjGZN,wj _%<hsg j:l

h#£0
To avoid lengthy formulas we use the following abbreviations:

e27rihkbwj zj /N

T, (k) =) > T (3.15)

h#0
and N
Lnsy = % > S (/83‘ + |Z%Tzv,wj(k)>. (3.16)
k=1 j=1 N
Then we have .
Mp,sy = ;f H1 (Bj +7iSN) + Lnsy — H Bj- (3.17)
j=

64



We study Ty w, (k) distinguishing the two cases w; > m and w; < m.

Case 1: w; > m. This yields Zy,, = {1} and thus

eQTrihkbwj /N e27rihlcbw17m 1
—S<n<d —5<hn<d -J<n<f
h+#£0 h+#£0 R0

Case 2: wj <m. Then Zy,,; ={z€{1,2,...,0™"" — 1} : ged (2, N) = 1}. According to (3.16) we
have to calculate T, (k) only for k& € {1,...,6™ — 1}. We display these k as k = ¢b™ "7 + r with
qgef{0,....0" —1}, re{0,...,0™ % — 1} and (¢,7) # (0,0). Then

1

TN,wj(k) = Z m Z e2mh(qu*wj+r)bwjzj/N
_ %,;Z)S % z;€Z Now;
- Z i Z o2mihqz; (2mihrz; /6™
_ﬂh?(f% ‘h| ZjEZNij
= Z % Z e27rihrzj/bm7“’j. (319)
~ Nt A % EZN,u;
h#0

If r =0, i.e., k is a multiple of ™ ~%J, this yields
1

Tnw, (k) = ) 0 > 1=|2Znuw,|SN. (3.20)
_%<hS% ZjGZN,wj
h=£0

Next we investigate r € {1,...,0™ " —1}. For any z; € {1,...,0™™" — 1} we find ged (2;, N) =
ged (25, 0™ i) € {1,b,b%,...,b6™ %71} and hence

>oua) = Y u(d)Z{

d| ged (25,N) d| ged (z;,b™"9)

1 if and only if ged (2, N) = ged (24, 0™ 7"7) =1,

0 otherwise,

where p denotes the Mobius function.
For any z; € {1,...,0™™"% — 1} this implies z; € Zy ,,, iff > u(d) = 1. Inserting this fact

d| ged (25,0 "9)
into (3.19) we have

bm—w]-_
1 . Cpm—w;
Tnw, (k) = Y 7 D A TL A S ()} (3.21)
—3<hsF %=1 d] ged (7,6™"9)
h#0
Studying the two inner sums we find
bV —1 s b i1 o
Z eQT{'ihTZj/bm i Z w(d) = Z ne)) Z eQTrihTZj/bm Wi
zj=1 d| ged (z;,b™ ") djp™ " 3’;
! 3.22
d s
_ Z M(d) z e27r1h'rad/b 37
dpmvi e=l
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where the latter equality holds since a € {1, ey bm;wj } yields
ad € {d,2d,... 0" "} = {1 < 2 STV — 1z d|z;} U (B}

and

> wd) =0,

. dlbm—wj
since Wy <m.

Changing the order of summation we obtain with (3.22)

b TV —1 mew;\ d
Z o2mihrz; /b7 Z u(d) = Z M(b _ J)Ze%rihra/d

zj=1 d| ged (z5,b™ ") dp™ i a=1
bm—wj
= > du( )
dlhr

With (3.21) this leads to

Tww, ()= 3 o Z.d“<bm;wj>zz du(b";%) > |iy

> dJp™ " —J<n<
h#0 d|hr h#0
dlhr

Using that d|hr is equivalent to m\h we display T, (k) as

bm—w]- 1
T, (k) = > du< y ) > T (3.23)
™" f%hilzg%
wa@n

To further investigate Ty, (k), we first study sums of the same type as the inner sum in (3.23).
For any positive integer a we have

1 1 1 1 1
> I ) apl @ > o -Sw, (3.24)
I L
h#0 p#0 p#0
alh

where S is defined analogously to (3.12). Combining (3.24) and (3.23) and the property of p that
(1) =1, u(b) = —1 and pu(b*) = 0 for i € N,i > 2 we obtain

b vi\ ged (d, )
TN,“’J’ (k) = Z d H ( d > d S% ged (d,r)
™"

bm—wj

-3 o

) ged (d, T’)S% sed (dr)
(3.25)
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with v € {0,...,m —w; — 1}.

Summarizing, we have for k € {1,...,b™ — 1}
SN if wy >m,
ZNw;|S if w,; dk=0 dymvi),
Ty, (k) = 2N ;| SN oW < man (mo ’) (3.26)

bV(Sbwj+u - Sbufj+y+1)
with b= ged (™ %9,r) if w; <m and k# 0 (mod b™ 7).

Let us choose t € Ny such that w; < m for all j <t and w1 > m. (If t =0, then w; > m for all
j € N. In this case we obtain the generating vector z = (b"*,...,b"s).) With this fact we are able to
write Ly s~ from formula (3.16) as

s

7TN W; (k)> Hl ( ' + |Z]ziuj’TN,wj(k)>

yWj |

1 min{¢,s}
LN,s,'y = X7 Z H (

j=t+
N—1min{t,s} 5i
N H (B; +7iSN) Z H <5j + ’Z]|TN,wj(k)>- (3.27)
J t+1 j= N,w;
TNw (k )
Next we aim at finding bounds for ﬁ for w; < m.

If k£ is a multiple of b~ we see 1mmed1ately from (3.26) that

TN,wj (k) . |ZN,wj ’SN

- ~ Sw.
|ZN7wj‘ |ZN,wj|

If k£ is not a multiple of ™", we use a formula from Niederreiter [58, Lemma 1 and Lemma 2]
for S, with arbitrary n € N, given by

Sp =2logn+ 2y —log4 +e(n), (3.28)

where v denotes the Euler-Mascheroni constant

l
1
v = lim (Z i log z) ~ 0.577216. ..

l—00

k=1
and A y
_4 <
[home e «wm
From (3.26) we know
TN, (k) = b7 (Sywj+v — Spwjvr1) <O0. (3.30)

w; k
With m > 5 we find -2 < Té ( ‘) < 0 for w; < m and k not a multiple of b "7 as follows. The
J

upper bound follows immediately frorn (3.30). It remains to show the lower bound. First we consider
TN w, (k) using (3.28). We have

TN,wj (k) = bV(Sbwj+u — Sb7”j+”+1)
=0 (—210gb +e(dWitY) — E(bwj-i-lf-i-l))
= —2b"log b + b¥ (E(ij+V) B €<bwj+u+l)) .
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With (3.29) we obtain

bz/ (8(bwj+y) o €(bwj+y+1)>’ S bz/ <€(bwj+1/))‘ + by (5(bwj+u+1))‘
1

—2w;—v

< 4% (1 + b2>

Thus
TN w, (k) pwi—m+l wj—mtl —2w,— 1
: > 20" logh — —————4b“"7V (1
E e 80T Ty ( +b2)
Recall from (3.26) that v = logy, (ged (6™ "4,7)) € {0,1,...,m —w; — 1}. Thus
TN yw, (k) . _,logh 1 1
) _wa]—m+l+m—w1—1 — ApT Wi —m+1-v <1 >
BN b—1 p—1 e
logb _ 1 1
~2 — 4pm ! (1 > :
b—1 b b—1 * b2
Now, with the assumption m > 5
TN, (k) log b 5 1 1
: -2 —4p—ott (1 )
Zxw] b1 b1\
log 2 541 1
-2 —4.27°H (1 > —2
- 2—1 ( + 22) ’
and hence

TN (k
-2 < M <0 for wj<m and b " {E.
’ZN,wj|
For any integer p € {0,.

— 1} with b7 | k and b**! { k the condition b™ " t k is equivalent to
m —w; > p or w; < m — p, respectively. Thus we can display (3.27) as

1 S
Lysy =~ [ (Bi+7Sn)
N 2

m—1 N—1 min{t,s}

min{¢,s}
i
) (]
p=0 Ig|1 jl;Il (J |ZN,w]-| ! H J |ZNu;J| J
k

X

Jj=1
wj>m—p wi<m-—p

1 m—1 N—1 min{¢,s} min{¢,s}
< N (5j+')’jSN) H BJ +'7]SN H 6]7
Jj=t+1 p=0 k=1 j=1
bp‘k ijm—p wj<m p
pPH1tk

where the latter estimate holds since

TN w, (k
B]>]-7 _2<N’7J()

<0 and - < 1.
B =
From

{k € {1,...,N=1}: 0" |k and b+ {k}

= (ke {1, b =1} b7 [ K} = [{k e {1, 0m =1} 0t | g (3.31)
— P ] — (bm—P—l - 1)
=" P (b - 1)
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we get

1 s m—1 S min{t,s} min{t,s}
Insa < I1 B +%8w) 22077 0 =1) TT 3+ I 85
Jj=t+1 p=0 ézl j<:1

Inserting this into (3.17) we obtain for the arithmetic mean

s

1
Mysy =3 11 (35 +7iSw)
j=1

1.8 m—1 o min{t,s} min{t,s}
N IT B +~Sw) D o™ to—1) IT Bi+Sn) I 8 (3.32)
Jj=t+1 p=0 j=1 j=1
w;>m—p wj<m—p

_ H Bj.
j=1

This proves, with (3.10), the existence of a vector z € Z} w such that the weighted star discrepancy
Dy -, (z) fulfills

[ s
Do (2) < Yo (1 -(1-%) ) +3 (}V T105; +Sw)

uCls] j=1
1 .8 m—1 min{t,s} min{t,s} s
+7 LI+ 2583 o777 b = DT + 2SI 8= T185)  (3.33)
J=t+1 p=0 J=1 Jj=1 Jj=1
w;>m—p wj<m—p
AR\ NS Y i
§Z’7u 1—<1—N) +§ NH(5j+’ijN)
uCls] j=1
1 m—1 N s s s
o 2 o= I (8 +vSw) I 8 - Hﬂ;-) : (3.34)
p=0 7=1 j=1 j=1
w; >m—p wji<m—p

3.2.2 The reduced CBC construction

In this section we give a component-by-component construction for the generating vector and an upper
bound for the weighted star discrepancy of the corresponding lattice rule.

Algorithm 3.13. Let N =b™ and (wj);>1 be as above and construct z = (b z1,...,0%25) € 23,
as follows :

1. Set zZ1 = 1.
2. For d € [s — 1] assume 21, ...,2q to be already found. Choose z441 € ZNw,,, such that
RS0 21, 02, b4 2)
is minimized as a function of z.

3. Increase d by 1 and repeat the second step until z = (b1 z1,...,b%z5) is found.
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In the algorithm above the search space is reduced for each coordinate of z according to its
importance, as the w;’s are chosen in accordance to the v;’s. This results in a considerable reduction
of the construction cost as we will see in Section 3.2.3. This is why we call this algorithm a reduced
CBC-algorithm.

The following theorem gives an upper bound for the figure of merit, R?{,ﬁ, of lattice point sets with
generating vectors obtained from the algorithm above.

Theorem 3.14. Let z = (b"'z1,...,b%z5) be constructed according to Algorithm 3.13. Then for every
d € [s],

R (b 21, ... bYizg) < ﬁ( (14 2pmin b m) 4 8y). (3.35)

Corollary 3.15. Let N =b™ and (w;);j>1 be as above and let
z=(b""21,...,0"z5) € 24,

be constructed using Algorithm 3.13. Then the corresponding lattice point set has a weighted star
discrepancy

1 \lul 1 8 L
D (2) < (1 - (1 - N) ) + o T (85 + (1 +20mm 00 md) ;).
uCls] j=1

Proof. Combining (3.10), (3.12) and Theorem 3.14 we immediately obtain the result. O
To prove Theorem 3.14 we use the the following
Lemma 3.16. Let N = b™, (wj);>1 and Zn 4, be defined as above and recall from (3.15) the notation
e27rihkbwj zj /N
Tvw, () = Y S T
Id
2j€2ZNw; —H<h<
h£0
Then

T o, .
Z Ty, J < ap™in{wiml gy for all j > 1. (3.36)
k=1 |ZN’LU]|

Proof. As before, we distinguish the two cases w; > m and w; < m.

Case 1: w; > m. Then (3.26) yields

TN .
Z | ‘]; i Z Sy = (N = 1)Sy < 2N Sy = 25mn (el gy,
k=1 N’LU]

Case 2: wj < m. We use (3.26) and (3.19) to find

|TNw k ‘ = |TNw = |TNw k)|
Z 1= AVL,wW VT Z Jj Z 1= Nw A\
k=1 |ZN w]‘ b1 |ZN wj |ZN w]|

bm u’j_]_ ’TN (’l")‘
= (bY —1)Sy + b Sl R
7;1 |ZN,wj|
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For any r € {1,...,b™ % — 1} the condition ged (r,b™ %) = b” is equivalent to b” | r and b**! | r
simultaneously. Using this we investigate the last sum in the above equation

pmTvi 1 |TNw ( )‘ 1 m—w;—1pMm~%j_q
= TN, ()]
L Tevwl Bl & &
oY |r
bu+1)[7,,
Once more with the aid of (3.26) this yields
b T ’TNw ( )| 1 m— wj—lbm i
g = witv S ’LU‘+Z/+1)
1;1 | 2N w1 | 2N ;] ,/Z:o rz ‘ % v
b |r
b"+lf7’

m—w;—1p""%j 1
Z Z Z b bw-+y+1 - Sbwj+l/).
| N“’J v=0 r=

b”|7'

bu+l*7‘

Analogously to (3.31) we find
{re i, om =1} [ rand 05 g f| = ol - 1)
and hence

R

Z Z (Sywjtv1 — Spwjav) = SN — Spw;.

r=1 |ZN7“’J’ ‘ B v=0
Altogether we have
TN w;
> Do s _ 1y 4 a0 (5 — )
k=1 2N, w7|

< %Sy = 2p™in {w; ’m}SN
and the proof is complete. O
With the aid of Lemma 3.16 we are able to prove Theorem 3.14 using induction on d.

Proof. According to Algorithm 3.13 we set z; =1 in Step 1. We have to show that

Ry, (b"1) < % (51 + (1 + Qbmin{wl’m}) 71SN) :

With (3.14) we have

) = o2mihkb1 /N
Ry (b)) = I Z B1+m Z T - p1
k=0 —J<h<l
h#0
1 Ni:l e2mihkb®1 /N
== gi! —
NS Gy W
h#0



Again, we consider the two cases w1 > m and w; < m separately.

Case 1: w; > m. Then

e27rihlcbw1_m 1 1
RNA/ bw1 = Z’yl Z T:N’YINSNSNO""'YI‘FQNWISN)
J<n<f ’ ’
*h£0

1 . 1 )
_ min{wy,m} min{wi,m}
=N (/31 + 2b ’V1SN) < N (51-1—(1 + 2b ) 7151\7),
which is the desired result.

Case 2: w; < m. After interchanging the two sums, we once more split up the inner sum as follows,
1 V=

Ry, (") = 1]\; ’7 Z 2ihk /bm 1
N p<N =
2

_n LN_ ink/om 1 1 1 Srihk /b1
=N Z Z 2mi N Z - Z 27 )

N N ’ — N N | | —
,Eh;hogg 75};:037 k=0
bm—wl ‘ h bm—u!lTh

Now we are able to compute the inner sums. The first one sums to NV, whereas the second one equals

zero. Thus
1
Ria0™)=m 3 o
—S<h<
h+#0
pm=wi|p

We use (3.24) to find

w 1
Ry (0") = i

— %b“’l Spun

pm—wi

IN

1 1
Mpwigy < — (81 + 26
N Sy < N (B1 + 715N)

IN

&(51 + (14 2pmin{erm}) 715N>,

as claimed.
Let d € [s — 1] and assume that we have a z € Zj'ff’w, such that

1 4 o
R?Vﬁ(bwl Zlyeeny bwdzd) N H (,BJ (1 + 26" {wj,m}) ’)/jSN) .

We have to prove the existence of a 2411 € Zn uw,,, With

d+1

1 o
R?Vti(bwlzb C) bwd'zda bwd+1zd+1) < N H (ﬂj + (1 + 251 {wwm}) VJSN) .
j=1

Using again (3.14) we have for any zqy1 € ZNuw,,, that

d+1 /3w w w,
RN77(b 12’1,...,() dzd,b d+12’d+1)
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1 N1l d e2mihkb" i z; /N
k=0 j=1 <h<
h#0
o2mihkb A1 24, /N
X | Bayr +va1 Y 7] — Bay1 [[ 8
—Nen<d J=1
h+£0
d
= 6d+1RN7fy(bwlzla cee bwdzd)
Va1 N-1| d e2mihkb" i z; /N e2mihkb d+1 21 /N
+ N Z H Bi+; Z ) )
k=0 | j=1 _N_p<N _N _p<N
2 — 2 2 — 2
h£0 he£0
d Ya+1SN T
= ﬁd+1RN7,y(bw121, PPN bwdzd) + T H (B] + ’YjSN)
j=1
. o N—1 27r1hk’bwd+12d+1/N ﬁ Z e27‘rihk‘bwj zj /N
N k=1 _N N = N N ‘h|
T g <hsy - —7<h§7
h#0 h#£0
(3.37)
Next we consider the arithmetic mean of
d+1 W1, W W41
Ry (b oy DYz, DM ) over all 2 € 2Ny, -

As only the third summand in (3.37) depends on the (d+ 1)-st coordinate, and thus on 2441, it suffices
to investigate the mean of this summand. Clearly, if we have some upper bound for the mean over all
2 € ZNw,,, there exists zqy1 € ZN u,,, Which satisfies this bound.

In fact, for technical reasons, we study the absolute value of the third term in (3.37):

1 Yar1 e27rihkbwd+1 z/N
|ZN,wd+1| ZEZ%: kz:l Z <N ’h‘
»Wd+1 -5 7
h;éO
d eZﬂ’ithbwj zj /N
X H Bj + h
=1 N _p<N 7]
j —N<h<d
h#£0
Yd+1 Nl 1 Z Z o2mihkb 1z /N
- N E—1 |ZN:wd+1| 2€Z N I
N,wd+1 75<hS5
h£0

|1

73



< 'Yd+1 ]Vz_l |TN,wd+1 (k)| ﬁ (5 + S )
- N k=1 |ZN,wd+1| i ! ToN

d
< Dt gyintassn g T (8, +55).
j=1

where the last estimate stems from an application of Lemma 3.16. Combining this with (3.37) we

have shown the existence of a 2411 € ZN u,,, such that

S d
R?Vti(bwlzl, bWz by ) < ,Bd+1R§l\77,7(bw1Z1, L bRizy) %l-&-# H (,3] n ’YjSN)
j=1

d
+ 7;[\—[}-1 Qbmin{wd+1,m}SN H (ﬁj + "YjSN)-
j=1
We use the induction hypothesis to find

w W, w /8 min {w,;,m
REGIB 21, 02, b0 2,1) < %1 H (BJ (1+2b {w;, }) 7j5N>

J=1

d
7d+1SN (H 6]+7JSN ) (1+2bmin{wd+1,m})

< (ﬁd+1 + (1 + Qbmm{wd“’m}) ’Vd+15N>

1 .

x 1_1 (5] ) %sN)
14t _ :

= le;[1 <,6’j + (14 2pmin tsmd) 7j5N>,

which completes the proof.

3.2.3 The reduced fast CBC construction

By now we have seen how we can construct a generating vector of a lattice point set with low weighted
star discrepancy with a reduced CBC construction as in the previous section. Now we study the
construction cost of this algorithm. In fact the CBC algorithm given in Section 3.2.2 can be made
faster to construct generating vectors for relatively large N and s. To show this we follow closely [13]

and [56].
Let d € [s — 1] and assume that we have already found (b"'z1,...,b"¢%4). Then we have (cf.

(3.14))

; 1 N-1 d o2mihkd" I z; /N d

RNﬁ(bwlZl,-- bW fizd H Bj +’}/j Z 7‘}” — HB]
N j=1 _%hjogg j=1
Define r(h) = max {1, |h|}. Then
8+ eQwihkbwjzj/N 5+ eZwihkbwjzj/N .
T =P T -
—Nen<d A ~Nen<¥ r(h)

h#£0
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e2ﬂ'ihk‘bwj zj/N
=1+ N

—J<h<l r(h)
Hence we have

. ] N1 d o2mihkb" zj /N d
RN,fy(bU)lzlu"'vbded):N Z H 1+’)/J Z ? H
k=0 j=1 —Nop<d j=1

1 N-1 d

=N na(k) — I 85, (3.38)
k=0 i=1

where we have defined

and

However, this is exactly the situation, dealt with in [56, Section 4.2]. Thus we know that ¢ (kb 7% )
takes on at most IV different values, namely

00 (L) o (32,

which can be computed in O(N log N) operations and stored in a memory space of size O(N), as
demonstrated in [56, Section 4.2].
Next we investigate one actual step of the CBC construction. Assuming that we have already

found (b%1z,...,b%z;) € Z%  we have to minimize
) ) N,w
d+1
R]\};(bwlzl,...,bwdzd,bwd+1z)

as a function of 2 € Zy y,,, to find zq11 € ZNw,,,. For wgy1 > m we just set 2411 = 1 and we are
done. Therefore let wyy1; < m. Considering (3.38) we have

N—-1 d+1
Rd+1(bwlz pWd pWd+1 _ i k) — .
Ny Tyeees Zds Zdy1) = N Na+1(k) Hﬁ]
k=0 j=
1 N kbva+1 2, dtl
=3 3 (1w () T
k=0
1 = keb®d+1 24 Az
= 2 Malk) (1 +'Yd+190({N = }) - Hlﬁj-
k=0 Jj=

N-1
It is obviously enough to minimize Y ng4(k)e ({%}) To do this we proceed analogously to
k=0

[13]. We define the matrix
kbwari
= (5) o
N ZGZN,wd+1

ke{0,...,.N—1}
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the vector
ng = 0a(0),na(1), ..., na(N —1))"

Ty(z) = ]:z:::nd(k)sp ({ kb“:fﬂz}).

and

Then
Ang = Tq(z) = (Ta(z))
We can display the matrix A as

ZGZNywd_»,_l °

A= (Q(m—wcwd)7 o 7Q(m—wcurl)) ’

o= (+(5)) ..

ke{0,...,b —1}

with

Again analogously to [13] we obtain the following reduced fast CBC algorithm.
Algorithm 3.17.
a) Compute ¢ (%) for allr =0,...,N — 1.

b) Setm(k) = 1+me ({52 }) fork=0,...,N - 1.
c) Set z1 = 1. Set d =2 and recall that we have defined t = max{j : w; < m}.
While d < min{s, t},

1. partition mnyz_q into bY4  wvectors nfll_)l,...,ngiuf) of length 0™ %4 and let

n = 7721,)1 + o+ ngiUd) denote their sum,

2. let Ty(z) = QUn—wa)yy
3. let zg = argmin, Ty(z),

4. let ng(k) = ng—1(k) (1 + Yap ({kbw%})) fork=0,...,N —1,
5. increase d by 1.

If s > t, then set 2441 = --- = z5 = 1. Then we have
1 N-1 s
Rf\/”,—y (bwlzl’ . ’bwsZS) = N Z 778(]{) — H B]
k=0 j=1

Remark 3.18. Note that Algorithms 3.13 and 3.17 both yield the same generating vector z.
Using [13, 56, 66, 67] we find that Algorithm 3.17 has a construction cost of

min{s,t}
) (N log N + min{s,t}N +N > (m-— wd)bwd>
d=1

operations, in comparison to O(sN log N) operations for the standard CBC algorithm used for example
in [71].

Remark 3.19. As we are interested in high-dimensional problems, we also consider s — oco. In this
case we always have min{s,t} =t and the construction cost is independent of the dimension.
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3.2.4 Conditions for strong polynomial tractability

Let 2= (b"121,...,b"%25) € 2%, be constructed with Algorithm 3.13 or 3.17 and consider the corre-
sponding lattice rule. We are interested in conditions for tractability of the weighted star discrepancy
of such lattice point sets. From (3.10) and (3.8) we know

AN |
z) < Z Yu <1 - (1 - N> ) + QRJSV,'y(Z)-
uCls]

For now, let us assume that the v;b"7’s are summable, i.e.,
o0
Z*yjbwj < 00.
j=1

Similar to Joe and Sinescu in [38] and [71], we see that in this case

max{1,T}exp (> 527, 1
N 2
where
I'= I < 0.
= 1+

In particular, considering our assumption that the ~;0“7’s are summable, the constant

max{1,T} exp (i Wj)

J=1

is indeed finite.
Theorem 3.14 yields

1 £ )
Ryy(=) < + 1 (@- + (14 2pmin wsm)) ijN>

j=1
and hence we have

1+ max{1,T}exp (>52,v;) .5 o
Divalz) < N (=) <5ﬂ' + (L 2pmin o) %‘SN>
j=
= CN’Y H (B] + (1 + 2pmin {wj,m}> fijN>, (3.39)
j=1

with ¢, = 1 4+ max{1,T"} exp (Z;’;l 'yj) independent of s.
We study the right-hand side of (3.39)

Z‘Q

1;[ ( (1 + 2pmin {“fﬂ'vm}) ;2 (log V;TJ + 1))
H (ﬁj (1 + 2bmin{“’j’m}) v;41og N)

IA
2\4

Z‘Q

H (1 + <1 +4 (1 | 2bmin{“’j’m}) log N)) (3.40)
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where we have used

,_
NP4

1 ]

N

Sv= Y. T =2 gzlongJrzgznogN,
<h<
#0

S

h=1

vl
N

h

where the penultimate inequality is a well-known estimate for partial sums of the harmonic series.
Now we have

s

% I1 (ﬁj + (14 2pmin s m}) rijN) <

J=1

=|$

I1 (1 + 75 (14 4(1 + 26"7) log N))
=1

IN

Cy .
le;[l (1 + 137;6"7 log N).
Define
o0
oqg=13 Z v;0% for d € Ny.
j=d+1

From [20, p. 222] or [29, Lemma 3] we know that

5 d
[T (1 + 139" log N) < (14 0,") N7 forall d € No,
j=1

[
For 0 < § < 1 choose d large enough such that o4 < ST T Then

S
14 1376 log N) < &, sN°,
r)/] Y,
j=1

where ¢4 5 is independent of s and N. Thus we have
Di~(2) < ey sN°71, (3.41)

with ¢y 5 = ¢ - 4,5 independent of s and N. We obtain c%(;N‘s_l < ¢ and thus

Dy,(2)<e if N2> (6%55—1)5'

With this we have proved the following

Corollary 3.20. Let N = b™ and let v and w be weight sequences, defined as above and consider the

problem of constructing generating vectors for lattice point sets with small weighted star discrepancy.
Then

[e¢]
Z 70" < oo
j=1

s a sufficient condition for strong polynomial tractability.

Remark 3.21. Whether the conditions on the 7v;’s and w;’s can be mitigated while at least polynomial
or weak tractability still hold remains for future research.
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3.3 A reduced fast component-by-component construction of polynomial lattice
point sets with small weighted star discrepancy

As mentioned before, for many problems lattice point sets yield good results, when used as sample
points for QMC algorithms. There exist situations, however, for which polynomial lattice point sets
provide better approximations than lattice point sets. For example, when considering a Walsh space
as defined on p. 34, polynomial lattice point sets are superior to lattice point sets, see [68]. Thus, in
the following section, we extend our results for reduced fast CBC constructions of lattice point sets
with small weighted star discrepancy to similar constructions of polynomial lattice point sets. For the
worst-case error criterion there already exists a reduced fast construction for polynomial lattice point
sets by Dick, Kritzer, Leobacher and Pillichshammer [13].

The results of this section are based on the paper [48] and have been developed in joint work with
Ralph Kritzinger and Mario Neumiiller.

In [15] Dick et al. construct polynomial lattice point sets using the worst-case error criterion. As
for the star discrepancy criterion, standard-type CBC constructions for polynomial lattice point sets
were provided in [18] for an irreducible modulus f and in [12] for a reducible f. In these papers, the
authors considered the unweighted star discrepancy as well as its weighted version, which we study
here. It is the aim of this section to speed up these constructions by reducing the search sets for the
components of the generating vector g according to each component’s importance.

In the following, by G, ,, we denote the set of all polynomials g over F,, with deg(g) < m. Further
we define

Gpm(f) = {9 € Gpm | ged(g, ) = 1}. (3.42)

Let w; < ws < --- be a non-decreasing sequence of non-negative integers, determined in accordance
with the weight sequence 7y, as described in the previous sections. Loosely speaking, the smaller v;,
the bigger w; is chosen. For an example as to how to choose the w;’s see p. 62. For w € Ny with
w < m we define Gp p—y and G m—w(f) analogously to G, and G, (f), respectively. Further we
set the reduced search spaces to

Gpm—w(f) ifw <m,
{1 eFplz]} ifw>m

gp,m—w(f) = {

for any w € Ng. For w < m these sets have cardinality p™ ™" — 1 in the case of an irreducible

modulus f and p™~*~!(p — 1) for the special case f : F, = Fp,z — 2™. We will consider these
two cases in the following sections. The reason not to use a general reducible modulus f, but rather
f:F, — Fp,z— 2™ is twofold. Firstly, this is what is used in practice, as in this case for g € F,((z71))
computing the Laurent series g/ f comes down to shifting the coefficients of g m times to the left, which
saves many technicalities. Secondly, for general reducible moduli f the analysis becomes rather difficult
and tedious, while it is not to be expected that the outcome is much better than for f(z) = a™.
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Further, for d € [s], we define ggvm_w(f) = Gpm—w, (f) X+ X Gpm—w,(f). The idea is to choose
the ith component z*ig; of g, with g; € G, —w, (f) instead of g; € G, 1, (f), i.e., the search set for the
ith component is reduced by a factor p~™™®im} in comparison to the standard CBC construction.
We will show that a polynomial lattice point set constructed according to our reduced CBC algorithm
has a low weighted star discrepancy of order N9 for all § > 0, under certain conditions on the
weights v and on w.

For the weighted star discrepancy of a polynomial lattice point set we write D}‘Vﬁ(g, f).

3.3.1 A reduced CBC construction

In this section we present a CBC construction for the vector (z"'gy,...,z"*gs) and an upper bound
for the weighted star discrepancy of the corresponding polynomial lattice point set.
First note that if g € G5 ,,,, then it is known (see [18]) that

p’m7

|
Disg.N< Y (1—(1—;) >+R§<g,f>, (3.43)

PF#uCls]

where in the case of product weights we have

Ri(g. /)= Y. IIre(hiv) (3.44)
heGj, ,,\{0} i=1
h-g=0 mod f

Note that (3.43) and (3.44) are in analogy to the case of lattice point sets (cf. (3.10)).
For elements h = (hi,...,hs) and g = (g1,...,9s) in G}, we define the scalar product by
h-g=higi + -+ hsgs. The numbers ry(h,v) for h € Gp  and v € R are defined as

oy {17 if h=0,
rp(h,v) =
P yrp(h)  otherwise,

where for h = hg + hiz + - - - + hez® € G, With hg # 0 we set

1

Tp(h) = pa+1 <in? (%h(l).

Thus, in order to analyze the weighted star discrepancy of a polynomial lattice point set, it suffices
to investigate the quantity R3(g, f). This is due to the result of Joe [38], who proved that for any
summable weight sequence (;);>1 we have

1\ MM max(l,l“)ezzlw
> vu<1—(1—N) )g N :

0#uCls]

; e
with I':= 5272, 7.

Remark 3.22. We have used the same result on p. 77 to establish tractability results for the case of
lattice point sets.

Then the reduced CBC algorithm reads as follows:

Algorithm 3.23. Let p be a prime, m € N, f € Fpy[z] with deg f = m and let (w;);>1 be a non-
decreasing sequence of non-negative integers. Consider product weights (7;);>1- Construct

(9151 9s) € Gpm—w(f) as follows:
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1. Set g =1.

2. Ford € [s—1] assume (g1,...,94) € ng_w(f) to be already found. Choose gq11 € Gpm—wy,, (f)
such that

Rfiy+1((xWIgla cee 7$wdgda :L‘wd-‘—lgd—f—l)a f)

is minimized as a function of gqy1.

3. Increase d by 1 and repeat the second step until (gi,...,¢s) is found.
Remark 3.24. Of course we have G, ., _,,(f) € G, and thus in Algorithm 3.23 it indeed suffices

p7m7
to consider Rflfl rather than the weighted star discrepancy.

In the algorithm above, the search sets are reduced for each coordinate of (gi,...,gs) according
to their importance, as with increasing w; the search sets become smaller, as the weights ~; and
thus their corresponding components’ influence on the quality of the generating vector decrease. For
this reason we call Algorithm 3.23 a reduced CBC algorithm. We will now study Algorithm 3.23 for
different choices of f.

3.3.2 Polynomial lattice point sets for f(z) = z™

We will now study the interesting case where f: F, — [Fp,x — 2. This is virtually the only case
used in practice. Throughout the rest of this section we write ™ instead of f to emphasize our special
choice of f. Note that for g € F,((x™!)) the Laurent series g/f can be easily computed in this case
by shifting the coefficients of g m times to the left. It is the aim of this section to prove the following
theorem:

Theorem 3.25. Let v = (v;)j>1 and w with 0 = wy < wy < ---. Let further (g1,...,9s) €
Gy m—w(x™) be constructed using Algorithm 3.23. Then we have for every d € [s]
d w w m 1 a min{w;,m} p2 —1
RI((z"" g1, ..., 2" ga), x )Spml_[l<1+%'+%2p “ m3p>
=

As a direct consequence we obtain the following discrepancy estimate.

Corollary 3.26. Let N = p™ and v, w and (g1,...,9s) as in Theorem 3.25. Then the polynomial

lattice point set P ((x"1g1,...,x%gs), ™) has a weighted star discrepancy
Dy~ (" g1,..., 2" gs),z™)
1\ Hul 18 enin {1 » -1
<> w(1- -~ *N,U 1+ + 7i2p m—— |- (3.45)
uCls] i=1
uz0

Knowing the above discrepancy bound, we are now ready to ask about the size of the polynomial
lattice point set required to achieve a weighted star discrepancy not exceeding some ¢ threshold. In
particular, we would like to know how this size depends on the dimension s and on €.

Corollary 3.27. Let N = p™, ~, and w as in Theorem 3.25 and consider the problem of constructing
generating vectors for polynomial lattice point sets with small weighted star discrepancy. Then

o0
> pt < oo
j=1

is a sufficient condition for strong polynomial tractability. This condition further implies
Dy (¥ gy, ..., 2% gs),z™) = O(N~I0)  with the implied constant independent of s, for any 6 > 0,
where (g1, ..., 9s) € Gp y—w(T™) is constructed using Algorithm 3.23.
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Proof. Construct a generating vector (g1,...,9s) € G, ,—,,(2™) applying Algorithm 3.23 and con-
sider its weighted star discrepancy, bounded by (3.45). Following closely the lines of the argumen-
tation in Section 3.2.4 and noticing that 2mZ_— ;1 = O(log N) we obtain the result. More precisely,
provided that the v;p"i’s are summable, we have a means to construct polynomial lattice point
sets P(g, f) with D}"\,,_Y(g7 f) < e, whose sizes grow polynomially in ¢! and are independent of
the dimension. As a result the problem is strongly polynomially tractable. The discrepancy result
Dy (g1, ..., 2" gs),a™) = O(N~1%9) follows directly from [47]. It can be computed analogously
to the result (3.41) in Section 3.2. O

Remark 3.28. Recall from p. 67 that t = max{j € N: w; < m} and note that setting w; = m for all
j >t does neither change the bound on the weighted star discrepancy nor the computational cost of
Algorithm 8.23. It might change the generating vector though. If so, however, only components with
very little influence on the quality of the point set are altered. Defining w; = m for all j > t, it suffices
to have a summable weight sequence v in order to achieve strong polynomial tractability, as long as t
1s finite.

In order to show Theorem 3.25 we need several auxiliary results.

Lemma 3.29. Let a € F,[x] be monic. Then we have

p2 -1 — deg(a)
rp(h) = (m — deg(a)) ——p~ "

heGpm\{0} 3p
alh
In particular, for a =1 this formula yields
2
p°—1
Tp(h) =m 3
heGym\{0} P

Proof. This fact follows from [12, p. 1055] (by setting 441 = 1). The special case a = 1 also follows
from [18, Lemma 2.2] by setting s = 1. O

For our purposes, it is convenient to write RZ (g, f) from (3.44) in an alternative way. To this end,
we introduce some notation. For a Laurent series L € F,((z~!)) we denote by c_1(L) its coefficient
of 71, ie., its residuum. Further, we set X,(L) := Xp(c 1(L)), where X, is a non-trivial additive

character of Fp. One could for instance choose x,(n) = e = " for n € F, (see, e.g., [57]). It is clear
(see [57, p. 78]) that X,(L) = 1 if L is a polynomial and that X,(Li + L2) = X,(L1)X,(Ls) for
L1, Ly € Fp((z~1)). From [60, p. 78] we know that

> X, (;g)={§m 718 (3.46)

veCm otherwise.
Lemma 3.30. We have
° v
Rf/(g,f) :_H(1+71 Z H (1+'71+72 Z rp(h)Xp <fhgz>) .
i=1 Uer m =1 heGp,m\{0}
Proof. We employ the properties of X, as stated above to obtain from (3.44)

Ri(g,f) =— ﬁ(1+%)+p > (HTP ”’) 2 X( )

i=1 h€G5 vEGp,m
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:—i_f[l(lJr% %: 1:[( ZG: (hi, i) X, (;higi))
:—E(H% %j 1;[(1+’7i+7z‘ . X, (;hgz)),

heGp,m\{0}

and the claimed formula is verified. O

Now we study a sum which will appear later in the proof of Theorem 3.25 and show an upper
bound for it.

Lemma 3.31. Let w € Ny and v € Gp . Let

Ypm (v, 2™) = Z Z rp(h)Xp (hxwg> ,

9E€Gp,m—w(x™) h€Gp,m\{0}

where xV denotes the polynomial f(:c) = x. Then we have

1 - p?—1
s |Ym7 ('U, xm)’ < 2pm1n{w,m}m )
#gp,m—w(fzm) UG;p,m P 3]7

Proof. Let us first assume that w > m. Then we have G, (™) = {1} and therefore

2
Ymw(w, 2™ = 3 rmW)Xpwha® ™) = S ry(h) = m?

heGm\ {0} heGrym\{0} 3p

with Lemma 3.29. This leads to

1 p?—1 : p?—1
- ’Ym’ (,vam)| _ pmm < 2pm1n{w,m}m
#gp,mfw (:L'm) Ue;p'y’n P 310 3p

in this case. For the rest of the proof let w < m and additionally we abbreviate #G, ,,—w (™) by #G.
We write

56 3 Mralva™l=gs 2 Momu@a 4 g 3 Momulva)

’Uer m 'Uer m er m
xm— w|v ™ wJ[U
In what follows, we refer to the latter sums as
1 m 1 m
Sy = % Z |Ypm (v, 2™)| and Ss:= % Z [Ypm (v, ™).
’UGGp,m ver,m

We may uniquely write any v € G, \{0} in the form v = gz™ ™" +{, where ¢, ¢ € F,[z] with deg(¢) < w
and deg(¢) < m—w. Using the properties of X, it is clear that Y,m (v, 2™) = Ypm (¢, 2") and hence

o X Mru0aM= 3 22 X ¥ nM

UEGP m v€Gp,m 9EGp,m—w(x™) h€Gpm\{0}
xm— w‘v mm7w|,u
2 . 2 _
=Y ol L printemln L
’UEGp,'m p p
l.m—w',u
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We move on to Sy. Let for ¢ € F,[z] with deg({) < m — w, e(f) = max{k € {0,1,...,m —w —1}:
z¥ | £}. With this definition we may display S as

w—1
> > Ymw(l ™). (3.47)

k=0 £eGp m—w\{0}
e(0)=k

w Mm—

p

In the following, we compute Yym o, (¢, 2™) for £ € Gpm—w \ {0} with e(¢) = k. Let pu, be the Mobius
function on the set of monic polynomials over Fp, i.e., pp, : Fplz] — {—1,0,1} and

(=1)” if h is squarefree and has v irreducible factors,
pp(h) = .
0 otherwise.
The fact that p,(1) = 1, py(z) = —1 and py(x?) = 0 for i € N, i > 2, yields the equivalence of

> tlgcd(zm—w,g) Mp(t) = 1 and ged(z™™", g) = 1. Therefore we can write

Ypm w(l,2™) = Z rp(h) Z X, (xrf whg) Z pp (t)

hEGp,m\{O} ger,m_u, t|gcd(xm_“’,g)
/
= Z rp(h) Z pp(t) Z Xp ( hg)
hGGp,m\{O} t‘ﬂ?mfw gEGpm w
tlg
/
= > ) X m(t) > Xp (mm_what)
hEGP,m\{O} t‘xmiw aEGp m—w—deg(t)
LMW a
- ¥ a0 X () X x(iw)
hGGp,m\{O} t‘xm v a€Gp, deg(t)
— " deg(t)
= Z p(h) Z Mp( 7 )p
heGyp.m\{0} Ham—w
t|he
Z Mp( ) deg(t) Z Tp(h)-
tlzgm—w heGp,m\{0}
t|he

The equivalence of the conditions ¢ | h¢ and gc d( ) | h yields

Z Mp( “’) deslt) Z rp(h).

tlgm—w heGp,m\{0}
R |h
ged(t,0)

We investigate the inner sum and use Lemma 3.29 with a = e d( ) to find

heGp,m\{0}

t
ged(t,£) |h

Now we have

p -1 xm-w B t deg(ged(t,0))
Yym o (€, ™) Z Hp ( > (m deg <gcd(t,£))> P

tlzm w
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tl(Em w <

p -1 Y t deg(ged(t,6))
2. “”( )deg<gcd<t,6>>p |

t|mw

> deg(ged(t,0))

From the facts that deg(l) < m — w and that e({) = k < m —w — 1 we obtain ged(z™ %, {) =

ged(z™ =1 ¢) = 2¥. This observation leads to

> up<

t|Im w

w) deg(ged(t,0)) — pdeg(gcd(xm_wl)) - pdeg(gcd(a:m_w_l,é)) -0

and

e t des(sed(t.0))
> MP( >d g(gcd(ﬂ))p

t|CCm w

T m—w m—w—1 m—w—1
—d deg(ged(z ) d deg(ged(z )
o (gcd(scm—w,@) P ®\ged@m 10 )P

=(m—w—k)p* — (m —w—k—1)p* =p~.

Altogether we have

Inserting this result into (3.47) yields

m—w—1
p -1
52 = S Y L
#g R R Y )
e(0)=k
Since
#{f € pr’m—w \ {0} . 6(6) = ]{;}
=#{l € Gpm—w \ {0} : ZF |0} — #{t e Gpm—w \ {0} : s | 0}
:pmfwfk —1- (pmfwfkfl _ 1) _ pmfw*k*l(p B 1)’
we have
w m—w—1
p

p_]' kmwkl
p'p p—1
Cpmetip—1) 3p ,;) p=1)

2
wP” —1 min{w,m} p -1
= m—-—w) < m .
P 3p ( <P 3p

Sy =

Summarizing, we have shown

1 : p?—1
§ : Yom (v, my — g S, < 9 min{w,m} 7

#g 5 | p, (U T )| 1+ 02 = p m 3p
velp,m

which completes the proof.
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Now we are ready to prove Theorem 3.25 using induction on d.
Proof. We show the result for d = 1. From Lemma 3.30 we have

Ri((xwl),xm)z—(lﬂlwljn > (1+~n+fn > w(h)Xp(;nhx‘“))

vEGp,m heGp,m \{0}

TS Y ()X, (;;hxm) .

'UEGp m her m\{o}

If wy > m, then

1 M i p—1
R)em =2t S S = Lt =1
T G heGrm\ (0} p P

1 . 21
< o (1 +7+ ’Y12pmm{w1’m}mp3p> .

If w1 < m, then we can write

RY((z"),2™) =L v % Tp(h)Xp(;;nh:nwl)

" eCm heGp,m\{0}

%z 0 S X (e )

p hecp,m\{o} vEGpm

n Z X,
cy

hEGp,m\{O} UEG’p m
T W1th
=N Z rp(h)a
heGp,m\{0}
pm—wi ‘h

where we used (3.46) in the latter step. We regard Lemma 3.29 with a = 2™~ %! to compute

> ) = 3 S Tnpmm{wl’m}mp?)i,
heGp,m\{0} D P D

gm—wi ‘h

which leads to the desired result in this case as well.
Now let d € [s — 1]. Assume that we have (g1, ...,9a) € G, ,,(z™) such that

d 2
1 o —1
Rﬁiy((:pwlgl, o atigg),2™) < P H (1 + i + ’yﬂpmm{w“m}mpigp ) .
i=1

Let 9* € Gpm—wq,, (™) be such that Rflﬁl((xwlgl, ooy xWlgg, xVitlgy ), 2™) is minimized as a
function of g4y1 for gg11 = ¢*. Then we have, using Lemma 3.30

d
R:i/—i_l((xwlgla s 7xwdgd7 xwd+lg*)a xm) 1 + Vd+1 H + 72
=1
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+f Z H (1 +vi+v Z rp(h) Xp (;nha:wigi>)

v€Gp,m =1 heGp,m\{0}

’U *
X (1 + Yat+1 + Va1 Z mp(h) X, (xmhxwd“g ))

heGp,m\{0}

=1+ ’yd+1)Rf‘$((:legl, oo xVgg), ™) + L(g"), (3.48)

where
L(g™) ’YdH > > )Xy (thwd+19*>
vEGp,m heGp,m\{0} v
v .
X H 1+ Yi + Vi Z Tp(U)Xp (muxwlgi) .
i=1 uEGpm\{0} .

A minimizer g* of R ((z%1 g1, ..., 2% gq, 41 g4y1),2™) is also a minimizer of L(gq41). Combining

(3.44) and (3.48) we obtain that Rﬁ‘g (g,f) € Rforalld € [s]. Moreover with equation (3.51), established
later on in Section 3.3.3, and the fact that r,(h,y) > 0 for all h € Gy, and v € (0,1], we get
that L(g) € RT for all g € Gpm—w,,, (™). Thus we may bound L(g*) by the mean over all g €
Gp.m—way, (™). Hence

. 1
L) Sgg o2

9d+1 egp,mfwd+1 (z™)
Vd+1 3 1
n pm #gpvm_wd+1 <mm>

vEGp,m
v
X Z Z rp(h) Xp <:Emhl‘wd+19d+1>

9d+1 Egp,mfwdle (xm) hEGP,m\{O}
v wi
Xp (xmux gz> ‘)
d

2 m
Yd+1 p°—1 \Y})m,wd+1(va$ )’
<—— I | 1+ +vm E ,
m ( Yi Vi 3p > #gp’m Wiy (xm)

p i=1 vEGp,m

L(ga+1)

d
<[] (1+%~+'y¢ D)

i=1 uEGy m\{0}

where we used the estimate | X, (%ha™g;)| < 1 in the last step. With the induction hypothesis and
Lemma 3.31 this leads to

RHFY(z" gy, . .., &V gq, 241 g*), 2™)
d 2
1 . ) -1
< +7ya1) - I (1 +7i + %2pmm{w“m}mp3p>
=1

2

2
Vd+1 ' op-1 in{ my, D" —1
+ o H (1 + v +vim 3 ) opminiwatiml gy, o

=1

1 min{w;,m} p2 —1 min{wg41,m} p2 —1
Tn H + i+ 2pTT T m 3 L+ 9d41 +vd412p 0 m 3

.

&
,_\H

1 s 21
= H <1 + i + 2wy P 3 ) :
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O

The reduced fast CBC construction

So far we have seen how to construct a generating vector g of the point set P(g, z"). In fact Algorithm
3.23 can be made much faster using results from [13, 66, 67]. In this section we are investigating
and improving Algorithm 3.23 and additionally analyzing the computational cost of the improved
algorithm.

As explained in the following lines, Walsh functions are a suitable tool for analyzing the compu-
tational cost of CBC algorithms for constructing polynomial lattice point sets. Recall from p. 33 that
Walsh functions are defined as follows. Let w = *™/P_ z € [0,1) and h a non-negative integer with
base p representations & = x1/p + x2/p? + ... and h = hg + hip + ... + h,p", respectively. Then we
define

waly, : [0,1) — C, waly (z) := WhoritFhrzrir

The Walsh function system {wal;, | h =0, 1, ...} is a complete orthonormal basis in Ly([0, 1)) which has
been used in the analysis of the discrepancy of digital nets (an important class of low-discrepancy point
sets which contains polynomial lattice point sets) several times before, see for example [18, 27, 54].
For further information on Walsh functions see [20, Appendix A].

Let d > 1, N = p™. For P(g, f) = {xo,...,xpm_1} with x,, = (w%l) S)) we have the formula
(see [18, Section 4])

p"—1 s . _
LS [ vl 29 = {1 ifg-h=0 (modf), (3.49)

=0 =1 0 otherwise,

where h; are non-negative integers with base p representation h; = héi) —|—h§i) p+-- ‘+h7(~i) p". We identify

these non-negative integers h; with the polynomials h;(z) = h(()i) +h§i)x+- . ~+h5~i)mr. These polynomial

are elements of G, ,,. The vectors h in (3.49) are then from Gy, such that h = (h1(z),..., hs()).
Equation (3.49) allows us to rewrite Rfly((xwl g1y, 2V gq), ™) in the following way

d e na®ig;
RE((x" g1, .., x%gq), 2™) = H(l%—% —|— — Z H Z rp(h, vi)waly, (gbm( s >>

n=0 i=1 h=0

Note that ry(h,v) is defined as in (3.44) and we identify the integer in base p representation h =
ho + hlp + ...+ hyp" with the polynomial h(z) = hy + hix + ... + hyz". If we set w(%) =

S rp(h )Walh(QSm(%)) we get that

d 1 p7n_1 d ’]’Ll‘wzg
1
Re((x" g1, ..., 2" gq), H + i) tom > H(wa( — >)
i=1 n=0 =1
d 1 Pl
H (1+)+ — Z na(n (3.50)
i=1 ™ n=0

where ng(n) = ngl (1 + v+ %d)(%)).

In [18, Section 4] it is proved that we can compute the at most N different values of (5 ) for r € Gy
in O(N) operations.

Let us now analyze one step of the reduced CBC Algorithm 3.23. Assuming that we already found
(91,---94) € G2, (2™) we have to minimize

RN (@™ gy, ..., 2" gapr), 2™)
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as a function of g441 € Gpm—wy,, (™). If wgyr > m then g4 = 1 and we are done. Let now
wg+1 < m. From (3.50) we have that

d+1 p™—1

1
RITN((z" g1, -y gag),2™) = = [[(1+7) + == Y nara(n)
i=1 P =0
d+1 1 pm—1
=—JI10+w+= > <1+’7d+1
i=1 p n=0
nxitlggyg
+Yd+1? —m na(n).
In order to minimize Rﬁ‘é“((xwlgl, oo, x%itlggy ), ™) it is enough to minimize
Pl ey
Ta(g) == Y w(T)nd(n)-
n=0

As in [13, Section 4] we can represent this quantity using some specific (p"~%4+1=1(p —1) x N)-matrix
A and exploiting its additional structure. Let, to this end,

nxWitlg
A= (5 (")) sy s, 0= (O N~ 1)
ne{0,...,N—1}

First of all observe that we get (T (g))gegpym_wdﬂ(xm) = An,. Secondly the matrix A is a block matrix

and can be written in the following form

Wd+1
A= (Qimmwen)  gm=we)) where Q) = (w (m - g)) neton 1}

xm gEGme*wd_Q,l ($m)
If x is any vector of length p™ then we compute
Ax = Q(m—wd+1)m1 4+ ...+ Q(m—wd+1)xpwd+1 — Q(m—wd+1)(w1 4+ ...+ xpwd+1),

With this representation we can apply the machinery of [66, 67] and get that multiplication with
Q(m=wat1) can be done in O((m — wqy1)p™ ¥4+1) operations. Summarizing we have:

Algorithm 3.32.
1. Compute Y(w) for r € Gpm.
2. Set mi(n) = ("7 4 ) forn=0,...,p" — 1.

3. Set g1 =1, d=2 and t = max{j € [s] | wj < m}.
While d < min{s, t},

(a) Partition ng—q into p“d vectors n((iljl, . ,nd 1 of length p™~ "4 and let ' = ZZ 1 77dz)1

(b) Let (Td(g))ger,m_wd = Qm—wa)yy,
(c) Let gq = argmin,Ty(g).

(d) Let ng(n) = ng—1(n) (1 + v + Yap (2 dgd))
(e) Increase d by 1.
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4. If s>t then set gt = grr1 = ... = gs = 1.
Similar to [13] we obtain the following theorem from the observations in this section:

Theorem 3.33. The cost of Algorithm 3.32 is

min{s,t}

@) (N—}— min{s,t}N + Z (m — wd)Np_wd) .

d=1

3.3.3 Polynomial lattice point sets for irreducible f

Finally we want to consider the case where f is an irreducible polynomial. So, for this section let f
be an irreducible polynomial over F,, with deg(f) = m.

Theorem 3.34. Let v and w as in Theorem 3.25 and let f € Fplz] be an irreducible polynomial with
deg(f) = m. Let further (g1,...,9s) € Gp m_w(f) be constructed according to Algorithm 3.23. Then
we have for every d € [s]

d
1 infw; p+1
Rfiy((g;wlgl, . x gd S fm H (1 + 7y + ,yipmm{wz,m}m3> .

Proof. We will prove this result by induction on d. According to Algorithm 3.23 we know that g1 = 1
for d = 1. Therefore RY((z*'g1), f) = 0 since for all h € Gpm we have deg(h) < m and hence the
congruence hx"! =0 (mod f) has no solutions.
Let d € [s — 1] and assume that we have already found (g1,...,94) € GZ, ,(f). For
g=(z""¢g1,...,2"g,) we have from (3.44) that

RIT (g, 2" gas1), [) = (14 ya41) RL(g, f) + 0(gas1) (3.51)

where we proceeded similarly as in the proof of Theorem 3.25. Here we have

d
0(9d+1) = > rp(Rd+1, Yd+1) > 1T 7o (ki)
ha+1€Gp,m\{0} hecgm 1=0

h-g=—hgi1x¥d+lgg;  (mod f)

Let g* € Gpm—w,,,(f) be a minimizer of RleH((g,x“’ngdH), f) as a function of g4.1. Therefore g*
also minimizes 6(gq+1). Bounding 6(g*) by its mean we obtain

1

o) <— b Tp(hat1, Yd+1)
#gp,m—wd+1 (f) hd+1€§p:m\{0} ’

x D <H rp(hi, i ) ) L
hEGd 9d+1ecp,m7wd+1 (f)
h-g=—hgy1z"d+lgg,  (mod f)

Observe that ged(f, hgyix®dtt) = 1. Therefore the congruence hgi1x"+1gg11 = —h - g (mod f) has
a unique solution in G, but not necessarily in Gy m—w,,,(f). In the case that —h-g # 0 (mod f)
we conclude that the congruence has at most one solution in Gy —w,,,(f). If —h-g =0 (mod f) the
congruence has no solution in G m—w,,, (f) since 0 € Gp 1wy, (f). Hence we find by an application
of [18, Lemma 3.3| that
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1 d
0(g") < m z Tp(hdy1,Var1) HTp(hi/Yi)

ha+1€Gp,m\{0} heG

1 d p2 1 p2 _
- 1 ) ) .
#gpam—wd+1 (f) |J_1_11 ( %+ wm 3p >‘| <’Yd+1m 3p )

By (3.51) and the induction hypothesis we have that

d

1 nfws +1
S}Tm 11 (1 + i + %Pmm{w“m}mp?)>
i=1

pm p*—1
x (1

( LT DL )
d+1

1 infw, +1
Som 11 <1 +7i + %’Pmm{w“m}mpg> ;
=1

where we used in the latter step that #gpp—m(f) < I%pmm{wdﬂvm}. This follows from the fact that
yM—Wq 41

#Gpm—wa, (f) = p"70H = 1if wgpy < m and #Gp m—w,,, (f) = 1 if wgyr > m. This finishes the
proof of Theorem 3.34. O

As an immediate consequence of (3.43) and Theorem 3.34 we obtain the following result.

Corollary 3.35. Let N = p™, (wj)j>1 be a non-decreasing sequence of non-negative integers and
let (91,--,9s) € Gpm—w(f) for irreducible f € Gpm be constructed using Algorithm 3.23. Then the
polynomial lattice point set P ((x* g1, ..., 2" gs), ) has a weighted star discrepancy

D}k\/,'y ((xwlgb B stgs)a f)

1\ M 1 s +1
<3 (1 ~(1-%) ) o I (14 9+ pprnteomhm ),

i=1

Remark 3.36. Using the same argumentation as in Corollary 3.27 we again obtain the sufficient con-

o0
dition ) vp"7 < oo for strong polynomial tractability and for the discrepancy bound
j=1

Dy (z%rg1,...,2%g,), f) = O(N~'H9), with the implied constant independent of s, for any 6 > 0.
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3.4 Combined CBC

The CBC constructions presented in the previous sections all have the aim to speed up the construction
in order to be able to tackle large dimensions s. As already mentioned in the introduction (see p. 59),
with all these constructions, there is another issue that leads to a practical limit on the dimension s.
Numerical experiments [50] show that from some dimension onward the components produced by the
CBC construction tend to recur. This could be due to rounding errors that occur when implementing
the CBC construction, but the definite reason is yet unknown. However, there is a way around it—the
projection-corrected CBC construction by Dick and Kritzer [10].

In the present section we combine the reduced and the reduced fast, respectively, with the
projection-corrected CBC construction to get a construction which pools the advantages of these
two constructions, that is, being considerably faster than the standard CBC construction and being
free of recurring components. As the quality criterion we consider the worst-case error in this section.
All results presented here are based on [52].

Recall from (3.7) the definition of the reduced search spaces as

2 C H{ze{L, 0T = 1) ged(2,0™) =11 if wy <m,
Nows = {1} otherwise,

where 0 = w; < ws < ... is a nondecreasing sequence of non-negative integers, defined in accordance
to the weight sequence v = (;);>1 as done before.

3.4.1 Definition of the function space

With our combined CBC algorithm we would like to construct generating vectors for lattice point
sets used in QMC algorithms applied to functions in certain weighted Korobov spaces. The Korobov
spaces we want to consider are the ones defined on p. 34. As we change the names of the parameters
in this section, in the following lines, we briefly recapitulate the definition of the spaces.

Let &« > 1. The product-weighted Korobov spaces H (K o~) we want to consider are defined
as follows. They are reproducing kernel Hilbert spaces of functions defined on [0,1])*, with their
reproducing kernel given by

Kson(z,y) = Z ro(v,h)exp 2mih - (x —y)), x,y € [0,1)°,
heZs

where, for h = (hy,...,hs) € Z°, we have

Ta(7a h) = H ra(r)/ja hj)> (3.52)
j=1
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with

1 if h; = 0,
ra(7j, hj) :{ % i

3.53
. otherwise. ( )
J

For f,g € H(Kjs ) the inner product is then given by

Fo Dy = 3 (ralr, k) F(R)GR),

heZs

where f(h) = Jio,s f(®) exp(—2mih - @) dz denotes the h-th Fourier coefficient of f. Note that we
changed the notation of the Fourier coefficients here. On p. 34, where we first introduced them, the
where denoted by fmg, whereas here, for simplicity, we abbreviate this notation to f . The norm in
H (K ) is the norm induced by this inner product.

As a quality measure for a generating vector constructed with our algorithm we want to consider
the (squared) worst-case error of integration in H (Ko ~) by a QMC rule using the lattice point set

as integration nodes. Recall from (2.1) that the worst-case error of z = (z1,..., zs) is given by
1 V-1
esNy(2) = esNy(21,. .., 25) = sup / f(x)de — — f(p)l,
JEH(Kaarm) |JI01]7 N JZ;) ’

1 e (as,e,m) ST

where {pg,...,py_1} denotes the lattice point set, generated by z. Here, again, we write es v~ (2)
instead of es (An) as a QMC algorithm is fully determined by the generating vector of the underlying
lattice point set.

It is known (see for example [13, 22]) that for a generating vector z € {0,..., N — 1}* the squared
worst-case error in the weighted Korobov space H (K« ~) is given by

eiNﬁ(z) = Z ro(v, h). (3.54)

hezs\{0}
z-h=0 (mod N)

3.4.2 The combined CBC algorithm

Before we describe the combined CBC construction let us first introduce a little more notation. We
denote by t; = max{j € N: w; = 0} the index up to which we consider the whole set Zy as the search
space and by to = min{j € N: w; > m} the first index for which the search space is reduced to {1}.
Note that t; > 1, t3 > 2, and t1 < to. Furthermore, let for sets £ C Z, |€| denote their cardinality.

Now we are ready to state the combined CBC algorithm. Recall from p. 59 that the idea to avoid
recurrence of the components is to define exclusion sets, for each step of the CBC construction, whose
elements cannot be chosen in this step.

Algorithm 3.37. Let se N, beP, meN, N=b", 0=w; Swy <, and ZN, ZNu;,t1 and t3
as above.

1. Set z1 =1 and set &, = 0. Set 21 = .

2. Ford € {1,...,min{t; — 1,s — 1}} do the following: Assume that z1,...,zq have already been
found and choose E4:1 C Zn. (If no coordinates are to be excluded in this step, we define

=

Eir1 =10.) Now choose zqg11 € Zn \ Eg+1 such that
2
€d+1,N’y(Z17 <y Rdy Zd-l—l)

is minimized as a function of zqy 1. Set Zg11 = 2411-
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3. Increase d by 1 and repeat Step 2 until d = min{t; — 1,s — 1}. (The last repetition of Step 2 is
for d =min{t; —1,s — 1}.)

4. If t1 > s the algorithm terminates with d + 1 = s. Else, for d € {t1,...,min{ts — 2,5 — 1}} do
the following: Assume that z1,..., 2, 2t,+1,- - -, 24 have already been found and choose Eq41 €
ZNwgpr - (If mo coordinates are to be excluded in this step, we define Eq41 = 0.) Now choose
2d1 € ZNwqey \ Ear1 such that

2 w w w,
ed—l—l,N,'y(zlv""Ztlab t1+1zt1+1a--~ab dzd,b d+lzd+1)
is minimized as a function of zqy1. Set Zgr1 = b¥IH1z441.

5. Increase d by 1 and repeat Step 4 until d = min{te — 2,s — 1}. (The last repetition of Step 2 is
for d = min{ty — 2,s — 1}.)

6. If to > s the algorithm terminates with d+ 1 = s. Else, ford € {ta —1,...,s— 1} set zg41 = 1.
(The corresponding exclusion set is the empty set.) Set Zg11 = Zg41.

7. Increase d by 1 and repeat Step 6 until d = s — 1.

To avoid lengthy case analyses let us here and, if not stated otherwise, for the rest of this section,
assume that to < s. The proofs of Theorem 3.39 for the cases where t5 or even t; > s are easy
modifications of the proof stated below.

Remark 3.38. Algorithm 3.87 produces a vector

z= (21, e 23) = (Zl, cey Ztl,bwt1+1zt1+1, e bth*lztzfl, 1, cey 1)
with the last s —ta + 1 components equal to 1. That means, zi,, ..., z,—1 are multiplied by the factors
b, ..., b%*2=1 in the generating vector. The reason is the following: The reduced search sets ZN .

contain only elements of Zy which are smaller than b“3. So, roughly speaking, all elements of Zn v,
lie on the “left side” of Zn, whereas the elements in b“’J'Zij are spread all over Zy, where the
notation b7 Z .,; means, as already before in Section 3.2, that each element of Zn ., is multiplied by
b¥i modulo N.

As mentioned before we consider the squared worst-case error ei N’,y(él, ..., Zs) defined above as a
quality measure for the generating vector Z produced by Algorithm 3.37. Thus we would like to find
upper bounds for ei Nq(,%l, ...,Zs). Note that the coordinates Z; of Z do not necessarily belong to
Zn. However, the formula (3.54) for the squared worst-case error used in [10] is also true for arbitrary
coordinates Z; € {0,..., N — 1}, see for example [13]. Thus we end up with the following theorem.

Theorem 3.39. Let se N, be P, meN, N=b", 0=w; <wy <---, and ZN, ZNw; s t1 and to as
above. Further let Z = (Z1,...,Zs) be constructed by Algorithm 3.37, with exclusion sets ;. Then for
alllgdgsandé<>\§1 we have

‘ZN,wj

1
A
|5j|)

Proof. The proof of Theorem 3.39 is inspired by the proof in [10]. We use induction on d to show
the result. Recall our assumptions that w; = 0 and 2z; = 1, and that we consider product weights

JEU

A Ju
0 - 3 Y (4¢(aN))
€d.N (217 s ’Zd) < Z max{0,m—max,cy{w; H
k (ug[d} gt o) jeu |2,

where we set max () = 0.
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Yu = [Ljeuvj- Then (3.52), (3.53), and (3.54) together with Jensen’s inequality, (3_, ak))‘ <> aﬁ for
non-negative ai and 0 < A < 1, yield

1 1
) 5 iy (4t ?
9 e M o {1y
€1,N, (Zl) =N ‘Nh| = 7&2C(a) < <m4<(04)\)> < max{0,m—max; w;
k hezz\{o} N b p(omttmmaeny vl
\gj\)

Now let d € {1,...,s — 1}, and let Z1,..., Z; be chosen with Algorithm 3.37 and assume that

1
A
|5j|)

>|=

(AN 2
< (Z} ¢(bmax{0’m maXJGu{wj}}) H

uC(1 JEu ZN W

as claimed.

‘ZN,wj

A o Jul
63,1\/7(51, oy Zg) < (Z Vi (4¢(aN))

u ¢(bmax{0m max]eu{wj}})

holds for any A € ( é, 1]. We distinguish two cases, namely
1.d+1¢€¢ {2,...,t1},
2. d+1e{ti+1,...,s).

Let us start with the first case where d +1 € {2,...,t1}. As then w; = -+ = wyy1 = 0, we
eﬁectively consider the case of the projection—corrected CBC construction as in [10]. Note that for

= 0, we have ZNw = Zy and thus ¢(N ‘ZNU, ‘ Using this, we already know that

1

Cist Ny (1 2 Za) (¢( > %a(2(an) |u|H ) |5|)

uC d+1 ]Eu
1
A lul ZNw, A
R0¢(aN) 25,
<
> ( Z ¢(bmax{0,m—maxj-€u{w]-}}) H . |5]|

uCld+1] jeu | ZNw;

for any A € (1,1] and we are done with this case.
Next we deal with the second case where we have d +1 € {t; +1,...,s}. Using (3.54) we easily
obtain that for any z € Zy

eg—&-l,N,’y(’%la A Z) = eZ,ny('gla R 2d) + HN,d+17077(Z)7
where
9N7d+170477(z) = Z ra (77 h)'
hezd+1
ha+17#0

h~(21,...,§d,2’)50 (mod N)

By setting 3; =1 in [7, Eq. (5)], we obtain

ON.d+1,07(2) = 27431 C ()N (L+ €f ny (21, - -5 Zd)) + Var16N,d+1,ay(2)s (3.55)
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with

ENd+tan(2) = > > lhar1| " ra(vy, h). (3.56)

hat1€Z hezd
N)[hd+1 h'(il,...,fd)E—hd_‘_lz (mod N)

Thus we have

63+1,N77(21, cey 24, 2) = 63’N7(21, coos Z2d) + 29441 C() NTH (1 + 6371\77(51, ceyZ24)) + ’Yd+1li]v,d+1,a’7(z)
= Ya+16(@)N "7 )eg noy(Z1, -+ -5 2d Yd+1G()N 7 + Ya+1K6N,d+1,0,7(2)-

(1 4 274116 (@) N™)ed v ( ) +274+1¢(@) N~ + (2)
(3.57)

Recall that we want to show

’ZN,wj

3.58
- |5j!) 555

A4 (X))
3 Ya (4¢(aN)) I

2 - S
ed+17N‘Y(21’ e By zd‘H) < ( ¢(bmax{0,m7maxj'eu{wj}})

uCld+1] jeu |[ZNw;

for any A € (1,1].
Now choose A* € (1,1] such that the right hand side of (3.58) is minimized as a function of A.
Applying Jensen’s inequality to (3.57) we obtain

*

(G?H»I,N,'y('gl? ey 2d7 Z))/\
< (14292116 @N ") (€hn (Z1s - Z)Y + 22905010 N7 + 9051 (v 1aq(2)

< (14 227201 C@X )N ™) (€d ny (Brs 5 Za) + 2230501 C@N )N + 900 (kN a0 (2))Y
(3.59)

*

Next we apply Jensen’s inequality to (3.56) and find

1 ) 1
Y (Enartany D) <

A Z K;N,d-i-l,o&\*,fy)\*(l) = RN d1ars 42
l€2ZNwy ‘ZNﬂUd+1

leZNﬂUd-‘-l

‘ ZN7wd+1

where we used the notation v = (Vj\* )j>1-

In the following we use methods similar to [21, 22]. Recall that Markov’s inequality states that
for a non-negative random variable X with E(X) < oo and any real number ¢ > 1 we have P(X <
cE(X)) >1- % We use the normalized counting measure p on Zy y,,, as the probability measure
and apply Markov’s inequality as follows. For cgy1 > 1 let

- . A* =
ch+1 = {z € ZN,wd+1 : (ﬁN,dJrl,Oh"/(z)) < Cd+1’%N,d+1,a)\*;y)‘*}

* Cd+1 *
24z2€ ZN,wd_H: (HN,dJrl,a,'y(z)))\ < — Z (/iN,dJrl,Oz,‘)’(l))/\ = Acd+1-
’ZN7wd+l

I€2N wy, 4
Then Markov’s inequality yields

_ |ch+1| Z M(A

‘ ZN7wd+1

A 1
Cd+1>:M>1_77

:U'(GCd-H ) Cdr1

‘ ZN7wd+1

that is, for any cg+1 > 1, there exists a subset G
(1 — %), such that

d+1

car1 S ZNawg,, of size strictly bigger than

‘ZNw
yWd+1
A* =
(FNdt1,07(2)" < Car1Ry ap1ane 3t forall z € Gey, -
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By choosing c44+1 > 1 such that

‘ZNﬂvdH

1
(1- 1)
Cd+1

it is ensured that the set G, , \ £q41 is not empty. Thus we have

’ZN7wd+l
Cd+1 = :
’Zvadel - ‘gd+1|
As Z441 is chosen by Algorithm 3.37 such that the error e2 41, N,Y(él, .« s 2d, 24+1) is minimal, we obtain
together with (3.59)
A*
( €3+1 N'y(zla <o Rdy Zd+1))
* — * ~ - A* A* )\* * _ A* )\* .
(1 + 2/\ ’Yd—i—lC(a)‘ )N o )(e?l,N'y(zlv cee 7Zd)) + 2 de—&—lC(a)‘ )N ¢ + ’7d+1’€N,d+1,o¢)\*,7’\*

< (1+ car1290 11 C(@N )N TN (€d vy (Z1, - Za))Y + car129031 ClaX ) NN

PR
+ Cd+173+1F N d+1,00% 4 (3.60)

Using the induction assumption with A = A*, we obtain

- 3 2 (Agar ) |20
(ed,N"/(Z17 s 7zd)) = Z} ¢(bmax{0,m—maneu{wj}}) . ‘gj‘ ’

uCld

(3.61)

J€EU ZN,wj

Furthermore, from the proof of [7, Lemma 5], we obtain

EN,d+1,a)\*,'y>\* < 2<<O‘A*)(1 - Nﬁa}\* Z 7 QC a)‘* )\u\
P#uCld]

< (A Ny Y i (O

i OO )

A" )3 lu| ZN,w,

* —a\* Yu 4C aX Niw]
< 2((aX)(1 - N~ 2. gb(bmax{(&m(—max)j)euwﬁ) ‘ '
BuC [d] Bk

(3.62)

JEuU ZN,wj

Plugging (3.61) and (3.62) into (3.60) we have

A*
( €§+1,N7(217 ceey Zd, 5d+1)) <

¥ *\ [u] Z )
* * —a\* Tu (4(:(0&)\ )) ‘ Now;
< (1 + car129311¢ (@) N ) ) P

et ¢(b {0, jEu ]}) _ |gj|

jEu

ZN,’LU]'

+ 41127011 C(aX )N~

’ZN,wj

— &1

_ N—o&\*) Z 711\* (4C(O‘)‘*))‘u‘

A* *
+Cd+17d+12C(04>\ )(1 max{0,m—max,c, w;
st SO )

jeu [ZNw;
ZN,wj

— &l

X (4¢(aN )
pCACR R

= & ¢(bmax{0,m—maxj-gu U)j})

jeu | ZNw;

* * —a\* 1
+Cd+1’y:i\+12c(0[)\ )N A W
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+ cd+wc’l\il2C(a)\*)N_o‘A*

7 (4¢(aX?)) e

+cd+176/l\;12C(a)‘*) Z B (bmax{0m—max;euw;}) €51
g

OFAuCd]

JEuU ZN,’U)J‘

A (4 (M) |20,

pmax{0,m—max;ey wj}) . ‘Ej‘

ey & ZN w;

J€EU

’ ZN7wd+1
_'_

3¢ (aX )N
ZvadJrl - ’gd—l—l’

2

;Wd+1

7 (4¢(ar) e

4y C(aN) e ——
d+1 Z[d] ¢<bmax{0,m maxjeuwj}) o |5]|

ZvadJrl — [€ata 0#uC

Jj€EU ZN,wj

C oy e 2,

¢(bmax{07m—maxj€u{wj}}) ZN,wj — ’g]’ ’

uCld+1] J€EuU

as claimed. Thus the result holds for the special case of A*. As we have chosen A\* such that the right
hand side of (3.58) is minimized the estimate is true for arbitrary A € (é, 1] as well. O

Theorem 3.39 enables us to combine the reduced with the projection-corrected CBC construction,
while still achieving a small worst-case error. The reduced fast CBC construction can be used here as
well. Indeed, in this case one has to perform the additional step of checking whether a component is
in the respective exclusion set. Hence, in the process of choosing component d one has to carry out
|E4| checks for exclusions at most, that is a total of at most

min{s,t2}

> €] < min{s, t2}N
j=2

checks for the entire process of finding a generating vector, where one only has to sum up to j =
min{s,ts} as for all subsequent steps the search space is reduced to {1}. Hence the overall complexity
of the reduced fast CBC algorithm, which is (cf. [13])

min{s,t2}
O (NlogN+min{s,t2}N+ Z (m — wj)Nb_wd> ,
j=1

is not increased. This proves the following corollary.

Corollary 3.40. Let se N, beP, meN, N =", 0=w; <ws <---, and ZN, ZNw;,t1 and t3 as
above. Then Algorithm 8.37 takes at most

min{s,t2}
O (NlogN+min{s,t2}N + Z (m— wj)Nb_wd>
j=1

steps to construct a generating vector Z which satisfies the error bound of Theorem 3.39.

98



4 Conclusion and Outlook

The last section of this thesis consists of a brief summary of our main results as well as concluding
remarks and ideas for further research projects.

In the first part of this thesis we studied tractability theory. In particular we considered two
different settings for which we tried to find necessary and sufficient conditions for several tractability
notions to hold.

In Section 2.2 we considered integration in a Hermite space of analytic functions and found neces-
sary and sufficient conditions for SPT, as well as sufficient conditions for PT, QPT, UWT, (¢1,t2)-WT
and WT.

In Section 2.3 we studied a hybrid function space which is the tensor product of a Walsh and a
Korobov space. For this space we found necessary and sufficient conditions for the standard tractabil-
ity notions of L-approximation using information from A*! and AS*d, respectively.

Concerning the sections on tractability there remain two unresolved problems within close prox-
imity of the problems studied in Sections 2.2 and 2.3.

To the author’s best knowledge, necessary conditions for integration in the Hermite spaces for all
tractability notions, except strong polynomial tractability, are yet unknown.

As for hybrid functions spaces, the problem of finding necessary conditions for the standard
tractability notions for approximation in the Walsh spaces remains unresolved. Once these condi-
tions are found one could complete the alternative approach to find necessary conditions in the hybrid
function spaces, as described in Section 2.3.4. It is to be expected that these necessary conditions
would match the sufficient conditions already found.

These problems remain to be solved.

In the second part of this thesis we studied the construction of (polynomial) lattice point sets as
sample points in QMC algorithms for integration.

In Section 3.2 we managed to apply the reduced fast CBC construction to finding lattice point
sets with small weighted star discrepancy, while having a small computational cost. Previously this
construction was used for finding lattice point sets with small worst-case error. The reduced CBC
construction uses the fact that in weighted function spaces not all components of the generating vector
have the same amount of influence on the quality of the corresponding lattice point set. The idea is
to reduce the size of the search set for each component according to its importance.

In Section 3.3 we extended this to constructing polynomial lattice point sets with small weighted
star discrepancy.

Finally, in Section 3.4 we studied the following problem. As numerical experiments of Kuo, Gant-
ner and Schwab show, the components of generating vectors obtained from CBC constructions tend to
have recurring components from some dimension onwards. In [25] Gantner and Schwab presented nu-
merical experiments with a CBC construction which avoids such recurrences. In [10] Dick and Kritzer
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showed that a generating vector constructed with such an algorithm yields a lattice point set with
good worst-case error. In this thesis we combined this construction with the reduced fast concept and
found a CBC construction for lattice point sets free of recurring components with small worst-case
error and small computational cost.

When it comes to construction of lattice point sets, there is one possible future project which we
would like to describe in a greater detail. Recently Ebert, Leévey and Nuyens [23] have come up with
a whole different approach to the problem of constructing lattice point sets.

In a CBC construction we determine the generating vector z = (z1,...,25) one component at a
time. This means that we start with (z1) and in each step of the algorithm we add one component of
our generating vector until we end up with a full-size generating vector z = (z1,..., 2s). When adding

the d-th component of the generating vector, we minimize the worst-case error of the d-dimensional
integration problem to choose zg.

Ebert, Leévey and Nuyens in contrast consider a successive coordinate search algorithm which
works as follows. They choose an s-dimensional starting vector 2° = (2{,...,2%) and in each step of
the algorithm one component of 2% is altered. In the first step z; is chosen as the minimizer of the
s-dimensional worst-case integration error as a function of z{ when all other components are fixed.
Similarly in the d-th step z4 is chosen as

— : 0 0
Zq = argmin, e z ep, N(21, .-, 2d—1,2, 24415 - - -+ Z5)-

This process terminates after s steps once z = (z1,...,2s) has been chosen. The crucial point in
this algorithm is how to choose the starting vector z°. It can be shown (cf. [23]) that the successive
coordinate search algorithm and a CBC construction yield the same generating vector if the starting
vector is the zero vector. Numerical experiments [23] show that the successive coordinate search
algorithm provides better results then CBC constructions if the starting vector is good. (For exampe,
one idea would be to choose a generating vector obtained by a CBC construction as starting vector
in the successive coordinate search algorithm.)

As a possible future project one could now try to speed up the successive coordinate search algo-
rithm by reducing the search spaces similarly as for the reduced fast CBC constructions presented in
this thesis. The hope would be to find a fast algorithm which produces better results than CBC.
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