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Abstract

In this thesis we study two interesting topics which both are covered by the math-
ematical discipline of number theory. On the one hand we will investigate certain
problems which are related to numerical integration and discrepancy theory and on
the other hand we will analyse the asymptotic behaviour of a special sequence of
trigonometric products.

In various application (e.g. finance, physics, economics, computer graphics, . . . )
it is inevitable to efficiently perform high-dimensional numerical integration. One
way to overcome this problem is to use quasi-Monte Carlo methods to approximate
the desired integrals. When using this methods the resulting approximation error is
intimately linked to certain distribution properties of the underlying integration nodes.
Therefore many different methods to efficiently construct finite sets of integration
nodes which perform well in the context of quasi-Monte Carlo algorithms already
exist. In the first chapter we will transfer two of the above-mentioned methods into a
digital setting. Roughly speaking this means we will switch from the usual integer
arithmetic to arithmetic with polynomials over finite fields. This change results in new
point sets with new properties which can again be used in the setting of quasi-Monte
Carlo methods.

For the second part of this thesis the main quantity of interest will be the so-called
Sudler product

PN(α) =
N∏

r=1

|2 sin(πrα)|,

where N ∈ N and α ∈ R. This sequence of trigonometric products appears in a
variety of different fields in both pure and applied mathematics e.g. continued fraction
theory, Padé approximation, q-series, KAM theory, strange non-chaotic attractors
(SNA), continuation of Dirichlet series, . . . . We will analyse the asymptotic behaviour
of the Sudler product and special subsequences for certain choices of α.
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Kurzfassung

In dieser Arbeit betrachten wir verschiedene Fragestellungen aus dem Bereich der
Zahlentheorie. Einerseits werden wir uns mit Problemen bezüglich der Diskrepanz
einer endlichen Punktmenge bzw. mit numerischer Integration beschäftigen. An-
dererseits untersuchen wir im zweiten Teil dieser Arbeit eine spezielle Folge von
trigonometrischen Produkten.

In einer großen Anzahl von Anwendungen (z.B.: Finanzmathematik, Physik,
Wirtschaft, Computergrafik, . . . ) is eine effiziente Vorgehensweise für numerische
Integration unabdingbar. Eine mögliche Lösung für diese Herausforderung bieten
sogenannte quasi-Monte Carlo Methoden. Der unter Verwendung dieser Methoden
entstehende Approximationsfehler ist eng verknüpft mit bestimmten Verteilung-
seigenschaften der zugrundeliegenden Integrationspunkten. Aufgrund eben dieser
Verbindung gibt es bereits eine Vielzahl an Methoden um effizient geeignete Punkt-
mengen zu konstruieren. Im ersten Kapitel werden wir zwei dieser oben genannten
Methoden genauer analysieren und in ein digitales Setting transferieren. Somit entste-
hen neue Punktmengen mit neuen Eigenschaften, welche sich ebenfalls im Rahmen
von quasi-Monte Carlo Methoden verwenden lassen.

Im zweiten Teil widmen wir unsere Aufmerksamkeit dem sogenannten Sudler
Produkt

PN(α) =
N∏

r=1

|2 sin(πrα)|,

wobei N ∈ N und α ∈ R. Diese Folge von Produkten erscheint in den verschiedensten
Gebieten der reinen und angewandten Mathematik z.B.: Kettenbrüche, Padé Approx-
imation, q-series, KAM Theorie, Fortsetzung von Dirichlet Reihen, . . . . Insbesondere
interessieren wir uns für die asymptotischen Eigenschaften des Sudler Produkts und
speziellen Teilfolgen davon für gewisse Wahlen von α.
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Abbreviations and notations

The following lists of abbreviations and notations will be used frequently in this thesis:

List of abbreviations

QMC quasi-Monte Carlo
CBC construction component-by-component construction
i.i.d. independent and identically distributed

List of notations

{·} fractional part
⌈·⌉ ceiling function
⌊·⌋ floor function
deg(q) degree of the polynomial q
gcd(a, b) greatest common divisor of a and b
[s] the set {1, . . . , s}
N natural numbers
N0 natural numbers starting from 0
Z integers
Q rational numbers
R real numbers
C complex numbers
P set of prime numbers
Fp finite field of order p, p ∈ P
Fp((x

−1)) field of formal Laurent series over Fp

L2(D)
{
f : D → C | f measurable,

∫

D
f 2 dλ <∞

}

✶A characteristic function of a set A
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More notation:

• Usually bold Latin or Greek letters denote either vectors of dimension s or
sequences if not explicitly stated otherwise. For example x = (x1, . . . , xs) or
γ = (γn)n∈N.

• For α ∈ R we denote the continued fraction expansion of α by [a0; a1, a2, . . .]
where a0 = ⌊α⌋ and (an)n∈N ⊆ N are the continued fraction coefficients of
α. Moreover, by α = [a0; a1, . . . , ah, ah+1, . . . , ah+ℓ] we denote that α has a
periodic continued fraction expansion with preperiod a1, . . . , ah and period
ah+1, . . . , ah+ℓ.

• For two functions f, g : R → R we use the following notations:

– We write f(x) = O(g(x)) as x → a ∈ [−∞,∞] if there exists a constant
c > 0 and a neighbourhood B(a) of a such that f and g satisfy |f(x)| ≤
c|g(x)| for all x ∈ B(a). Usually a will be 0 or ∞ and we will not explicitly
state that x→ a if it is clear from the context.

– We use the notation f(x) = Θ(g(x)) as x → a ∈ [−∞,∞] if there exist
constants c, C > 0 and a neighbourhood B(a) of a such that c|g(x)| ≤
|f(x)| ≤ C|g(x)| for all x ∈ B(a). Again we will omit x→ a if it is clear
from the context.

– We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.

• For ∅ 6= u ⊆ [s] and some s-dimensional function f(x) with x = (x1, . . . , xs) we
use the following notations:

– f(xu,1) = f(y1, . . . , ys), where yi = xi if i ∈ u and yi = 1 if i 6∈ u.

– For u = {i1, . . . ir} we denote dxu = dxi1 . . . dxir .

– For u = {i1, . . . ir} the term
∂|u|f(x1, . . . , xs)

∂xu

denotes
∂|u|f(x1, . . . , xs)

∂xi1∂xi2 · · · ∂xir
.
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Preface

In applications of finance, economics, physics, . . . it is necessary to numerically solve
high-dimensional integrals. One class of algorithms which are able to deal with this
kind of problems are quasi-Monte Carlo algorithms. This sort of algorithms heavily
depends on the choice of the underlying point set, which should be “well” distributed
in the corresponding domain (in this thesis we will only consider the s-dimensional
unit cube). More precise, the error, which stems from the usage of such algorithms,
depends on certain distribution properties of the underlying integration nodes. Due
to this interesting connection of quasi-Monte Carlo algorithms and applications in
various fields, this topic has been studied extensively in the last decades. Moreover,
there already exist efficient algorithms for constructing finite point sets which perform
well in the context of numerical integration with quasi-Monte Carlo algorithms.

In the first chapter we will describe ways to transform two of these algorithms,
for creating such finite point sets with the desired properties, into a digital setting.
Roughly speaking this means we will switch from the usual integer arithmetic to
polynomial arithmetic over finite fields. Performing this transformation results in
new point sets with different properties which can again be feed into the machinery
of quasi-Monte Carlo methods.

In the second part of this thesis we will focus on a special sequence of trigonometric
products

PN(α) =
N∏

r=1

|2 sin(πrα)|,

where N ∈ N and α ∈ R. This sequence pops up in many different fields of pure
and applied mathematics. For example there are interesting connections of PN(α)
to continued fraction theory, partition theory, q-series, . . . . In the second chapter
we will study the asymptotic behaviour of PN(α) for certain choices of α. Most of
the time we will stick to the cases where α is either the golden ratio or a general
quadratic irrational. More precise, we are interested in the properties of the objects
lim infN→∞ PN(ϕ) and limn→∞ Pqn(α), where ϕ is the golden ratio, α a quadratic
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irrational and (qn)n∈N0 is the sequence of best approximation denominators of α.
These two above-mentioned limits are the central objects of questions and conjec-

tures stated by Lubinsky in [76] and Verschueren and Mestel in [104] which will be
investigated in Chapter 2.

The main part of this thesis consists of the following four papers:

1. F. Pillichshammer, M. Neumüller: Metrical star discrepancy bounds for lacunary
subsequences of digital Kronecker-sequences and polynomial tractability, Unif.
Distrib. Theory 13 (1) (2018), 65–86.

2. R. Kritzinger, H. Laimer, M. Neumüller: A reduced fast construction of polyno-
mial lattice point sets with low weighted star discrepancy. In Monte Carlo and
quasi-Monte Carlo methods 2016. Springer, Cham, 2018, pp. 377–394.

3. S. Grepstad, M. Neumüller: Asymptotic behaviour of the Sudler product of sines
for quadratic irrationals, J. Math. Anal. Appl. 465 (2) (2018), 928–960.

4. S. Grepstad, L. Kaltenböck, M. Neumüller: A positive lower bound for
lim infN→∞ PN(ϕ) (to appear in Proc. Am. Math. Soc.).

This thesis is structured as follows. First of all we start with a very brief
introduction to the mathematical field of number theory. The first chapter deals with
the part which is related to discrepancy theory. Therefore we start in Section 1.1 with
an introduction to quasi-Monte Carlo methods and discrepancy theory and continue
in Sections 1.2 and 1.3 with the second and first paper mentioned in the list above.
We close this chapter with Section 1.4, which contains a short conclusion and ideas
for further research.

The second chapter will be dedicated to the second topic of this thesis, the Sudler
product. Again we begin with an introductory part (Section 2.1), followed by the
fourth and third paper of the list above in Sections 2.2 and 2.3. In the last part
(Section 2.4) we close again the chapter with some concluding remarks and ideas for
generalisations and extensions of the main results in Chapter 2.

xvi



Chapter 1

Discrepancy theory and

quasi-Monte Carlo integration

1.1 Introduction

First of all it should be pointed out that there exists a more detailed and very nicely
structured introduction on discrepancy theory and quasi-Monte Carlo integration
which was written by Leobacher and Pillichshammer [73]. The introduction of this
thesis will follow to some extend the lines of this book and stick to the overall structure
of it.

If one would have to explain discrepancy theory in one sentence then the comment
of Art Owen at the MCQMC conference in Stanford 2016 sums it up perfectly: “We
are counting points in boxes.” With this of course very rough comparison in mind let
us directly hop into one of the most central definitions of this chapter.

Definition 1.1.1 (Local discrepancy function, star discrepancy).
Let PN = {x1, . . . ,xN} ⊂ [0, 1)s be an N-element point set and let t = (t1, . . . , ts) ∈
[0, 1]s. Then [0, t) =

∏s
i=1[0, ti) is a s-dimensional axis parallel box and we define the

local discrepancy function of PN as

δ(t,PN) :=
1

N

N∑

j=1

✶[0,t)(xj)−
s∏

i=1

ti. (1.1)

Moreover, the star discrepancy of PN is defined as

D∗
N(PN) := sup

t∈[0,1]s
|δ(t,PN)|. (1.2)

1



Note that for some s-dimensional box [0, t) the local discrepancy function compares
the relative number of points which are contained in the box to the volume of the
box. It is exactly this counting process, included in the local discrepancy function,
which the comment of Art Owen refers to. Finally by considering the supremum of
the local discrepancy function, the star discrepancy reflects the performance of the
worst possible box.

If we are interested in the discrepancy of a sequence (xn)n∈N we will write
D∗

N((xn)n∈N) which denotes the star discrepancy of the first N elements of the
sequence (xn)n∈N.

The motivation for studying the discrepancy of point sets or sequences stems from
two different mathematical regions. It is already clear that this definition measures
some kind of uniformity of the point set PN . It will turn out in the next section that
the star discrepancy is closely related to the concept of uniform distribution modulo
1. Therefore the motivation for the notion of discrepancy comes from a number
theoretic background. Whereas in numerical mathematics the notion of discrepancy
is strongly connected to the problem of numerical integration by using quasi-Monte
Carlo algorithms.

1.1.1 Motivation

Let us now explain more detailed why the discrepancy of a point set or sequence is a
measure of a certain kind of uniformity, which is called uniform distribution modulo
1. This concept was introduced in 1916 by Hermann Weyl in his celebrated work
“Über die Gleichverteilung von Zahlen modulo Eins” (cf. [106]) and has developed
into a fruitful and active branch of mathematics in the last century. One should
again emphasise that exactly this work was the beginning of the up to now well
studied branch of uniform distribution theory. The most central definition states the
following:

Definition 1.1.2 (Uniform distribution modulo 1).
Let (xn)n∈N be a sequence in [0, 1)s. The sequence (xn)n∈N is called uniformly dis-
tributed modulo 1 (or uniformly distributed) iff for all t = (t1, . . . , ts) ∈ [0, 1]s we
have

lim
N→∞

1

N

N∑

n=1

✶[0,t)(xn) = λs([0, t)),

where λs([0, t)) is the s-dimensional Lebesgue measure of [0, t) =
∏s

i=1[0, ti).

2



Probably the most famous example for a uniformly distributed sequence is the
so-called Kronecker sequence given by xn = {nα}, where α ∈ Rs and {·} denotes the
fractional part which has to be read component-wise. It turns out that the condition
that 1, α1, . . . , αs have to be linearly independent over Q is necessary and sufficient
for the sequence {nα} to be uniformly distributed. Although it was already proved
by Bohl in 1909 that the above-mentioned sufficient condition is indeed a necessary
condition as well, the following criterion established by Weyl provides a very elegant
way to prove this fact.

Theorem 1.1.3 (Weyl criterion, [106], [64, Ch. 1, Theorem 2.1]). A sequence
(xn)n∈N ⊂ [0, 1)s is uniformly distributed modulo 1 if and only if

lim
N→∞

1

N

N∑

n=1

e2πih·xn = 0

for all h ∈ Zs \ {0}. Here · denotes the usual Euclidean inner product.

Let us revisit the definition of the star discrepancy (see Definition 1.1.1). Now
it is clear that the star discrepancy is a measure for the property of a point set of
being uniformly distributed. This can also be summarized more mathematically in
the following well known statement (see [64, Ch. 2, Theorem 1.1])

(xn)n∈N is uniformly distributed ⇔ lim
N→∞

D∗
N((xn)n∈N) = 0. (1.3)

As we already mentioned the second motivation in order to investigate the
discrepancy of certain point sets and sequences comes from numerical mathematics.
Consider the following situation: Given a function f : [0, 1]s → R, where f belongs
to some suitable function space F equipped with a norm ‖ · ‖. We are interested in
the quantity

Is(f) :=

∫

[0,1]s
f(x) dx. (1.4)

A convenient way to approximate Is(f) is to use an equal weighted quadrature rule
of the form

1

N

N∑

n=1

f(xn),

where P = {x1, . . . ,xN} ⊂ [0, 1]s are the integration nodes. Several questions arise in
this context. First of all there is the question of how to choose the point set P , which
is indeed the most central question concerning quadrature rules. Second, depending

3



on the choice of the underlying point set, what can we say about the quality of our
approximation which is usually measured in terms of the integration error:

eN(f,P) :=

∣
∣
∣
∣
∣
Is(f)−

1

N

N∑

n=1

f(xn)

∣
∣
∣
∣
∣
.

A first idea could be to choose the point set P at random. This approach is called
Monte Carlo algorithm and it is well known if x1, . . . ,xN are i.i.d. random variables
in [0, 1]s then

E(eN(f,P)) ≤ σ(f)√
N
, (1.5)

where σ(f) is the standard deviation of f which is defined as

σ(f) =

√

E
((
f − E(f)

)2
)

and E(f) =
∫

[0,1]d
f(x) dx = Is(f) if we interpret f as a random variable on the

probability space ([0, 1]s,B, λs), where B denotes the Borel σ-algebra of [0, 1]s and λs
is the s-dimensinal Lebesgue measure.

However, the probabilistic error bound and also the convergence rate of O(N−1/2)
are not sufficient for some applications. Therefore we will approximate the quantity
Is(f) by a so-called QMC algorithm of the form

QN,s(f,PN) :=
1

N

N∑

n=1

f(xn), (1.6)

where now in contrast to before the point set PN = {x1, . . . ,xN} ⊂ [0, 1]s is chosen
deterministically. A natural way to quantify the error one obtains by using a QMC
algorithm is to consider the so-called worst case error which is given by

eN(F ,PN) := sup
f∈F
‖f‖≤1

eN(f,PN). (1.7)

We will see that the integration error eN (f,PN ) one obtains by using a QMC algorithm
is intimately connected to the star discrepancy of the underlying point set PN via
the famous Koksma-Hlawka inequality. Before actually stating the inequality let us
set for some function f : [0, 1]s → R where all mixed partial derivatives of f exist
and are continuous on [0, 1]s

‖f‖s,1 := f(1) +
∑

∅6=u⊆[s]

∫

[0,1]|u|

∣
∣
∣
∣

∂|u|

∂xu

f(xu,1)

∣
∣
∣
∣
dxu, (1.8)

4



where we used the corresponding notation declared on page xiv. The subsequent
theorem is the combined result of Koksma (cf. [60], s = 1) and Hlawka (cf. [50],
s > 1).

Theorem 1.1.4 (Koksma-Hlawka inequality). Let PN ⊂ [0, 1)s and let f be a function
on [0, 1]s with ‖f‖s,1 <∞. Then we have

eN(f,PN) = |Is(f)−QN,s(f,PN)| ≤ ‖f‖s,1D∗
N(PN). (1.9)

If we set Fs,1 := {f : ‖f‖s,1 <∞} we get as a direct consequence of Theorem 1.1.4
that the worst case error in Fs,1 is exactly the star discrepancy of the underlying
point set, i.e.

eN(Fs,1,PN) = sup
f∈Fs,1

‖f‖s,1≤1

eN(f,PN) = D∗
N(PN).

Furthermore note that due to the Koksma-Hlawka inequality the integration error
when using a QMC algorithm is now split into two parts: One part is depending on
the integrand f and the second part is exactly the star discrepancy of the underlying
integration nodes PN . In other words this means that studying point sets with low
discrepancy has a direct application in solving numerical integration problems. The
inequality (1.9) is still true in a more general case where ‖f‖s,1 is replaced by the
so-called variation of f in the sense of Hardy and Krause (denoted by V (f)), i.e.

eN(f,PN) = |Is(f)−QN,s(f,PN)| ≤ V (f)D∗
N(PN).

Roughly speaking V (f) can be interpreted as a measure for the fluctuation of f .
For a comprehensive proof of Theorem 1.1.4 and a definition of V (f) we refer the
interested reader to [64, Chapter 5]. But observe that if all mixed partial derivatives
of f are continuous on [0, 1]s then V (f) = ‖f‖s,1 − f(1).

For more information on the connection of discrepancy theory and numerical
integration we refer to [71, 81, 82, 83, 101]. We will continue the introduction with a
very brief survey on some classical results of discrepancy theory.

1.1.2 Discrepancy theory: some classical results

We can naturally extend the definition of the star discrepancy to derive different
notions of discrepancies. First of all recall the definition of the star discrepancy
(Definition 1.1.1), which is given by the supremum over all axis parallel boxes
anchored in the origin of the local discrepancy function defined as

δ(t,PN) =
1

N

N∑

j=1

✶[0,t)(xj)−
s∏

i=1

ti.

5



If we now extend the supremum over all axis parallel boxes (not necessarily anchored
in the origin) we arrive at a different notion which is called the extreme discrepancy
(denoted by DN(PN)). Second, one can interpret the star discrepancy as the L∞-
norm of the local discrepancy function δ(·,PN ). By interchanging the L∞-norm with
the Lp-norm for p ∈ [1,∞) we arrive at another notion of discrepancy, namely the
Lp-discrepancy which is then given by

Lp,N(PN) = ‖δ(·,PN)‖p =
(∫

[0,1]s
δ(t,PN)

pdt

)1/p

.

The subsequent proposition summarizes some basic connections between the different
notions of discrepancy.

Proposition 1. Let P be an N-element point set in [0, 1)s. Then we have

1. D∗
N(P) ≤ DN(P) ≤ 2sD∗

N(P);

2. Lp,N(P) ≤ D∗
N(P) ≤ (Lp,N(P))

p
p+s .

The lower bounds for DN(P) and D∗
N(P) follow immediately from the definition

and the monotonicity of the Lp-norms. The proof for the upper bound of DN(P) is
mainly based on the fact that one can describe an unanchored axis parallel box as
the union and exclusion of at most 2s anchored boxes and the proof for the upper
bound of the star discrepancy in terms of the Lp-discrepancy can be found in [31,
Theorem 1.8].

In what follows we will for the sake of simplicity just state the parameter depen-
dence for the appearing constants. In other words this means that the constants in
the rest of this section are not necessarily the same although they are denoted by the
same symbol.

We have already seen in Section 1.1.1 that we want to have point sets and sequences
with a small discrepancy. Of course this leads to an interest in upper and lower
bounds for the discrepancy of point sets and sequences as well as the corresponding
asymptotic behaviour. Let us start our small survey with the famous result by Roth
proven in 1954.

Theorem 1.1.5 (Roth, [93]). For every s ∈ N there exists a constant cs > 0 such
that for every N ≥ 2 and every N-element point set P ⊂ [0, 1]s we have that

DN(P) ≥ D∗
N(P) ≥ L2,N(P) ≥ cs

(logN)
s−1
2

N
. (1.10)
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This result of Roth is known to be best possible in the sense that for every s,N ∈ N
there exists a point set P ⊂ [0, 1)s and some constant cs > 0 such that

L2,N(P) ≤ cs
(logN)

s−1
2

N
. (1.11)

The first construction for such point sets in arbitrary dimensions was given by Chen
and Skriganov in [19]. Later on Dick and Pillichshammer were able to give explicit
constructions in [27].

Remark 1.1.6. Although not explicitly stated it is clear that together with the
monotonicity of the Lp norms and Theorem 1.1.5 we get that for all s ∈ N, p ∈ [2,∞]
there exists a constant cp,s ≥ 0 such that for every P ⊂ [0, 1)s we have that

Lp,N(P) ≥ cp,s
(logN)

s−1
2

N
. (1.12)

Moreover, Schmidt [95] could extend Theorem 1.1.5 to the case where p ∈ (1, 2),
s ∈ N and Halász [41] was able to prove that Theorem 1.1.5 is still true for p = 1 and
s = 2.

That the lower bound in the inequality (1.10) might not be optimal for the star
discrepancy is not very surprising if one compares the averaging behaviour of the
L2-norm with the more localized one of the L∞-norm. Indeed Schmidt was able to
prove a stronger lower bound for the star discrepancy in dimension 2.

Theorem 1.1.7 (Schmidt, [94]). There exists a constant c > 0 such that for every
N ≥ 2 and every N-element point set P ⊂ [0, 1]2 we have that

D∗
N(P) ≥ c

logN

N
. (1.13)

It is known that this lower bound is best possible in N . Some classical examples
of point sets with the matching upper star discrepancy bound are provided at the
end of this subsection. If we consider the case s ≥ 3 the currently best lower bound
was proven in an outstanding paper by Bilyk, Lacey and Vagharshakyan who were
able to improve the bound of Roth for the star discrepancy by an additional term ηs
in the logN -exponent.

Theorem 1.1.8 (Bilyk, Lacey, Vagharshakyan, [13]). Let s ≥ 3 then there exist
constant cs > 0 and ηs ∈ (0, 1/2) with the following property: for every N ≥ 2 and
every point set P ⊂ [0, 1)s with cardinality N we have that

D∗
N(P) ≥ cs

log(N)(s−1)/2+ηs

N
(1.14)
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Furthermore, the logN -exponent ηs tends to zero (approximately with order s−2) for
growing s.

This raises the question: Given a point set P ⊂ [0, 1)s.

What is the optimal order of D∗
N(P) for s ≥ 3?

It is not surprising that we will not be able to answer this question in this thesis since
one definitely can state that this question is the biggest open problem in discrepancy
theory. Moreover, the experts in this field do not even agree on what to conjecture.
Probably the two most prominent conjectures are the following:

Conjecture 1.1.9. For s ≥ 3 there exists constants cs, c̃s > 0 such that for sufficiently
large N and every point set P ⊂ [0, 1)s with cardinality N we have that

D∗
N(P) ≥ cs

(logN)s−1

N
or D∗

N(P) ≥ c̃s
(logN)s/2

N
.

Observe that both cases agree with the lower bound of Schmidt for the case s = 2.
Let us now consider sequences instead of point sets. Note that if we analyse the

discrepancy of a sequence (xn)n∈N we investigate the discrepancy of the increasing sets
{x1}, {x1,x2}, {x1,x2,x3}, . . . . Therefore it is much easier to increase the number
of points used in a QMC algorithm if the integration nodes stem from a sequence since
we just have to add the desired number of points to the already existing integration
nodes. Whereas in the case of point sets we would have to calculate a completely new
point set if we would like to increase the number of points. This is exactly the reason
why sometimes the two settings are referred to as the dynamic and static setting.
Due to this more demanding situation one could expect worse discrepancy bounds
for sequences than in the case of point sets which is indeed the case.

Similar to the static case the optimal order of the L2-discrepancy is known for
sequences. The lower bound was given by Proinov in 1986.

Theorem 1.1.10 (Proinov, [89]). Let p ∈ (1,∞], s ≥ 2 then there exists a constant
cp,s > 0 such that for every sequence (xn)n∈N in [0, 1)s we have that

D∗
N((xn)n∈N) ≥ Lp,N((xn)n∈N) ≥ cp,s

(logN)s/2

N
for infinitely many N ∈ N. (1.15)

Similar as before we know that this lower bound is optimal for the L2-discrepancy
since Dick and Pillichshammer gave an explicit construction of a sequence whose
L2-discrepancy is at most cs(logN)s/2/N for some constant cs > 0 (see [27]). However,
for the star discrepancy the situation is different. There is an improvement for s = 1
by Schmidt in [94].
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Theorem 1.1.11 (Schmidt). There exists a constant c > 0 such that for every
sequence (xn)n∈N in [0, 1) we have that

D∗
N((xn)n∈N) ≥ c

logN

N
. (1.16)

Again this result is known to be best possible. An example for a 2-dimensional
sequence which obtains the above order of the star discrepancy is given at the
end of this subsection. For sequences the situation is quite similar to before. The
correct order of the star discrepancy is not known and there are different opinions and
conjectures about the correct exponent of the logN term. For example s and (s+1)/2,
which of course both agree with the result of Schmidt for s = 1 (Theorem 1.1.11).

Although the optimal order of the star discrepancy is not known for sequences
(and point sets) there is a consensus to call a sequence (xn)n∈N or a point set P a
low-discrepancy sequence or low-discrepancy point set if

D∗
N((xn)n∈N) ≤ cs

(logN)s

N
or D∗

N(P) ≤ cs
(logN)s−1

N
.

Let us conclude this subsection with several famous examples of low-discrepancy
sequences and point sets:

• Van der Corput sequence:
The nth sequence element of this one-dimensional sequence is defined as xn =
φb(n), where φb is the b-adic radical inverse function. More precise, for some
base b ∈ N we have that φb : N0 → [0, 1) and

φb(n) = n0/b+ n1/b
2 + n2/b

3 + · · · , (1.17)

where the ni are the digits of the b-adic expansion of n, i.e. n =
∑r

i=0 nib
i and

ni ∈ {0, . . . , b− 1}. It is well known that the van der Corput sequence in base
b satisfies the following star discrepancy bound for some constant cb > 0

D∗
N((φb(n))n∈N) ≤ cb

log(N)

N
.

For b = 2 this was first proven by van der Corput in [102, 103].

• Halton sequence:
The Halton sequence can be interpreted as the s-dimensional analogue of the
van der Corput sequence. For some base b ∈ N let again φb be the radical
inverse function (defined in (1.17)). For s ∈ N and integers b1, . . . , bs ≥ 2 the
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nth element of the Halton sequence in bases b1, . . . , bs, denoted by S(b1,...,bs) =
(xn)n∈N is defined as

xn = (φb1(n), φb2(n), . . . , φbs(n)).

Halton [42] could show show that for pairwise coprime bases b1, . . . , bs ≥ 2
the Halton sequence fulfills the following discrepancy bound for some constant
cs,b > 0 and b = (b1, . . . , bs)

D∗
N(S(b1,...,bs)) ≤ cs,b

(logN)s

N
.

• Hammersley point set:
For s ∈ N and pairwise coprime integers b1, . . . , bs−1 ≥ 2 we define the Ham-
mersley point set HN,(b1,...,bs−1) = {x1, . . . ,xN} with

xn =
( n

N
, φb1(n), . . . , φbs−1(n)

)

.

Again it is known (see [42]) that the Hammersley point set, which was first
introduced in [43], is an example for a s-dimensional low-discrepancy point set.
In other words we have for some constant cs,b > 0 and b = (b1, . . . , bs) that

D∗
N(HN,(b1,...,bs)) ≤ cs,b

(logN)s−1

N
.

For more detailed information in this direction we refer to [26, 73].

1.1.3 Lattice point sets and component-by-component con-

structions

A well studied example for useful point sets concerning QMC methods are so-called
lattice point sets, which were first introduced independently by Hlawka [51] and
Korobov [61]. These point sets can be constructed with the help of a generating
integer vector g ∈ Zs \ {0} and the corresponding point set is defined as follows

PN(g) :=
{{ n

N
g
}

| n = 0, . . . , N − 1
}

, (1.18)

where {·} denotes the fractional part and is applied component-wise. Observe that
this kind of point sets can be interpreted as a rational analogue of the uniformly
distributed sequence ({nα})n∈N for α ∈ Rs, which was mentioned in the beginning of
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Subsection 1.1.1. In the analysis of the discrepancy of lattice point sets the so-called
dual lattice

L(g, N) := {h ∈ Zs | h · g ≡ 0 (mod N)} (1.19)

plays a crucial role. The following inequality, which was proven by Niederreiter in [80,
Chapter 5] is a promising starting point to derive good (star) discrepancy bounds for
lattice point sets.

Theorem 1.1.12. Let N ≥ 2, g ∈ Zs and PN(g) be the corresponding lattice point
set in [0, 1)s. Then we have

DN(PN(g)) ≤ 1−
(

1− 1

N

)s

+RN(g), (1.20)

where

RN(g) :=
∑

h∈C∗
s∩L(g,N)

1

r(h, N)
,

C∗
s = ((−N/2, N/2] ∩ Z)s \ {0},

r(h, N) =
s∏

i=1

r(hi, N),

and for h ∈ Z

r(h,N) =

{

N sin(π|h|/N) if h 6= 0,

1 if h = 0.

Observe that by definition a lattice point set is fully determined by the generating
vector g and that it is enough to search for g in the set {0, . . . , N − 1}s. Since there
are no explicit constructions for good lattice point sets in dimension s ≥ 3 (see [14]
for explicit constructions for s ∈ {1, 2}) one employes computer search algorithms to
find generating vectors which construct useful lattice point sets. In consideration of
the N s possible choices for a generating vector an exhaustive search is not feasible
even for moderate values of N and s. In order to handle this problem one switches
to a greedy algorithm. The scheme of the algorithm described in the following lines
was first invented by Korobov in the 1960s in [62] and then rediscovered by Sloan
and Reztsov in 2002 in [97]. These so-called component-by-component constructions
(CBC) start by setting the first coordinate g1 of g to some sufficiently good starting
value. Then we choose the next component g2 such that g2 minimizes a certain
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quantity. The optimal case would be if g2 minimizes the star discrepancy of the
lattice point set but again this is computationally not feasible. Therefore the figure
of merit will be RN(g), i.e. g2 is chosen such that RN(g) is minimized. The third
component is again chosen in a way such that it minimizes the quantity RN (g). One
follows this procedure until we obtain a generating vector of full size s.

Observe that we have gi ∈ {0, . . . , N − 1} for all i ∈ [s] := {1, . . . , s}, i.e. in
each step of the algorithm described above there are N possible choices for each
component. Hence the size of the search space for a generating vector g reduces to
sN . To be more precise we actually exclude 0 since the choice of gi = 0 would lead
to bad distributional properties for the generated point set and in order to improve
the distributional properties of the resulting lattice point set even further we restrict
ourselves to search sets of the form GN = {n ∈ {1, . . . , N −1} : gcd(n,N) = 1}. Note
that we have |GN | = ϕ(N), where ϕ is Euler’s totient function and the size of the
search space for g equals sϕ(N). Now the algorithm described above reads as follows:

Algorithm 1.1.13 (CBC algorithm). Let s,N ∈ N.

1. Choose g1 = 1.

2. For d = 2, . . . , s do: choose z = gd ∈ GN such that RN((g1, g2, . . . , gd−1, z), N)
is minimized as a function of z.

The guarantee that the output of this algorithm is indeed a generating vector
which constructs a lattice point set with small (star) discrepancy is given by the next
theorem.

Theorem 1.1.14. Let N be a prime number. If the generating vector g = (g1, . . . , gs)
is constructed with the help of Algorithm 1.1.13 then we have for d ∈ [s] that

DN(PN(gd)) ≤
d

N
+

2d

N
(logN + 1)d, (1.21)

where gd = (g1, . . . , gd).

For a proof of Theorem 1.1.14 we refer to [73, Chapter 4]. Observe that the discrepancy
bound in Theorem 1.1.14 implies

DN(PN(g)) = O
(
(logN)s

N

)

, (1.22)

if g is the output vector of Algorithm 1.1.13. Let us conclude this section with a pure
existence result of Bykovskii [18] in 2012 which uses a different approach and achieves
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a slightly better order of magnitude. For s ≥ 2 and N ≥ 3 there exist g ∈ Zs such
that

DN(PN(g)) = O
(
(logN)s−1 log logN

N

)

, (1.23)

where the implied constant depends on the dimension s.
The construction cost of the standard CBC construction (Algorithm 1.1.13) is

of order O(sN2) (see [71]), where s is the dimension and N the cardinality of the
resulting lattice point set PN(g). The order of magnitude in N and in s of the
construction cost of Algorithm 1.1.13 can be significantly reduced by combining
different ideas and concept of various authors. This topic will be covered in more
detail in Section 1.2.

1.1.4 Formal Laurent series: basic notations

In this thesis we will encounter in several sections objects and definitions which
frequently make use of finite fields, polynomial arithmetic over finite fields and formal
Laurent series. Therefore it is beneficial to introduce some basic notations and provide
some elementary information concerning these notations, which is exactly the aim of
this subsection.

For a prime number p, let Fp be the finite field of prime order p. We identify
Fp with the set {0, 1, . . . , p− 1} equipped with arithmetic modulo p. Moreover, we
denote by Fp[x] the set of polynomials over Fp. In certain situations we want to
identify each n ∈ N with a polynomial in Fp[x]. This is done in the following way:
Each n ∈ N has a unique p-adic expansion of the form n = n0 + n1p+· · ·+ nm−1p

m−1

with digits nr ∈ {0, 1, . . . , p− 1} for r ∈ {0, 1, . . . ,m− 1}. We can therefore associate
to each integer n the uniquely determined polynomial n(x) =

∑p−1
r=0 nrx

r ∈ Fp[x].
The field of formal Laurent series over Fp will be denoted by Fp((x

−1)), i.e.

Fp((x
−1)) =

{ ∞∑

l=ω

tlx
−l : ω ∈ Z, tl ∈ Fp

}

.

Note that we have Fp ⊂ Fp[x] ⊂ Fp((x
−1)). The fractional part of a formal Laurent

series g =
∑∞

l=ω tlx
−l is denoted in the same way as in the real case and defined by

{g} :=
∞∑

l=max{1,ω}
tlx

−l.

Further, we set

Fp((x
−1)) :=

{
{g} : g ∈ Fp((x

−1))
}

(1.24)
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=

{ ∞∑

l=ω

tlx
−l : ω ∈ N, tl ∈ Fp

}

.

Finally, for m ∈ N we introduce the following functions

φm : Fp((x
−1)) → [0, 1), φm

( ∞∑

l=ω

tlx
−l

)

=
m∑

l=ω

tlp
−l, (1.25)

φ : Fp((x
−1)) → [0, 1], φ

( ∞∑

l=ω

tlx
−l

)

=
∞∑

l=ω

tlp
−l. (1.26)

Observe that the function φ is surjective on [0, 1] but not injective since for x ∈ Q∩[0, 1)
with finite p-adic expansion of the form x =

∑L
l=1 tlp

−l and tL 6= 0 we can also write
x =

∑∞
l=1 ulp

−l, where ul = tl for l ∈ {1, . . . , L− 1}, uL = tL − 1 and ul = p− 1 for
l > L. To overcome this problem let us set

C := {g ∈ Fp((x
−1)) : tk = p− 1 for all but finitely many k ≥ 1 }. (1.27)

Note that C is a countable set. Further, we define F
∗
p((x

−1)) := Fp((x
−1)) \ C. Then

one can check that the map

φ : F
∗
p((x

−1)) → [0, 1), φ

( ∞∑

l=ω

tlx
−l

)

=
∞∑

l=ω

tlp
−l

is a bijection.

1.1.5 A digital analogue: polynomial lattice point sets

In Subsection 1.1.3 we studied lattice point sets and algorithms to construct them.
Now we are interested in a certain analogue of lattice point sets which are called
polynomial lattice point sets. Roughly speaking we are switching from integer
arithmetic to arithmetic with polynomials over a finite field.

For a given dimension s ≥ 2 and some integer m ≥ 1 we choose a modulus
f ∈ Fp[x] with deg(f) = m as well as polynomials g1, . . . , gs ∈ Fp[x]. The vector of
polynomials g = (g1, . . . , gs) is again called the generating vector of the polynomial
lattice point set. Moreover, we associate to each n ∈ {0, 1, . . . , pm−1} the polynomial
n(x) as described in Subsection 1.1.4. With this notation the polynomial lattice point
set PN(g, f) is defined as the set of N := pm points of the form

xn =

(

φm

({
n(x)g1(x)

f(x)

})

, . . . , φm

({
n(x)gs(x)

f(x)

}))

∈ [0, 1)s, (1.28)
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where φm is defined as in (1.25) and for (see also [26, Chap. 10]). Observe that the
definition which results in (1.28) is of a similar structure as the definition for lattice
point sets. At first sight the main difference seems to be the switch from integer
arithmetic to arithmetic with polynomials over finite fields. Indeed the development
of lattice point sets and polynomial lattice point sets follows a parallel track but
nevertheless there are certain situations where one is superior to the other (e.g.
in terms of error bounds or the function classes where they yield good results for
numerical integration). For a more detailed comparison see [88].

Niederreiter [80] proved the existence of polynomial lattice point sets with low
star discrepancy by averaging arguments. Generating vectors of good polynomial
lattice point sets can be constructed analogous to generating vectors of lattice point
sets, i.e. by a CBC construction. This can be done by finding suitable analogues for
the quantity RN(g) (see (1.20)) and the search set GN = {1, . . . , N − 1}. Following
this strategy CBC constructions for generating vectors of polynomial lattice point
sets for an irreducible modulus f were provided in [25] and for a reducible f in [22].
In these papers, the authors considered the star discrepancy as well as its weighted
version (see Subsection 1.1.7). In Section 1.2 we will deal with this constructions in
more detail and focus especially on the speed up of them.

Remark 1.1.15. Polynomial lattice point sets are a special case of a more general
class of point sets introduced by Niederreiter in [77] (see also [79, 80]). Later the
name digital nets (see for example [26]) was introduced for this class of point sets.
We will see that there exists an equivalent definition for polynomial lattice point sets
which fits into the framework of digital nets. One of the main characteristic features
of this kind of point sets is their construction. An s-dimensional digital net can be
constructed with the help of s generating matrices.

Definition 1.1.16 (Digital net). Let p ∈ P, m ∈ N and C1, . . . , Cs ∈ Fm×m
p . We call

the point set P = {x1, . . . ,xN} with N = pm a digital net over Fp with generating
matrices C1, . . . , Cs if the elements of P are constructed in the following way:

In order to construct the nth element xn of P we first compute the vector n

which consists of the p-adic digits of n, i.e. n =
∑m−1

k=0 nkp
k and n = (n0, . . . , nm−1)

⊤.
Note that we construct a point set with N = pm elements. Second, for each i ∈ [s]

we set y
(i)
n = (y

(i)
n,1, . . . , y

(i)
n,s)⊤ as

y(i)
n = Cin.

Finally the entries of y
(i)
n are the digits of the ith component of xn. This means we
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set xn = (xn,1, . . . , xn,s) and

xn,i =
y
(i)
n,1

p
+
y
(i)
n,2

p2
+ · · ·+ y

(i)
n,m

pm
for i ∈ [s].

The construction scheme described above can also be generalised to the cases where
p is a prime power or an integer, see [26] and [67, 69, 80], respectively. For a detailed
description of the concept of digital nets we refer the interested reader to [26] or [80].

Let us now have a more detailed look on the digital construction of polynomial
lattice point sets. Let therefore be s,m ∈ N and p ∈ P. Additionally let g =
(g1, . . . , gs) ∈ (Fp[x])

s and fix some f ∈ Fp[x] with deg(f) = m. For i ∈ [s] consider
the formal Laurent series expansion

gi(x)

f(x)
=

∞∑

l=wi

v
(i)
l x

−l ∈ Fp((x
−1)),

where wi ∈ Z with wi ≤ 1 and v
(i)
l ∈ Fp. Now we define the s generating matrices

C1, . . . , Cs of size m×m as

c
(i)
j,r+1 = v

(i)
r+j, (1.29)

where j ∈ [m], r ∈ {0, . . . ,m − 1} and i ∈ [s]. Now the digital net over Fp with
generating matrices C1, . . . , Cs given in (1.29) yields exactly the same point set as
defined in (1.28). For a proof of this statement see, for example, [26, Theorem 10.5].
Moreover, the digital construction for polynomial lattice point sets described above
can be generalised to the case where p is a prime power (see [79]).

1.1.6 Inverse of the star discrepancy

In certain situations and especially in the context of QMC-methods it is useful to
study the following question:

How many points N do we need to ensure a discrepancy smaller than some ε?

Let us put this question on a more mathematical basis. Therefore we define for
N, s ∈ N the minimal star discrepancy

disc∗(N, s) := inf
P⊂[0,1)s

|P|=N

D∗
N(P). (1.30)
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In other words disc∗(N, s) denotes the smallest star discrepancy which can be achieved
by a point set with N elements. Now we can reformulate the question from before as
the following quantity

N∗(ε, s) := min{N ∈ N : disc∗(N, s) ≤ ε}. (1.31)

Often N∗(ε, s) is referred to as the inverse of the star discrepancy.

Remark 1.1.17. The quantity defined in (1.31) is actually just a special example
which is part of a more sophisticated and general theory, called information based
complexity (IBC). In the language of IBC the inverse of the star discrepancy is
a special instance of the so-called information complexity. Here one studies the
behaviour of the information complexity for multivariate continuous problems over
some suitable function class F consisting of s variate functions. It was already
mentioned in Section 1.1.1 that according to the Koksma-Hlawka inequality the
star discrepancy is related to the problem of numerical integration. In IBC one is
interested in the dependence of N∗(ε, s) on the error demand ε and on the dimension
s. If the information complexity depends exponentially on the dimension s or on ε−1

then the corresponding problem is called intractable, otherwise it is called tractable.
In order to classify and categorize the tractable problems, several notions have been
established (see [81, 82]). For example we say that the inverse of the star discrepancy
is polynomially tractable if there exists C > 0, p, q > 0 such that

N∗(ε, s) ≤ Cspε−q.

If p = 0 (i.e. no dependence on the dimension s) we say that the inverse of the star
discrepancy is strongly polynomially tractable. For a detailed and comprehensive
description of tractability theory see [81, 82, 83].

Since the last one and a half decades a lot of effort has been put into the analysis
of the star discrepancy with respect to dimensions s tending to infinity. In a seminal
work by Heinrich, Novak, Wasilkowski and Woźniakowski [45] it has been shown that
there exists an absolute constant C > 0 such that

disc∗(N, s) ≤ C

√
s

N
for all s,N ∈ N (1.32)

(see [45, Theorem 3]). Later Aistleitner [1, Theorem 1] showed that the constant C
can be chosen as C = 10 and recently Gnewuch and Hebbinghaus (to appear) could
improve this result further such that one can choose C = 2.528 . . . . From this and
(1.32) we obtain

N∗(ε, s) ≤ csε−2 with c = 6.394 . . . .
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This means that the star discrepancy is polynomially tractable, see [81, 82]. On
the other hand Hinrichs [48] showed that N∗(ε, s) ≥ csε−1 for all s ∈ N and for
sufficiently small ε > 0. Hence the inverse of the star discrepancy depends linearly on
the dimension, which is also the programmatic title of [45]. However, the determination
of the exact exponent of ε−1 is still an open problem.

1.1.7 Weighted discrepancy

We have already seen several notions of discrepancy in the previous sections. The
motivation for another concept of discrepancy comes from the aim to classify problems
with respect to their tractability properties.

It has been observed in several applications of QMC methods that integrands show
different behaviour concerning different variables in the sense that some variables
are less important than others for the corresponding integration problem. In order
to mathematically model this observations and also gain an advantage from this
information Sloan and Woźniakowski [98] introduced the concept of the weighted
star discrepancy. Therefore weights have been introduced to reflect the influence
of different coordinates on the integration error. Consider weights γ = (γu)u⊆[s] of
nonnegative real numbers, i.e., every group of variables (xi)i∈u is equipped with a
weight γu. Roughly speaking, a small weight indicates that the corresponding variables
contribute little to the integration problem. Now the weighted star discrepancy is
defined as follows.

Definition 1.1.18 (Weighted star discrepancy).
Let γ = (γu)u⊆[s] be given weights, PN = {x1, . . . ,xN} ⊆ [0, 1)s be an N-element
point set and δ(t,PN) be the local discrepancy function of PN (see (1.1)). Then the
weighted star discrepancy of PN is defined as

D∗
N,γ(PN) := sup

t∈(0,1]s
max

∅6=u⊆[s]
γu|δ((tu,1),PN)|,

where (tu,1) denotes the vector (t̃1, . . . , t̃s) with t̃j = tj if j ∈ u and t̃j = 1 if j /∈ u.

First of all note that this concept is indeed a generalisation of the star discrepancy
defined in Definition 1.1.1 since D∗

N,γ = D∗
N if γu = 1 for all u ⊆ [s]. Secondly, we

would like to point out that there also exists a weighted version of the Lp-discrepancy
(see [26, Section 3.6]).

The most common examples of weights studied in the literature are:

• Product weights: The importance of the jth variable is reflected by the jth
sequence element of a non-increasing sequence of positive real numbers (γj)j≥1

with γj ≤ 1. Then we set γu :=
∏

j∈u γj and γ∅ := 1.
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• Finite order weights: Let k ∈ N be the order of the weights. Then γu = 0 for
|u| > k for all u ⊆ [s].

As already indicated in the beginning of this section introducing weights can lead
to improvements in the high-dimensional behaviour of the corresponding discrepancy.
Analogous as in Subsection 1.1.6 we define the inverse of the weighted star discrepancy:

disc∗γ(N, s) : = inf
P⊂[0,1)s

|P|=N

D∗
N,γ(P), (1.33)

N∗
γ(ε, s) : = min{N ∈ N : disc∗γ(N, s) ≤ ε}. (1.34)

Recall that the dependence of the inverse of the star discrepancy on the dimension s
was linear. If we consider the weighted version one can show the following theorem
which was first shown in [49].

Theorem 1.1.19. If the weights γ = (γ
u
)u⊆[s] fulfill the condition

sup
s∈N

max
u⊆[s]

γu
√

|u| <∞

then for all δ ∈ (0, 1) there exists a constant cδ > 0 such that

N∗
γ(ε, s) ≤

⌈
cδ(log s+ 1)1/(1−δ)ε−2/(1−δ)

⌉
. (1.35)

A proof of this theorem can also be found in [26, Theorem 3.65] as well as a
version of this theorem for the weighted Lp-discrepancy.

One can use the notion of the weighted star discrepancy as starting point to
develop a concept for numerical integration in weighted spaces with the help of QMC
rules, where one uses a weighted version of the Koksma-Hlawka inequality in order to
connect the integration error of the QMC rule to the weighted star discrepancy of the
underlying point set. For detailed information in this direction see [26, Sections 2.5
and 3.6] or [98].

We will briefly discuss this concept for functions belonging to the function space
W

(1,1,...,1)
2 ([0, 1]s) =

⊗s
d=1W

1
2 ([0, 1]) with the norm ‖f‖s,γ , where W 1

2 ([0, 1]) is the set
of all absolutely continues functions where the first derivatives belong to L2([0, 1]).
The norm is defined as follows:

‖f‖s,γ :=
∑

∅6=u⊆[s]

γ−1/2
u

∫

[0,1]|u|

∣
∣
∣
∣

∂|u|

∂xu

f(xu, 1)

∣
∣
∣
∣
dxu, (1.36)
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where dxu =
∏

j∈u xj,
∂|u|

∂xu

= ∂|u|

∂xu1 ···∂xuk

and f(xu,1) = f(y1, . . . , ys) with yi = xi if

i ∈ u and yi = 1 else. Moreover, we set

Fs,γ = {f ∈ W
(1,1,...,1)
2 ([0, 1]s) : ‖f‖d,γ <∞}. (1.37)

Then the weighted Koksma-Hlawka inequality states (see [98]) that for f ∈ Fs,γ we
have for the QMC integration error that

∣
∣
∣
∣
∣

∫

[0,1]s
f(x)dx− 1

N

N∑

i=1

f(xi)

∣
∣
∣
∣
∣
≤ ‖f‖s,γD∗

N,γ(P), (1.38)

where P = {x1, . . . ,xN}.
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1.2 A reduced fast construction of polynomial lat-

tice point sets

As already mentioned in Section 1.1.5 there exist constructions for polynomial lattice
point sets which perform well in terms of the resulting star discrepancy or the weighted
star discrepancy. It is the aim of the present section to speed up these constructions
(in the case of the weighted star discrepancy) by reducing the search sets for the
components of the generating vector g of a polynomial lattice point set according
to each component’s importance. We will consider the weighted star discrepancy
as a quality measure for our point sets (see Section 1.1.7). For the weighted star
discrepancy of a polynomial lattice point set with modulus f and generating vector g
we simply write D∗

N,γ(g, f). Moreover we have to consider weights γ = (γu)u⊆[s] of
non-negative real numbers. Then each group of variables xu = (xi)i∈u is equipped
with the weight γu. For the sake of simplicity we will stick to the case of product
weights, i.e. for a non-increasing sequence of positive real numbers (γj)j≥1 with γj ≤ 1.
We set γu :=

∏

j∈u γj and γ∅ := 1. (Note that if we consider a weight for a single
variable xj we have by definition γ{j} = γj and therefore in what follows we we will
not distinguish between the weight γ{j} and the sequence element γj.)

For the rest of this section let p ∈ P, m ∈ N and f ∈ Fp[x] with deg(f) = m.
Additionally, by Gp,m we denote the set of all polynomials g over Fp with deg(g) < m.
Further we define

Gp,m(f) := {g ∈ Gp,m | gcd(g, f) = 1}. (1.39)

Observe that Gp,m(f) denotes the search set of the standard CBC construction for
polynomial lattice point sets described for example in [23, 25]. It is the nature of
product weighted spaces that the components gj of the generating vector have less
and less influence on the quality of the corresponding polynomial lattice point set as
j increases. Roughly speaking this is due to the weights (γj)j≥1 which are assumed
to become ever smaller with increasing index j. We want to exploit this property
in the following way. As the components’ influence is decreasing with the growth of
their indices we want to use less and less time and computational cost to choose these
components. To achieve this we choose them from even smaller search sets, which are
defined as follows. Let w1 ≤ w2 ≤ . . . be a non-decreasing sequence of nonnegative
integers. This sequence of wj ’s is determined in accordance with the weight sequence
(γj)j≥1. Loosely speaking, the smaller γj, the bigger wj is chosen. For w ∈ N0 with
w < m we define Gp,m−w and Gp,m−w(f) analogously to Gp,m and Gp,m(f), respectively.
Further we set Gp,m−w(f) := {1} ⊂ Fp[x] for w ≥ m. For w < m these sets have
cardinality pm−w−1 in the case of an irreducible modulus f and pm−w−1(p−1) for the
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special case f : Fp → Fp, x 7→ xm. We will consider these two cases in what follows.
Finally, for d ∈ [s], we define Gd

p,m−w(f) := Gp,m−w1(f)× · · · ×Gp,m−wd
(f). The idea

is to choose the ith component of g of the form xwigi, where gi ∈ Gp,m−wi
(f), i.e.,

the search set for the ith component is reduced by a factor p−min{wi,m} in comparison
to the standard CBC construction. We will show that under certain conditions on
the weight sequence (γj)≥1 and the parameters wi a polynomial lattice point set
constructed according to the reduced CBC construction has a low weighted star
discrepancy of order N−1+δ for all δ > 0.

The standard CBC construction (cf. [97]) can be done in O(sN2) operations.
To speed up the construction, in a first step, making use of ideas from Nuyens and
Cools [84, 85] on fast Fourier transformation (FFT), the construction cost can be
reduced to O(sN logN), as for example done in [25]. Combining this with the reduced
search sets, which have been described above, we obtain a computational cost that
is independent of the dimension eventually. Reduced CBC constructions have been
introduced first by Dick et al. in [23] for lattice and polynomial lattice point sets
with a small worst case integration error in Korobov and Walsh spaces, respectively,
and have also been investigated in [63] for lattice point sets with small weighted star
discrepancy.

Recall that N∗
γ(s, ε) is the minimal number of points required to achieve a weighted

star discrepancy of at most ε (see Section 1.1.7). To keep the construction cost of
the generating vector low, it is, of course, beneficial to have a small information
complexity and thus to stand a chance to have a polynomial lattice point set of small
size. We will show that our reduced fast CBC algorithm finds a generating vector g
of a polynomial lattice point set that achieves strong polynomial tractability provided
that

∑∞
j=1 γjp

wj <∞ with a construction cost of

O



N logN +min{s, t}N +N

min{s,t}
∑

d=1

(m− wd)p
−wd





operations, where t = max{j ∈ N | wj < m}.
Before stating our main results we would like to discuss a motivating example.

Consider first the standard CBC construction as treated in [22, 25], where wj = 0
for all j ≥ 0. In this case, a sufficient condition for strong polynomial tractability
is
∑∞

j=1 γj < ∞, which for instance is satisfied for the special choices γj = j−2 and

γj = j−1000. However, in the second example the weights decay much faster than in
the first but without any further advantage for the standard CBC construction. We
are able to exploit this decay by introducing the sequence w = (wj)j≥0 such that the
condition

∑∞
j=1 γjp

wj <∞ holds, while still achieving strong polynomial tractability
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(see Corollary 1.2.4). This way, we can reduce the size of the search sets for the
components of the generating vector if the weights γj decay very fast. Consider for
example the weight sequence γj = j−k for some k > 1. For wj = ⌊(k−α) logp j⌋ with
arbitrary 1 < α < k we find

∞∑

j=1

γjp
wj ≤

∞∑

j=1

j−kjk−α =
∞∑

j=1

j−α = ζ(α) <∞,

where ζ denotes the Riemann Zeta function. Observe that for large k, i.e., fast
decaying weights, we may choose smaller search sets and thereby speed up the CBC
algorithm.

1.2.1 A reduced CBC construction

In this section we present a CBC construction for the vector (xw1g1, . . . , x
wsgs) and

an upper bound for the weighted star discrepancy of the corresponding polynomial
lattice point set.

First note that if g ∈ Gs
p,m, then it is known (see [25]) that

D∗
N,γ(g, f) ≤

∑

u⊆[s]
u 6=∅

γu

(

1−
(

1− 1

N

)|u|
)

+Rs
γ(g, f), (1.40)

where in the case of product weights we have

Rs
γ(g, f) =

∑

h∈Gs
p,m\{0}

h·g≡0 mod f

s∏

i=1

rp(hi, γi). (1.41)

Here, for elements h = (h1, . . . , hs) and g = (g1, . . . , gs) in G
s
p,m we define the scalar

product by h · g := h1g1 + · · ·+ hsgs. The numbers rp(h, γ) for h ∈ Gp,m and γ ∈ R
are defined as

rp(h, γ) =

{

1 + γ if h = 0,

γrp(h) otherwise,

where for h = h0 + h1x+ · · ·+ hax
a with ha 6= 0 we set rp(h) =

1

pa+1 sin2(π
p
ha)
. Thus,

in order to analyse the weighted star discrepancy of a polynomial lattice point set
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it suffices to investigate the quantity Rs
γ(g, f). This is due to the result of Joe [55],

who proved that for any summable weight sequence (γj)j≥1 we have

∑

u⊆[s]
u 6=∅

γu

(

1−
(

1− 1

N

)|u|
)

≤ max(1,Γ)e
∑∞

i=1 γi

N
with Γ :=

∞∑

i=1

γi
1 + γi

. (1.42)

Algorithm 1.2.1. Let p ∈ P, m ∈ N, f ∈ Fp[x] with deg(f) = m and let (wj)j≥1

be a non-decreasing sequence of nonnegative integers and consider product weights
(γj)j≥1. Construct (g1, . . . , gs) ∈ Gs

p,m−w(f) as follows:

1. Set g1 = 1.

2. For d ∈ [s− 1] assume that (g1, . . . , gd) ∈ Gd
p,m−w(f) is already found. Choose

gd+1 ∈ Gp,m−wd+1
(f) such that Rd+1

γ ((xw1g1, . . . , x
wdgd, x

wd+1gd+1), f) is mini-
mized as a function of gd+1.

In the algorithm above, the search set is reduced for each coordinate of (g1, . . . , gs)
according to the weight γj, since with increasing wj the search set becomes smaller,
as the weight γj and thus the corresponding component’s influence on the quality of
the generating vector decreases. For this reason we call Algorithm 1.2.1 a reduced
CBC algorithm. We will now study Algorithm 1.2.1 for different choices of f .

1.2.2 Polynomial lattice point sets for f(x) = xm

Let us shift our attention to the interesting case where f : Fp → Fp, x 7→ xm. Through-
out the rest of this section we write xm instead of f to emphasise our special choice of
f . Note that for g ∈ Fp((x

−1)) the Laurent series g/f can be easily computed in this
case by shifting the coefficients of g m times to the left. This is why the choice xm for
the modulus is the most frequently used in practice. Furthermore, the mathematical
analysis of the reduced CBC algorithm is slightly less technical in this case, since the
proof of the following discrepancy bound requires to compute a sum over all divisors
of the modulus f . This is much easier for the special case f(x) = xm than for a
general modulus f . It is the aim of this section to prove the following theorem:

Theorem 1.2.2. Let γ = (γj)j≥1 be positive real numbers and w = (wj)j≥1 be
nonnegative real numbers with 0 = w1 ≤ w2 ≤ . . .. Let further (g1, . . . , gs) ∈
Gs

p,m−w(x
m) be constructed using Algorithm 1.2.1. Then we have for every d ∈ [s]

Rd
γ((x

w1g1, . . . , x
wdgd), x

m) ≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi,m}m

p2 − 1

3p

)

.
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As a direct consequence we obtain the following discrepancy estimate.

Corollary 1.2.3. Let N = pm and γ, w and (g1, . . . , gs) be as in Theorem 1.2.2.
Then the polynomial lattice point set P ((xw1g1, . . . , x

wsgs), x
m) has a weighted star

discrepancy

D∗
N,γ ((x

w1g1, . . . , x
wsgs), x

m)

≤
∑

u⊆[s]
u 6=∅

γu

(

1−
(

1− 1

N

)|u|
)

+
1

N

s∏

i=1

(

1 + γi + γi2p
min {wi,m}m

p2 − 1

3p

)

.

Knowing the above discrepancy bound, we are now ready to ask about the size
of the polynomial lattice point set required to achieve a weighted star discrepancy
not exceeding some ε threshold. In particular, we would like to know how this size
depends on the dimension s and on ε.

Corollary 1.2.4. Let N = pm, γ, and w be as in Theorem 1.2.2. Assume that
(g1, . . . , gs) is constructed according to Algorithm 1.2.1. Then

∑∞
j=1 γjp

wj < ∞
implies

D∗
N,γ ((x

w1g1, . . . , x
wsgs), x

m) = O(N−1+δ),

with the implied constant independent of s, for any δ > 0.

Proof. Construct a generating vector (g1, . . . , gs) ∈ Gs
p,m−w(x

m) by applying Algo-
rithm 1.2.1 and consider its weighted star discrepancy, which is bounded in the
following way due to Corollary 1.2.3:

D∗
N,γ ((x

w1g1, . . . , x
wsgs), x

m)

≤
∑

u⊆[s]
u 6=∅

γu

(

1−
(

1− 1

N

)|u|
)

+
1

N

s∏

i=1

(

1 + γi + γi2p
min {wi,m}m

p2 − 1

3p

)

. (1.43)

Recall that by (1.42) we already know that

∑

u⊆[s]
u 6=∅

γu

(

1−
(

1− 1

N

)|u|
)

= O(N−1), (1.44)
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where the implied constant is independent of N and s. For the second summand in
(1.43) we get

s∏

i=1

(

1 + γi + γi2p
min {wi,m}m

p2 − 1

3p

)

≤
s∏

i=1

(

1 + 3γip
min {wi,m}m

p2 − 1

3p

)

≤
s∏

i=1

(
1 + cpγip

wi logpN
)
,

where cp = (p2 − 1)/p. If we define for d ∈ N0 the quantity σd := cp
∑∞

i=d+1 γip
wi

then it follows by [47, Lemma 3] that

s∏

i=1

(
1 + cpγip

wi logpN
)
≤ (1 + σ−1

d )dN (1+σ0)σd .

Now let δ ∈ (0, 1) and choose d ∈ N0 sufficiently large such that σd ≤ δ(1 + σ0)
−1.

Then we obtain

s∏

i=1

(

1 + γi + γi2p
min {wi,m}m

p2 − 1

3p

)

≤
s∏

i=1

(
1 + cpγip

wi logpN
)
≤ cp,γ,δN

δ, (1.45)

where cp,γ,δ is independent of N and s. Applying the estimates (1.44) and (1.45) to
(1.43) we get that

D∗
N,γ ((x

w1g1, . . . , x
wsgs), x

m) = O(N−1+δ), for δ > 0

and this finishes the proof.

In order to show Theorem 1.2.2 we need several auxiliary results.

Lemma 1.2.5. Let a ∈ Fp[x] be monic. Then we have

∑

h∈Gp,m\{0}
a|h

rp(h) = (m− deg(a))
p2 − 1

3p
p− deg(a).

In particular, for a = 1 this formula yields
∑

h∈Gp,m\{0} rp(h) = mp2−1
3p
.

Proof. This fact follows from [22, p. 1055] (by setting γd+1 = 1). The special case
a = 1 also follows from [25, Lemma 2.2] by setting s = 1.
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For our purposes, it is convenient to write Rs
γ(g, f) from (1.41) in an alternative

way. To this end, we introduce some notation. For a Laurent series L ∈ Fp((x
−1)) we

denote by c−1(L) its coefficient of x−1, i.e., its residuum. Further, we set Xp(L) :=
χp(c−1(L)), where χp is a non-trivial additive character of Fp. One could for instance
choose χp(n) = e(2πi/p)n for n ∈ Fp (see, e.g., [74]). It is clear that Xp(L) = 1 if L is a
polynomial and that Xp(L1 + L2) = Xp(L1)Xp(L2) for L1, L2 ∈ Fp((x

−1)). From [80,
p. 78] we know that for some q ∈ Fp[x] we have

∑

v∈Gp,m

Xp

(
v

f
q

)

=

{

pm if f | q,
0 otherwise.

(1.46)

With this, it is an easy task to show the following formula.

Lemma 1.2.6. We have

Rs
γ(g, f) = −

s∏

i=1

(1 + γi) +
1

pm

∑

v∈Gp,m

s∏

i=1



1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

f
hgi

)


 .

Proof. We start with (1.41) and employ the properties of Xp as stated above to obtain

Rs
γ(g, f) =−

s∏

i=1

(1 + γi) +
1

pm

∑

h∈Gs
p,m

(
s∏

i=1

rp(hi, γi)

)
∑

v∈Gp,m

Xp

(
v

f
h · g

)

=−
s∏

i=1

(1 + γi) +
1

pm

∑

v∈Gp,m

s∏

i=1




∑

hi∈Gp,m

rp(hi, γi)Xp

(
v

f
higi

)




=−
s∏

i=1

(1 + γi) +
1

pm

∑

v∈Gp,m

s∏

i=1



1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

(
v

f
hgi

)


 ,

and the claimed formula is verified.

Now we study a sum which will appear later in the proof of Theorem 1.2.2 and
show an upper bound for it.

Lemma 1.2.7. Let w ∈ N0 and v ∈ Gp,m. Let

Ypm,w(v, x
m) :=

∑

g∈Gp,m−w(xm)

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwg

)

.
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Then we have

1

#Gp,m−w(xm)

∑

v∈Gp,m

|Ypm,w(v, x
m)| ≤ 2pmin{w,m}m

p2 − 1

3p
.

Proof. Let us first assume that w ≥ m. Then we have Gp,m−w(x
m) = {1} and

therefore

Ypm,w(v, x
m) =

∑

h∈Gp,m\{0}
rp(h)Xp(vhx

w−m) =
∑

h∈Gp,m\{0}
rp(h) = m

p2 − 1

3p

with Lemma 1.2.5. Hence, in the case w ≥ m we obtain

1

#Gp,m−w(xm)

∑

v∈Gp,m

|Ypm,w(v, x
m)| = pmm

p2 − 1

3p
≤ 2pmin{w,m}m

p2 − 1

3p
.

For the rest of the proof let w < m. We abbreviate #Gp,m−w(x
m) by #G and write

1

#G

∑

v∈Gp,m

|Ypm,w(v, x
m)| = 1

#G

∑

v∈Gp,m

xm−w|v

|Ypm,w(v, x
m)|+ 1

#G

∑

v∈Gp,m

xm−w∤v

|Ypm,w(v, x
m)|.

In what follows, we refer to the latter sums as

S1 :=
1

#G

∑

v∈Gp,m

xm−w|v

|Ypm,w(v, x
m)| and S2 :=

1

#G

∑

v∈Gp,m

xm−w∤v

|Ypm,w(v, x
m)|.

We may uniquely write any v ∈ Gp,m \ {0} in the form v = qxm−w + ℓ, where
q, ℓ ∈ Fp[x] with deg(q) < w and deg(ℓ) < m − w. Using the properties of Xp it is
clear that Ypm,w(v, x

m) = Ypm,w(ℓ, x
m) and hence

S1 =
1

#G

∑

v∈Gp,m

xm−w|v

|Ypm,w(0, x
m)| =

∑

v∈Gp,m

xm−w|v

1

#G

∑

g∈Gp,m−w(xm)

∑

h∈Gp,m\{0}
rp(h)

=
∑

v∈Gp,m

xm−w|v

m
p2 − 1

3p
= pmin{w,m}m

p2 − 1

3p
.
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We move on to S2. Let e(ℓ) := max{k ∈ {0, 1, . . . ,m−w− 1} : xk | ℓ}. With this
definition we may display S2 as

S2 =
pw

#G

m−w−1∑

k=0

∑

ℓ∈Gp,m−w\{0}
e(ℓ)=k

|Ypm,w(ℓ, x
m)|. (1.47)

We compute Ypm,w(ℓ, x
m) for ℓ ∈ Gp,m−w \ {0} with e(ℓ) = k. Let µp be the Möbius

function on the set of monic polynomials over Fp, i.e., µp : Fp[x] → {−1, 0, 1} and

µp(h) =

{

(−1)ν if h is squarefree and has ν irreducible factors,

0 else.

We call h squarefree if there is no irreducible polynomial q ∈ Fp[x] with deg(q) ≥ 1
such that q2 | h. The fact that µp(1) = 1, µp(x) = −1 and µp(x

i) = 0 for i ∈ N, i ≥ 2,
yields the equivalence of

∑

t|gcd(xm−w,g) µp(t) = 1 and gcd(xm−w, g) = 1. Therefore we
can write

Ypm,w(ℓ, x
m) =

∑

h∈Gp,m\{0}
rp(h)

∑

g∈Gp,m−w

Xp

(
ℓ

xm−w
hg

)
∑

t|gcd(xm−w,g)

µp(t)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t|xm−w

µp(t)
∑

g∈Gp,m−w

t|g

Xp

(
ℓ

xm−w
hg

)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t|xm−w

µp(t)
∑

a∈Gp,m−w−deg(t)

Xp

(
ℓ

xm−w
hat

)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t|xm−w

µp

(
xm−w

t

)
∑

a∈Gp,deg(t)

Xp

(a

t
hℓ
)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t|xm−w

t|hℓ

µp

(
xm−w

t

)

pdeg(t)

=
∑

t|xm−w

µp

(
xm−w

t

)

pdeg(t)
∑

h∈Gp,m\{0}
t|hℓ

rp(h).

The equivalence of the conditions t | hℓ and t
gcd(t,ℓ)

| h yields

Ypm,w(ℓ, x
m) =

∑

t|xm−w

µp

(
xm−w

t

)

pdeg(t)
∑

h∈Gp,m\{0}
t

gcd(t,ℓ)
|h

rp(h).
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We investigate the inner sum and use Lemma 1.2.5 with a = t
gcd(t,ℓ)

to find

∑

h∈Gp,m\{0}
t

gcd(t,ℓ)
|h

rp(h) =

(

m− deg

(
t

gcd(t, ℓ)

))
p2 − 1

3p
p− deg( t

gcd(t,ℓ)).

Now we have

Ypm,w(ℓ, x
m) =

p2 − 1

3p

∑

t|xm−w

µp

(
xm−w

t

)(

m− deg

(
t

gcd(t, ℓ)

))

pdeg(gcd(t,ℓ))

=
p2 − 1

3p
m
∑

t|xm−w

µp

(
xm−w

t

)

pdeg(gcd(t,ℓ))

− p2 − 1

3p

∑

t|xm−w

µp

(
xm−w

t

)

deg

(
t

gcd(t, ℓ)

)

pdeg(gcd(t,ℓ)).

From the fact that e(ℓ) = k ≤ m−w− 1 we obtain gcd(xm−w, ℓ) = gcd(xm−w−1, ℓ) =
xk. This observation leads to

∑

t|xm−w

µp

(
xm−w

t

)

pdeg(gcd(t,ℓ)) = pdeg(gcd(x
m−w,ℓ)) − pdeg(gcd(x

m−w−1,ℓ)) = 0

and

∑

t|xm−w

µp

(
xm−w

t

)

deg

(
t

gcd(t, ℓ)

)

pdeg(gcd(t,ℓ))

=deg

(
xm−w

gcd(xm−w, ℓ)

)

pdeg(gcd(x
m−w,ℓ))−deg

(
xm−w−1

gcd(xm−w−1, ℓ)

)

pdeg(gcd(x
m−w−1,ℓ))

=(m− w − k)pk − (m− w − k − 1)pk = pk.

Altogether we have Ypm,w(ℓ, x
m) = −p2−1

3p
pk. Inserting this result into (1.47) yields

S2 =
pw

#G

p2 − 1

3p

m−w−1∑

k=0

pk
∑

ℓ∈Gp,m−w\{0}
e(ℓ)=k

1.

Since

#{ℓ ∈ Gp,m−w \ {0} : e(ℓ) = k}
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=#{ℓ ∈ Gp,m−w \ {0} : xk | ℓ} −#{ℓ ∈ Gp,m−w \ {0} : xk+1 | ℓ}
=pm−w−k − 1− (pm−w−k−1 − 1) = pm−w−k−1(p− 1),

we have

S2 =
pw

pm−w−1(p− 1)

p2 − 1

3p

m−w−1∑

k=0

pkpm−w−k−1(p− 1)

=pw
p2 − 1

3p
(m− w) ≤ pmin{w,m}m

p2 − 1

3p
.

Summarizing, we have shown

1

#G

∑

v∈Gp,m

|Ypm,w(v, x
m)| = S1 + S2 ≤ 2pmin{w,m}m

p2 − 1

3p
,

which completes the proof.

Now we are ready to prove Theorem 1.2.2 using induction on d.

Proof. We show the result for d = 1. From Lemma 1.2.6 we have

R1
γ((x

w1), xm) =− (1 + γ1) +
1

pm

∑

v∈Gp,m



1 + γ1 + γ1
∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxw1

)





=
γ1
pm

∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxw1

)

.

If w1 ≥ m, then

R1
γ((x

w1), xm) =
γ1
pm

∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h) =

γ1
pm
pmin{w1,m}m

p2 − 1

3p

≤ 1

pm

(

1 + γ1 + γ12p
min{w1,m}m

p2 − 1

3p

)

.

If w1 < m, then we can write

R1
γ((x

w1), xm) =
γ1
pm

∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxw1

)
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=
γ1
pm

∑

h∈Gp,m\{0}
xm−w1 |h

rp(h)
∑

v∈Gp,m

Xp

( v

xm
hxw1

)

+
γ1
pm

∑

h∈Gp,m\{0}
xm−w1 ∤h

rp(h)
∑

v∈Gp,m

Xp

( v

xm
hxw1

)

= γ1
∑

h∈Gp,m\{0}
xm−w1 |h

rp(h),

where we used (1.46) in the latter step. We use Lemma 1.2.5 with a = xm−w1 to
compute

∑

h∈Gp,m\{0}
xm−w1 |h

rp(h) =
1

pm
pw1w1

p2 − 1

3p
≤ 1

pm
pmin{w1,m}m

p2 − 1

3p
,

which leads to the desired result also in this case.
Now let d ∈ [s− 1]. Assume that we have some (g1, . . . , gd) ∈ Gd

p,m−w(x
m) such that

Rd
γ((x

w1g1, . . . , x
wdgd), x

m) ≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi,m}m

p2 − 1

3p

)

.

Let g∗ ∈ Gp,m−wd+1
(xm) be such that Rd+1

γ ((xw1g1, . . . , x
wdgd, x

wd+1gd+1), x
m) is mini-

mized as a function of gd+1 for gd+1 = g∗. Then we have

Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1g∗), xm) = −(1 + γd+1)

d∏

i=1

(1 + γi)

+
1

pm

∑

v∈Gp,m

d∏

i=1



1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwigi

)





×



1 + γd+1 + γd+1

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwd+1g∗

)





=(1 + γd+1)R
d
γ((x

w1g1, . . . , x
wdgd), x

m) + L(g∗), (1.48)

where

L(g∗) =
γd+1

pm

∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwd+1g∗

)

×
d∏

i=1



1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwigi

)



 .
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A minimizer g∗ of Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1gd+1), x

m) is also a minimizer of
L(gd+1). With the ideas in the proof of [25, Theorem 2.7], we see that L(g) ∈ R+

for all g ∈ Gp,m−wd+1
(xm). Thus we may bound L(g∗) by the mean over all

g ∈ Gp,m−wd+1
(xm):

L(g∗) ≤ 1

#Gp,m−wd+1
(xm)

∑

gd+1∈Gp,m−wd+1
(xm)

L(gd+1)

≤γd+1

pm

∑

v∈Gp,m

1

#Gp,m−wd+1
(xm)

×

∣
∣
∣
∣
∣
∣

∑

gd+1∈Gp,m−wd+1
(xm)

∑

h∈Gp,m\{0}
rp(h)Xp

( v

xm
hxwd+1gd+1

)

∣
∣
∣
∣
∣
∣

×
d∏

i=1



1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)

∣
∣
∣Xp

( v

xm
hxwigi

)∣
∣
∣





≤γd+1

pm

d∏

i=1

(

1 + γi + γim
p2 − 1

3p

)
∑

v∈Gp,m

|Ypm,wd+1
(v, xm)|

#Gp,m−wd+1
(xm)

,

where we used the estimate
∣
∣Xp

(
v
xmhx

wigi
)∣
∣ ≤ 1 in the last step. With the induction

hypothesis and Lemma 1.2.7 this leads to

Rd+1
γ ((xw1g1, . . . , x

wdgd, x
wd+1g∗), xm)

≤(1 + γd+1)
1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi,m}m

p2 − 1

3p

)

+
γd+1

pm

d∏

i=1

(

1 + γi + γim
p2 − 1

3p

)

2pmin{wd+1,m}m
p2 − 1

3p

≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi,m}m

p2 − 1

3p

)

×
(

1 + γd+1 + γd+12p
min{wd+1,m}m

p2 − 1

3p

)

=
1

pm

d+1∏

i=1

(

1 + γi + γi2p
min{wi,m}m

p2 − 1

3p

)

.
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The reduced fast CBC construction

So far we have seen how to construct a generating vector g of the point set P(g, xm).
In fact Algorithm 1.2.1 can be made much faster using results of [23, 84, 85]. In this
section we are investigating and improving Algorithm 1.2.1 and additionally analysing
the computational cost of the improved algorithm.
Walsh functions are a suitable tool for analysing the computational cost of CBC
algorithms for constructing polynomial lattice point sets. Let ω = e2πi/p, x ∈ [0, 1)
and h a nonnegative integer with prime base p representation x = x1/p+ x2/p

2 + · · ·
and h = h0 + h1p+ · · ·+ hrp

r, respectively. Then we define

walh : [0, 1) → C,walh(x) := ωh0x1+···+hrxr+1 .

The Walsh function system {walh | h = 0, 1, . . .} is a complete orthonormal basis
in L2([0, 1)) which has been used in the analysis of the discrepancy of digital nets
several times before, see for example [25, 46, 70]. For further information on Walsh
functions see [26, Appendix A].

Let d ≥ 1, N = pm. For P (g, f) = {x0, . . . ,xpm−1} with xn = (x
(1)
n , . . . , x

(s)
n ) we

have the formula (see [25, Sect. 4])

1

pm

pm−1
∑

n=0

s∏

i=1

walhi
(x(i)n ) =

{

1 if g · h ≡ 0 (mod f),

0 otherwise,
(1.49)

where hi are nonnegative integers with base p representation hi = h
(i)
0 + h

(i)
1 p +

· · ·+ h
(i)
r pr. We identify these nonnegative integers hi with the polynomials hi(x) =

h
(i)
0 +h

(i)
1 x+ · · ·+h(i)r xr, which are elements of Gp,m. The vectors h in (1.49) are then

from Gs
p,m such that h = (h1(x), . . . , hs(x)). Equation (1.49) allows us to rewrite

Rd
γ(g, x

m) in the following way:

Rd
γ(g, x

m) = −
d∏

i=1

(1 + γi) +
1

pm

pm−1
∑

n=0

d∏

i=1

pm−1
∑

h=0

rp(h, γi)walh

(

φm

(
nxwigi
xm

))

.

Note that rp(h, γ) is defined as in (1.41) and we identify the integer in base p
representation h = h0+h1p+· · ·+hrpr with the polynomial h(x) = h0+h1x+· · ·+hrxr.
If we set ψ(nx

wigi
xm ) :=

∑pm−1
h=1 rp(h)walh(φm(

nxwigi
xm )) we get that

Rd
γ(g, x

m) = −
d∏

i=1

(1 + γi) +
1

pm

pm−1
∑

n=0

d∏

i=1

(

1 + γi + γiψ

(
nxwigi
xm

))

34



= −
d∏

i=1

(1 + γi) +
1

pm

pm−1
∑

n=0

ηd(n), (1.50)

where ηd(n) =
∏d

i=1

(
1 + γi + γiψ(

nxwigi
xm )

)
.

In [25, Sect. 4] it is proved that we can compute the at most N different values of
ψ( r

xm ) for r ∈ Gp,m in O(N logN) operations.
Let us study one step of the reduced CBC algorithm. Assuming we already have found
(g1, . . . , gd) ∈ Gd

p,m−w(x
m) we have to minimize Rd+1

γ ((xw1g1, . . . , x
wd+1gd+1), x

m) as a
function of gd+1 ∈ Gp,m−wd+1

(xm). If wd+1 ≥ m then gd+1 = 1 and we are done. Let
now wd+1 < m. From (1.50) we have that

Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), x
m)

=−
d+1∏

i=1

(1 + γi) +
1

pm

pm−1
∑

n=0

(

1 + γd+1 + γd+1ψ

(
nxwd+1gd+1

xm

))

ηd(n).

In order to minimize Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), x
m) it is enough to minimize

Td(g) :=
∑pm−1

n=0 ψ(nx
wd+1g
xm )ηd(n). As in [23, Sect. 4] we can represent this quan-

tity using some specific (pm−wd+1−1(p−1)×N)-matrix A and exploiting its additional
structure. Let therefore

A =

(

ψ

(
nxwd+1g

xm

))

g∈Gp,m−wd+1
(xm),

n∈{0,...,N−1}
and ηd = (ηd(0), . . . , ηd(N − 1))⊤.

First of all observe that we get (Td(g))g∈Gp,m−wd+1
(xm) = Aηd. Secondly the matrix A

is a block matrix and can be written in the following form

A =
(
Ω(m−wd+1) . . .Ω(m−wd+1)

)
, where Ω(l) =

(

ψ

(
nxwd+1g

xm

))

g∈Gp,m−wd+1
(xm),

n∈{0,...pl−1}
.

If x is any vector of size pm then we compute

Ax = Ω(m−wd+1)x1 + · · ·+ Ω(m−wd+1)xpwd+1 = Ω(m−wd+1)(x1 + · · ·+ xpwd+1 ),

where x1 is the vector consisting of the first pm−wd+1 components of x, x2 is the
vector consisting of the next pm−wd+1 components of x and so on. Now we apply
the machinery of [84, 85] and get that multiplication with Ω(m−wd+1) can be done in
O((m− wd+1)p

m−wd+1) operations. Summarizing we have:

35



Algorithm 1.2.8.

1. Compute ψ( r
xm ) for r ∈ Gp,m.

2. Set η1(n) = ψ(nx
w1g1
xm ) for n = 0, . . . , pm − 1.

3. Set g1 = 1, d = 2 and t = max{j ∈ [s] | wj < m}. While d ≤ min{s, t},

(a) Partition ηd−1 into pwd vectors η
(1)
d−1, . . . , η

(pwd )
d−1 of length pm−wd and let

η′ =
∑pwd

i=1 η
(i)
d−1.

(b) Let (Td−1(g))g∈Gp,m−wd
(xm) = Ω(m−wd)η′.

(c) Let gd = argming Td−1(g).

(d) Let ηd(n) = (1 + γd−1 + γd−1ψ(
nxwdgd

xm ))ηd−1(n)

(e) Increase d by 1.

4. If s ≥ t then set gt = gt+1 = . . . = gs = 1.

Similar to [23] we obtain from the results in this section the following theorem:

Theorem 1.2.9. Let N = pm then the cost of Algorithm 1.2.8 is

O



N logN +min{s, t}N +N

min{s,t}
∑

d=1

(m− wd)p
−wd



 .

1.2.3 Polynomial lattice point sets for irreducible f

Finally we want to consider the special case where f is an irreducible polynomial. So,
for this section let f be an irreducible polynomial over Fp with deg(f) = m. We will
prove the subsequent theorem.

Theorem 1.2.10. Let γ and w as in Theorem 1.2.2 and let f ∈ Fp[x] be an irreducible
polynomial with deg(f) = m. Let further (g1, . . . , gs) ∈ Gs

p,m−w(f) be constructed
according to Algorithm 1.2.1. Then we have for every d ∈ [s]

Rd
γ((x

w1g1, . . . , x
wdgd), f) ≤

1

pm

d∏

i=1

(

1 + γi + γip
min{wi,m}m

p+ 1

3

)

.
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Proof. We will prove this result by induction on d. According to Algorithm 1.2.1 we
know that g1 = 1 for d = 1. Therefore R1

γ((x
w1g1), f) = 0 since for all h ∈ Gp,m we

have deg(h) < m and hence the congruence hxw1 ≡ 0 (mod f) has no solutions.
Let d ∈ [s− 1] and assume that we have already found (g1, . . . , gd) ∈ Gd

p,m−w(f). For
g = (xw1g1, . . . , x

wdgd) we have from (1.41) that

Rd+1
γ ((g, xwd+1gd+1), f) = (1 + γd+1)R

d
γ(g, f) + θ(gd+1), (1.51)

where

θ(gd+1) =
∑

hd+1∈Gp,m\{0}
rp(hd+1, γd+1)

∑

h∈Gd
p,m

h·g≡−hd+1x
wd+1gd+1 (mod f)

d∏

i=1

rp(hi, γi).

We now proceeded similarly as in the proof of Theorem 1.2.2. Let g∗ ∈ Gp,m−wd+1
(f)

be a minimizer of Rd+1
γ ((g, xwd+1gd+1), f) as a function of gd+1. Therefore g∗ also

minimizes θ(gd+1). Bounding θ(g
∗) by its mean we obtain

θ(g∗) ≤ 1

#Gp,m−wd+1
(f)

∑

hd+1∈Gp,m\{0}
rp(hd+1, γd+1)

×
∑

h∈Gd
p,m

(
d∏

i=1

rp(hi, γi)

)
∑

gd+1∈Gp,m−wd+1
(f)

h·g≡−hd+1x
wd+1gd+1 (mod f)

1.

Observe that gcd(f, hd+1x
wd+1) = 1. Therefore the congruence hd+1x

wd+1gd+1 ≡ −h·g
(mod f) has a unique solution in Gp,m but not necessarily in Gp,m−wd+1

(f). In the case
that −h ·g 6≡ 0 (mod f) we conclude that the congruence has at most one solution in
Gp,m−wd+1

(f). If −h · g ≡ 0 (mod f) the congruence has no solution in Gp,m−wd+1
(f)

since 0 6∈ Gp,m−wd+1
(f). Hence we find by an application of [25, Lemma 3.3]

θ(g∗) ≤ 1

#Gp,m−wd+1
(f)

∑

hd+1∈Gp,m\{0}
rp(hd+1, γd+1)

∑

h∈Gd
p,m

d∏

i=1

rp(hi, γi)

=
1

#Gp,m−wd+1
(f)

[
d∏

i=1

(

1 + γi + γim
p2 − 1

3p

)](

γd+1m
p2 − 1

3p

)

.
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By (1.51) and the induction hypothesis we have that

Rd+1
γ ((g, xwd+1gd+1), f) = (1 + γd+1)R

d
γ(g, f) + θ(gd+1)

≤ 1

pm

d∏

i=1

(

1 + γi + γip
min{wi,m}m

p+ 1

3

)

×
(

1 + γd+1 + γd+1
pm

#Gp,m−wd+1
(f)

m
p2 − 1

3p

)

≤ 1

pm

d+1∏

i=1

(

1 + γi + γip
min{wi,m}m

p+ 1

3

)

,

where we used in the latter step that pm

#Gp,m−wd+1
(f)

≤ p
p−1

pmin{wd+1,m}. This follows

from the fact that #Gp,m−wd+1
(f) = pm−wd+1 − 1 if wd+1 < m and #Gp,m−wd+1

(f) = 1
if wd+1 ≥ m. This finishes the proof of Theorem 1.2.10.

As a consequence of (1.40) and Theorem 1.2.10 we obtain analogous results to
Corollary 1.2.3 and Corollary 1.2.4 for an irreducible modulus f .
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1.3 Metrical star discrepancy bounds for subse-

quences of digital Kronecker-sequences

We already pointed out in Subsection 1.1.1 that the star discrepancy is a quantitative
measure for the irregularity of distribution of a point set P and it is also intimately
related to the integration error of a QMC algorithm via the celebrated Koksma-
Hlawka inequality. Therefore it is natural to study disc∗(N, s) = infP D∗

N(P), where
the infimum is extended over all N -element point sets P in [0, 1)s and the so-called
inverse of the star discrepancy (see Subsection 1.1.6)

N∗(ε, s) = min{N ∈ N : disc∗(N, s) ≤ ε},

where ε ∈ (0, 1]. For fixed dimension s ≥ 2 it is known that there exist 0 < cs < Cs

and ηs ∈ (0, 1
2
) such that

cs
(logN)

s−1
2

+ηs

N
≤ disc∗(N, s) ≤ Cs

(logN)s−1

N
for all N ≥ 2.

In this section we consider a different view point. It was pointed out in several
discussions that the excellent asymptotic behaviour of the minimal star discrepancy
of N -element point sets is not very useful for practical applications, especially when
the dimension s is not small. For example it should be noted that N 7→ (logN)s−1/N
does not start to decrease until N = exp(s − 1) and this number is already huge
for moderately large s. In applications of QMC-algorithms however the dimension s
could be in the hundreds (see [24, 73]).
Recall from Subsection 1.1.6 that we know by an outstanding work by Heinrich, Novak,
Wasilkowski and Woźniakowski [45] that there exists a constant C > 0 (Aistleitner
showed in [1, Theorem 1] that one can choose C = 10) such that

disc∗(N, s) ≤ C

√
s

N
for all s,N ∈ N. (1.52)

This bound trades a factor of N−1/2 for a gain in the behaviour concerning the
dimension s. At this point one should mention that there exists also a slightly weaker
bound proven in [45, Theorem 1] which is of the form

disc∗(N, s) ≤ C

√
s

N
(log s+ logN)1/2. (1.53)

The proof in [1] and also the proof of the slightly weaker bound in [45, Theorem 1]
uses the probabilistic method. The main ingredient is the fact that one can obtain
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extremely small probabilities for the deviation from the mean for sums of independent
random variables. This probability can be quantified with the help of Bernstein’s (in
[1]) or Hoeffding’s (in [45]) inequality, respectively. In fact, the point sets in [1, 45]
consist of N independently chosen random points from the unit cube [0, 1)s.

However, so far no explicit construction of point sets whose star discrepancy
satisfies a bound like (1.52) or (1.53) is known. Some authors, initiated in [28],
presented algorithmic constructions of point sets with star discrepancy of order (1.53).
We refer to the survey [37] for more information and references in this direction.
However, all these constructions have the disadvantage that their run times are too
large in order to be applied in practical applications with large dimension s. So there
is still need for a really explicit construction.

In 2014 Löbbe [75] studied certain lacunary subsequences of Kronecker-sequences
({nα})n≥0, whereα ∈ Rs and where {·} denotes the fractional part applied component-
wise to a vector (until now the paper is only available via arXiv.org). Based on the
work of Aistleitner [2], Löbbe was able to prove the following remarkable metrical
result which can be interpreted as a semi-probabilistic (or semi-constructive) version
of (1.53).

For α ∈ [0, 1)s let PN(α) = {x1, . . . ,xN} be the point set consisting of the first
N elements of the infinite sequence (xn)n≥1 in [0, 1)s with xn = {2n−1α} for n ∈ N.

Theorem 1.3.1 (Löbbe [75, Theorem 1.1]). Let N ≥ 1 and s ≥ 2 be integers. Then
for every θ ∈ (0, 1) there is a quantity C(θ) > 0 such that the star discrepancy of the
point set PN(α) satisfies

D∗
N(PN(α)) ≤ C(θ)

√

s log s

N

with probability at least 1− θ. The quantity C(θ) is of order O(log θ−1).

The main problem in the proof of this result is to prove independence of certain
random variables, which are closely related to the point set P(α), in order to
be able to apply Bernstein’s inequality. Of course, the elements of the classical
Kronecker-sequence are not independent. For this reason the author studied lacunary
subsequences of the form ({2n−1α})n≥1 which led then to the desired independence
properties.

Theorem 1.3.1 makes an assertion for fixed N , i.e. for finite point sets. In
2007 Dick [20] considered the problem of the dependence of star discrepancy on the
dimension s also for infinite sequences and he gave an existence result. Compared to
the bound (1.52) for finite point sets the generalisation is penalised with an extra√
logN -factor in the discrepancy estimate. Later Aistleitner [2] improved this further
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and got rid of the
√
logN -term. In contrast to the probabilistic approaches in, e.g.,

[45, 20], the proof in [2] is, like in [75], also of a semi-probabilistic nature in the sense
that certain coordinates of the points are deterministic others are chosen randomly.
This once more shows the relevance of semi-probabilistic constructions in this context.

The following corollary to Theorem 1.3.1 addresses a metrical result for infinite
sequences:

Corollary 1.3.2. Let s ∈ N with s ≥ 2. Then for every δ ∈ (0, 1) there is a quantity
C(δ) > 0 such that the star discrepancy of PN(α) satisfies

D∗
N(PN(α)) ≤ C(δ)(logN)

√

s log s

N
for all N ≥ 2

with probability at least 1− δ. We have C(δ) = O (log δ−1).

Concerning the proof of Corollary 1.3.2 we will refer to Section 1.3.2.

There is an interesting connection of Corollary 1.3.2 to the theory of normal
numbers which is worth to be mentioned: it is well-known that a real number α is
normal to base 2, if and only if the sequence ({2n−1α})n≥1 is uniformly distributed
modulo one (see [64, Chapter 1, Theorem 8.1]). Hence the α’s which satisfy the
discrepancy estimate in Corollary 1.3.2 are s-tuples of normal numbers to base 2. (By
another well-known result due to Borel [15] almost all numbers α ∈ [0, 1] are normal
to every base b ≥ 2.)

It should also be mentioned, that metrical bounds on the star discrepancy of
classical Kronecker-sequences for fixed s have been given by Beck in [10].

In the following subsection we study digital Kronecker-sequences which are a
“non-Archimedean analogue” to classical Kronecker-sequences and which fit into the
class of digital (t, s)-sequences. This concept was introduced by Niederreiter [80,
Section 4] and further investigated by Larcher and Niederreiter [68]. We will give
a digital analogue of Theorem 1.3.1. In the next section we provide the necessary
definitions and we formulate the metrical discrepancy estimate. The proof of our
result will be presented in Section 1.3.2.

1.3.1 Digital Kronecker-sequences and formulation of the

main result

We will continue by introducing digital Kroecker-sequences over Fq where q is a prime.
Recall that we have already defined several notions which are related to the field of
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formal Laurent series Fq((t
−1)) in Subsection 1.1.4. Among others we described a

way for uniquely associating a ploynomial n(t) to each integer n.

Remark 1.3.3. Note that due to readability we will from now on alter the notation
from Fp((x

−1)) to Fq((t
−1)).

With the help of this notation we are now able to state the subsequent definition:

Definition 1.3.4. For a given s-tuple f = (f1, . . . , fs) of elements of Fq((t
−1)) the

sequence S(f) = (yn)n≥0 given by

yn = φ({nf}) = (φ({nf1}), . . . , φ({nfs})) for all n ∈ N0

is called a digital Kronecker-sequence over Fq. Note that the multiplication of the
polynomial n and the Laurent series fj is carried out in Fq((t

−1)). (Obviously it suffices
to choose f ∈ (Fq((t

−1)))s.) Moreover, the operations {·} and φ are understood
component-wise if they are applied to vectors.

In order to prove a metrical result for digital Kronecker-sequences we need to
introduce a suitable probability measure on (Fq((t

−1)))s.

Definition 1.3.5. By µ we denote the normalized Haar-measure on Fq((t
−1)) and

by µs the s-fold product measure on (Fq((t
−1)))s.

Remark 1.3.6. The measure µ has the following rather simple shape: If we identify
the elements

∑∞
k=1 gkt

−k of Fq((t
−1)) where gk 6= q − 1 for infinitely many k in

the natural way with the real numbers
∑∞

k=1 gkq
−k ∈ [0, 1) (see Subsection 1.1.4),

then, by neglecting the countably many elements where gk 6= q − 1 only for finitely
many k, µ corresponds to the Lebesgue measure λ on [0, 1). For example, the
“cylinder set” C(c1, . . . , cm) consisting of all elements g =

∑∞
k=1 gkt

−k from Fq((t
−1))

with gk = ck for k = 1, . . . ,m and arbitrary gk ∈ Fq for k ≥ m + 1 has measure
µ(C(c1, . . . , cm)) = q−m.

Metrical results for the star discrepancy of digital Kronecker-sequences for fixed
dimension s can be found in [66, 71]. In the following we provide a non-Archimedean
version of the result of Löbbe [75].

We pick f ∈ (Fq((t
−1)))s randomly and determine the point set PN(f) =

{x1, . . . ,xN} consisting of the first N elements of the infinite sequence (xn)n≥1

in [0, 1)s with xn = φ({tn−1f}) for n ∈ N.
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Theorem 1.3.7. Let q be a prime number and let N, s ∈ N with N, s ≥ 2. Then for
every ε ∈ (0, 1) there is a quantity C(q, ε) > 0 such that the star discrepancy of the
point set PN(f) satisfies

D∗
N(PN(f)) ≤ C(q, ε)

√

s log s

N

with µs-probability at least 1− ε. The quantity C(q, ε) is of order Oq(log ε
−1).

The proof of this result will be presented in the next section. It should be
mentioned that with some more effort the quantity C(q, ε) could be given explicitly.

Again Theorem 1.3.7 makes an assertion for fixed N , i.e. for finite point sets.
From this we can again deduce a metrical result for infinite sequences:

Corollary 1.3.8. Let q be a prime number and let s ∈ N with s ≥ 2. Then for every
δ ∈ (0, 1) there is a quantity C(q, δ) > 0 such that the star discrepancy of PN(f)
satisfies

D∗
N(PN(f)) ≤ C(q, δ)(logN)

√

s log s

N
for all N ≥ 2

with probability at least 1− δ and C(q, δ) = Oq(log δ
−1).

The proof of Corollary 1.3.8 will be presented in Section 1.3.2.

1.3.2 The proof of Theorem 1.3.7

The proof of Theorem 1.3.7 is inspired by the techniques used in [75]. The difficulty
here is that we are concerned with polynomial arithmetic over finite fields instead of
the usual integer arithmetic.

Throughout the proof we tacitly assume that all components of f belong to the
class of Laurent series

∑∞
k=1 gkt

−k of Fq((t
−1)) where gk 6= q− 1 for infinitely many k.

Recall that with the notation introduced in Subsection 1.1.4 this means that

f ∈
(

F
∗
q((t

−1))
)s

=
(
Fq((t

−1)) \ C
)s

and µ(C) = 0.

Some auxiliary results

As in [1, 75] the proof will be based on Bernstein’s inequality for sums of independent
random variables.
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Lemma 1.3.9 ([12], Bernstein inequality). Let N ∈ N and X1, . . . , XN be independent
random variables on a probability space (Ω,F ,P) with E(Xi) = 0 and |Xi| ≤ C for
i ∈ {1, . . . , N} and some C > 0. Then we have for any t > 0

P

(∣
∣
∣
∣
∣

N∑

i=1

Xi

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(

− t2

2
∑N

i=1 E(X
2
i ) +

2Ct
3

)

.

Another very important tool in our analysis are bracketing covers whose definition
is recalled below. As usual, for a = (a1, . . . , as) and b = (b1, . . . , bs) in [0, 1]s we write
a ≤ b if and only if ai ≤ bi for all i ∈ [s].

Definition 1.3.10. Let δ > 0. A subset τ ⊆ [0, 1]s × [0, 1]s is called a δ-bracketing
cover if for every x ∈ [0, 1]s there exists (v,w) ∈ τ such that v ≤ x ≤ w and
λ([0,w)\[0,v)) ≤ δ.

The following result about the number of elements of a δ-bracketing cover is due
to Gnewuch:

Lemma 1.3.11 (Gnewuch [36, Theorem 1.15]). For any s ∈ N and any δ > 0 there
exists a δ-bracketing cover τ with

|τ | ≤ 1
2
(2e)s(δ−1 + 1)s .

From this result Löbbe deduced the following corollary:

Corollary 1.3.12 (Löbbe [75, Corollary 2.3]). Let s, h ∈ N and q ≥ 2, then there
exists a q−h-bracketing cover τh with

1. |τh| ≤ 1
2
(2e)s(qh+2 + 1)s, and

2. for (v,w) ∈ τh and every i ∈ [s] there exist ai ∈ {0, 1, . . . , qh+1+⌈logq s⌉} and
bi ∈ {0, 1, . . . , qh+2+⌈logq s⌉} such that

vi =
ai

qh+1+⌈logq s⌉
and wi =

wi

qh+2+⌈logq s⌉
.

Preliminaries

Let N, s ∈ N and fix some H ∈ N. For h ∈ {1, . . . , H} let τh be a q−h-bracketing cover
of [0, 1)s with elements described as in Corollary 1.3.12. Let y ∈ [0, 1)s. We are going
to define inductively a finite sequence of points βh(y) ∈ [0, 1)s for h ∈ {0, . . . , H + 1}
in the following way:
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1. Let βH(y),βH+1(y) ∈ [0, 1)s with βH(y) ≤ y ≤ βH+1(y) and the tuple
(βH(y),βH+1(y)) ∈ τH .

2. For h ∈ {1, . . . , H − 1} let βh(y) ∈ [0, 1)s be such that there exists a point
w ∈ [0, 1)s with βh(y) ≤ βh+1(y) ≤ w and (βh(y),w) ∈ τh.

3. Set β0(y) = 0 = (0, . . . , 0), the s-dimensional zero-vector.

4. Additionally we choose the points βh such that the following property is fulfilled.
For x,y ∈ [0, 1)s and h ∈ {0, . . . , H − 1} we have that

βh+1(y) = βh+1(x) ⇒ βh(y) = βh(x) .

An illustration of a possible configuration in two dimensions of the points
β0,β1(y), . . . ,βH+1(y) is given in Figure 1.1. Observe that the hatched areas have
measure at most q−h and q−H , respectively due to the construction procedure de-
scribed above.

1

1

β0

0

β1

β2
...

w
...

βH

βH+1

βh

βh+1

y

Figure 1.1: Illustration of the points βi(y) = βi for i ∈ {0, . . . , H + 1} and s = 2.

Note that the sequence of points βh(y) is well defined for h ∈ {0, . . . , H+1} since
we choose τh to be a q−h-bracketing cover. For y ∈ [0, 1)s we observe the following
properties for the finite sequence βh(y):
We have
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1. 0 = β0(y) ≤ β1(y) ≤ · · · ≤ βH(y) ≤ y ≤ βH+1(y) ≤ 1;

2. for all h ∈ {0, . . . , H − 1} there exists w ∈ [0, 1)s such that βh(y) ≤ βh+1(y) ≤
w and (βh(y),w) ∈ τh. Additionally we have that (βH(y),βH+1(y)) ∈ τH ;

3. for all h ∈ {0, . . . , H} and i ∈ [s] we have that

(βh(y))i = q−(h+1+⌈logq s⌉)ah,i

and

(βH+1(y))i = q−(H+2+⌈logq s⌉)bH+1,i

for ah,i ∈
{
0, 1, . . . , qh+1+⌈logq s⌉

}
and bH+1,i ∈

{
0, 1, . . . , qH+2+⌈logq s⌉

}
.

The properties 1. and 2. are an immediate consequence of the definition of the βh(y)
and property 3. follows directly from Corollary 1.3.12.

Moreover, for h ∈ {0, . . . , H} we define

Kh(y) := [0,βh+1(y))\[0,βh(y)) (1.54)

and observe that the Kh(y) are pairwise disjoint sets. By the definition respectively
property 2. of βh(y) we obtain

H−1⋃

h=0

Kh(y) ⊆ [0,y) ⊆
H⋃

h=0

Kh(y) and λ(Kh(y)) ≤ q−h. (1.55)

An illustration of the points β0(y), . . . ,βH+1(y) together with the corresponding
sets Kh(y) for h ∈ {0, . . . , H} in two dimensions can be found in Figure 1.2.

Finally for {0, . . . , H} define Sh := {Kh(y) : y ∈ [0, 1)s}. Note that by definition
of the βh(y) and Corollary 1.3.12 we have

|SH | =
∣
∣
{
(βH(y),βH+1(y)) : y ∈ [0, 1)s

}∣
∣ ≤ |τH | ≤

1

2
(2e)s(qH+2 + 1)s.

With point 4. in the definition of the βh(y) we get for h ∈ {0, . . . , H − 1} that

|Sh| =
∣
∣
{
βh+1(y) : y ∈ [0, 1)s

}∣
∣ ≤ |τh+1| ≤

1

2
(2e)s(qh+3 + 1)s.
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1

1

β0

0

...

...

β1

K0(y)

β2

K1(y)

βh

βh+1
Kh(y)

y

βH

βH+1

KH(y)

Figure 1.2: Illustration of K0(y), . . . ,KH(y) for s = 2.

Fix y ∈ [0, 1)s. In order to simplify the notation from now on we will write βh

and Kh instead of βh(y) and Kh(y), respectively . Then by (1.55) we get that

N∑

n=1

✶[0,y)(xn) ≥
N∑

n=1

✶[0,βH)(xn) =
H−1∑

h=0

N∑

n=1

(

✶Kh
(xn)− λ(Kh)

)

+N
H−1∑

h=0

λ(Kh)

(1.56)

and

N∑

n=1

✶[0,y)(xn) ≤
N∑

n=1

✶[0,βH+1)(xn) =
H∑

h=0

N∑

n=1

(

✶Kh
(xn)− λ(Kh)

)

+N

H∑

h=0

λ(Kh).

(1.57)

Let us define the functions ∆Kh
: [0, 1)s → [−1, 1], ∆Kh

(x) := ✶Kh
(x) − λ(Kh)

for h ∈ {0, . . . , H}. A crucial step for the proof of the main result will be to use
Bernstein’s inequality to give a lower bound on the probability that the inequality
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∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
≤ th

holds simultaneously for all h ∈ {0, . . . , H} and for some th > 0 to be specified
later. First of all observe that E(∆Kh

(xn)) = 0, E(∆Kh
(xn)

2) = λ(Kh)(1− λ(Kh))
and |∆Kh

(xn)| ≤ 1 for all h ∈ {0, . . . , H} and n ∈ {1, . . . , N}. Unfortunately
for h ∈ {0, . . . , H} the random variables ∆Kh

(x1),∆Kh
(x2), . . . ,∆Kh

(xN) are not
independent in general. We will see how to overcome this problem in the next section.

Independence of ∆Kh
(xn)

Before we begin we point out the following easy algebraic characterization of Laurent
series whose image under φ belongs to a certain type of intervals: for p ∈ F

∗
q((t

−1))
of the form p = p1t

−1 + p2t
−2 + p3t

−3 + · · · , for r ∈ N and k ∈ {0, . . . , qr − 1} with
q-adic expansion k = k0 + k1q + · · ·+ kr−1q

r−1 we have that

φ(p) ∈
[
k

qr
,
k + 1

qr

)

⇔ p1 = kr−1, p2 = kr−2, . . . , pr = k0.

Throughout the proof the underlying probability measure is the measure µs from
Definition 1.3.5. However, out of habit we will in the following denote the probability
by P.

Lemma 1.3.13. Let κh := log2(h + 2 + ⌈logq s⌉) and let γ ∈ {0, . . . , 2κh − 1}.
Moreover, let

Q(N, κh, γ) := {n ∈ {1, . . . , N} : n ≡ γ (mod 2κh)} .

Then for n1, . . . , nl ∈ Q(N, κh, γ) and l ∈ {1, . . . , |Q(N, κh, γ)|} the random variables
∆Kh

(xn1),∆Kh
(xn2), . . . ,∆Kh

(xnl
) are independent, i.e.

P(∆Kh
(xn1) = c1, . . . ,∆Kh

(xnl
) = cl) =

l∏

r=1

P(∆Kh
(xnr

) = cr) .

Proof. The proof is based on the ideas from [75]. We will show the case l = 2.
The general case follows by induction. Let h ∈ {0, . . . , H}, γ ∈ {0, . . . , 2κh − 1}
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and n,m ∈ Q(N, κh, γ) with n > m. We want to show that ∆Kh
(xn),∆Kh

(xm) are
independent. To this end we consider the following decomposition of [0, 1)s:

Σn−1 :=

{
s∏

i=1

[
ai
qn−1

,
ai + 1

qn−1

)

: ai ∈ {0, . . . , qn−1 − 1}
}

.

Since the underlying structure of the sequence (xk)k≥1 is Fq((t
−1)) we are considering

the preimage of Σn−1.

Λn−1 :=
{

φ−1(S) ∩
(

F
∗
q((t

−1))
)s

: S ∈ Σn−1

}

,

where φ is given in (1.26). For A = (ai,j)
s,n−1
i=1,j=1 ∈ F

s×(n−1)
q let us define

BA :=
s∏

i=1

{

g ∈ F
∗
q((t

−1)) : (g1, . . . , gn−1) = (ai,1, . . . , ai,n−1)
}

,

where (ai,1, . . . , ai,n−1) is the i-th row of A. One can easily check that

Λn−1 =
{
BA : A ∈ Fs×(n−1)

q

}
.

For matrices A1, A2 ∈ F
s×(n−1)
q , Aj = (aj,i,k)

s,n−1
i=1,k=1 for j ∈ {1, 2} we define

αA1,A2 : (Fq((t
−1)))s → (Fq((t

−1)))s, (1.58)

(g(1), . . . , g(s)) 7→ (g(1) + u
(1)
A1A2

, . . . , g(s) + u
(s)
A1A2

), (1.59)

where for i ∈ [s], u
(i)
A1A2

=
∑∞

k=1 u
(i)
A1A2,k

t−k ∈ Fq((t
−1)) and

u
(i)
A1A2,k

=

{

a2,i,k − a1,i,k if 1 ≤ k ≤ n− 1,

0 if k > n− 1.

With this definition we have

αA1,A2(BA1) = BA2 .

Before we can prove the independence of ∆Kh
(xn) and ∆Kh

(xm) we need to show
four claims:

Claim 1.3.14. Let c ∈ R, A1, A2 ∈ F
s×(n−1)
q , f ∈ BA1 and (yn)n≥1 in [0, 1)s with

yn = φ({tn−1f}) with f = αA1A2(f). Then we have that

P
(
∆Kh

(xn) = c | f ∈ BA1) = P(∆Kh
(yn) = c | f ∈ BA2

)
.
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Proof of Claim 1.3.14: For i ∈ [s] we have that

yn,i = φ({tn−1f
(i)}) = φ({tn−1f (i) + tn−1u

(i)
A1A2

)}) = φ({tn−1f (i)}) = xn,i.

Note that the second last equality is true because u
(i)
A1A2,k

= 0 for k ≥ n. Additionally

it holds that f ∈ BA1 ⇔ f ∈ BA2 . Therefore the claim follows.

Claim 1.3.15. Let h ∈ {0, . . . , H} and p = (p(1), . . . , p(s)) ∈ (F
∗
q((t

−1)))s with

p(i) =
∑∞

j=1 p
(i)
j t

−j. Then the s(h+ 2 + ⌈logq s⌉) coefficients p
(i)
1 , . . . , p

(i)
h+2+⌈logq s⌉ for

i ∈ [s] determine if φ(p) ∈ Kh.

Proof of Claim 1.3.15: For p = (p(1), . . . , p(s)) ∈ (F
∗
q((t

−1)))s, we have that

φ(p) ∈ Kh ⇔ φ(p) ∈ [0,βh+1)\[0,βh)

⇔ ∀i ∈ [s] : φ(p(i)) ∈ [0, β
(i)
h+1) and

∃j ∈ [s] : φ(p(j)) ∈ [β
(j)
h , 1), (1.60)

where βh+1 = (β
(1)
h+1, . . . β

(s)
h+1) with

β
(i)
h+1 =

bi

qh+2+⌈logq s⌉
for some bi ∈ {0, 1, . . . , qh+2+⌈logq s⌉ − 1}

and similarly βh = (β
(1)
h , . . . , β

(s)
h ) with

β
(i)
h =

b̄i

qh+1+⌈logq s⌉
for some b̄i ∈ {0, 1 . . . , qh+1+⌈logq s⌉ − 1}.

We can write

[0, β
(i)
h+1) =

bi−1⋃

k=0

[
k

qh+2+⌈logq s⌉
,

k + 1

qh+2+⌈logq s⌉

)

.

Hence φ(p(i)) ∈ [0, β
(i)
h+1) if and only if there exists a k ∈ {0, . . . , bi − 1} such that

φ(p(i)) ∈
[

k

qh+2+⌈logq s⌉
,

k + 1

qh+2+⌈logq s⌉

)

.

Since φ(p(i)) =
∑∞

j=1 p
(i)
j q

−j the last condition is satisfied if and only if

p
(i)
1 = kh+1+⌈logq s⌉, p

(i)
2 = kh+⌈logq s⌉, . . . , p

(i)
h+2+⌈logq s⌉ = k0,
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whenever k has q-adic expansion k = k0 + k1q + · · ·+ kh+1+⌈logq s⌉q
h+1+⌈logq s⌉.

In the same vein we can write

[β
(j)
h , 1) =

qh+1+⌈logq s⌉−1
⋃

ℓ=b̄j

[
ℓ

qh+1+⌈logq s⌉
,

ℓ+ 1

qh+1+⌈logq s⌉

)

.

Hence φ(p(j)) ∈ [β
(j)
h , 1) if and only if there exists a ℓ ∈ {b̄j, . . . , qh+1+⌈logq s⌉ − 1} such

that

φ(p(j)) ∈
[

ℓ

qh+1+⌈logq s⌉
,

ℓ+ 1

qh+1+⌈logq s⌉

)

.

Since φ(p(j)) =
∑∞

k=1 p
(j)
k q−k the last condition is satisfied if and only if

p
(j)
1 = lh+⌈logq s⌉, p

(j)
2 = lh+⌈logq s⌉−1, . . . , p

(j)
h+1+⌈logq s⌉ = l0,

whenever ℓ has q-adic expansion ℓ = l0 + l1q + · · ·+ lh+⌈logq s⌉q
h+⌈logq s⌉.

Together with (1.60) it follows that the coefficients p
(i)
1 , . . . , p

(i)
h+2+⌈logq s⌉ for i ∈ [s]

determine whether or not φ(p) belongs to Kh. This proves the second claim.

Recall that m ∈ Q(N, κh, γ) and m < n. Define

δm : Fq((t
−1)) → Fq((t

−1)), p 7→ {tm−1p}.

Claim 1.3.16. For all h ∈ {0, . . . , H} and for all A ∈ F
s×(n−1)
q we have that ∆Kh

is
constant on φ(δm(BA)).

Proof of Claim 1.3.16: Let p = (p(1), . . . , p(s)) ∈ BA with p(i) =
∑∞

j=1 p
(i)
j t

−j. Note

that for each i ∈ [s] the first n− 1 coefficients p
(i)
1 , . . . , p

(i)
n−1 of p(i) are equal to the

entries in the i-th row of A. Now we have

δm

( ∞∑

j=1

p
(i)
j t

−j

)

=

{ ∞∑

j=1

p
(i)
j t

m−1−j

}

=
∞∑

j=1

p
(i)
m−1+jt

−j.

Because of Claim 1.3.15, the coefficients p
(i)
m , . . . , p

(i)
m+h+1+⌈logq s⌉ for i ∈ [s] determine

if φ(δm(p)) ∈ Kh. Since n−m ≥ h+ 2 + ⌈logq s⌉ these coefficients are fixed by the
choice of BA. Hence it follows that φ(δm(BA)) ∩ Kh ∈ {∅, φ(δm(BA))}. Therefore
the function ∆Kh

(x) = ✶Kh
(x)− λ(Kh) is constant on φ(δm(BA)). This proves the

claim.
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Define for c ∈ R,

ΛKh,c := {BA ∈ Λn−1 : ∆Kh
(φ(δm(BA))) = c} .

Note that ΛKh,c is well-defined according to Claim 1.3.16.

Claim 1.3.17. Let c ∈ R and h ∈ {0, . . . , H}. Then we have

∆Kh
(xm) = c⇔ ∃BA ∈ ΛKh,c such that f ∈ BA.

Proof of Claim 1.3.17: Let c ∈ R and suppose that there exists BA ∈ ΛKh,c such that
f ∈ BA. Since xm = φ(δm(f)) we have

∆Kh
(xm) = ∆Kh

(φ(δm(f))).

Since δm(f) ∈ δm(BA) we get that ∆Kh
(xm) = c. Now assume that ∆Kh

(xm) =

c which is equivalent to ∆Kh
(φ(δm(f))) = c. Now there exists A′ ∈ F

s×(n−1)
q

such that BA′ ∈ ΛKh,c and δm(f) ∈ δm(BA′) and we get that (f
(i)
m+1, . . . , f

(i)
n−1) =

(a′i,m+1, . . . , a
′
i,n−1) for i ∈ [s].

On the other hand there exists A ∈ F
s×(n−1)
q with f ∈ BA. We obtain that

(f
(i)
m+1, . . . , f

(i)
n−1) = (ai,m+1, . . . , ai,n−1) for i ∈ [s]. Altogether we have that

(a′i,m+1, . . . , a
′
i,n−1) = (ai,m+1, . . . , ai,n−1) for i ∈ [s].

Now it follows by Claim 1.3.15 that

∆Kh
(φ(δm(BA))) = ∆Kh

(φ(δm(BA′))) = c.

This means that BA ∈ ΛKh,c and f ∈ BA and this proves the claim.

Now we can prove the independence of ∆Kh
(xn) and ∆Kh

(xm) for n,m ∈
Q(N, κh, γ) with n > m. For c ∈ R and BA′ ∈ Λn−1 we have

P(∆Kh
(xn) = c) =

∑

BA∈Λn−1

P(∆Kh
(xn) = c | f ∈ BA)P(f ∈ BA)

= P(∆Kh
(yn) = c | f ∈ BA′)

∑

BA∈Λn−1

P(f ∈ BA)

= P(∆Kh
(yn) = c | f ∈ BA′), (1.61)
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where we used Claim 1.3.14 with A1 = A and A2 = A′. By Claim 1.3.17 and (1.61)

we get for c1, c2 ∈ R and A′ ∈ F
s×(n−1)
q that

P(∆Kh
(xn) =c2 | ∆Kh

(xm) = c1) =
P(∆Kh

(xn) = c2,∆Kh
(xm) = c1)

P(∆Kh
(xm) = c1)

=

∑

BA∈Λn−1
P(∆Kh

(xn) = c2,∆Kh
(xm) = c1 | f ∈ BA)P(f ∈ BA)

P(∆Kh
(xm) = c1)

=
∑

BA∈ΛKh,c1

P(∆Kh
(xn) = c2 | f ∈ BA)

P(f ∈ BA)

P(∆Kh
(xm) = c1)

= P(∆Kh
(yn) = c2 | f ∈ BA′)

∑

BA∈ΛKh,c1
P(f ∈ BA)

P(∆Kh
(xm) = c1)

= P(∆Kh
(yn) = c2 | f ∈ BA′)

= P(∆Kh
(xn) = c2). (1.62)

This implies the desired result.

Applying Bernstein’s inequality and finalizing the proof of Theorem 1.3.7

We may assume that N ≥ s logq s since otherwise the discrepancy bound is trivial.
First of all we set

H =

⌈
1

2
logq

(
N

s logq s

)⌉

∈ N. (1.63)

With this choice we obtain

1

qH
≤
√

s logq s

N
and q2H ≤ q2

N

s logq s
.

Recall the definition of Q(N, κh, γ) = {n ∈ {1, . . . , N} : n ≡ γ mod 2κh} and
note that Q(N, κh, γ) for γ ∈ {0, . . . , 2κh − 1} are a partition of {1, . . . , N} and

|Q(N, κh, γ)| ≤
⌊
N

2κh

⌋

+ ξ for some ξ ∈ {0, 1}.

With the help of Lemma 1.3.13 we are able to apply Bernstein’s inequality (see
Lemma 1.3.9). For h ∈ {0, . . . , H} we get that

P

(
∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
> th

)

≤
2κh−1∑

γ=0

P





∣
∣
∣
∣
∣
∣

∑

n∈Q(N,κh,γ)

∆Kh
(xn)

∣
∣
∣
∣
∣
∣

>
th
2κh
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≤ 2
2κh−1∑

γ=0

exp

(

− t2h/2
2κh

2|Q(N, κh, γ)|λ(Kh)(1− λ(Kh)) + 2th/(3 · 2κh)

)

≤ 2κh+1 exp

(

− t2h/2
κh

2(1 + 2κh/N)Nq−h + 2th/3

)

.

Since

2κh

N
=

h+ 2 + ⌈logq s⌉
N

≤ 1

N

(
1

2
logq

(
N

s logq s

)

+ 4 + logq s

)

≤ 1

2

logqN

N
+ 4 +

1

s
≤ 5,

we obtain

P

(∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
> th

)

≤ 2κh+1 exp

(

− t2h/2
κh

12Nq−h + 2
3
th

)

. (1.64)

For the choice of th we will distinguish two cases

th :=

{

C1

√

Nshq−h2κh if h ∈ {1, . . . , H}
C2

√
Ns2κ0 if h = 0

(1.65)

for constants C1, C2 > 0 to be specified later.
Let us consider first the case h ∈ {1, . . . , H}. By κh = log2(h+ 2 + ⌈logq s⌉) we

get that

2κhqhh ≤2κHqHH ≤ H2qH(4 + logq s) ≤ 2q2H(4 + logq s)

≤2q2
N

s

(

1 +
4

logq s

)

≤ c(q)
N

s
,

where c(q) = 2q2
(

1 + 4
logq 2

)

. Thus we obtain for h ∈ {1, . . . , H}

th = C1

√

Nshq−h2κh ≤ C1

√

c(q)q−hN.

Furthermore we get

t2h/2
κh

12q−hN + 2
3
th

≥ C2
1Nshq

−h

12q−hN + 2
3
C1

√

c(q)q−hN
=

C2
1sh

12 + 2
3
C1

√

c(q)
. (1.66)
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Combining (1.64) and (1.66) we get

P

(∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
> C1

√

Nhq−h2κhs

)

≤ 2 exp

(

κh log 2−
C2

1

12 + 2
3
C1

√

c(q)
sh

)

.

(1.67)

Consider the case h = 0, i.e. t0 = C2

√
N2κ0s. We have

2κ0s ≤(3 + logq s)s ≤ Nc(q).

After continuing with the same steps as in the first case we end up with

P

(∣
∣
∣
∣
∣

N∑

n=1

∆K0(xn)

∣
∣
∣
∣
∣
> C2

√
N2κ0s

)

≤ 2 exp

(

κ0 log 2−
C2

2

12 + 2
3
C2

√

c(q)
s

)

. (1.68)

Recall that βh andKh are dependent on a point y ∈ [0, 1)s, respectively. Moreover,
we defined Sh = {Kh(y) : y ∈ [0, 1)s} with |Sh| ≤ 1

2
(2e)s(qh+3 + 1)s. Additionally

we define

AKh,N,s :=

{

f ∈ (F
∗
q((t

−1)))s :

∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
> th

}

with th defined as in (1.65) and set

C3 :=
C2

1

12 + 2
3
C1

√

c(q)
, and C4 :=

C2
2

12 + 2
3
C2

√

c(q)
. (1.69)

Then with (1.67) and (1.68) we have

P

(
H⋂

h=0

⋂

Kh∈Sh

{∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
≤ th

})

= 1− P

(
H⋃

h=0

⋃

Kh∈Sh

AKh,N,s

)

≥ 1−
∑

K0∈S0

P(AK0,N,s)−
H∑

h=1

∑

Kh∈Sh

P(AKh,N,s)

≥ 1− |S0|2eκ0 log 2−C4s −
H∑

h=1

|Sh|2eκh log 2−C3sh
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≥ 1− (2q3 + 2)ses(1−C4)+κ0 log 2 −
H∑

h=1

(2qh+3 + 2)ses(1−C3h)+κh log 2.(1.70)

We will now choose C1 = C1(ε) and C2 = C2(ε) such that

(2q3 + 2)ses(1−C4)+κ0 log 2 ≤ ε

2
(1.71)

and

(2qh+3 + 2)ses(1−C3h)+κh log 2 ≤ ε

2h+1
. (1.72)

From (1.70), (1.71) and (1.72) we then obtain that

P

(
H⋂

h=0

⋂

Kh∈Sh

{∣
∣
∣
∣
∣

N∑

n=1

∆Kh
(xn)

∣
∣
∣
∣
∣
≤ th

})

≥ 1− ε.

Inequality (1.71) is equivalent to

C4 ≥
1

s

(

s log(2q3 + 2) + s+ log(2 + ⌈logq s⌉) + log
2

ε

)

.

This is certainly satisfied for the choice

C4 = log(2q3 + 2) + 2 + log
2

ε
= log

(
4(q3 + 1)e2

ε

)

.

With (1.69) it follows that we have to choose

C2 = C4
1

3

√

c(q) +

√

C2
4

1

9
c(q) + 12C4 = Oq

(
log ε−1

)
.

Inequality (1.72) is equivalent to

C3 ≥
1

sh

(

s log(2qh+3 + 2) + s+ log(h+ 2 + ⌈logq s⌉) + log 2h + log
2

ε

)

.

This is certainly satisfied for the choice

C3 = log(2(q4 + 1)) + 2 +
log 2

2
+ log

2

ε
= log

(

4
√
2(q4 + 1)e2

ε

)

.
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With (1.69) it follows that we have to choose

C1 = C3
1

3

√

c(q) +

√

C2
3

1

9
c(q) + 12C3 = Oq

(
log ε−1

)
.

Finally by (1.68), (1.67), (1.57) we obtain with probability at least 1− ε

N∑

n=1

✶[0,y)(xn) ≤
N∑

n=1

H∑

h=0

∆Kh
(xn) +Nλ([0,βH+1))

≤
N∑

n=1

∆K0(xn) +
H∑

h=1

N∑

n=1

∆Kh
(xn) +N

(
λ([0,y)) + λ([0,βH+1))− λ([0,y))

)

≤
√
Ns

(

C2

√
2κ0 +

H∑

h=1

C1

√
2κh

√

hq−h

)

+N(λ([0,y)) + q−H)

≤
√
Ns

(

C2

√
2κ0 +

∞∑

h=1

C1

√
2κh

√

hq−h

)

+
√

Ns logq s+Nλ([0,y))

≤
√
Ns

(

C2

√
2κ0 +

∞∑

h=1

C1

√

(h+ 3)hq−h +
√

logq s
∞∑

h=1

C1

√

hq−h

)

+
√

Ns logq s+Nλ([0,y), (1.73)

where we used that λ
(
[0,βH+1)

)
− λ ([0,y)) ≤ λ(KH(y)) ≤ q−H .

By the choices for C1 and C2 we obtain that

1

N

N∑

n=1

✶[0,y)(xn)− λ([0,y)) ≤ C5(q, ε)

√

s log s

N
, (1.74)

where C5(q, ε) = Oq(log ε
−1).

If we use (1.56) instead of (1.57) and the fact that λ ([0,y)) − λ([0,βH)) ≤
λ(KH(y)) ≤ q−H we get that

1

N

N∑

n=1

✶[0,y)(xn)− λ([0,y)) ≥ −C5(q, ε)

√

s log s

N
(1.75)

with C5(q, ε) as before.
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Finally (1.74) and (1.75) imply

∣
∣
∣
∣
∣

1

N

N∑

n=1

✶[0,y)(xn)− λ([0,y))

∣
∣
∣
∣
∣
≤ C5(q, ε)

√

s log s

N
.

Since y ∈ [0, 1]s was arbitrary we get that

D∗
N(PN(f)) ≤ C5(q, ε)

√

s log s

N
.

holds with probability at least 1− ε. This finishes the proof.

The proof of Corollaries 1.3.2 and 1.3.8

Since the proofs of the two corollaries are very similar we only present the proof of
Corollary 1.3.8.

Let c(q) > 0 be such that C(q, ε) from Theorem 1.3.7 satisfies C(q, ε) ≤ c(q) log ε−1.
For δ ∈ (0, 1) and N ≥ 2 let εN = 6δ/(πN)2 and

AN :=

{

f ∈ (Fq((t
−1)))s : D∗

N(PN(f)) ≤ c(q) log ε−1
N

√

s log s

N

}

.

According to Theorem 1.3.7 we have P(AN) ≥ 1− εN .

Set

A :=

{

f ∈ (Fq((t
−1)))s : D∗

N(PN(f)) ≤ c(q) log ε−1
N

√

s log s

N
for all N ≥ 2

}

.

Then obviously A =
⋂

N≥2AN and hence

P(Ac) = P

(
⋃

N≥2

Ac
N

)

≤
∑

N≥2

P(Ac
N) ≤

∑

N≥2

εN ≤ δ,

where Ac is the complement of A in (Fq((t
−1)))s and similarly for Ac

N . Hence
P(A) ≥ 1− δ and the result follows.
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1.3.3 Generalisation of Theorem 1.3.7

In the previous subsection we analysed the behaviour of the point set PN(f) =
{x1, . . . ,xN} with

xn = φ({tn−1f}),
where f ∈ Fq((t

−1))s and

φ : Fq((t
−1)) → [0, 1),

∞∑

i=1

git
−i 7→

∞∑

i=1

giq
−i.

We want to prove a slightly generalised version of Theorem 1.3.7 in this subsection.
Let therefore k ∈ N and γk(t) ∈ Fq[t], f ∈ Fq((t

−1))s and consider the points

xn = φ({γnf}) for n ∈ {1, . . . , N}. (1.76)

It is the aim of this subsection to prove the subsequent theorem which is a generalised
version of Theorem 1.3.7.

Theorem 1.3.18. Let q be a prime number and let N, s ∈ N with N, s ≥ 2. Let
PN(f) = {x1, . . . ,xN} be defined as in (1.76).
If there exists a constant c > 0 independent of N and s such that

∀k ∈ N ∃βk ∈ Fq[t] : γk(t) = βk(t)t
k−1 and deg(βk) ≤ c logq s (1.77)

then for every ε ∈ (0, 1) there is a quantity C(q, ε) > 0 such that the star discrepancy
of PN(f) satisfies

D∗
N(PN(f)) ≤ C(q, ε)

√

s log s

N

with probability at least 1− ε. The quantity C(q, ε) is of order Oq(log ε
−1).

Observe that for βk = 1 we arrive at γk(t) = tk−1 which results in the case we
already studied before. For the proof of Theorem 1.3.18 we are going to use the same
machinery as introduced in Subsection 1.3.2. Recall that in order to be able to apply
this machinery we need to show a certain independence relation for the family of
random variables ✶Kh

(xn) for n ∈ {1, . . . , N} and where Kh is defined as in (1.54).
The following lemma is crucial for establishing the above-mentioned independence
relation and is therefore also essential for the proof of Theorem 1.3.18. We stick to
the notation of the previous subsection.
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Lemma 1.3.19. Let l, n,m ∈ N, n > m and let D =
⋃r

i=1Bi and Bi ∈ Σl. If
n− 1− deg(γm) ≥ l then ✶D(xn) and ✶D(xm) are stochastically independent.

Proof. We follow exactly the lines and notation of the proof of Lemma 1.3.13. This
means the proof is split again into 4 claims:

Claim 1.3.20. Let c ∈ R, A1, A2 ∈ F
s×(n−1)
q , f ∈ BA1 and (yn)n≥1 in [0, 1)s with

yn = φ({γnf}) with f = αA1A2(f). Then we have that

P
(
∆D(xn) = c | f ∈ BA1) = P(∆D(yn) = c | f ∈ BA2

)
.

Proof. We have for all i ∈ [s]

y(i)n = φ({γnf̃ (i)}) = φ({γnf (i) + γnu
(i)
A1A2

}) = φ({γnf (i)) = x(i)n . (1.78)

Note that we used the fact that γnu
(i)
A1A2

∈ Fq[t] which follows by definition of
αA1A2 (see (1.58)) and γn = tn−1βn for some βn ∈ Fq[t]. Additionally, we have that
f ∈ BA1 ⇔ f̃ ∈ BA2 and the claim follows.

Claim 1.3.21. Let p = (p(1), . . . , p(s)) ∈ (F
∗
q((t

−1)))s with p(i) =
∑∞

j=1 p
(i)
j t

−j. Then

the sl coefficients p
(i)
1 , . . . , p

(i)
l for i ∈ [s] determine if φ(p) ∈ D.

Proof. Let p = (p(1), . . . , p(s)) ∈ (Z
∗
q((t

−1)))s and recall that D =
⋃r

i=1Bi with

Bi ∈ Σl and therefore Bi is of the form
∏s

i=1 [
ai
ql
, ai+1

ql
) for ai ∈ {0, 1, . . . , ql − 1}. We

already know from the proof of Claim 1.3.15 that for k ∈ {0, 1, . . . , ql− 1} with q-adic
expansion k =

∑l−1
j=0 kjq

j we have

φ(p(i)) ∈
[
k

qr
,
k + 1

qr

)

⇔ p
(i)
1 = kl−1, p

(i)
2 = kl−2, . . . , p

(i)
l = k0.

Therefore it follows immediately that p
(1)
1 , p

(1)
2 , . . . , p

(1)
l , . . . , p

(s)
1 , p

(s)
2 , . . . , p

(s)
l de-

termine if φ(p) ∈ D.

Claim 1.3.22. For all A ∈ F
s×(n−1)
q we have that ∆D is constant on φ({γmBA}).

Proof. Let p = (p(1), . . . , p(s)) ∈ BA with p(i) =
∑∞

j=1 p
(i)
j t

−j. Note that for each

i ∈ {1, . . . , s} the first n− 1 coefficients p
(i)
1 , . . . , p

(i)
n−1 of p(i) are equal to the entries

in the i-th row of A. By interpreting γm as a formal Laurent series with coefficients
γm,u we obtain by condition (1.77) that γm,u = 0 for u > −m+ 1. Therefore we have
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{

γm

∞∑

j=1

p
(i)
j t

−j

}

=







−m+1∑

u=− deg(γm)

γm,ut
−u

∞∑

j=1

p
(i)
j t

−j






=







−m+1∑

u=− deg(γm)

∞∑

j=1+u

γm,up
(i)
j−ut

−j







=







∞∑

j=1−deg(γm)





min{−m+1,j−1}
∑

u=− deg(γm)

γm,up
(i)
j−u



 t−j







=
∞∑

j=1





−m+1∑

u=− deg(γm)

γm,up
(i)
j−u



 t−j =
∞∑

j=1

c
(i)
j t

−j,

where we set c
(i)
j :=

∑−m+1
u=− deg(γm) γm,up

(i)
j−u. Because of Claim 1.3.21, the coefficients

c
(i)
1 , . . . , c

(i)
l for i ∈ [s] determine if φ({γmp}) ∈ D. But c

(i)
1 , . . . , c

(i)
l are determined by

p
(i)
m , . . . , p

(i)
l+deg(γm) for i ∈ [s]. Since we have n− 1− deg(γm) ≥ l by assumption these

coefficients are fixed by the choice of BA. Hence it follows that φ({γmBA}) ∩D ∈
{∅, φ({γmBA})}. Therefore the function ∆D(x) = ✶D(x) − λ(Kh) is constant on
φ({γmBA}). This proves the claim.

Define for c ∈ R,

ΛD,c := {BA ∈ Λn−1 : ∆D(φ({γmBA})) = c} .

Note that ΛD,c is well-defined according to Claim 1.3.22.

Claim 1.3.23. Let c ∈ R. Then we have

∆D(xm) = c⇔ ∃BA ∈ ΛD,c such that f ∈ BA.

Proof. The implication from right to left follows directly from the definition of ΛD,c.
For the second direction let c ∈ R and assume that ∆D(xm) = c which is equivalent

to ∆D(φ({γmf})) = c. Since Λn−1 is a partition of Fq((t
−1)) there exists A ∈ F

s×(n−1)
q

such that f ∈ BA. By Claim 1.3.21 we get that c = ∆D(φ({γmf})) = ∆D(φ({γmg}))
for all g ∈ BA. Therefore we get that BA ∈ ΛD,c.

By using the Claims 1.3.20-1.3.23 and following the exact same arguments as in
the case where βk = 1 and γk(t) = tk−1 we can conclude that (1.61) and (1.62) are
also valid for the more general case. This finishes the proof of Lemma 1.3.19.
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Let us now finish the proof of Theorem 1.3.18. First of all note that due to Corrol-
lary 1.3.12 we can write for each h ∈ {0, . . . , H}

Kh =
v⋃

i=1

Bh,i, (1.79)

for some Bh,1, . . . , Bh,v ∈ Σw and w = h + 2 + ⌈logq s⌉. Further let us set ρh :=
log2(h+ 2 + ⌈logq s⌉+maxk∈{1,...,N} deg(βk)) and define for γ ∈ {0, 1, . . . , 2ρh − 1}

Q(N, γ, ρh) := {n ∈ {1, . . . , N} | n ≡ γ (mod 2ρh)}. (1.80)

Observe that for n,m ∈ Q(N, γ, ρh) and n ≥ m we have 2ρh ≤ n−m and therefore

h+ 2 + ⌈logq s⌉ ≤ n−m− deg(βm) = n− 1− (m− 1 + deg(βm)) = n− 1− deg(γm).

Hence we get by Lemma 1.3.19 that for all n,m ∈ Q(N, γ, ρh) the random variables
✶Kh

(xn) and ✶Kh
(xm) are stochastically independent. In order to apply the machinery

of Subsection 1.3.2 it is sufficient if we have additionally to the independence property
that there exist constants C1, C2 > 0 such that for all N, s ∈ N and h ∈ {0, . . . , H}

C12
κh ≤ 2ρh ≤ C22

κh , (1.81)

where κh = log2(h+ 2 + ⌈logq s⌉). Note that the lower bound for 2ρh is satisfied for
C1 = 1 by definition of ρh and the upper bound is a direct consequence of condition
(1.77) since we have

2ρh = h+ 2 + ⌈logq s⌉+ max
k∈{1,...,N}

deg(βk) ≤ C2(h+ 2 + ⌈logq s⌉) = C22
κh ,

for some C2 > 0. Therefore we are able to use the exact same steps as in Subsec-
tion 1.3.2 and this finishes the proof of Theorem 1.3.18.
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1.4 Conclusions and further research

Let us conclude Chapter 1 with a brief summary of the main results of Section 1.2 and
Section 1.3 followed by a small discussion of possible extensions and generalisations.
In Section 1.2 we studied the efficient construction of polynomial lattice point sets
which yield a small weighted star discrepancy. For p ∈ P,m ∈ N and certain choices
of the modulus f(x) ∈ Fp[x], deg(f) = m we were able to provide an algorithm
(Algorithm 1.2.8) which constructs a generating vector g ∈ (Fp[x])

s such that the
corresponding N -element lattice point set PN(g, f) where N = pm satisfies the
following weighted star discrepancy bound for all δ > 0

D∗
N,γ(g, f) = O(N−1+δ).

Additionally the construction cost of Algorithm 1.2.8 is of the order of magnitude

O



N logN +min{s, t}N +N

min{s,t}
∑

d=1

(m− wd)p
−wd



 ,

where the quantity t is depending on the weight sequence γ and the sequence w helps
to control the size of the search sets for the generating vector. Roughly speaking t
becomes constant if the weights are decaying fast enough. To put it differently, the
computational cost becomes independent of the dimension s eventually if the weights
are decreasing sufficiently fast. This speed up is due to the fact that Algorithm 1.2.8
reduces the search sets for the components of g. The reduction of the search sets is
controlled by the sequence w, which has to be chosen in accordance to the weight
sequence γ such that

∑∞
i=1 γip

wi <∞.
The first generalisation which comes to ones mind is of course to increase the class

for the possible choices of the modulus f(x). So far the results stated in Section 1.2
are valid for the case f(x) = xm and f irreducible with deg(f) = m, respectively. It
should be possible to follow the lines of Section 1.2 in the more general case where
f ∈ Zp[x] and deg(f) = m. One of the main tasks will be to handle the technical
details which will result from the more evolved structure of the modulus f .

At this point one should mention that there exists a variety of different CBC
construction which focus on various aspects and properties of the final point set which
are useful in different contexts. For example there exists a construction method by
Dick and Kritzer (see [21]) which is called projection corrected CBC construction.
The main goal of this method is to construct generating vectors (of lattice point
sets) which perform good in the context of QMC methods and additionally get rid
of certain undesirable projection properties of the final point set which have been
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observed by several authors in numerical calculations. (More precise, it was observed
that in some situations the standard CBC algorithm produces generating vectors
which have repeated components. The reason of this phenomenon could be numerical
issues of the CBC algorithm but is currently not known.) A natural question would
be to ask if it is possible to combine the projection-corrected CBC construction
described in [21] with the construction method in Section 1.2.

In Section 1.3 we studied N -element point sets P whose star discrepancy shows a
sub-exponential behaviour in the dimension s, which is

D∗
N(P) = O

(√
s

N

)

, (1.82)

where the implied constant is independent of s and N . So far no (efficient) explicit
constructions of such point sets exist. In 2014 Löbbe proved that the point set
PN = {x1, . . . ,xN} with xn = {2n−1α} satisfies a bound of order O(

√

s log s/N)
with high probability (see Theorem 1.3.1). We were able to carry over the results
of Löbbe to a digital analogue of the point set PN(α). More precise, we studied
the point set PN(f) = {x1, . . . ,xN}, where xn = φ({tn−1f)} for some s-tuple
f = (f1, . . . , fs) ∈ (Fq((t

−1)))s of formal Laurent series and φ defined as in (1.26).
We were capable of proving the following metric result:

Theorem. Let q be a prime number and let N, s ∈ N with N, s ≥ 2. Then for every
ε ∈ (0, 1) there is a quantity C(q, ε) > 0 such that the star discrepancy of the point
set PN(f) satisfies

D∗
N(PN(f)) ≤ C(q, ε)

√

s log s

N
(1.83)

µs-with probability at least 1− ε. The quantity C(q, ε) is of order Oq(log ε
−1).

Moreover, we were able to prove a generalisation of the theorem above (see
Subsection 1.3.3). We considered points of the form xn = φ({γnf}) and (γk)k∈N ∈
(Zq[t])

N such that

∀k ∈ N ∃βk ∈ Fq[t] : γk(t) = βk(t)t
k−1 and deg(βk) ≤ c logq s, (1.84)

where c > 0 is a constant independent of N and s.
In order to ensure the existence of point sets satisfying (1.82) the authors of [45]

used a probabilistic method. Roughly speaking this means they considered a point
set consisting of N i.i.d. random variables and proved with the help of Hoeffding’s
inequality, which quantifies the deviation of the mean from a sum of independent
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random variables, that (1.82) is satisfied with positive probability. Observe that the
discrepancy bound in (1.82) and the bound in (1.83) of our main result differ by a
factor of

√
log s. This additional factor seems to be the price one has to pay for the

additional structure of the point set P(f). More precise, if one wants to use the same
framework as in [45] one has to work around the problem that the additional structure
of the point set destroys the independence of the considered random variables. In our
case we followed the approach of Löbbe [75] and clustered the random variables into
groups where they are pairwise independent and finally apply Bernstein’s inequality,
which is a more general form of Hoeffding’s inequality, for each group of random
variables. This workaround lead to the additional factor of

√
log s. Additionally this

approach is somehow responsible for the condition (1.77) in Theorem 1.3.18, where
we considered points of the form xn = φ({γnf}) and (γk)k∈N satisfying (1.84).

Recall that both the Hoeffding and Bernstein inequality are of the same type, i.e.
both inequalities measure deviations from the mean for sums of independent random
variables. It would be an interesting task to adapt the framework of Section 1.3 in
the following way: Choose a suitable inequality of similar type, which can also be
applied to sums of dependent random variables, such that one can improve (1.83) or
is able to loosen the constraint in Theorem 1.3.18.
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Chapter 2

The Sudler product of sines

2.1 Introduction

The main quantity of interest in this chapter will be the following sequence of
trigonometric products

PN(α) :=
N∏

r=1

|2 sin(πrα)|, (2.1)

where N ∈ N, and α ∈ R is fixed. More precise, we will analyse the asymptotic
behaviour of PN(α) for special choices of α.

The study of the sequence PN(α) goes back to the late 1950s, when questions
about its asymptotic behaviour were raised by Erdős and Szekeres [32]. Another
early exposition on PN(α) was given by Sudler [99] in the 1960s, giving rise to the
name Sudler product. The continued analysis of PN(α) has been carried out in a
number of different fields in both pure and applied mathematics (such as partition
theory [99, 107], Padé approximation [29] and continued fractions [76] , as well as
KAM theory and the theory of strange non-chaotic attractors [8, 38, 57, 65]). Further
the Sudler product seems to play a role in interpolation theory in [52, 53] and the
analytic continuation of Dirichlet series [56, 105]. See [17, 30, 76, 87] for a connection
to q-series or [11, 16, 34] for more recent studies on PN(α). Quite recently similar
trigonometric products have been analysed in the context of uniform distribution and
discrepancy theory [3, 54]. The above given list is by no means complete but this
broad interest in the Sudler product has lead to a range of different notations and
terminologies, making it challenging to get a full picture of what is actually known.
Nevertheless we will try to give a small overview on some key results concerning the
Sudler product of sines in Subsection 2.1.2. This overview is mainly based on a more
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detailed survey of central results on PN(α), which can be found in [104]. But before
we do so let us give a more detailed insight into a couple of items of the long list
above of topics which are related to the Sudler product. We will mainly focus on the
number theoretic topics that have been mentioned in the list before.

2.1.1 Relations to several fields of number theory

As we have already pointed out in the beginning of this section, the sequence PN(α)
has been studied independently in several disciplines of pure and applied mathematics.
In this subsection we want to give some examples of fascinating connections to other
mathematical fields and topics:

• We start with an interesting relation to q-series. Before we are able to charac-
terise more precisely what actually a q-series is, it is helpful to understand the
property of being a q-analogue. Roughly speaking a q-analogue is a general-
isation of some mathematical expression which results in the already known
expression in the limit q → 1−. (Usually one has that 0 < q < 1.) There are
q-analogues for a variety of mathematical objects e.g. binomial coefficients,
factorial, Fibbonaci numbers, . . . and this generalised objects form the basis for
a whole “q-calculus”. Consider for example the Pochhammer symbol (shifted
factorial) for a ∈ C and N ∈ N which is given by

(a)N := a(a+ 1) · · · (a+N − 1).

The q-analogue of the Pochhammer symbol is called the q-Pochhammer symbol
and defined by

(a; q)N := (1− a)(1− aq) · · · (1− aqN−1). (2.2)

Note that we have limq→1−(q
a; q)N/(1− q)N = (a)N . A q-series is now a series

where expressions of the form (2.2) appear in its summands. For more detailed
information on this topic see for example [5, 33, 35].
A very important class of q-series are the basic hypergeometric series: For
r, s ∈ N and |q| < 1 we define

rϕs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)

=
∞∑

n=0

(a1; q)n(a2; q)n · · · (ar; q)n
(b1; q)n(b2; q)n · · · (bs; q)n(q; q)n

[

(−1)nq(
n
2)
]1+s−r

zn,

(2.3)
where q 6= 0 if r > s+ 1 and a1, . . . , ar and b1, . . . , bs ∈ C such that bi 6= q−m

for m ∈ N and i ∈ [s].
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These mathematical objects are a powerful tool which have applications in
number theory, combinatorics, computer algebra and mathematical physics
(e.g. for illustrating the possible number of states on a lattice). Moreover,
basic hypergeometric series are a q-analogue of the much better understood
generalised hypergeometric series and hypergeometric series, see for example
[6, 9, 44, 58, 59, 90, 96, 100]. The topic of q-series has been a fruitful research
area in the last decades and unfortunately it is beyond the scope of this thesis
to go more into detail concerning this interesting field. If we consider now
the special case of (2.2) where a = q and q = exp(2πiα) we get after some
calculations that

|(q; q)N | =
N∏

r=1

|1− qr| =
N∏

r=1

|1− exp(2πiαr)| = PN(α), (2.4)

which connects the product PN(α) to the world of q-series.

• Consider the partition function p : N → N, which counts the number of ways
to write an integer n as a sum of positive integers, where the order of the
summands is not significant. For example p(4) = 4 since 4 = 3 + 1 = 2 + 2 =
2 + 1 + 1 = 1 + 1 + 1 + 1. The Euler function defined as φ : R → R,

φ(q) :=
∞∏

n=1

(1− qn) = (q; q)∞

is closely related to the partition function p(n) and the (generalised) pentagonal
numbers. By Euler’s pentagonal theorem (cf. [7]) it is well known that

φ(q) =
∞∏

n=1

(1− qn) = 1 +
∞∑

n=1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

)

= 1− q − q2 + q5 + q7 − q12 − q15 + · · · , (2.5)

where the sequence of exponents in (2.5) can be described by n(3n− 1)/2 for
n = 1,−1, 2,−2, 3,−3, . . . . These numbers are called the generalised pentagonal
numbers. If we define po(n) and pe(n) as the amount of partitions of n with
an odd or even number of summands then the following relation, which was
observed by Legendre, is equivalent to (2.5):

po(n)− pe(n) =

{

(−1)j n = j(3j ± 1)/2

0 else.
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Additionally one can express the generating function of the partition numbers
p(n) with the help of the Euler function φ:

φ(q)
∞∑

n=0

p(n)qn = 1.

Furthermore, if we introduce the notation p̃(n) for the number of partitions of
n into distinct parts it is known that

∞∏

n=1

(1 + qn) =
∞∑

n=0

p̃(n)qn.

Now recall that if we set q = exp(2πiα) we have that

|1− qn| = |2 sin(πnα)| and |1 + qn| = |2 cos(πnα)| =
∣
∣
∣
∣

2 sin(πn2α)

2 sin(πnα)

∣
∣
∣
∣
.

Hence, the asymptotic behaviour of the products PN(α) (and PN(2α)/PN(α))
has interesting connections to the theory of partitions.

• Moreover, slightly altered versions of the Sudler product appear in connection
with discrepancy theory and related topics. For example in [54] the authors
studied the discrepancy of a certain hybrid sequence which lead to similar
trigonometric products. More precise, in order to get information on the star
discrepancy of the two-dimensional sequence zk = ({kα}, xk), where α is an
irrational in (0, 1) and xk a digital Niederreiter sequence (see [78]), the authors
had to investigate lacunary trigonometric products of the form

N−1∏

r=0

|cos(2rπα + γjπ/2)| ,

where γj ∈ {0, 1}.

• Another interesting approach is to study the Sudler product in the context of
uniform distribution by considering the more general product

PN((xr)r∈N) =
N∏

r=1

2 sin(πxr), (2.6)

where (xr)r∈N is a uniformly distributed sequence in the unit interval. In
particular this means that PN(α) = PN((xr)r∈N), where (xr)r∈N is the famous
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and well studied one-dimensional Kronecker-sequence ({rα})r∈N and α ∈ (0, 1)
and irrational (observe that PN(α) =

∏N
r=1 |2 sin(πrα)| =

∏N
r=1 2 sin(π{rα})).

This approach was carried out by Aistleitner et al. in [3]. One of the main
result of this article states that if (xr)r∈N is a uniformly distributed sequence in
the unit interval then

PN((xr)r∈N) ≤
(
N

∆N

)2∆N

, (2.7)

where ∆N := ND∗
N((xr)r∈N) and N is sufficiently large.

• Last but not least we would like to point out that the sequence (PN(α))N∈N
is also studied in various fields related to physics and applied mathematics
(e.g. string theory, KAM theory or the study of strange non-chaotic attractors
(SNA)). All of this areas try to understand some aspects of the growth of
PN (α). For more information in this direction we refer the interested reader to
[8, 38, 57, 65] and the references therein.

2.1.2 Key results

In this section we provide a very brief overview of some key results related to the
sequence PN(α). For a more detailed overview we refer to the introduction of [104].
Let us start with the well understood case when α is rational. We summarize some
basic facts in the subsequent lemma.

Lemma 2.1.1. Let N ∈ N, α ∈ R and PN(α) defined as in (2.1). Then we have

1. PN(α) = PN({α}), where {·} denotes the fractional part.

2. If α ∈ Q with α = p/q and gcd(p, q) = 1 then

PN(α) =

{

0 if N ≥ q

q if N = q − 1.

3. For α ∈ R we have that PN(α) ≤ 2N .

Proof. Except for the case N = q − 1 in the second statement of Lemma 2.1.1 all the
properties are a direct consequence of the definition of PN(α) given in (2.1). Now
assume that α = p/q with gcd(p, q) = 1. We will show a slightly stronger result
which is that

∏q−1
r=1 2 sin(πrα) = q. Observe that rp (mod q) runs through the set
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{1, . . . , q − 1} if r runs through {1, . . . , q − 1} since gcd(p, q) = 1. Hence we need to
show that

q−1
∏

r=1

2 sin

(

π
r

q

)

= q.

Note that we have 2 sin(πr/q) = |1−e2πir/q|.Moreover, it is a fact that (x−1)
∏q−1

r=1(x−
e2πir/q) = xq − 1 = (x− 1)

∑q−1
r=0 x

r. Using this observations we obtain

q−1
∏

r=1

2 sin

(

π
r

q

)

=

∣
∣
∣
∣
∣

q−1
∏

r=1

(1− e2πir/q)

∣
∣
∣
∣
∣
=

q−1
∑

r=0

1 = q (2.8)

and the result follows. Of course (2.8) implies that Pq−1(p/q) = q.

Due to the first and the second statement of Lemma 2.1.1 we can restrict our
attention to the case where α ∈ (0, 1) and irrational. For this case the growth of PN (α)
has been studied in different contexts. One of them was to analyse supα∈(0,1) PN (α)

1/N ,
which was first carried out by Sudler in [99], where he could prove that

lim
N→∞

(

sup
α∈(0,1)

PN(α)

)1/N

= α−1
0

∫ α0

0

log |2 sin(πα)| dα,

where α0 is the unique solution in [1/2, 1] of the equation
∫ α0

0
α cot(πα) dα = 0.

(From numerical calculations we obtain α0 = 0.7912 . . . .) Moreover, Sudler could
show that supα∈(0,1) PN(α) is achieved at αN with asymptotic behaviour of the form
αN ∼ α0/N as N grows. Recently Bell [11] adopted the method of Wright [107] and
was capable of giving a more precise version of the result of Sudler:

sup
α∈(0,1)

PN(α) ∼ C1

√
NEN ,

where C1 > 0 is independent of N and E = α−1
0

∫ α0

0
log |2 sin(πα)|. Furthermore Bell

could apply his methods also for Lp-norms and obtained for p ∈ [1,∞) that

(∫ 1

0

PN(α)
p dα

)1/p

∼ C1(C2n
−3/2)1/p

√
nEN ,

where C1, C2 > 0 are independent of N .
Another natural question is to ask about the growth rate of PN(α) for fixed

α. Surprisingly Lubinsky [76] was able to prove that for almost all α one has

limN→∞ P
1/N
N (α) = 1 in contrast to the exponential growth of supα PN(α). At
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first sight this result seems to be of a counter-intuitive nature. A rather heuristic
explanation for this phenomenon is that the exponential behaviour of supα∈(0,1) PN (α)
is due to peaks, which do not reflect the typical behaviour of the function. But with
increasing N this peaks narrow more and more. This means that for growing N the set
of α, which are responsible for the exponential behaviour of supα∈(0,1) PN (α) becomes
negligible. Furthermore Lubinsky was able to characterize the sub-exponential growth
of PN (α) more precisely (see [76]). One of his results states that for almost all α and
almost all ε > 0 we have

PN(α) ≤ NC(log logN)1+ε

if N is sufficiently large and where C > 0 is depending on α and ε. In particular, if α
has bounded continued fraction coefficients then he could even prove a polynomial
growth rate, i.e. PN(α) ≤ NC .

The special case where α is the golden ratio ϕ gained a lot of attention since
the golden ratio is for example in terms of the continued fraction expansion the
simplest irrational. Knill and Tangerman investigated the behaviour of the sum
SN(ϕ) =

∑N
r=1 log(2− 2 cos(2πrϕ)) in [57] (note that SN(ϕ) = log(PN(ϕ))). Quite

recently Verschueren and Mestel were capable of proving that the subsequence
(PFn

(ϕ))n≥1 of the Sudler product is convergent for n → ∞ and (Fn)n≥1 being the
Fibonacci sequence. It is exactly this work of Verschueren and Mestel that will play
a central role in Section 2.2 and which we will generalise in Section 2.3. In the next
section we will stick to the special case where α equals the golden ratio ϕ and shift
our attention to lim infN→∞ PN(ϕ).
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2.2 A positive lower bound for lim infN→∞ PN(ϕ)

A long-standing open question raised by Erdős and Szekeres in 1959 is: what can
we say about lim infN→∞ PN(α)? This question occupied Lubinsky, who studied the
product PN(α) in the context of q-series in [76]. In his paper, Lubinsky shows the
following theorem:

Theorem 2.2.1 ([76, Theorem 1.3]). Let α ∈ (0, 1) and irrational with contin-
ued fraction expansion α = [0; a1, a2, . . .] and let PN(α) be defined as in (2.1). If
supj∈N aj = ∞ then

lim inf
N→∞

PN(α) = 0. (2.9)

Note that (2.9) holds in the presence of unbounded continued fraction coefficients.
Moreover, Lubinsky expresses that he “feels certain that it (equation (2.9)) is true
in general”, i.e. also for α with bounded continued fraction coefficients. The first
main goal of this chapter is to show that, in fact, this is not the case. This section is
dedicated to prove the following theorem

Theorem 2.2.2. If ϕ = (
√
5− 1)/2, then

lim inf
N→∞

PN(ϕ) = lim inf
N→∞

N∏

r=1

|2 sin(πrϕ)| > 0. (2.10)

The number ϕ = (
√
5 − 1)/2, known as the fractional part of the golden ratio,

has the simplest possible continued fraction expansion

ϕ =
1

1 +
1

1 +
1

1 + . . .

= [0; 1].

This observation is key in establishing Theorem 2.2.2. Nevertheless, we suspect that
lim infN→∞ PN(α) > 0 also for other quadratic irrationals α (see Section 2.4.1 for a
discussion on this topic).

Remark 2.2.3. Observe that in the literature the golden ratio is defined as

ϕ =

√
5 + 1

2
. (2.11)

Due to the fact that PN(α) = PN({α}) we will not distinguish between ϕ and {ϕ}
when it is not necessary.
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In the following section, we present our strategy for proving Theorem 2.2.2. The
proof relies heavily on a paper by Verschueren and Mestel [104], where the asymptotic
behaviour of the subsequence (PFn

(ϕ))n≥1 is investigated for the Fibonacci sequence
(Fn)n≥1. Let us therefore briefly review the connection between the golden ratio ϕ
and the Fibonacci sequence before we present our proof strategy.

2.2.1 The Fibonacci sequence

Throughout this chapter, we denote by ϕ the (fractional part of the) golden ratio

ϕ :=

√
5− 1

2
,

and by (Fn)n≥1 = (1, 1, 2, 3, 5, 8, 13, . . .) the sequence of Fibonacci numbers. There is
an intimate relationship between ϕ and the Fibonacci sequence; (Fn)n≥1 is precisely
the sequence of best approximation denominators of ϕ. Moreover, we have the
property

Fnϕ = Fn−1 − (−ϕ)n, (2.12)

for F0 := 0 and n ∈ N.

Finally, recall that any positive integer N has a unique expansion in terms of the
Fibonacci sequence, known as its Zeckendorf representation [108].

Definition 2.2.4. Any N ∈ N has a unique Zeckendorf representation

N =
m∑

j=1

Fnj
,

where (Fn)n∈N0 is the Fibonacci sequence, and:

(i) n1 ≥ 2;

(ii) nj+1 > nj + 1 for all j ∈ {1, . . . ,m− 1}.

Moreover, it is well known that nm = O(logN) (see e.g. [64, p. 126]).

In other words, we can associate to any N ∈ N a unique integer sequence
(n1, . . . , nm). Note that since m < nm, the length of this sequence is m = O(logN).
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2.2.2 Strategy

The proof of Theorem 2.2.2 relies on central results in a recent paper by Verschueren
and Mestel [104]. In this paper, the authors analyse the asymptotic behaviour of the
product sequence (PN(ϕ))N≥1 for the golden ratio ϕ, and show in particular that:

Theorem 2.2.5 ([104, Theorem 3.1]). The subsequence (PFn
(ϕ))n≥1 is convergent,

and

lim
n→∞

PFn
(ϕ) = lim

n→∞

Fn∏

r=1

|2 sin(πrϕ)| ≃ 2.407 . . . . (2.13)

A consequence of Theorem 2.2.5 is that the general product PN (ϕ) must necessarily
obey polynomial bounds1

NC1 ≤ PN(ϕ) ≤ NC2 , (2.14)

where C1 ≤ 0 < 1 ≤ C2. These bounds are established as follows: Expressing the
integer N by its Zeckendorf representation N =

∑m
j=1 Fnj

, we can rewrite PN(ϕ) as

PN(ϕ) =

∑m
j=1 Fnj∏

r=1

|2 sin(πrϕ)|

=

(
Fnm∏

r=1

|2 sin(πrϕ)|
)



Fnm+Fnm−1∏

r=Fnm+1

|2 sin(πrϕ)|



 · · ·





∑m
j=1 Fnj∏

r=
∑m

j=2 Fnj
+1

|2 sin(πrϕ)|





=
m∏

j=1

Fnj∏

r=1

|2 sin(π(rϕ+ kjϕ))| , (2.15)

where kj =
∑m

s=j+1 Fns
for 1 ≤ j ≤ m− 1 and km = 0 (see [104, p. 220] for further

details). Verschueren and Mestel then show that:

Lemma 2.2.6 (see [104, p. 220-221]). There exist real constants 0 < K1 ≤ 1 ≤ K2

(independent of N) bounding all terms in (2.15), i.e. so that

K1 ≤
Fnj∏

r=1

|2 sin(π(rϕ+ kjϕ))| ≤ K2, (2.16)

for all 1 ≤ j ≤ m.

1This was first established by Lubinsky in [76] using a different approach.
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It immediately follows from Lemma 2.2.6 and (2.15) that

Km
1 ≤ PN(ϕ) ≤ Km

2 .

Finally, since the Zeckendorf representation of N has length m = O(logN), we get
(2.14) for some constants C1 < C2. It follows immediately from Theorem 2.2.5 that
C1 ≤ 0 (and an argument of why C2 ≥ 1 is given in [104, p. 219]).

Our strategy for concluding that lim infN→∞ PN(ϕ) > 0 is to evaluate the sub-
products in (2.15) more carefully for large values of j.

Lemma 2.2.7. There exists a threshold value J ∈ N (independent of N) such that
for all terms in (2.15) where j > J , we have

Fnj∏

r=1

|2 sin(π(rϕ+ kjϕ))| ≥ 1.

Combining Lemmas 2.2.6 and 2.2.7, we find that

PN(ϕ) =
m∏

j=1

Fnj∏

r=1

|2 sin(π(rϕ+ kjϕ))| ≥ KJ
1 > 0,

confirming Theorem 2.2.2.
The proof of Lemma 2.2.7 is given in Section 2.2.4. It requires a certain de-

composition of the product
∏Fnj

r=1 |2 sin π(rϕ+ kjϕ)| into three more manageable
subproducts. This decomposition is inspired by the work of Verschueren and Mestel,
and is thoroughly described in the following section.

2.2.3 Decomposition

It is shown in [104, Lemma 5.1] that the product PFn
(ϕ) can be split into three

subproducts

PFn
(ϕ) =

Fn∏

r=1

|2 sin(πrϕ)| = AnBnCn, (2.17)

where

An = |2Fn sin(πϕ
n)|, (2.18)

Bn =
Fn−1∏

t=1

∣
∣
∣
∣

snt
2 sin(πt/Fn)

∣
∣
∣
∣
, (2.19)
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Cn =
Fn−1∏

t=1

(

1− s2n0
s2nt

)1/2

, (2.20)

and where

snt := 2 sin

(

π

(
t

Fn

− ϕn

({
tFn−1

Fn

}

− 1

2

)))

. (2.21)

Observe that snt = sn(Fn−t) for t ∈ {1, . . . , Fn − 1} (see [104, Lemma 4.1]). Now it

follows immediately for odd Fn that Cn =
∏(Fn−1)/2

t=1 (1− s2n0/s
2
nt) and for even Fn we

get that

Fn−1∏

t=1

(

1− s2n0
s2nt

)1/2

=

(

1− s2n0
s2n(Fn/2)

)1/2 (Fn−2)/2
∏

t=1

(

1− s2n0
s2nt

)

. (2.22)

Further, by definition of snt we obtain limn→∞(1− s2n0/s
2
n(Fn/2)

) = 1. In other words
it does not make a difference for the asymptotic behaviour of Cn if we consider the
case where Fn is even or where Fn is odd. In order to avoid such a case distinction
and improve readability of what follows we stick to the lines of [104] and introduce
the following generalised sum and product notation:

Given a summable sequence (br)r∈N, we define the step function f(t) = br for
t ∈ [r, r + 1). Then for any x, y ∈ R where x ≤ y, we let

y
∑

r=x

br :=

∫ y

x

f(t) dt. (2.23)

Moreover, if f(t) > 0 on [x, y], we let

y
∏

r=x

br := exp

(
y
∑

r=x

log br

)

= exp

(∫ y

x

log f(t) dt

)

. (2.24)

This allows us to define sums and products with real, rather than just integer, upper
and lower bounds. Note in particular that this definition coincides with normal
summation and product notation whenever x, y ∈ Z.

With this notation in mind we can rewrite (2.20) as

Cn =

(Fn−1)/2
∏

t=1

(

1− s2n0
s2nt

)

.
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A similar decomposition as given in (2.17) can be established for a perturbed
version of PFn

(ϕ). Let us introduce the notation

PFn
(ϕ, ε) =

Fn∏

r=1

|2 sin(π(rϕ+ ε))| , (2.25)

where ε is some fixed, real number. We claim the following:

Lemma 2.2.8. We have

PFn
(ϕ, ε) = An(ε)BnCn(ε), (2.26)

where

An(ε) = 2Fn| sin (π((−ϕ)n − ε)) |, (2.27)

Cn(ε) =

(Fn−1)/2
∏

t=1

(

1− v2n(ε)

s2nt

)

, (2.28)

Bn and snt are given in (2.19) and (2.21) respectively, and

vn(ε) := vn := 2 sin

(

π

(
(−ϕ)n

2
− ε

))

. (2.29)

Proof. By definition we have that

(PFn
(ϕ, ε))2 =

(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

r=1

(
2 sin(π(rϕ+ ε))

)2

=
(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

r=1

(
2 sin(π(rϕ+ ε))

)(
2 sin(π((Fn − r)ϕ+ ε))

)

=
(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

r=1

2
(
cos(π(2rϕ− Fnϕ))− cos(π(Fnϕ+ 2ε))

)
,

where we have used the identity sin x sin y = (cos(x− y)− cos(x+ y))/2 for the final
step. Recall from (2.12) that Fnϕ = Fn−1 − (−ϕ)n for all n ∈ N. Thus, we get

(PFn
(ϕ, ε))2=

(
2 sin(π(Fnϕ+ ε))

)2

×
Fn−1∏

r=1

2
(
cos(π(2rϕ− Fn−1 + (−ϕ)n))− cos(π(Fn−1 − (−ϕ)n+2ε))

)
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=
(
2 sin(π(Fnϕ+ ε))

)2
(−1)(Fn−1+1)(Fn−1)

×
Fn−1∏

r=1

2
(
− cos(π(2rϕ+ (−ϕ)n)) + cos(π((−ϕ)n − 2ε))

)
.

Note that gcd(Fn−1, Fn) = 1, and this implies (−1)(Fn−1+1)(Fn−1) = 1. We now use
the identity cos(x) = 1− 2 sin2(x)/2 to obtain

(PFn
(ϕ, ε))2 =

(
2 sin(π(Fnϕ+ ε))

)2

×
Fn−1∏

r=1

4

(

sin2

(

π

(

rϕ+
(−ϕ)n

2

))

− sin2

(

π

(
(−ϕ)n

2
− ε

)))

.

Applying again the identity (2.12) we get

2 sin

(

π

(

rϕ+
(−ϕ)n

2

))

= 2 sin

(

π

(

r
Fn−1

Fn

− (−ϕ)n
(
r

Fn

− 1

2

)))

.

Note that if r runs through {1, . . . , Fn − 1} then so does t = Fn−1r (mod Fn).
Furthermore, recall the well known identity F 2

n−1 ≡ (−1)n (mod Fn). Using the
substitution t = Fn−1r (mod Fn) we obtain that

∣
∣
∣
∣
2 sin

(

π

(

r
Fn−1

Fn

− (−ϕ)n
(
r

Fn

− 1

2

)))∣
∣
∣
∣

=

∣
∣
∣
∣
2 sin

(

π

(
t

Fn

− (−ϕ)n
(
(−1)ntFn−1 (mod Fn)

Fn

− 1

2

)))∣
∣
∣
∣

=

∣
∣
∣
∣
2 sin

(

π

(
t

Fn

− (−ϕ)n
({

(−1)ntFn−1

Fn

}

− 1

2

)))∣
∣
∣
∣

=

∣
∣
∣
∣
2 sin

(

π

(
t

Fn

− ϕn

({
tFn−1

Fn

}

− 1

2

)))∣
∣
∣
∣
= |snt|, (2.30)

where we have used in the second last step that f(x) = {x} − 1/2 is an odd function
and snt is defined as in (2.21). Using (2.29) and (2.30) we finally have

(PFn
(ϕ, ε))2 =

(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

t=1

(
s2nt − v2n

)

=
(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

t=1

s2nt

Fn−1∏

t=1

(

1− v2n
s2nt

)
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=
(
2 sin(π(Fnϕ+ ε))

)2
Fn−1∏

t=1

s2nt

Fn−1∏

t=1

(

1− v2n
s2nt

)

F 2
n

(
Fn−1∏

t=1

2 sin

(

π
t

Fn

))−2

=
(
An(ε)BnCn(ε)

)2
,

where we have used the notation introduced in (2.24) and the well known product
formula (see Lemma 2.1.1)

q−1
∏

r=1

2 sin

(

πr
p

q

)

= q,

for positive integers p, q ≥ 1 with gcd(p, q) = 1.

2.2.4 Proof of Lemma 2.2.7

Let us now turn to Lemma 2.2.7. Fix some N ∈ N, and let

N =
m∑

j=1

Fnj

be its unique Zeckendorf representation. The product PN (ϕ) may be decomposed as

PN(ϕ) =
m∏

j=1

Fnj∏

r=1

|2 sin(π(rϕ+ kjϕ))| ,

where kj =
∑m

s=j+1 Fns
for 1 ≤ j ≤ m−1 and km = 0 (see (2.16)). Using the notation

introduced in (2.25), we get

PN(ϕ) =
m∏

j=1

PFnj
(ϕ, kjϕ).

By applying again the identity Fnϕ = Fn−1 − (−ϕ)n from (2.12), we have

kjϕ =
m∑

s=j+1

(Fns−1 − (−ϕ)ns) ,

and thus

PN(ϕ) =
m∏

j=1

PFnj
(ϕ, εj), εj = −

m∑

s=j+1

(−ϕ)ns . (2.31)
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Recall that by Lemma 2.2.8 we have

PFnj
(ϕ, εj) = Anj

(εj)Bnj
Cnj

(εj), (2.32)

where the terms Anj
(εj), Bnj

and Cnj
(εj) are given in (2.27), (2.19) and (2.28),

respectively. The claim in Lemma 2.2.7 is that PFnj
(ϕ, εj) ≥ 1 whenever j exceeds

some threshold value (independent of N). We will continue by analysing and bounding
each of the three terms Anj

(εj), Bnj
and Cnj

(εj) from below.

The term Anj
(εj)

The following lemma gives a suitable lower bound for the term Anj
(εj).

Lemma 2.2.9. Let Anj
(εj) be given in (2.27). We have

Anj
(εj) =

2π√
5
(1 + pj)

(
1 +O(ϕ2nj)

)
, (2.33)

where the implied constant is independent of nj,

pj := −εj(−ϕ)−nj =
m∑

s=j+1

(−ϕ)ns−nj , (2.34)

and pj ∈ [−ϕ2, ϕ].

Proof. Since n1 ≥ 2 and any two consecutive elements ns and ns+1 must necessarily
satisfy ns+1 − ns ≥ 2 (recall Definition 2.2.4), we have that

pj =
m∑

s=j+1

(−ϕ)ns−nj ≤
∞∑

s=j+1

ϕ2(s−j) = ϕ

and

pj =
m∑

s=j+1

(−ϕ)ns−nj ≥ −
∞∑

s=j+1

ϕ2(s−j)+1 = −ϕ2.

Thus we get that pj ∈ [−ϕ2, ϕ].
Moreover, it follows that |(−ϕ)nj − εj| = ϕnj(1 + pj) = O(ϕnj). Hence, by the

definition of Anj
(εj) and applying sin x = x(1 +O(x2)) we get

Anj
(εj) = 2Fnj

|sin(π((−ϕ)nj − εj))| = 2πFnj

∣
∣((−ϕ)nj − εj)

(
1 +O(ϕ2nj)

)∣
∣
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= 2π(1 + pj)Fnj
ϕnj

(
1 +O(ϕ2nj)

)
=

2π√
5
(1 + pj)

(
1 +O(ϕ2nj)

)
,

where we have used that Fn = (ϕ−n − (−ϕ)n)/
√
5 for n ∈ N.

The term Bnj

We will exploit the fact that Bnj
is not depending on εj in contrast to the terms Anj

and Cnj
. We want to prove the following general lower bound for Bn:

Lemma 2.2.10. Let n ∈ N and Bn be given in (2.19). Then we have

Bn >

√
5

2πϕ2

PFn+2(ϕ)

PFn+1(ϕ)

(
1−O(ϕ2n)

)
. (2.35)

Proof. Note that by definition we have

PFn+2(ϕ)

PFn+1(ϕ)
=

Fn+2∏

r=Fn+1+1

|2 sin(πrϕ)| =
Fn∏

r=1

|2 sin(π(rϕ+ ϕFn+1))|

=
Fn∏

r=1

|2 sin
(
π(rϕ− (−ϕ)n+1)

)
| = PFn

(ϕ,−(−ϕ)n+1)

= An(−(−ϕ)n+1)BnCn(−(−ϕ)n+1),

where we applied Lemma 2.2.8 for the special case ε = −(−ϕ)n. Therefore we obtain

Bn =
PFn+2(ϕ)

PFn+1(ϕ)

(
An(−(−ϕ)n+1)Cn(−(−ϕ)n+1)

)−1
. (2.36)

First of all observe that by following the same lines as in the proof of Lemma 2.2.9
one can easily derive that An(−(−ϕ)n+1) = 2πϕ2/

√
5(1 + O(ϕ2n)). Moreover, we

have that Cn(−(−ϕ)n+1) < 1, which can be seen in the following way. Verschueren
and Mestel proved in [104, Lemma 4.1] that snt ≥ sn0 for t ∈ {0, . . . , Fn − 1}. This
leads us to

∣
∣
∣
∣

vn(−(−ϕ)n)
snt

∣
∣
∣
∣
≤
∣
∣
∣
∣

vn(−(−ϕn))

sn0

∣
∣
∣
∣
=

∣
∣
∣
∣

sin(π
2
ϕn+3)

sin(π
2
ϕn)

∣
∣
∣
∣
< 1.

Hence, by (2.28) the product Cn(−(−ϕ)n+1) < 1 and we finally arrive at

Bn >

√
5

2πϕ2

PFn+2(ϕ)

PFn+1(ϕ)

(
1−O(ϕ2n)

)
.
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The term Cnj
(εj)

We now shift our attention to the term Cnj
(εj). Our goal is to prove:

Lemma 2.2.11. Let Cnj
(εj) be given in (2.28). We have

Cnj
(εj) ≥ 1− 1

7
(1 + 2pj)

2 −O(ϕnj/5), (2.37)

with pj as in (2.34) and where the implied constant is independent of nj.

The proof of Lemma 2.2.11 is more elaborate than the proofs of Lemma 2.2.9 and
Lemma 2.2.10, and we start by stating two preliminary results.

Lemma 2.2.12 ([104, Lemma 4.3]). For n ≥ 2 and real numbers at, t = 1, 2, . . . , n,
satisfying A :=

∑n
t=1 |at| < 1, we have

1− A <
n∏

t=1

(1− |at|) <
1

1− A
.

Lemma 2.2.12 is used in [104] to show that the product Cn in (2.20) can be
expressed as

Cn =
∞∏

t=1

(

1− 1

u2t

)

−O(ϕn/5),

where

ut := 2

(√
5t− {tϕ}+ 1

2

)

. (2.38)

We use it here to verify that a similar expression can be given for the perturbed
product Cn(ε) whenever the perturbation ε is sufficiently small.

Lemma 2.2.13. Let Cn(ε) be given in (2.28), and assume that |ε| ≤ ϕn+1. Then

Cn(ε) ≥
∞∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)

−O(ϕn/5),

with ut given in (2.38) and where the implied constant is independent of n.

Proof. Recall that

Cn(ε) =

(Fn−1)/2
∏

t=1

(

1− vn(ε)
2

s2nt

)

, (2.39)
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where vn(ε) is given in (2.29) and snt is given in (2.21). The assumption on ε implies
that |ε(−ϕ)−n| ≤ ϕ and

|1− 2ε(−ϕ)−n| ≤ 1 + 2ϕ =
√
5. (2.40)

It thus follows from sin x = x(1 +O(x2)) that

|vn(ε)| = 2
∣
∣
∣sin

(π

2
(−ϕ)n(1− 2ε(−ϕ)−n)

)∣
∣
∣

= πϕn |1− 2ε(−ϕ)−n| (1 +O(ϕ2n)) (2.41)

≤ πϕn
√
5
(
1 +O(ϕ2n)

)
.

We now split the product (2.39) at ηn :=
⌈
ϕ−3n/5

⌉
, and treat first the terms where

t ≥ ηn. As a next step note that from (2.12) and the fact that
√
5Fn = ϕ−n − (−ϕ)n

it follows for n ≥ 1 that

Fn−1

Fn

= ϕ+O(ϕ2n) and Fnϕ
n =

1√
5
(1 +O(ϕ2n)) (2.42)

Now it follows by (2.42) for sufficiently large n that

snt = 2 sin

(

π

(

t
√
5ϕn 1

1 +O(ϕ2n)
− ϕn

(

{tϕ}+ tO(ϕ2n)− 1

2

)))

= 2 sin

(

πtϕn

(√
5− 1

t

(

{tϕ} − 1

2

)

+O(ϕ2n)

))

. (2.43)

Combining (2.41) with (2.43) and (π/2) sin(x) ≥ x for x ∈ (0, π/2) we obtain

∣
∣
∣
∣

vn(ε)

snt

∣
∣
∣
∣
≤ πϕn

√
5(1 +O(ϕ2n))

4ϕnt
∣
∣
√
5− t−1

(
{tϕ} − 1

2

)
+O(ϕ2n)

∣
∣

≤
√
5π(1 +O(ϕ2n))

4ηn
∣
∣
√
5− η−1

n

(
{tϕ} − 1

2

)
+O(ϕ2n)

∣
∣

=
π(1 +O(ϕ2n))

4ηn(1 +O(η−1
n ))

= O(η−1
n ). (2.44)

Observe that if n is sufficiently large (2.44) implies that
∑(Fn−1)/2

t=ηn
v2n/s

2
nt < 1 and

therefore we are able to apply Lemma 2.2.12 and obtain

1 ≥
(Fn−1)/2
∏

t=ηn

(

1− v2n
s2nt

)

≥ 1−
(Fn−1)/2
∑

t=ηn

v2n
s2nt

= 1−O(ϕn/5). (2.45)
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Now consider the terms in (2.39) where t < ηn. Using again (2.42) and sin(x) =
x+O(x3) we get for sufficiently large n that

snt = 2π

(
t

Fn

− ϕn

({
tFn−1

Fn

}

− 1

2

))

+O(t3ϕ3n)

= 2πϕn

( √
5t

1 +O(ϕ2n)
−
{
tϕ+ tO(ϕ2n)

}
+

1

2

)

+O(ϕn/5)

= 2πϕn

(√
5t(1 +O(ϕ2n))− {tϕ}+ 1

2
+ tO(ϕ2n)

)

+O(ϕn/5)

= πϕn(ut +O(ϕn/5)),

with ut given in (2.38), and combined with (2.41) this implies

∣
∣
∣
∣

vn(ε)

snt

∣
∣
∣
∣
=
πϕn |1− 2ε(−ϕ)−n| (1 +O(ϕ2n))

πϕn(ut +O(ϕn/5))

=
|1− 2ε(−ϕ)−n|

ut

1 +O(ϕ2n)

1 +O(ϕn/5)

=
|1− 2ε(−ϕ)−n|

ut
(1 +O(ϕn/5)).

It follows that

ηn∏

t=1

(

1− vn(ε)
2

s2nt

)

=

ηn∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t
− O(ϕn/5)

u2t

)

=

ηn∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)

(2.46)

×
ηn∏

t=1

(

1− O(ϕn/5)

u2t − (1− 2ε(−ϕ)−n)2

)

. (2.47)

Before we now evaluate the two subproducts (2.46) and (2.47) separately note that

(1− 2ε(−ϕ)−n)2
∞∑

t=ηn+1

1

u2t
≤ 5

∞∑

t=1

1

u2t
≤ 5

(

1

u21
+

∞∑

t=2

1

20(t− 1)2

)

= 5

(
1

(
√
5 + 1)2

+
π2

120

)

<
5

7
. (2.48)
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Consider the subproduct (2.47) and observe that by (2.48) we are capable of applying
Lemma 2.2.12 and we then have

0 ≤
∞∏

t=ηn+1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)

≤
(

1− (1− 2ε(−ϕ)−n)2
∞∑

t=1

1

u2t+ηn

)−1

≤
(

1− 1

4

∞∑

t=1

1

(t+ ηn − 1)2

)−1

=
(
1−O(η−1

n )
)−1

,

and thus

ηn∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)

≥
∞∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)
(
1−O(η−1

n )
)
. (2.49)

Now consider the second subproduct (2.47). Using the bound (2.40), it is easily
checked that ∞∑

t=1

1

u2t − (1− 2ε(−ϕ)−n)2
<∞.

Thus, for sufficiently large n, we can use Lemma 2.2.12 to conclude that

ηn∏

t=1

(

1− O(ϕn/5)

u2t − (1− 2ε(−ϕ)−n)2

)

> 1−O(ϕn/5)
∞∑

t=1

1

u2t − (1− 2ε(−ϕ)−n)2

= 1−O(ϕn/5). (2.50)

Inserting the bounds (2.49) and (2.50) for the subproducts (2.46) and (2.47),
respectively, we get

ηn∏

t=1

(

1− vn(ε)
2

s2nt

)

≥
∞∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)
(
1−O(η−1

n )
)(
1−O(ϕn/5)

)
. (2.51)

Finally, inserting (2.45) and (2.51) in (2.39), and recalling that ηn = ⌈ϕ−3n/5⌉, we get

Cn(ε) =

ηn∏

t=1

(

1− vn(ε)
2

snt2

) (Fn−1)/2
∏

t=ηn+1

(

1− vn(ε)
2

snt2

)
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≥
∞∏

t=1

(

1− (1− 2ε(−ϕ)−n)2

u2t

)

−O(ϕn/5).

We are now equipped to bound Cnj
(εj) from below.

Proof of Lemma 2.2.11. For n = nj and ε = εj = −∑m
s=j+1(−ϕ)ns , we have |ε| ≤

ϕnj+1, and thus by Lemma 2.2.13 we get

Cnj
(εj) ≥

∞∏

t=1

(

1− (1 + 2pj)
2

u2t

)

−O(ϕnj/5),

with pj given in (2.34). Recall that pj ∈ [−ϕ2, ϕ], and thus (1 + 2pj)
2 ≤ 5. Moreover,

from (2.48) it also follows that (1 + 2pj)
2
∑∞

t=1 u
−2
t < 1. Thus, we may apply

Lemma 2.2.12 to obtain

Cnj
(εj) ≥ 1−

∞∑

t=1

(1 + 2pj)
2

u2t
−O(ϕnj/5) > 1− 1

7
(1 + 2pj)

2 −O(ϕnj/5).

Main proof

Let us now confirm that Lemma 2.2.7 indeed follows from Lemmas 2.2.9, 2.2.10 and
2.2.11.

Proof of Lemma 2.2.7. We recall that our goal is to show that

PFnj
(ϕ, εj) ≥ 1 (2.52)

whenever nj is sufficiently large. We have seen that

PFnj
(ϕ, εj) = Anj

(εj)Bnj
Cnj

(εj), (2.53)

where Anj
(εj), Bnj

and Cnj
(εj) are defined in (2.27), (2.19) and (2.28). By Lem-

mas 2.2.9, 2.2.10 and 2.2.11 we get

PFnj
(ϕ, εj) > ϕ−2(1 + pj)

(

1− 1

7
(1 + 2pj)

2

)
PFnj+2(ϕ)

PFnj+1(ϕ)

(
1−O(ϕnj/5)

)
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with pj given in (2.34). Consider the function

g(x) = (1 + x)

(

1− 1

7
(1 + 2x)2

)

.

It is easily checked that for x ∈ [−ϕ2, ϕ], this function satisfies g(x) > 5/11. Addi-
tionally by the main result of [104] we know that limn→∞ PFn+2(ϕ)/PFn+1(ϕ) = 1. So
there exists S ∈ N such that

g(pj)
PFnj+2(ϕ)

PFnj+1(ϕ)

(
1−O(ϕnj/5)

)
>

5

12

whenever nj ≥ S. Hence, we obtain that

PFnj
(ϕ, εj) > ϕ−2 5

12
> 1 for all nj ≥ S.

and in particular, this means that (2.52) holds for all j ≥ J = S/2

Finally, we recall that Theorem 2.2.2 is a consequence of Lemma 2.2.7:

Proof of Theorem 2.2.2. Let N be any natural number, and let N =
∑m

j=1 Fnj
be its

unique Zeckendorf representation. We rewrite PN(ϕ) as

PN(ϕ) =
N∏

r=1

|2 sin(πrϕ)| =
m∏

j=1

PFnj
(ϕ, εj),

with εj given in (2.31).
Assume first that the length of the Zeckendorf representation of N is smaller than

the bound J in Lemma 2.2.7, i.e. m ≤ J . In this case it follows from Lemma 2.2.6
that

PN(ϕ) ≥ Km
1 ≥ KJ

1 . (2.54)

for some 0 < K1 ≤ 1.
Suppose now that m > J . Then by Lemmas 2.2.6 and 2.2.7, we have

PN(ϕ) =

(
J∏

j=1

PFnj
(ϕ, εj)

)(
m∏

j=J+1

PFnj
(ϕ, εj)

)

≥ KJ
1 · 1m−J ≥ KJ

1 . (2.55)

Combining (2.54) and (2.55) we have PN(ϕ) ≥ KJ
1 for all N , where J ∈ N and

K1 > 0 are absolute constants. It follows that

lim inf
N→∞

PN(ϕ) ≥ KJ
1 > 0.

This finishes the proof of Theorem 2.2.2.
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2.3 Asymptotic behaviour of the Sudler product

of sines for quadratic irrationals

We will continue the analysis of the asymptotic behaviour of the Sudler product
PN (α) in this section. This time we put the focus at certain subsequences of the form

Qn(α) :=

qn∏

r=1

|2 sin(πrα)|, (2.56)

where (qn)n≥0 are the best approximation denominators of α. In a recent paper,
Verschueren and Mestel [104] study Qn(α) in the special case where α = ϕ =
(
√
5− 1)/2 is the fractional part of the golden mean. For this case, it was suggested

by Knill and Tangerman in [57] that the limit value limn→∞Qn(ϕ) might exist, and
this is confirmed by Verschueren and Mestel.

Theorem 2.3.1 ([104, Theorem 2.2]). If ϕ denotes the golden mean and (Fn)n≥1 =
(1, 1, 2, 3, 5, . . .) the Fibonacci sequence, then there exists a constant c > 0 such that

lim
n→∞

Qn(ϕ) = lim
n→∞

Fn∏

r=1

|2 sin(πrϕ)| = c.

Verschueren and Mestel [104] conjecture that Theorem 2.3.1 can be extended to
all quadratic irrationals. More precisely, they suggest that if the continued fraction
expansion of α has period ℓ, then the subsequence Qn(α) will converge to a periodic
sequence whose period length divides ℓ. Our main goal is to verify this claim.

Theorem 2.3.2. Suppose α has a purely periodic continued fraction expansion α =
[0; a1, . . . , aℓ] with a1, . . . , aℓ ∈ N and period ℓ. Let (qn)n≥1 be the sequence of best
approximation denominators of α. Then there exist positive constants c0, c1, . . . , cℓ−1

such that

lim
m→∞

Qℓm+k(α) = lim
m→∞

qℓm+k∏

r=1

|2 sin(πrα)| = ck

for each k = 0, 1, 2, . . . , ℓ− 1.

Corollary 2.3.3. Suppose β has continued fraction expansion of the form β =
[a0; a1, . . . , ah, ah+1, . . . , ah+ℓ] and let α = [0; ah+1, . . . , ah+ℓ]. We then have

lim
m→∞

Qh+ℓm+k(β) = lim
m→∞

Qℓm+k(α).
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The proof of Theorem 2.3.2 (and Corollary 2.3.3) largely follows that given by
Verschueren and Mestel for the special case of the golden mean. Nevertheless, we
include the proof in full detail for the sake of completeness. We emphasise that the
challenge in generalising Theorem 2.3.1 to all quadratic irrationals lies in finding
appropriate analogues for (qn)n≥1 of certain special properties of the Fibonacci
sequence (Fn)n≥1 = (1, 1, 2, 3, 5, 8, 13, . . .). Throughout their proof for the golden
mean case, Verschueren and Mestel make heavy use of the identities

Fnϕ
n =

1√
5
+O(ϕ2n)

and
Fn−1

Fn

= ϕ+O(ϕ2n),

which do not have obvious analogues for the more general case of a quadratic irrational
α. However, we will see that similar identities can indeed be formulated for the
sequence (qn)n≥1 of best approximation denominators of α, and with these established
the proof of Verschueren and Mestel easily carries over.

The existence of limm→∞Qℓm+k claimed by Theorem 2.3.2 is verified by splitting
the product Qℓm+k into three more manageable products

Qℓm+k = AmBmCm

= |2qn sin(πekbm)| ·
∣
∣
∣
∣
∣

qn−1
∏

t=1

smt

2 sin(πt/qn)

∣
∣
∣
∣
∣
·
qn−1
∏

t=1

(

1− s2m0

s2mt

)1/2

, (2.57)

where n = ℓm+ k, ek is a k-dependent constant, and smt is the generalised version of
the sequence given in (2.21), which will be introduced later on in Section 2.3.3.

Remark 2.3.4. If we consider the special case where α = ϕ = [0; 1], i.e. ℓ = 1, k = 0,
qn(α) = Fn, b = −ϕ and e0 = −1, the decomposition of Qℓm+k given above reduces
to the decomposition of PFn

(ϕ) as stated in (2.17). We will also see in Section 2.3.3
that smt and the sequence given in (2.21) are connected in the same vein.

The decomposition (2.57) is explained in detail in Section 2.3.3, where we also show
the straightforward convergence of Am as m→ ∞. The convergence of Bm and Cm is
more involved, and is therefore treated in subsequent Sections 2.3.4 and 2.3.5. Prior
to this, in Section 2.3.2, we establish analogues for (qn)n≥1 of the above-mentioned
Fibonacci identities. In particular, we point out a connection to so-called Lehmer
sequences, which we consider to be of independent interest (see Theorem 2.3.13).
Finally, we summarize the proofs of Theorem 2.3.2 and Corollary 2.3.3 in Section 2.3.6.
First, however, we introduce necessary notation and some general theory on continued
fraction expansions in the following section.
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2.3.1 Preliminaries

Following Verschueren and Mestel [104], we stick to the generalised sum and product
notation which we have already introduced in Section 2.2 (see p.78).

Permutation operators

Whenever we have an ℓ-dimensional, integer-valued vector, e.g. d = (d1, . . . , dℓ) ∈ Nℓ,
we use the corresponding greek letter (in this case δ) to denote the real number with
continued fraction expansion δ = [0; d1, . . . , dℓ].

We introduce two families of permutation operators acting on Nℓ: Let τu : Nℓ → Nℓ

be defined by

τu(d) := (du+1, . . . , dℓ, d1, . . . , du), u ∈ {0, 1, . . . , ℓ− 1}, (2.58)

and similarly σu : Nℓ → Nℓ be defined by

σu(d) := (du−1, . . . , d1, dℓ, . . . , du), u ∈ {2, 3, . . . , ℓ− 1}, (2.59)

with σ0(d) = (dℓ−1, . . . , d1, dℓ) and σ1(d) = (dℓ, . . . , d1). Moreover, we use δτu and
δσu

to denote the real numbers with periodic continued fraction expansions given by
τu(d) and σu(d), respectively. That is, we write

δτu = [0; du+1, . . . , dℓ, d1, . . . , du] (2.60)

and

δσu
= [0; du−1, . . . , d1, dℓ, . . . , du]. (2.61)

Our motivation for introducing the operator τu is explained by Lemma 2.3.7 in the
following subsection. The need to introduce σu is less evident, but will be clear from
Lemma 2.3.18 in Section 2.3.2, where we describe the asymptotic behaviour of the
sequence of denominator quotients (qn−1/qn)n≥1 for a quadratic irrational number.

Continued fraction expansions

We briefly review some facts about continued fraction expansions of real numbers. In
general, for any irrational, real α ∈ (0, 1) whose continued fraction expansion is given
by

[0; a1, a2, . . .],
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we denote its nth convergent by pn/qn. The numerators pn and denominators qn are
given recursively by

q0 = 0, q1 = 1 qn+1 = anqn + qn−1;

p0 = 1, p1 = 0 pn+1 = anpn + pn−1.

Note that the indexing of pn and qn is offset by one compared to what is normally
seen in literature. As a consequence, the nth convergent pn/qn is smaller than α for
every odd value of n, and greater than α for every even value of n. It follows readily
from the recurrences above that

pnqn+1 − pn+1qn = (−1)n, (2.62)

and as a consequence of this identity we have the error bound
∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
<

1

qn+1qn
(2.63)

for the nth convergent of α.

Remark. Whenever it is not clear from context, we write pn(α) and qn(α) to indicate
that these are the best approximation numerators and denominators corresponding
to the real number α.

Theorem 2.3.5 (Ostrowski representation). Let α ∈ (0, 1) be an irrational number
with continued fraction expansion [0; a1, a2, . . .] and best approximation denominators
(qn)n≥1. Then every non-negative integer N has a unique expansion

N =
z∑

n=1

vnqn, (2.64)

where:

i) 0 ≤ v1 ≤ a1 − 1 and 0 ≤ vn ≤ an for n > 1.

ii) If vn = an for some n, then vn−1 = 0.

iii) z = z(N) = O(log(N))

We refer to (2.64) as the Ostrowski representation of N in base α.

The proof of Theorem 2.3.5 can for example be found in [64, p. 126].

Remark 2.3.6. Observe that for the special case where α = ϕ = [0; 1] and qn(ϕ) = Fn

the Ostrowski representation of N in base ϕ is exactly the Zeckendorf representation
of N (see Definition 2.2.4).
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Periodic continued fraction expansions

Suppose now that α is an irrational with ℓ-periodic continued fraction expansion
α = [0; a1, . . . , aℓ]. For this special case, further properties of the convergents pn/qn
of α can be established. The following lemma summarizes useful relations for (pn)n≥0

and (qn)n≥0 established by Perron in [86, p. 14–17].

Lemma 2.3.7. Let α = [0; a1, . . . , aℓ] and for every k ∈ {0, . . . , ℓ − 1} let τk be
defined as in (2.58).

(a) For all n,m ∈ N, we have

pn+m(α)qm(α)− pm(α)qn+m(α) = (−1)m−1qn(ατm mod ℓ
),

where ατk is defined in (2.60).

(b) For all r ∈ N0, we have

qℓ+r(α) = qℓ+1(α)qr(α) + qℓ(α)pr(α)

and

pℓ+r(α) = pℓ(α)pr(α) + pℓ+1(α)qr(α).

(c) For every k ∈ {1, 2, . . . , ℓ− 1}, we have

qℓ−1(ατk) = pℓ(ατk−1
).

Let us now associate to α = [0; a1, . . . aℓ] the constant

c(α) := qℓ+1(α) + pℓ(α). (2.65)

This constant will play an important role as we go forward. As a first application, it
appears in the following recursion formula for (qn)n≥0.

Lemma 2.3.8. Let α = [0; a1, . . . , aℓ] and let (qn)n≥0 be the sequence of best approxi-
mation denominators of α. For all n ≥ 2ℓ we have

qn = c(α)qn−ℓ + (−1)ℓ−1qn−2ℓ, (2.66)

with c(α) given in (2.65).
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Proof by induction. For n = 2ℓ, the right hand side in (2.66) reads

c(α)qℓ + (−1)ℓ−1q0 = qℓqℓ+1 + qℓpℓ = q2l

according to Lemma 2.3.7(b) with r = ℓ. So (2.66) holds for n = 2ℓ.
Now let n = 2ℓ+ 1. The right hand side in (2.66) then reads

c(α)qℓ+1 + (−1)ℓ−1q1 = q2ℓ+1 + pℓqℓ+1 + (−1)ℓ−1q1 = q2ℓ+1 + pℓ+1qℓ,

where the last equality follows from Lemma 2.3.7(a) with m = ℓ and n = 1. Again,
using Lemma 2.3.7(b) with r = ℓ+ 1, we have

q2ℓ+1 = q2ℓ+1 + pℓ+1qℓ,

so (2.66) holds for n = 2ℓ+ 1.
For general n > 2ℓ+ 1, we have

qn+1 = anqn + qn−1 = an mod ℓqn + qn−1,

where we understand a0 as aℓ. Using the induction hypothesis for qn and qn−1, and
the fact that n mod ℓ = (n− ℓ) mod ℓ = (n− 2ℓ) mod ℓ, we get

qn+1 = c(α) (an mod ℓqn−ℓ + qn−ℓ−1) + (−1)ℓ−1 (an mod ℓqn−2ℓ + qn−2ℓ−1)

= c(α)qn+1−ℓ + (−1)ℓ−1qn+1−2ℓ.

This completes the proof of Lemma 2.3.8.

We complete this section by observing that the constant c(α) is, in a sense,
independent of the permutation operators τu and σu introduced in (2.58) and (2.59),
respectively.

Lemma 2.3.9. Let α = [0; a1, . . . , aℓ], and let c(α) be given in (2.65). Moreover, let
ατu and ασu

be defined as in (2.60) and (2.61). We have

c(α) = c(ατu) = c(ασu
), (2.67)

for every u ∈ {0, 1, . . . , ℓ− 1}.

Proof. Given an integer vector d = (d1, . . . , dℓ) ∈ Nℓ and the corresponding irrational
number δ = [0; d1, . . . , dℓ], we define two sequences of matrices An(d), Bn(d) ∈ Nn×n,
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where A0(d) :=
(
1
)
, A1(d) :=

(
d1
)
, B0(d) :=

(
1
)
, B1(d) :=

(
0
)
and

An(d) =












d
(ℓ)
1 −1 0 . . . 0

1 d
(ℓ)
2 −1

. . .
...

0 1 d
(ℓ)
3

. . . 0
...

. . . . . . . . . −1

0 . . . 0 1 d
(ℓ)
n












, Bn(d) =











0 −1 0 . . . 0

1 d
(ℓ)
1 −1

. . .
...

0 1 d
(ℓ)
2

. . . 0
...

. . . . . . . . . −1

0 . . . 0 1 d
(ℓ)
n−1











,

with d
(ℓ)
j := dj mod ℓ, and where we understand d0 as dℓ. It can be verified that

qn+1(δ) = detAn(d) and pn(δ) = detBn(d),

where pn(δ)/qn(δ) is the nth convergent of δ (see e.g. [86, p. 10–11]). In particular,
for every u ∈ {0, 1, . . . , ℓ− 1}, we have

c(ατu) = detAℓ (τu(a)) + detBℓ (τu(a))

and
c(ασu

) = detAℓ (σu(a)) + detBℓ (σu(a)) ,

where a = (a1, . . . , aℓ).
Let us first show that

c(ατu) = c(α) for u = 0, 1, . . . , ℓ− 1. (2.68)

This is clearly the case when u = 0, as τ0 is the identity operator on Nℓ and ατ0 = α.
For u > 0, one can show that

detAℓ (τu(a))− detBℓ (τu+1(a)) = detAℓ (τu+1(a))− detBℓ (τu(a)) .

(This is attained by taking the Laplace expansion along appropriate rows and columns
of the matrices above.) It follows that

c(ατu+1) = detAℓ (τu+1(a)) + detBℓ (τu+1(a))

= detAℓ (τu(a)) + detBℓ (τu(a)) = c(ατu),

and thus (2.68) holds.
Now let us verify that

c(ασu
) = c(α) for u = 0, 1, . . . , ℓ− 1. (2.69)
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We note first that the operator σu (for u 6= 0) can be expressed as a composition of
τu and σ0; namely

σu(a) = σ0(τu(a)), u ∈ {1, 2, . . . , ℓ− 1}.

Thus, if we can verify that
c(ασ0) = c(α), (2.70)

then the general case (2.69) will follow from (2.68). In fact, for σ0 it is easily seen
that

detAℓ(σ0(a)) = detAℓ(τℓ−1(a)),

and by Laplace expansion one can verify that also

detBℓ(σ0(a)) = detBℓ(τℓ−1(a)).

It follows that c(ασ0) = c(ατℓ−1
), which by (2.68) implies (2.70). This completes the

proof of Lemma 2.3.9.

2.3.2 Properties of the sequence (qn)n≥0

The main focus in this section is to attain a closed form for the sequence of best
approximation denominators (qn)n≥0 for the irrational α = [0; a1, . . . , aℓ]. We will see
that having such a closed form enables us to formulate analogues of known properties
for the Fibonacci sequence (Fn)n≥0 = (0, 1, 1, 2, 3, 5, 8, . . .), most notably of

Fnϕ
n =

1√
5
+O(ϕ2n) for n ≥ 0; (2.71)

Fn−1

Fn

= ϕ+O(ϕ2n) for n > 0, (2.72)

where ϕ = (
√
5− 1)/2 is the fractional part of the golden mean. These two identities

play a crucial role in the proof of Theorem 2.3.1 by Verschueren and Mestel. Likewise,
the analogous identities for the sequence (qn)n≥0, formulated in Lemmas 2.3.14 and
2.3.18 below, will be important for the proof of Theorem 2.3.2.

A connection to Lehmer sequences

We begin by establishing a closed form for the sequence (qn)n≥0 of best approximation
denominators of α. It turns out that this closed form can be expressed in terms of a
Lehmer sequence. Lehmer sequences were first introduced in [72], and are defined as
follows.
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Definition 2.3.10. Let R,Q ∈ Z with R > 0 and R−4Q > 0. We define the Lehmer
sequence (Ln(R,Q))n≥0 with parameters R and Q by

L2n(R,Q) := L2n−1(R,Q)−QL2n−2(R,Q)

L2n+1(R,Q) := RL2n(R,Q)−QL2n−1(R,Q)

L0(R,Q) = 0

L1(R,Q) = 1.

The closed form of the recurrence in Definition 2.3.10 is

Ln(R,Q) =







un − vn

u− v
if n is odd,

un − vn

u2 − v2
if n is even,

(2.73)

where u and v are the unique solutions of the equation x2 −
√
Rx+Q = 0.

We will consider only the Lehmer sequence with parameters R = c(α)2 and
Q = (−1)ℓ. Accordingly, we write

Ln := Ln

(
c(α)2, (−1)ℓ

)

from now on. If we introduce the constants

a = a(α) :=
c(α) +

√

c(α)2 + 4(−1)ℓ−1

2
; (2.74)

b = b(α) :=
c(α)−

√

c(α)2 + 4(−1)ℓ−1

2
, (2.75)

for the two distinct solutions of x2 − c(α)x+ (−1)ℓ = 0, then it follows from (2.73)
that

Ln =







an − bn

a− b
if n is odd,

an − bn

a2 − b2
if n is even.

(2.76)

By straightforward calculations one can verify that

ab = (−1)ℓ and a+ b = c(α).

Moreover, we have a > 1, and b ∈ (−1, 0) if ℓ is odd and b ∈ (0, 1) if ℓ is even. Finally,
as a consequence of Lemma 2.3.9, we have

a(α) = a(ατu) = a(ασu
);
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b(α) = b(ατu) = b(ασu
),

for every u ∈ {0, 1, . . . , ℓ − 1}, where we recall the definition of ατu and ασu
from

(2.60) and (2.61).
Let us now formulate a closed form of the sequence of best approximation denomi-

nators (qn)n≥0 for α. In fact, similar closed forms can be established for both (qn)n≥0

and (pn)n≥0.

Lemma 2.3.11. For every n = ℓm+ k ≥ 2ℓ, where m ∈ N and k ∈ {0, 1, . . . , ℓ− 1},
the approximation denominator qn for α = [0; a1, . . . , aℓ] is given by

qn = qℓm+k =
1

a− b

(
(am − bm)qℓ+k + (−1)ℓ−1(am−1 − bm−1)qk

)
,

where a and b are defined in (2.74) and (2.75).

Lemma 2.3.12. For every n = ℓm+ k ≥ 2ℓ, where m ∈ N and k ∈ {0, 1, . . . , ℓ− 1},
the approximation numerator pn for α = [0; a1, . . . , aℓ] is given by

pn = pℓm+k =
1

a− b

(
(am − bm)pℓ+k + (−1)ℓ−1(am−1 − bm−1)pk

)
,

where a and b are defined in (2.74) and (2.75).

It is a simple observation that Lemmas 2.3.11 and 2.3.12 may alternatively
be formulated in terms of the Lehmer sequence (2.76). As we find this to be of
independent interest, we formulate it as a theorem.

Theorem 2.3.13. For every n = ℓm+k ≥ 2ℓ, where m ∈ N and k ∈ {0, 1, . . . , ℓ−1},
the convergents pn/qn of α = [0; a1, . . . , aℓ] are given by

qn = qℓm+k = γ
(m)
1 Lmqℓ+k + (−1)ℓ−1γ

(m)
2 Lm−1qk,

and
pn = pℓm+k = γ

(m)
1 Lmpℓ+k + (−1)ℓ−1γ

(m)
2 Lm−1pk,

where a and b are defined in (2.74) and (2.75), Lm is the Lehmer sequence (2.76),
and

γ
(m)
1 :=

{

c(α) if m is even,

1 if m is odd,
and γ

(m)
2 =

{

1 if m is even,

c(α) if m is odd.

As the proofs of Lemmas 2.3.11 and 2.3.12 are nearly identical, we include only
the former.
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Proof of Lemma 2.3.11. By Lemma 2.3.8, we have the recursion formula

qn = c(α)qn−ℓ + (−1)ℓ−1qn−2ℓ,

whenever n ≥ 2ℓ. The corresponding polynomial characteristic equation is

x2ℓ − c(α)xℓ + (−1)ℓ = 0. (2.77)

Substituting y = xℓ, we get the equation y2 − c(α)y + (−1)ℓ = 0, whose two solutions
a and b are given in (2.74) and (2.75), respectively. Now let eℓ = e2πi/ℓ. The 2ℓ
unique solutions of (2.77) are

xv = a1/ℓevℓ and xv+ℓ = b1/ℓevℓ (2.78)

for v = 1, 2, . . . , ℓ. Accordingly, for an arbitrary n ≥ 2ℓ, the closed form of qn is

qn =
2ℓ∑

v=1

cvx
n
v , (2.79)

where the constants c1, . . . , c2ℓ are determined by the 2ℓ first terms q0, . . . , q2ℓ−1. For
a given j ∈ {1, 2, . . . , ℓ}, inserting qj−1 in (2.79) yields

qj−1 =
2ℓ∑

v=1

cvx
j−1
v = a(j−1)/ℓC

(1)
j + b(j−1)/ℓC

(2)
j ,

where

C
(1)
j =

ℓ∑

v=1

cve
v(j−1)
ℓ and C

(2)
j =

2ℓ∑

v=ℓ+1

cve
v(j−1)
ℓ .

Similarly, we have
qℓ+j−1 = a1+(j−1)/ℓC

(1)
j + b1+(j−1)/ℓC

(2)
j .

Thus, the system of 2ℓ equations determining the constants c1, . . . , c2ℓ decouples into
ℓ systems of 2 equations in the variables (C

(1)
j , C

(2)
j ), with j = 1, 2, . . . , ℓ. Solving

these ℓ systems, we get

C
(1)
j =

1

a(j−1)/ℓ

bqj−1 − qℓ+j−1

b− a
;

C
(2)
j =

1

b(j−1)/ℓ

qℓ+j−1 − aqj−1

b− a
.
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Finally, for n = ℓm+ k ≥ 2ℓ, we thus have

qn = qℓm+k =
2ℓ∑

v=1

cvx
ℓm+k
v = am+k/ℓC

(1)
k+1 + bm+k/ℓC

(2)
k+1

=
1

a− b

(
(am − bm)qℓ+k + (−1)ℓ−1(am−1 − bm−1)qk

)
,

where in the final equality we have used that ab = (−1)ℓ. This completes the proof
of Lemma 2.3.11.

Asymptotic behaviour of qn and qn−1/qn

In this section, we show that the closed form of (qn)n≥0 that was established in
Lemma 2.3.11 can be used to formulate analogues of the Fibonacci identities (2.71)
and (2.72) for the more general case of irrationals with a periodic continued fraction
expansion. We begin with the simpler task of formulating an analogue of (2.71).
Informally speaking, we will see that the constant b in (2.75) plays the role of the
fractional part of the golden mean ϕ.

Lemma 2.3.14. Let ℓ ∈ N and k ∈ {0, 1, . . . , ℓ − 1} be fixed integers, and let
(pn/qn)n≥1 be the convergents for α = [0; a1, . . . , aℓ]. For all integers m ≥ 2, we have

qℓm+k|b|m = ck +O(|b|2m), (2.80)

where

ck :=
qℓ+k − bqk
a− b

, (2.81)

and a and b are given in (2.74) and (2.75). Thus, we have qℓm+k = Θ(|b|−m) for
m→ ∞ (note that |b| ∈ (0, 1)).

Remark 2.3.15. Note that in the special case when α = ϕ = [0; 1] is the fractional
part of the golden mean and qn = Fn is the Fibonacci sequence, we have b = −ϕ, and
ck = c0 = 1/

√
5. Accordingly, Lemma 2.3.14 reduces to the Fibonacci identity (2.71)

in this case.

Proof of Lemma 2.3.14. Recall again the closed form

qℓm+k =
1

a− b

(
(am − bm)qℓ+k + (−1)ℓ−1(am−1 − bm−1)qk

)
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from Lemma 2.3.11. Multiplying both sides by |b|m and using that ab = (−1)ℓ, we
get

qℓm+k|b|m =
1

a− b

(
qℓ+k − bqk + (−1)ℓmb2m(aqk − qℓ+k)

)
= ck +O(|b|2m),

with ck > 0 as in (2.81).

We now aim to establish an analogue, or extension, of the Fibonacci identity
(2.72). This identity, which plays a crucial role in the work of Verschueren and
Mestel [104], is a consequence of the fact that Fn−1/Fn is the nth convergent of
the golden mean ϕ. Naturally, we cannot expect the same identity to hold for the
general case of irrationals with a periodic continued fraction expansion. However,
we will see in Lemma 2.3.18 below that a similar identity can indeed be formulated.
Needed for this lemma is the following estimation error of the nth convergent pn/qn
of α = [0; a1, . . . , aℓ] in terms of the constant b in (2.75).

Lemma 2.3.16. Let n = ℓm + k ≥ 2ℓ, where m ∈ N and k ∈ {0, 1, . . . , ℓ − 1}.
Moreover, let (pn/qn)n≥1 be the sequence of convergents for α = [0; a1, . . . , aℓ]. We
have that

qnα = qℓm+kα = pn + ekb
m, (2.82)

where

ek =
(−1)k−1

qℓ
|aqk − qℓ+k| , (2.83)

and a and b are given in (2.74) and (2.75), respectively.

Remark 2.3.17. Since qn = qℓm+k = Θ(|b|−m) for m → ∞ holds by Lemma 2.3.14
it follows in particular from Lemma 2.3.16 that

α =
pn
qn

+O(|b|2m) for m→ ∞. (2.84)

Proof of Lemma 2.3.16. As a preliminary step (note that this is not part of the
statement), we show that (2.82) holds when m = 1 and k = 0, that is

qℓα = pℓ − b. (2.85)

It is well known that α is a root of the polynomial qℓx
2 + (qℓ+1 − pℓ)x− pℓ+1 (see e.g.

[86, p. 69]), and since α > 0 we must have

α =
−qℓ+1 + pℓ +

√

(qℓ+1 − pℓ)2 + 4pℓ+1qℓ
2qℓ
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=
pℓ
qℓ

+
−(qℓ+1 + pℓ) +

√

(qℓ+1 + pℓ)2 − 4qℓ+1pℓ + 4pℓ+1qℓ
2qℓ

.

Using that c(α) = qℓ+1 + pℓ and pℓ+1qℓ − qℓ+1pℓ = (−1)ℓ−1, we thus get

qℓα = pℓ −
c(α)−

√

c(α)2 + 4(−1)ℓ−1

2
= pℓ − b.

Now let us see that (2.82) holds for all n = ℓm + k ≥ 2ℓ. We recall the closed
forms

pn = pℓm+k =
1

a− b

(
(am − bm)pℓ+k + (−1)ℓ−1(am−1 − bm−1)pk

)
,

and

qn = qℓm+k =
1

a− b

(
(am − bm)qℓ+k + (−1)ℓ−1(am−1 − bm−1)qk

)
,

from Lemmas 2.3.12 and 2.3.11, respectively. Multiplying the latter with α, and using
(2.85), we get

qnα =
(pℓ − b)

qℓ(a− b)

(
(am − bm)qℓ+k + (−1)ℓ−1(am−1 − bm−1)qk

)
.

For ease of notation, let us write A = am − bm and B = (−1)ℓ−1(am−1 − bm−1). We
then have

qnα− pn =
1

qℓ(a− b)
((pℓ − b) (Aqℓ+k +Bqk)− (Aqℓpℓ+k +Bqℓpk))

=
1

qℓ(a− b)
(A(qℓ+kpℓ − bqℓ+k − qℓpℓ+k) + B(pℓqk − bqk − qℓpk)) .

Now recall from Lemma 2.3.7 that

qℓ+kpℓ − qℓpℓ+k = (−1)ℓqk

(part (a) with m = ℓ and n = k) and

pkqℓ = qℓ+k − qℓ+1qk

(part (b) with m = ℓ and n = k). Inserting this above, we get

qnα− pn =
1

qℓ(a− b)

(
A((−1)ℓqk − bqℓ+k) + B(−qℓ+k + qk(qℓ+1 + pℓ − b))

)
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=
1

qℓ

(

−
(
Ab+B

a− b

)

qℓ+k +

(
(−1)ℓA+Ba

a− b

)

qk

)

,

where we have used that qℓ+1 + pℓ − b = c(α)− b = a. From ab = (−1)ℓ, it follows
that

Ab+B

a− b
= bm and

(−1)ℓA+Ba

a− b
= abm.

Accordingly, we have

qnα− pn =
bm

qℓ
(aqk − qℓ+k).

Finally, we know from the general theory of continued fractions that pn/qn is greater
than α if n is even and smaller than α if n is odd. We thus get

qnα− pn = (−1)n−1

∣
∣
∣
∣

bm

qℓ
(aqk − qℓ+k)

∣
∣
∣
∣

= (−1)ℓm+k−1
(
(−1)ℓb

)m 1

qℓ
|aqk − qℓ+k| = ekb

m,

with ek given in (2.83). This completes the proof of Lemma 2.3.16.

With Lemma 2.3.16 established, we may now formulate the following analogue
of the Fibonacci sequence (2.72) for the general case of irrationals with a periodic
continued fraction expansion.

Lemma 2.3.18. Let ℓ ∈ N and k ∈ {0, 1, . . . , ℓ − 1} be fixed integers, and let
(pn/qn)n≥1 be the convergents for α = [0; a1, . . . , aℓ]. We have that

qℓm+k−1

qℓm+k

=
pℓm+k(ασk

)

qℓm+k(ασk
)
= ασk

+O(|b|2m), (2.86)

where b is given in (2.75).

Remark 2.3.19. In the special case when α = ϕ = [0; 1] is the fractional part of the
golden mean and qn = Fn is the Fibonacci sequence, we have k = 0, ασ0 = α = ϕ
and b = −ϕ. Accordingly, Lemma 2.3.18 reduces to the Fibonacci identity (2.72) in
this case.

Proof of Lemma 2.3.18. For ease of notation, we write n = ℓm+ k. Let us first see
that qn−1/qn = pn(ασk

)/qn(ασk
). We treat only the case k ≥ 1 (the case k = 0 is

similar). On the one hand, we have

pn(ασk
)

qn(ασk
)
= [0; ak−1, . . . , a1, aℓ, . . . , ak, . . . , ak−1, . . . , a1, aℓ, . . . , ak

︸ ︷︷ ︸

m times

, ak−1, . . . , a1].
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On the other hand, using the recursion formula for qn, we get

qn−1

qn
=
qℓm+k−1(α)

qℓm+k(α)
=

1

ak−1 +
qℓm+k−2

qℓm+k−1

=
1

ak−1 +
1

ak−2 +
qℓm+k−3

qℓm+k−2

= . . . = [0; ak−1, . . . , a1, aℓ, . . . , a1, . . . , aℓ, . . . , a1
︸ ︷︷ ︸

m times

].

Thus, these quotients are equal. Finally, it follows from (2.84) and the fact that
b(ασk

) = b(α) for every k ∈ {0, 1, . . . , ℓ− 1} that

pn(ασk
)

qn(ασk
)
= ασk

+O(|b(ασk
)|2m) = ασk

+O(|b|2m).

We conclude this section by a more thorough investigation of the constants ck
and ek in (2.81) and (2.83). More specifically, we consider the absolute value of their
product |ckek|. This quantity will repeatedly appear in the proof of Theorem 2.3.2,
and the following lemma on |ckek| will then be useful.

Lemma 2.3.20. For ck and ek given in (2.81) and (2.83), we have that

|ckek| =
qℓ(ατk)

a− b
=

qℓ(ατk)

c(ατk)− 2b
, (2.87)

with a and b given in (2.74) and (2.75). It follows that |ckek| < 1 for each k =
0, 1, . . . , ℓ− 1.

Proof. Recalling the definition of ck and ek, we have

|ckek| =
|(qℓ+k − bqk)(aqk − qℓ+k)|

qℓ(a− b)
=

|qk
(
c(α)qℓ+k + (−1)ℓ−1qk

)
− q2ℓ+k|

qℓ(a− b)
,

where we have used that a+ b = c(α) and ab = (−1)ℓ. We now look at the numerator
in this expression. Using the recursion formula in Lemma 2.3.8, and Lemma 2.3.7(b)
(with r = ℓ+ k), we have

c(α)qℓ+k + (−1)ℓ−1qk = q2ℓ+k = qℓ+1qℓ+k + qℓpℓ+k.
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Inserting this in the numerator, we get

|ckek| =
|qℓqkpℓ+k + qℓ+k(qkqℓ+1 − qℓ+k)|

qℓ(a− b)
=

|qkpℓ+k − qℓ+kpk|
(a− b)

,

where for the last equality we have used that qkqℓ+1 − qℓ+k = −qℓpk (Lemma 2.3.7(b)
with r = k). It now follows from Lemma 2.3.7(a) (with m = k and n = ℓ) and
c(α) = c(ατk) that

|ckek| =
qℓ(ατk)

a− b
=

qℓ(ατk)

c(α)− 2b
=

qℓ(ατk)

c(ατk)− 2b
,

which confirms (2.87).
From (2.87) it easily follows that |ckek| < 1. For ℓ = 1, we get

|c0e0| =
1

√

a21 + 4
< 1.

For ℓ ≥ 2, we have pℓ(ατk) ≥ 1, and accordingly

|ckek| =
qℓ(ατk)

qℓ+1(ατk) + pℓ(ατk)− 2b
<

qℓ(ατk)

qℓ+1(ατk)− 1
≤ 1

for each k = 0, 1, . . . , ℓ− 1. This completes the proof of Lemma 2.3.20.

2.3.3 Decomposing Qℓm+k(α)

The aim of this section is to decompose the product of sines Qℓm+k(α) in (2.56) into
three subproducts

Qℓm+k(α) = AmBmCm

= |2qn sin (πekbm)| ·
∣
∣
∣
∣
∣

qn−1
∏

t=1

smt

2 sin(πt/qn)

∣
∣
∣
∣
∣
·
qn−1
∏

t=1

(

1− s2m0

s2mt

)1/2

, (2.88)

where n = ℓm+k and smt is a perturbed rational sine function defined in (2.89) below.
This decomposition is achieved by substituting the identity α = pn/qn+ ekb

m/qn from
Lemma 2.3.16 into the definition ofQℓm+k(α), which in turn allows us to viewQℓm+k(α)
as a perturbation of the rational sine product

∏qn−1
r=1 |2 sin(πr(pn/qn))|. Accordingly,

proving Theorem 2.3.2 is a matter of showing that these perturbations have a suitable
behaviour. For the latter task, it is a disadvantage that the perturbations rekb

m/qn
do not sum up to zero. However, by a rebasing of the argument one can attain a set
of shifted perturbations ekb

m(r/qn− 1/2) which do sum up to zero, and this approach
eventually leads to the decomposition above.

106



Important families of sequences

Before we decompose Qℓm+k(α) into subproducts Am, Bm and Cm in Section 2.3.3,
let us introduce certain families of sequences which enter into the decomposition. For
integers m ≥ 1 and t ∈ {0, 1, . . . , qℓm+k − 1}, we define:

smt := 2 sin

(

π

(
t

qℓm+k

− |ekbm|
({

tqℓm+k−1

qℓm+k

}

− 1

2

)))

(2.89)

ξmt :=

{

t
qℓm+k−1

qℓm+k

}

− 1

2
(2.90)

ξ∞t := {tασk
} − 1

2
(2.91)

hmt := cot

(
πt

qℓm+k

)

sin(π|ekbm|ξmt) (2.92)

h∞t :=
|ckek|ξ∞t

t
, (t 6= 0) (2.93)

Combining (2.89) and (2.90), we get

smt = 2 sin

(

π

(
t

qℓm+k

− ξmt|ekbm|
))

. (2.94)

Remark 2.3.21. Note that if α = ϕ = [0; 1] we have that ℓ = 1, k = 0, qn(α) = Fn,
b = −ϕ and e0 = −1. In this special case smt reduces to the sequence given in (2.21).

It is clear from the definition of ξmt that |ξmt| ≤ 1/2, and since |b| < 1, we
recognize smt as the perturbation of a rational sine, where the perturbation tends to
zero as m increases. As we have already seen, the sequence smt plays a crucial role in
the decomposition of Qℓm+k(α).

The sequences hmt and h∞t will not enter the story until the convergence of the
subproduct Bm is considered in Section 2.3.5. Nevertheless, we introduce them at
this early stage.

Lemma 2.3.22. Let smt, ξmt, ξ∞t, hmt and h∞t be the sequences given in (2.89)
–(2.93). We have that:

(a) smt = sm(qℓm+k−t), hmt = hm(qℓm+k−t) and ξmt = −ξm(qℓm+k−t) for all t ∈
{0, 1, . . . , qℓm+k − 1}.

(b) smt > sm0 for all t ∈ {1, 2, . . . , qℓm+k − 1} if m is sufficiently large.
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(c) For m→ ∞ it follows that ξmt − ξ∞t = tO(b2m), and thus for any fixed t ∈ N,
we have

lim
m→∞

ξmt = ξ∞t.

(d) For m→ ∞ it follows that hmt − h∞t = tO(b2m), and thus for any fixed t ∈ N,
we have

lim
m→∞

hmt = h∞t.

Proof. For ease of notation, let us again write n = ℓm+ k.
We first verify (a). The fact that {−x} = 1 − {x} for x ∈ R \ Z immediately

implies ξmt = −ξm(qn−t). Combining this with sin(π − x) = sin x, we get

sm(qn−t) = 2 sin

(

π

(
qn − t

qn
− ξm(qn−t)|ekbm|

))

= 2 sin

(

π

(

1−
(
t

qn
− ξmt|ekbm|

)))

= smt,

and likewise since cot(π − x) = − cot x and sin x is an odd function, we have

hm(qn−t) = cot

(

π

(

1− t

qn

))

sin (−π|ekbm|ξmt) = hmt

for every t ∈ {0, 1, . . . , qn − 1}.
Now let us verify (b). In light of (a), it is enough to verify smt > sm0 for

t ∈ {1, 2, . . . , ⌊qn/2⌋}. Writing smt as in (2.94), and recalling that |ξmt| < 1/2 for
these values of t, it is clear that smt > sm(t−1), and in particular

sm1 > 2 sin

(

π

(
1

qn
− 1

2
|ekbm|

))

> 2 sin

(
π|ekbm|

2

)

= sm0,

if only |ekbm| < 1/qn. This in turn follows from Lemmas 2.3.14 and 2.3.20, as

qn|ekbm| = |ckek|+O(|b|2m) < 1

for sufficiently large values of m.
Finally, we verify (c) and (d). It follows directly from Lemma 2.3.18 that

ξmt = {tασk
} − 1

2
+O(tb2m) = ξ∞t +O(tb2m),
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which confirms (c). For property (d), we use cot x = (1/x)(1 +O(x2)) and sin x =
x(1 +O(x2)) to rewrite hmt as

hmt =
qn|ekbm|ξmt

t

(
1 +O(t2b2m)

)
,

where we have also exploited that 1/qn = Θ(|b|m). Moreover, since qn|b|m = ck +
O(b2m) by Lemma 2.3.14, we get

hmt =
|ckek|ξmt

t

(
1 +O(t2b2m)

)
=

|ckek|ξmt

t
+O(tb2m),

and finally by recalling property (c) it follows that hmt = h∞t + O(tb2m). This
confirms (d), and completes the proof of Lemma 2.3.22.

Decomposition of Qℓm+k(α)

We are now equipped to decompose the sine product Qℓm+k(α).

Lemma 2.3.23. Fix k ∈ {0, 1, . . . , ℓ − 1}, and for all integers m ≥ 1 and t ∈
{0, 1, . . . , qℓm+k − 1} let smt be given in (2.89). The product of sines Qℓm+k(α) can
be written as

Qℓm+k(α) =

qℓm+k∏

r=1

|2 sin(πrα)| = AmBmCm,

where:

Am = |2qℓm+k sin(πekb
m)| , (2.95)

Bm =

∣
∣
∣
∣
∣

qℓm+k−1
∏

t=1

smt

2 sin(πt/qℓm+k)

∣
∣
∣
∣
∣
, (2.96)

Cm =

(qℓm+k−1)/2
∏

t=1

(

1− s2m0

s2mt

)

. (2.97)

Proof. Again we introduce n = ℓm+k for ease of notation. We then have Qℓm+k(α) =
Qn(α) =

∏qn
r=1 |2 sin(πrα)|, and

Q2
n(α) =

(
2 sin(πqnα)

)2

(
qn−1
∏

r=1

2 sin(πrα)

)2
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=
(
2 sin(πqnα)

)2
qn−1
∏

r=1

(
2 sin(πrα)2 sin(π(qn − r)α)

)

=
(
2 sin(πqnα)

)2
qn−1
∏

r=1

2
(
cos(2πrα− πqnα)− cos(πqnα)

)
.

For the last equality we have used the identity sin(x) sin(y) = (cos(x−y)−cos(x+y))/2.
Inserting qnα = pn + ekb

m from Lemma 2.3.16 in the expression above, we get

Q2
n(α) =

(
2 sin(πekb

m)
)2

qn−1
∏

r=1

2(−1)pn
(
cos (2πrα− πekb

m)− cos(πekb
m)
)

=
(
2 sin(πekb

m)
)2

qn−1
∏

r=1

4

(

sin2
(

πrα− π

2
ekb

m
)

− sin2
(π

2
ekb

m
))

.

Observe that we have used the identity cos(x) = 1 − 2 sin2(x/2) and the fact that
(−1)(pn+1)(qn−1) = 1. The latter follows from the fact that gcd(pn, qn) = 1, and
accordingly either (pn+1) or (qn− 1) is an even number. This concludes the rebasing
of the argument described in the introduction to this section.

We now aim to express Q2
n(α) as a product of perturbed rational sines. Again we

use the identity α = pn/qn + ekb
m/qn from Lemma 2.3.16 to get

sin2
(

πrα− π

2
ekb

m
)

= sin2

(

π

(
rpn
qn

+ ekb
m

(
r

qn
− 1

2

)))

.

By the substitution t = rpn mod qn, and recalling from (2.62) that pnqn−1 =
(−1)n mod qn, we have

sin2
(

πrα− π

2
ekb

m
)

= sin2

(

π

(
rpn mod qn

qn
+ ekb

m

(
r

qn
− 1

2

)))

= sin2

(

π

(
t

qn
+ ekb

m

(
(−1)ntqn−1 mod qn

qn
− 1

2

)))

=
1

4
s2mt,

with smt given in (2.89), and where we have used ekb
m = (−1)n−1|ekbm| and

(−1)ntqn−1 mod qn
qn

− 1

2
=

{
(−1)ntqn−1

qn

}

− 1

2
= (−1)n

({
tqn−1

qn

}

− 1

2

)

.
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As r runs through the values 1, 2, . . . , qn − 1, so does t = rpn mod qn. Accordingly,
we get

Q2
n(α) = (2 sin(πekb

m))2
qn−1
∏

t=1

(
s2mt − s2m0

)

= (2 sin(πekb
m))2

qn−1
∏

t=1

s2mt

qn−1
∏

t=1

(

1− s2m0

s2mt

)

= (2qn sin(πekb
m))2

qn−1
∏

t=1

s2mt

4 sin2(πt/qn)

qn−1
∏

t=1

(

1− s2m0

s2mt

)

.

For the last equality above we have used the well-known identity
q−1
∏

r=1

2 sin

(
πrp

q

)

= q

whenever p, q ∈ Z satisfy gcd(p, q) = 1 (see Lemma 2.1.1). Finally, we recall
from Lemma 2.3.22 (a) that smt = sm(qn−t) and hence s2mt = s2m(qn−t) for every

t ∈ {0, 1, . . . , qn − 1}. With our generalised notion of products (see p.78), we thus get

qn−1
∏

t=1

(

1− s2m0

s2mt

)

=

(qn−1)/2
∏

t=1

(

1− s2m0

s2mt

)2

.

Inserting this in the expression for Q2
n(α) above and taking the square root of both

sides, we arrive at
Qn(α) = Qℓm+k(α) = AmBmCm,

where Am, Bm and Cm are given in (2.95), (2.96) and (2.97), respectively.

Convergence of Am

Let us now see that Am in (2.95) converges as m→ ∞. Since sin x = x+O(x3), we
have

Am =
∣
∣2qℓm+k

(
πekb

m +O(b3m)
)∣
∣ .

By Lemma 2.3.14 and |b| < 1 it thus follows that

lim
m→∞

Am = 2π|ekck|, (2.98)

where ck and ek are the constants given in (2.81) and (2.83), respectively. Alternatively,
using the expression for |ekck| given in Lemma 2.3.20, we have

lim
m→∞

Am =
2πqℓ(ατk)

(a− b)
.
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2.3.4 Convergence of Cm

In this section we show that the product

Cm =

(qℓm+k−1)/2
∏

t=1

(

1− s2m0

s2mt

)

is convergent. This is not quite straightforward, as it is not obvious that the sequence
(Cm)m≥1 is monotonically decreasing. However, we will see that (Cm)m≥1 is comparable
to a monotonically decreasing sequence of products bounded below by a positive
number.

Theorem 2.3.24. The sequence Cm converges to the strictly positive limit

lim
m→∞

Cm =
∞∏

t=1

(

1− 1

4 (t/|ckek| − ξ∞t)
2

)

, (2.99)

where |ckek| is given in (2.87) and ξ∞t = {tασk
} − 1/2.

We will need Lemma 2.2.12 from Section 2.2.4 for proving Theorem 2.3.24. Recall
that it states the following: For n ≥ 2 and real numbers at, t = 1, 2, . . . , n, satisfying
A :=

∑n
t=1 |at| < 1, we have that

1− A <
n∏

t=1

(1− |at|) <
1

1− A
.

Proof of Theorem 2.3.24. For ease of notation we again write n = ℓm+ k, and begin
by developing estimates for the quotients sm0/smt. We have

sm0 = 2 sin (π|ekbm|/2) = π|ekbm|
(
1 +O(b2m)

)
,

and for t ≥ 1 it follows from Lemmas 2.3.14 and 2.3.22 (c) that

smt = 2 sin π

(
t

qn
− |ekbm|ξmt

)

= 2 sin πt|b|m
(

1

ck
− |ek|ξ∞t

t
+O(b2m)

)

. (2.100)

We now split the values of t at ηm = ⌈|b|−3m/5⌉, and treat t ≤ ηm and t > ηm
separately in order to find appropriate bounds on smt in (2.100). For t > ηm, we use
sin x ≥ 2x/π for x ∈ [0, π/2] to obtain

smt ≥ 4t|b|m
(

1

ck
− |ek|ξ∞t

t
+O(b2m)

)

.
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Recall that ck > 0 and |ξ∞t| ≤ 1/2. Thus, for sufficiently large m (and thereby
sufficiently large t), we have smt > 2ηm|b|m/ck and

sm0

smt

≤ π|ekbm| (1 +O(b2m))

2ηm|b|m/ck
=
π|ckek|
2ηm

(
1 +O(b2m)

)
= O(η−1

m ).

It follows that
(qn−1)/2
∑

t=ηm+1

s2m0

s2mt

≤ qn · O(η−2
m ) = O(|b|m/5),

and accordingly this sum is convergent and smaller than one for sufficiently large m.
Thus, by Lemma 2.2.12 we get

1 ≥
(qn−1)/2
∏

t=ηm+1

(

1− s2m0

s2mt

)

> 1−
(qn−1)/2
∑

t=ηm+1

s2m0

s2mt

≥ 1−O(|b|m/5). (2.101)

Now consider t ≤ ηm. It is clear from (2.100) that by choosing m sufficiently
large, the argument in the sine function smt can be made arbitrarily small in this
case. Applying sin x = x+O(x3), we get

smt = 2π|b|m
(
t

ck
− |ek|ξ∞t +O(tb2m)

)

+O(|b|6m/5)

= π|ekbm|
(
ut +O(|b|m/5)

)
,

where we have introduced the notation

ut = 2

(
t

|ckek|
− ξ∞t

)

= 2

(
t

|ckek|
− {tασk

}+ 1

2

)

. (2.102)

We thus have

sm0

smt

=
π|ekbm| (1 +O(b2m))

π|ekbm| (ut +O(|b|m/5))
=

1 +O(|b|m/5)

ut
,

and moreover

ηm∏

t=1

(

1− s2m0

s2mt

)

=

ηm∏

t=1

(

1− 1

u2t
− O(|b|m/5)

u2t

)

=

ηm∏

t=1

(

1− 1

u2t

) ηm∏

t=1

(

1− O(|b|m/5)

u2t − 1

)

.
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We look closer at the two products on the final line above. Since |ξ∞t| < 1/2 and
|ckek| < 1, we see from (2.102) that ut > 1 for all 1 ≤ t ≤ ηm. This guarantees
that both products are well-defined. Moreover, we see that ut behaves as 2t/|ckek|
for large t. Hence by comparison with

∑∞
t=1 1/t

2 = π2/6, the sum
∑∞

t=1 1/(u
2
t − 1)

converges, and it follows that
∑∞

t=1 O(|b|m/5)/(u2t − 1) = O(|b|m/5). The latter sum
is thus smaller than one, provided m is sufficiently large, and again it follows from
Lemma 2.2.12 that

1 >

ηm∏

t=1

(

1− O(|b|m/5)

u2t − 1

)

≥ 1−
ηm∑

t=1

O(|b|m/5)

u2t − 1
= 1−O(|b|m/5). (2.103)

For the second product we introduce the notation

Uj :=

j
∏

t=1

(

1− 1

u2t

)

.

Since ut > 1 for all t, the sequence (Uj)j≥1 is monotonically decreasing and bounded
below by zero. Thus, the limit limj→∞ Uj exists.

By combining the estimates for t > ηm and t ≤ ηm, we now have

Cm = Uηm

ηm∏

t=1

(

1− O(|b|m/5)

u2t − 1

) (qn−1)/2
∏

t=ηm+1

(

1− s2m0

s2mt

)

.

Taking the limit of both sides as m→ ∞, and recalling (2.101) and (2.103), we arrive
at

lim
m→∞

Cm = lim
m→∞

Uηm =
∞∏

t=1

(

1− 1

u2t

)

. (2.104)

This nearly completes the proof of Theorem 2.3.24. Our claim, however, is that
limm→∞Cm is strictly positive. This will follow from (2.104) and Lemma 2.2.12 if we
can verify that

∞∑

t=1

1

u2t
< 1. (2.105)

Let us first verify (2.105) for ℓ = 1. In this case, we have k = 0 and |c0e0| ≤ 1/
√
5

by Lemma 2.3.20. It follows that

∞∑

t=1

1

u2t
≤ 1

u21
+

∞∑

t=2

1

20(t− 1)2
<

1

4(
√
5− 1/2)2

+
π2

120
< 1.
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The case ℓ > 1 is more involved. However, observe that in this case qℓ+1(ατk) ≥ 2
and pℓ(ατk) ≥ 1 and by (2.75) and (2.65) we get that

pℓ(ατk)− 2b = −qℓ+1(ατk) +

√

(qℓ+1(ατk) + pℓ(ατk))
2 + 4(−1)ℓ−1 > 0.

Therefore it follows from Lemma 2.3.20 that

1

|ckek|
=
qℓ+1(ατk) + pℓ(ατk)− 2b

qℓ(ατk)
≥ ak +

qℓ−1(ατk)

qℓ(ατk)
,

where we have also used the classical recursion formula for qℓ. By Lemma 2.3.18 we
get

qℓ−1(ατk)

qℓ(ατk)
=
pℓ(ασ0τk)

qℓ(ασ0τk)
=
pℓ(ασk

)

qℓ(ασk
)
,

(recall from the proof of Lemma 2.3.9 that σk = σ0τk) and thus we have

u1 = 2

(
1

|ckek|
− ασk

+
1

2

)

≥ 2

(

ak +
pℓ(ασk

)

qℓ(ασk
)
− ασk

+
1

2

)

. (2.106)

By the standard error estimate (2.63) for continued fractions, we know that

∣
∣
∣
∣

pℓ(ασk
)

qℓ(ασk
)
− ασk

∣
∣
∣
∣
<

1

qℓ+1(ασk
)qℓ(ασk

)
<

1

2

when ℓ > 1, and inserting this in (2.106) we find that u1 ≥ 2ak ≥ 2. For all other
terms in the sum

∑∞
t=1 1/u

2
t , the estimate |ckek| < 1 from Lemma 2.3.20 suffices. We

get
∞∑

t=1

1

u2t
≤ 1

4
+

∞∑

t=2

1

4(t− 1/2)2
=

1

4
+
π2

8
− 1 < 0.49.

This verifies (2.105) for the case ℓ > 1. Thus, we conclude that limm→∞Cm > 0, and
this completes the proof of Theorem 2.3.24.

2.3.5 Convergence of Bm

The aim of this section is to verify the convergence of

Bm =

∣
∣
∣
∣
∣

qℓm+k−1
∏

t=1

smt

2 sin(πt/qℓm+k)

∣
∣
∣
∣
∣
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asm→ ∞. We will see that this requires greater efforts than verifying the convergence
of Cm. In fact, what we will show is that logBm converges to a finite limit, and
accordingly limm→∞Bm exists and is strictly positive.

For the remainder of this section, let us again ease notation by writing n = ℓm+k.
We begin by examining each term of the product Bm. Recalling the definition of smt

from (2.89), we have

smt

2 sin(πt/qn)
= cos(π|ekbm|ξmt)− cot(πt/qn) sin(π|ekbm|ξmt)

= 1− 2 sin2(π|ekbm|ξmt/2)− hmt,

with hmt given in (2.92). Taking βmt := 2 sin2(π|ekbm|ξmt/2), it is easily verified that
βm(qn−t) = βmt for t ∈ {1, . . . , qn− 1}. Likewise, we recall from Lemma 2.3.22 (a) that
hm(qn−t) = hmt, and thus

Bm =

qn−1
∏

t=1

(1− βmt − hmt) =

(qn−1)/2
∏

t=1

(1− βmt − hmt)
2.

This shows that we need only consider t ∈ {1, . . . , (qn − 1)/2}.
Let us now show that rather than analysing Bm, we may choose to analyse the

simpler product

B∗
m :=

qn−1
∏

t=1

(1− hmt) =

(qn−1)/2
∏

t=1

(1− hmt)
2. (2.107)

Taking logarithms, we get

log(1− βmt − hmt) = log(1− hmt) + log

(

1− βmt

1− hmt

)

. (2.108)

Our claim is that the latter term on the right hand side in (2.108) will not contribute
significantly to the sum logBm =

∑qn−1
t=1 log(1− βmt − hmt). To see this, let us first

estimate the size of hmt and βmt. Considering only t ∈ {1, . . . , (qn − 1)/2}, we use
cot x < 1/x and sin x < x to obtain

|hmt| = cot(πt/qn) sin(π|ekbm|ξmt) ≤
qn|ekbm|ξmt

t
.

We recall from Lemmas 2.3.14 and 2.3.20 that qn|ekbm| = |ckek| + O(b2m) < 1 for
sufficiently large m. As |ξmt| < 1/2, we thus get

|hmt| <
1

2t
<

1

2
, (2.109)
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and it follows that 1− hmt > 1/2. For βmt, we have

βmt < 2

(
π|ekbm|ξmt

2

)2

<
π2(ekb

m)2

8
,

and thus for sufficiently large values of m we get |βmt/(1− hmt)| < 1 and

log

(

1− βmt

1− hmt

)

= −
∞∑

j=1

1

j

(
βmt

1− hmt

)j

= O(b2m). (2.110)

Recalling that qn = Θ(|b|−m), it now follows from (2.108) and (2.110) that

|logBm − logB∗
m| =

∣
∣
∣
∣
∣
∣

2

(qn−1)/2
∑

t=1

log

(

1− βmt

1− hmt

)
∣
∣
∣
∣
∣
∣

= O(|b|m),

and thus limm→∞ logBm = limm→∞ logB∗
m. This confirms that we may choose to

analyse B∗
m in (2.107) rather than the original product Bm.

Finally, we rewrite logB∗
m using its Taylor expansion as

logB∗
m = 2

(qn−1)/2
∑

t=1

log(1− hmt) = −2

(qn−1)/2
∑

t=1

∞∑

j=1

1

j
hjmt

= −2





(qn−1)/2
∑

t=1

hmt +

(qn−1)/2
∑

t=1

∞∑

j=2

1

j
hjmt



 =: −2(H(1)
m +H(2)

m ).

(2.111)

We go on to study the behaviour of the two sums H
(1)
m and H

(2)
m separately in the

following subsections.

Convergence of H
(2)
m

Let us first treat the sum

H(2)
m =

(qn−1)/2
∑

t=1

∞∑

j=2

1

j
hjmt.

It is an easy task to show that H
(2)
m is bounded, but showing convergence requires

greater efforts.
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We begin by showing that terms where t or j is greater than |b|−m/2 will not

contribute significantly to H
(2)
m . Recall from (2.109) that |hmt| < 1/(2t) for sufficiently

large m, and thus for u ≥ 2 we get

∣
∣
∣
∣
∣

∞∑

j=u

1

j
hjmt

∣
∣
∣
∣
∣
<

∞∑

j=u

|hjmt| =
|humt|

1− |hmt|
< 2

(
1

2t

)u

.

Now let um = ⌊|b|−m/2⌋, and choose m so that 2 ≤ um ≤ (qn− 1)/2 and (2.109) holds.
Note that this is always possible since um = Θ(|b|−m/2) and qn = qℓm+k = Θ(|b|−m).
We then have

∣
∣
∣
∣
∣
∣

(qn−1)/2
∑

t=um+1

∞∑

j=2

1

j
hjmt

∣
∣
∣
∣
∣
∣

<

(qn−1)/2
∑

t=um+1

2

(
1

2t

)2

<
1

2

∞∑

t=um+1

1

t2
<

1

2um

and ∣
∣
∣
∣
∣

um∑

t=1

∞∑

j=um+1

1

j
hjmt

∣
∣
∣
∣
∣
<

um∑

t=1

2

(
1

2t

)um+1

<

(
1

2

)um ∞∑

t=1

1

t2
=

π2

6 · 2um
.

Both of these sums are O(|b|m/2), and it follows that

H(2)
m =

um∑

t=1

um∑

j=2

1

j
hjmt +

um∑

t=1

∞∑

j=um+1

1

j
hjmt +

(qn−1)/2
∑

t=um+1

∞∑

j=2

1

j
hjmt

=
um∑

t=1

um∑

j=2

1

j
hjmt +O(|b|m/2).

Thus, we have for m→ ∞

H(2)
m ∼

um∑

t=1

um∑

j=2

1

j
hjmt, (2.112)

where we recall that this notation means that the limit of H
(2)
m equals that of its

truncation
∑um

t=1

∑um

j=2 h
j
mt/j as m→ ∞.

Now let us see that

um∑

t=1

um∑

j=2

1

j
hjmt ∼

um∑

t=1

um∑

j=2

1

j
hj∞t, (2.113)
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where h∞t is given in (2.93). As we are considering only j, t ≤ um, we have jt ≤
u2m ≤ |b|−m, and hence jtb2m → 0 as m→ ∞. From Lemma 2.3.22 (d), we therefore
get for some constant c1 > 0 that

hjmt ≤
(
h∞t + c1tb

2m
)j

= hj∞t +

j
∑

k=1

(
j

k

)

hj−k
∞t

(
c1tb

2m
)k
.

Recall that by (2.109) we have |h∞t| ≤ 1/2. Thus by rewriting the above inequality
it follows

|hjmt − hj∞t| ≤ c12
−j+1jtb2m +

j
∑

k=2

(
j

k

)

|h∞t|j−k
(
c1tb

2m
)k

≤ c1jtb
2m + 2−j

j
∑

k=2

(
j

k

)
(
2c1tb

2m
)k

≤ c1jtb
2m + c2b

3m2−j

j
∑

k=2

(
j

k

)

≤ c3jtb
2m, (2.114)

where we have used that t ≤ um ≤ b−m/2 and that 2c1b
3m/2 < 1 for sufficiently large

m. Hence by (2.114) we obtain hjmt − hj∞t = O(jtb2m) and we get that
um∑

t=1

um∑

j=2

1

j
(hjmt − hj∞t) =

um∑

t=1

um∑

j=2

O(tb2m) = O(u3mb
2m) = O(|b|m/2).

This confirms (2.113).

Finally, by reusing the arguments that led us to the conclusion that H
(2)
m ∼

∑um

t=1

∑um

j=2 h
j
mt/j, we find that

um∑

t=1

um∑

j=2

1

j
hj∞t ∼

∞∑

t=1

∞∑

j=2

1

j
hj∞t, (2.115)

and recalling that |h∞t| = |ckekξ∞t/t| < 1/(2t) < 1/2, we get
∞∑

t=1

∞∑

j=2

1

j
|h∞t|j <

∞∑

t=1

h2∞t

1− |h∞t|
<∞.

Thus, the sum on the right hand side in (2.115) is absolutely convergent. We denote

its limit by Γ
(2)
ℓ,k , and from (2.112)–(2.115) it follows that

lim
m→∞

H(2)
m = Γ

(2)
ℓ,k . (2.116)
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Convergence of H
(1)
m

We are left with verifying the convergence of

H(1)
m =

(qn−1)/2
∑

t=1

hmt.

This rather tedious task is performed in several steps. Eventually we will see that if
limm→∞H

(1)
m exists, then it equals the limit of

∑(qn−1)/2
t=1 CmtSmt, where

Smt :=
t∑

s=1

sin(π|ekbm|ξ∞s) and Cmt := cot(πt/qn)− cot(π(t+ 1)/qn).

Careful estimates of Smt and Cmt will reveal that the sum
∑(qn−1)/2

t=1 CmtSmt indeed
converges.

Note first that we may return to standard summation notation at this point, as
hm(qn/2) = 0 if qn is even. Thus, we let Mn := ⌊(qn − 1)/2⌋ and have

H(1)
m =

Mn∑

t=1

hmt =
Mn∑

t=1

cot

(
πt

qn

)

sin(π|ekbm|ξmt),

regardless of whether qn is even or odd.
Now let us see that

H(1)
m ∼ H∗

m :=
Mn∑

t=1

cot

(
πt

qn

)

sin(π|ekbm|ξ∞t). (2.117)

Using that sin x = x(1 +O(x2)) and Lemma 2.3.22 (c), we get

H(1)
m −H∗

m =
Mn∑

t=1

cot

(
πt

qn

)

π|ekbm|(ξmt − ξ∞t)(1 +O(b2m))

=
Mn∑

t=1

cot

(
πt

qn

)

π|ekbm|O(tb2m).

From the inequality cot x < 1/x it thus follows that

|H(1)
m −H∗

m| < O(b2m)
Mn∑

t=1

qn|ekbm|
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= O(b2m) ·Mn

(
|ekck|+O(b2m)

)
= O(|b|m),

where we have used Lemma 2.3.14 and the fact that Mn < qn = Θ(|b|−m). This
confirms (2.117).

Finally, let us see that if limm→∞H∗
m exists, then it equals that of

∑(qn−1)/2
t=1 SmtCmt

for a certain sum of sines Smt and cotangent difference Cmt. As a first step we will
make use of the following formula which is also called summation by parts:

n∑

k=1

akbk =
n−1∑

k=1

(

(bk − bk+1)
k∑

i=1

ai

)

+ bn

n∑

i=1

ai, (2.118)

where n ∈ N and ak, bk ∈ R for k ∈ [n]. Using (2.118), we may rewrite H∗
m as

H∗
m =

Mn−1∑

t=1

(

cot

(
πt

qn

)

− cot

(
π(t+ 1)

qn

)) t∑

s=1

sin(π|ekbm|ξ∞s)

+ cot

(
πMn

qn

) Mn∑

s=1

sin(π|ekbm|ξ∞s).

(2.119)

Consider the second term on the right hand side in this equation. As |ξ∞s| < 1/2
and sin x = x(1 +O(x2)), we have

∣
∣
∣
∣
∣

Mn∑

s=1

sin(π|ekbm|ξ∞s)

∣
∣
∣
∣
∣
<
π

2
qn|ekbm|(1 +O(b2m)) =

π

2
|ckek|(1 +O(b2m)),

where we have again used that Mn < qn = O(b2m) and Lemma 2.3.14. It follows that

∣
∣
∣
∣
∣
cot

(
πMn

qn

) Mn∑

s=1

sin(π|ekbm|ξ∞s)

∣
∣
∣
∣
∣
<
π

2

∣
∣
∣
∣
ckek cot

(
πMn

qn

)

(1 +O(b2m))

∣
∣
∣
∣
,

and recalling that Mn = ⌊(qn − 1)/2⌋, it is clear that the cotangent term tends to
zero as m→ ∞. It thus follows from (2.117) and (2.119) that

H(1)
m ∼ H∗

m ∼
Mn−1∑

t=1

CmtSmt (2.120)

where Cmt = cot(πt/qn)− cot(π(t+ 1)/qn) and Smt =
∑t

s=1 sin(π|ekbm|ξ∞s).
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The cotangent difference Cmt

We establish two estimates for Cmt; one rather coarse bound and one more precise
estimate. For ease of notation, let us write φ = π/qn. We then have

0 < Cmt =
sin((t+ 1)φ) cos(tφ)− cos((t+ 1)φ) sin(tφ)

sin(tφ) sin((t+ 1)φ)

=
sin(φ)

sin(tφ) sin((t+ 1)φ)
.

Note that when t < Mn, we have (t+ 1)φ < π/2, and thus by 2x/π < sin x < x for
0 < x < π/2, we obtain

0 < Cmt <
πqn

4t(t+ 1)
<
πqn
4t2

. (2.121)

This is our coarse bound for Cmt.
For tφ < 1, or equivalently t < qn/π, we have the finer estimate

Cmt =
φ(1 +O(φ2))

tφ(1 +O(t2φ2))(t+ 1)φ(1 +O(t2φ2))

=
qn

πt(t+ 1)

(

1 +O
(
t2

q2n

))

=
qn

πt(t+ 1)

(
1 +O

(
t2b2m

))
,

where we have used that 1/qn = O(|b|m). Combining this estimate with

Smt = π|ekbm|(1 +O(b2m))
t∑

s=1

ξ∞s,

and using Lemma 2.3.14, we get

CmtSmt =
|ckek|
t(t+ 1)

(
1 +O(t2b2m)

)
t∑

s=1

ξ∞s. (2.122)

The sum of sines Smt

Now let us find an appropriate bound on Smt in terms of m and t. As illustrated by
Verschueren and Mestel in [104, Figure 7.1], this sum appears to grow slowly with
increasing values of t, at least for the specal case of α = ϕ the golden mean. As
demonstrated by the next lemma, this is also true for the general case where ℓ ≥ 1.
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Lemma 2.3.25. For t ∈ {1, 2, . . . , qn − 1} and sufficiently large m, the sum

Smt =
t∑

s=1

sin(π|ekbm|ξ∞s)

satisfies |Smt| ≤ c|b|m log t for some constant c > 0 independent of m.

For proving Lemma 2.3.25, we will need the following result.

Lemma 2.3.26. Let p/q be a convergent of any real α. Then for any θ ∈ R and
v ∈ N, we have ∣

∣
∣
∣
∣

vq
∑

i=1

{θ + iα} − 1

2

∣
∣
∣
∣
∣
<

3v

2
.

Proof. The proof for v = 1 is given in [104, Lemma 7.2]. For v ≥ 2 it follows that

∣
∣
∣
∣
∣

vq
∑

i=1

{θ + iα} − 1

2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

v−1∑

j=0

q
∑

u=1

{θ + (jq + u)α} − 1

2

∣
∣
∣
∣
∣

≤
v−1∑

j=0

∣
∣
∣
∣
∣

q
∑

u=1

{(θ + jqα) + uα} − 1

2

∣
∣
∣
∣
∣
<

v−1∑

j=0

3

2
=

3v

2
.

Proof of Lemma 2.3.25. Recall from Lemma 2.3.5 that there exist unique integers
z, v1, . . . , vz ∈ N such that

t =
z∑

s=1

vsqs(ασk
).

In order to simplify notation we will drop the argument of qs(ασk
) for the rest of

the proof. We will use this representation of t to split the sum Smt into chunks of
length vsqs as follows. Let us introduce the notation tz = 0 and ts =

∑z
u=s+1 vuqu.

Moreover, we define

ξ∞r(θ) := {θ + rασk
} − 1

2
.

Note that our ξ∞r defined in (2.91) is then precisely ξ∞r(0). With this generalised
ξ∞r(θ) introduced, we may rewrite Smt as

Smt =

vzqz∑

r=1

sin(π|ekbm|ξ∞r(0)) +

vz−1qz−1∑

r=1

sin(π|ekbm|ξ∞r(vzqzασk
))
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+

vz−2qz−2∑

r=1

sin(π|ekbm|ξ∞r((vzqz + vz−1qz−1)ασk
)) + · · ·

=
z∑

s=1

vsqs∑

r=1

sin(π|ekbm|ξ∞r(tsασk
)).

Thus, if we also introduce the generalised notation

Smt(θ) =
t∑

r=1

sin(π|ekbm|ξ∞r(θ)),

then we can express Smt as

Smt = Smt(0) =
z∑

s=1

Sm(vsqs)(tsασk
). (2.123)

Finally we use Lemma 2.3.26 to bound the terms in the sum (2.123). Using the
estimate sin x = x(1 +O(x2)), we get

∣
∣Sm(vsqs)(tsασk

)
∣
∣ =

∣
∣
∣
∣
∣
πekb

m(1 +O(b2m))

vsqs∑

r=1

ξ∞r(tsασk
)

∣
∣
∣
∣
∣

= π|ekbm|(1 +O(b2m))

∣
∣
∣
∣
∣

vsqs∑

r=1

{tsασk
+ rασk

} − 1

2

∣
∣
∣
∣
∣

≤ 3

2
πvs|ekbm|(1 +O(b2m)).

Thus, we have

|Smt| ≤
z∑

s=1

|Sm(vsqs)(tsασk
)| ≤ 3

2
π|ekbm|(1 +O(b2m))

z∑

s=1

vs. (2.124)

Recalling from Lemma 2.3.5 that vs ≤ max{a1, . . . , aℓ} for all s, we have

z∑

s=1

vs ≤ z · max
1≤j≤ℓ

aj = O(z) = O(log t),

and combined with (2.124) this yields |Smt| = O(|b|m log t).
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We are now equipped to prove the convergence of H
(1)
m , or equivalently the

convergence of
∑Mn−1

t=1 CmtSmt in (2.120). From (2.121) and Lemma 2.3.25 it follows
that

|CmtSmt| ≤
πqn
4t2

· O(|b|m log t) = O
(
log t

t2

)

, (2.125)

where we have also used qn = Θ(b−m) from Lemma 2.3.14. This implies that there
exists a constant K > 0 such that

Mn−1∑

t=1

|CmtSmt| ≤ K. (2.126)

It is not clear that the sequence (
∑Mn−1

t=1 CmtSmt)m≥1 is monotone, so the bound
(2.126) alone does not prove convergence. But let us now compare this sequence to a
closely related, absolutely convergent sum.

Let um = ⌊|b|−m/2⌋, and choose m sufficiently large such that um < qn/π < Mn−1.
We can then write

Mn−1∑

t=1

CmtSmt =
um∑

t=1

CmtSmt +
Mn−1∑

t=um+1

CmtSmt. (2.127)

It follows from (2.125) that for some constant c > 0 we have

∣
∣
∣
∣
∣

Mn−1∑

t=um+1

CmtSmt

∣
∣
∣
∣
∣
≤ c

∫ ∞

um

log t

t2
dt = c

log(um) + 1

um
→ 0 for m→ ∞. (2.128)

For the first sum on the right hand side in (2.127), we use the finer estimate (2.122)
from Section 2.3.5 to obtain

um∑

t=1

CmtSmt = (1 +O(|b|m))
um∑

t=1

|ckek|
t(t+ 1)

t∑

s=1

ξ∞s. (2.129)

It follows from (2.126) that both sides in (2.129) are bounded by K in absolute
value. Thus, the series

∑um

t=1 |ckek|/(t(t+ 1))
∑t

s=1 ξ∞s is absolutely convergent, and

converges to some real number Γ
(1)
ℓ,k as m→ ∞. Finally, by combining (2.127)–(2.129),

it follows that

lim
m→∞

H(1)
m = lim

m→∞

Mn−1∑

t=1

CmtSmt = Γ
(1)
ℓ,k . (2.130)
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Conclusion

Combining (2.111), (2.116) and (2.130), we finally arrive at

lim
m→∞

logB∗
m = −2

(

Γ
(1)
ℓ,k + Γ

(2)
ℓ,k

)

.

Recalling that logB∗
m ∼ logBm, it follows that logBm converges to a finite limit, and

accordingly the product Bm in (2.96) converges to a strictly positive number.

2.3.6 Proof of Theorem 2.3.2

The proof of Theorem 2.3.2 is essentially completed. Nevertheless, we include a
brief summary. Theorem 2.3.2 states that if α = [0; a1, . . . , aℓ] is an irrational with a
periodic continued fraction expansion, then there are positive constants c0, . . . , cℓ−1

such that

lim
m→∞

Qℓm+k(α) =

qℓm+k∏

r=1

|2 sin πrα| = ck (2.131)

for each k = 0, 1, 2, . . . , ℓ− 1. By Lemma 2.3.23, the product Qℓm+k(α) for fixed k
can be decomposed as

Qℓm+k(α) = AmBmCm, (2.132)

where Am, Bm and Cm are defined in (2.95)–(2.97). We have seen in Section 2.3.3
that

lim
m→∞

Am = 2π|ckek| > 0.

Moreover, by Theorem 2.3.24 we have limm→∞Cm > 0, and finally we have seen in
Section 2.3.5 that also limm→∞Bm > 0. It thus follows from (2.132) that (2.131)
holds for some Ck > 0.

Proof of Corollary 2.3.3

We only sketch the proof of Corollary 2.3.3, as it largely follows that of Theorem 2.3.2.
Let β = [a0; a1, . . . , ah, ah+1, . . . , ah+ℓ] and α = [0; ah+1, . . . , ah+ℓ]. It is an easy
exercise to verify the identity

qh+u(β) = qh+1(β)qu(α) + qh(β)pu(α) (2.133)

for all u ≥ 0. By combining (2.133) with Theorem 2.3.13 and Lemmas 2.3.14 and
2.3.16 for the purely periodic case, one can establish the closed form

qh+ℓm+k(β) = γ
(m)
1 qh+ℓ+k(β)Lm + (−1)ℓ−1γ

(m)
2 qh+k(β)Lm−1, (2.134)
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where Lm = Lm(c(α)
2, (−1)l−1) is the Lehmer sequence and γ

(m)
1 and γ

(m)
2 are defined

as in Theorem 2.3.13. Moreover, one can find constants ch,k and eh,k (independent of
m) such that

qh+ℓm+k(β)|b|m = ch,k +O(b2m) (2.135)

and
qh+ℓm+k(β)β = ph+ℓm+k(β) + eh,kb

m, (2.136)

with b = b(α) defined in (2.75). Note that (2.135) is essentially Lemma 2.3.14 for the
irrational β, and similarly (2.136) corresponds to Lemma 2.3.16. Further calculations
verify that

qh+ℓm+k−1(β)

qh+ℓm+k(β)
= ασk

+O(b2m), (2.137)

which is basically Lemma 2.3.18 for β. Thus, we have all tools needed to prove that
the limit

lim
m→∞

Qh+ℓm+k(β)

indeed exists for each k ∈ {0, 1, . . . ℓ − 1}. Finally, it turns out that the product
|ch,keh,k| is independent of h, that is

|ch,keh,k| = |ckek|, (2.138)

with ck and ek given in (2.81) and (2.83). By carefully examining the proof of
Theorem 2.3.2, it is clear that (2.138) guarantees that

lim
m→∞

Qh+ℓm+k(β) = lim
m→∞

Qℓm+k(α),

and this completes the proof of Corollary 2.3.3.
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2.4 Conclusions and further research

Let us briefly summarize the main results of the second part of this thesis. The
central object of Chapter 2 was the following sequence of trigonometric products
(referred to as Sudler product)

PN(α) =
N∏

r=1

|2 sin(πrα)|,

where N ∈ N and α ∈ (0, 1) and irrational. Amongst many others this sequence was
also analysed by Lubinsky and one of his results in [76] states that

lim inf
N→∞

PN(α) = 0 (2.139)

if α has unbounded continued fraction coefficients. Moreover he suggested that the
same result is valid for α with bounded partial quotients. However, the main result
of Section 2.2 states that this can not be true. For α being the golden ratio ϕ = [0; 1]
we were capable to prove that

lim inf
N→∞

PN(ϕ) > 0, (2.140)

which provides a counter example to the suggestion of Lubinsky.
In the second section of Chapter 2 we shifted our attention to certain subsequences

of (PN(α))N∈N. Verschueren and Mestel showed in [104] that there exists a constant
c > 0 such that

lim
n→∞

PFn
(ϕ) = c, (2.141)

where ϕ is again the golden ratio and (Fn)n∈N is the Fibonacci sequence. Additionally
they conjectured in [104] that the above result is valid for the whole class of quadratic
irrationals. The main goal of the remaining section was to prove exactly this conjecture.
More precise, we were capable of proving for a (purely periodic) quadratic irrational α
with continued fraction expansion α = [0; a1, . . . , aℓ] that for each k ∈ {0, . . . , ℓ− 1}

lim
m→∞

Pqℓm+k
(α) =

qℓm+k(α)∏

r=1

|2 sin(πrα)| = ck,

where qn(α) is the nth best approximation denominator of α and ck > 0 some constant
independent of m. There is also a version of this result for quadratic irrationals of
the form α = [a0; a1, . . . , ah, ah+1, . . . , ah+ℓ] (see Corollary 2.3.3).
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2.4.1 Further research

In this final subsection we want to discuss further research ideas and pose some
interesting problems related to the topics we have seen in Chapter 2.

First of all the work of Verschueren and Mestel [104] was essential to proof
that lim infN→∞ PN(ϕ) > 0. It was exactly this work that has been generalised in
Section 2.3 to quadratic irrationals and therefore it would be a natural question to
ask whether it is possible to join the ideas of Section 2.2 and Section 2.3 and prove
that

lim inf
N→∞

PN(α) > 0 (2.142)

for other quadratic irrationals α than the golden ratio. Unfortunately an extension
to all quadratic irrationals is too much to hope for. This is reflected by the following
theorem which is a direct consequence of the results in [76]. For more information in
this direction and a nicely illustrated proof of the subsequent theorem we refer to
[39].

Theorem 2.4.1. Let α = [0; a1, a2, . . .] have bounded continued fraction coefficients,
and let M = maxj∈N aj. Provided M is sufficiently large, there exists some threshold
value K = K(M) such that if aj ≥ K infinitely often, then

lim inf
n→∞

Pn(α) = 0.

Remark. We want to point out that Lubinsky mentioned in [76] that (2.139) is
already true if the continued fraction coefficients of α exceed some absolute constant
K infinitely often. Unfortunately the constant K is not described in more detail and
it is not clear for us how to derive this absolute constant from his proves. We were
only able to derive a weaker version of his statement (see Theorem 2.4.1), where the
constant K(M) is not absolute.

In other words the actual size of the continued fraction coefficients of α plays a
crucial role if one wants to determine if either (2.139) or (2.142) is true. Additionally
note that pursuing the same strategy as it was outlined in Section 2.2.2 for some
other quadratic irrational α forces a switch from the Zeckendorf representation of
an integer N to a more general representation (e.g. Ostrowski representation (see
[4, 92]) or β-expansion (see [91])) which unfortunately results in several technical
problems. In order to keep these technicalities at a minimal extent and still gain
some new information, a possible next step could be to try to follow the ideas of
Section 2.2 and Section 2.3 in the case where α = [0; a] and a ∈ N with a ≥ 2 (i.e.
M = K = a). Numerical experiments indicate that in this case the critical value of a
seems to be 5. This phenomenon is illustrated in more detail in Table 2.1.

129



α Evolution of minima (Pn(α), n)

[0; 1] (1.865, 1)
[0; 2] (1.928, 1)
[0; 3] (1.333, 1)
[0; 4] (1.351, 1)
[0; 5] (1.138, 1)
[0; 6] (0.977, 1), (0.907, 7), (0.849, 44), (0.794, 272), (0.742, 1 677), (0.693, 10 335)
[0; 7] (0.852, 1), (0.708, 8), (0.589, 58), (0.491, 415), (0.408, 2 964), (0.340, 21 164)
[0; 8] (0.755, 1), (0.564, 9), (0.422, 74), (0.316, 602), (0.236, 4 891), (0.177, 39 731)

Table 2.1: Evolution of minima of Pn(α) for n = 1, . . . , 50 000.

Second, recall that the asymptotic behaviour of Pqn(α)(α) has been studied for
the cases where α is the golden ratio [104] and where α is a quadratic irrational
[40]. The underlying structure of the continued fraction expansion of α is essential
in both proofs. It is therefore the subject of current research to investigate if it is
possible to widen the class of irrationals for which (Pqn(α)(α))≥1 converges (in some
sense). One should point out that we already know by the work of Lubinsky [76] that
limi→∞ Pqni

(α)(α) = 0 if α = [a0; a1, a2, . . .] and (ani
)i∈N is strictly increasing. Using

the following notation to represent the continued fraction expansion of Eulers number
in the subsequent way

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .] = [2; 1, 2, 1, 1, 2n+ 2]∞n=1,

gives rise to the question if Pqn(e)(e) shows a similar behaviour as a quadratic irrational
with period ℓ = 3. This is indeed what numerical experiments suggest, i.e. numerics
indicate that Pqn(e)(e) has again three subsequences (see Figure 2.1). However,
the limiting behaviour of the corresponding subsequences is still subject to further
research.
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Figure 2.1: Illustration of Pqn(α)(α) for n ∈ {1, . . . , 18}, where for α = e (left) and α = [0; 1, 1, 2] (right).
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Moreover, one could even try to let go of the periodic structure of the underlying
irrational α and allow patterns of variable length in the continued fraction expansion
of α. Maybe the simplest example would be

α = [0; 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, . . .]. (2.143)

It would be an interesting task to analyse the asymptotic behaviour of Pqn(α)(α) with
α given in (2.143).

Last but not least there are several open problems related to the case α = ϕ. It
would be a nice additional result to determine if the minimum of the sequence PN (ϕ)
exists. Indeed numerical experiments (see Table 2.1) indicate that

min
N∈N

PN(ϕ) = P1(ϕ) = 1.864 . . . , (2.144)

but unfortunately this is not evident from the proof we have seen in Section 2.2.
Similar numerical computations give rise to the more general conjecture that for
n ≥ 3 and all N ∈ {Fn−1, . . . , Fn − 1} we have

PFn−1(ϕ) ≤ PN(ϕ) ≤ PFn−1(ϕ). (2.145)

Exactly this behaviour is illustrated in Figure 2.2.
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n
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100
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200

Pn(φ)

Figure 2.2: Value of Pn(ϕ), with the two subsequences PFn
(ϕ) and PFn−1(ϕ) indicated by blue and red marks,

respectively.
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For similar conjectures (where α is not necessarily the golden ratio) see also the
introduction of [3] and the references therein. Observe that the upper bound of
(2.145) would imply for n ≥ 3 and all N ∈ {Fn−1, . . . , Fn − 1} that

PN(ϕ) ≤ PFn−1(ϕ) ≤ cFn ≤ 2cN, (2.146)

where we have additionally used that PFn−1(ϕ) ≤ cFn (see [104]) for the constant
c =

√
5/4 limn→∞ PFn

(ϕ) ≃ 1.35. The linear bound stated in (2.146) is also supported
by numerical calculations (with an even better constant) shown in Figure 2.3.
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n

50
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200

Figure 2.3: Value of Pn(α) for α = (
√
5− 1)/2 (blue line) plotted against f(n) = n (red line).

This linear bound in N would be a significant improvement to all known bounds
of PN(ϕ) and is an interesting problem on its own.
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139
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