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Email: canank@sabanciuniv.edu

Email: alev@sabanciuniv.edu
3Johann Radon Institute for Computational and Applied Mathematics,

Austrian Academy of Sciences, Altenbergerstrasse 69, 4040-Linz, Austria
Email: meidlwilfried@gmail.com

Abstract

We study generalizations of plateaued functions, partially bent func-
tions and their relations. We extend a well-known property of bent and
semibent functions, in relation to their shifts, to all plateaued func-
tions. Focusing on the subclass of partially bent4 functions, we obtain a
characterization and present results on their differential properties and
corresponding relative difference sets. This unifies previous work on
partially bent functions.
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1 Introduction

We first consider Boolean functions f : F2n 7→ F2. For an element c ∈ F2n , the
unitary transformation Vcf : F2n 7→ C is defined in [2] as

Vcf (u) =
∑
x∈F2n

(−1)f(x)+σ
c(x)iTrn(cx)(−1)Trn(ux) , (1.1)

where Trn(z) denotes the absolute trace of z ∈ F2n and σc(x) is the Boolean
function defined by

σc(x) =
∑

0≤i<j≤n−1

(cx)2
i

(cx)2
j

. (1.2)

Note that for c = 0, Vcf reduces to the conventional Walsh-Hadamard transform

V0
f (u) =Wf (u) =

∑
x∈F2n

(−1)f(x)+Trn(ux) . (1.3)

A Boolean function f is called a c-bent4 function if for some c ∈ F2n , the
transform Vcf satisfies |Vcf (u)| = 2n/2 for all u ∈ F2n . A function f is bent4 if it
is c-bent4 for some c ∈ F2n . We note that a c-bent4 function is a classical bent
function when c = 0. A 1-bent4 function is called negabent. An alternative
definition of a c-bent4 function can be given in relation to the so-called modified
derivative of f . The authors of [2] define f to be c-bent4 if the modified
derivative

f(x+ a) + f(x) + Trn(c2ax) (1.4)

is balanced for all nonzero a ∈ F2n . As expected, this corresponds to the
characterization of bent functions via the derivative when c = 0.

Previously, c-bent4 functions were studied in multivariate form. Consider
the unitary transform U cf : Fn2 7→ C, defined as

U cf (u) =
∑
x∈Fn2

(−1)f(x)+s
c
2(x)ic·x(−1)u·x , (1.5)

where y · z denotes the dot product of y, z ∈ Fn2 , and

sc2(x1, . . . , xn) =
∑

1≤i<j≤n

(cixi)(cjxj) if c = (c1, . . . , cn). (1.6)

A function f : Fn2 7→ F2 is called c-bent4 in [7] if |U cf (u)| = 2n/2 for some
c ∈ Fn2 , and for all u ∈ Fn2 . In fact the authors of [7] use the term bent4, not
c-bent4.
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The values c = (0, . . . , 0) and c = (1, . . . , 1) ∈ Fn2 yield again the (mul-
tivariate) bent and negabent functions. An appropriate modification of the
derivative to obtain an alternative definition of a multivariate c-bent4 function
is given in [2] as follows. A function f : Fn2 7→ F2 is c-bent4 if and only if the
(modified) derivative

f(x+ a) + f(x) + c · (a� x) (1.7)

is balanced for every nonzero a ∈ Fn2 , where y � z := (y1z1, . . . , ynzn) for
y = (y1, . . . , yn), z = (z1, . . . , zn).

Another motivation for introducing c-bent4 functions in [2] comes from
their relation to modified planar functions. We recall that a function F :
F2n 7→ F2n (or F : Fn2 7→ Fn2 ) is modified planar if F (x + a) + F (x) + ax (or
F (x+a)+F (x)+a�x) is a permutation for every nonzero a ∈ F2n (or a ∈ Fn2 ),
see [12, 15, 16] and also the excellent survey [10]. It is shown in [2] that bent4
functions describe the components of modified planar functions.

Bent and negabent functions describe the same set of functions in both
univariate and multivariate settings. We note that this property does not hold
for other values of c. Indeed, any affine function from F2n to F2 is c-bent4 for
every nonzero c ∈ F2n , however an affine function from Fn2 to F2 is c-bent4
only when c = (1, . . . , 1), see Remark 3.1 below and [2] for details. After this
brief survey of some recent generalizations of bent functions, we are ready to
proceed to generalizations of plateued and partially bent functions.

We first introduce some notation that enables us to treat the univariate
and multivariate interpretations together.

Let Vn be a vector space over F2 of dimension n. We identify Vn by F2n or
Fn2 . From now on we shall use the notation

T cf (u) =

{
Vcf (u) when Vn = F2n ,
U cf (u) when Vn = Fn2 .

(1.8)

Recall that V 0
f = Wf , where Wf is as in (1.3), hence the Walsh-Hadamard

transform is a special case of T cf .
The Parseval‘s identity implies that∑

u∈Vn

|T cf (u)|2 = 22n. (1.9)

We denote the modified derivative of f : Vn 7→ F2, by

Dca(f)(x) =

{
f(x+ a) + f(x) + 〈c2, ax〉 when Vn = F2n ,
f(x+ a) + f(x) + 〈c, (a� x)〉 when Vn = Fn2 ,

(1.10)
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where the inner product 〈u, v〉 is Trn(uv) in case Vn = F2n , and it is the
canonical dot product when Vn = Fn2 .

Recall that a Boolean function is called plateaued or s-plateaued if |Wf (u)| ∈
{0, 2n+s

2 } for all u ∈ Vn, where s is an integer depending only on f . When s =
1, f is called semibent. A well-known proper subclass of plateaued functions
are partially bent functions. Recall that a function f : Vn 7→ F2 is partially
bent if the derivative D0

a(f) is either balanced or constant for all a ∈ Vn, see
[6, 17]. We note that quadratic functions are partially bent hence plateaued.

One may consider a natural generalization of s-plateaued functions. We
define a function f : Vn 7→ F2 to be c-s-plateaued if |T cf (u)| ∈ {0, 2n+s

2 }
for an integer s depending only on f , and all u ∈ Vn. The value c = 0
yields s-plateaued functions hence we use the term s-plateaued rather than
0-s-plateaued.

In [3] partially c-bent4 functions are introduced considering the modified
derivative Dca(f) as in (1.10) when Vn = F2n . Hence f is partially c-bent4 if
Dc
a(f) is either balanced of constant for all a ∈ Vn. As shown in [3], every

partially c-bent4 function is plateaued with respect to Vcf , and every quadratic
function is partially c-bent4 (for every c).

In this article we focus on c-s-plateaued and partially c-bent4 functions
in both univariate and multivariate settings. In Section 2 we observe that
functions which are c-s-plateaued are shifts of s-plateaued functions that have
certain additional properties. This generalizes similar results for bent4 func-
tions. We construct c-s-plateaued functions with various interesting properties
in Section 3. In particular we construct functions f : Fn2 7→ F2, which are c-
s-plateaued but not partially c-bent4, showing that partially c-bent4 functions
form a proper subclass of c-s-plateaued functions. In Section 3 we also present
the behaviour of shifts of plateaued functions, which may or may not be par-
tially bent. In Section 4 we characterize partially c-bent4 functions and we
investigate their differential properties. We end this paper with the study of
relative difference sets corresponding to partially c-bent4 functions, see Section
5.

2 Shifts of Boolean Functions

Recall that for a function f : Vn 7→ F2, an element a ∈ Vn is called a linear
structure of f if D0

a(f) = f(x + a) + f(x) is constant. As can be seen easily,
the set of linear structures of f forms a subspace of Vn which we will denote
by Λ(f).
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The concept of a linear structure has been extended to Vn = F2n in [3],
using the modified derivative Dca(f). Putting

Λc(f) := {a ∈ Vn : Dca(f) is constant}

for f : Vn 7→ F2, one may also show that Λc(f) is a subspace of Vn. For the
proof in case Vn = F2n , see Lemma 1 in [3]. The proof of the case Vn = Fn2
follows similarly.

The functions σc(x) and sc2(x) play an important role in the theory of bent4
functions. The following properties of σc(x) and sc2(x) will be frequently used.

Lemma 2.1. For c ∈ Vn, let σc(x) : F2n 7→ F2 and sc2(x) : Fn2 7→ F2 be
functions defined as in (1.2) and (1.6), respectively. Then σc(x) and sc2(x)
satisfy the following.

(i) σc(x+z) = σc(x)+σc(z)+Trn(cx)Trn(cz)+Trn(c2xz) for every x, z ∈ F2n.

(ii) sc2(x+ z) = sc2(x) + sc2(z) + (c · x)(c · z) + c · (x� z) for every x, z ∈ Fn2 .

Proof of part (i) is given in [2], part (ii) follows similarly.
From now on we set

sc(x) =

{
σc(x) when Vn = F2n ,
sc2(x) when Vn = Fn2 .

(2.1)

Lemma 2.2. For every function f : Vn 7→ F2 and every c ∈ Vn we have

Λc(f) = Λ(f + sc) ∩ {a ∈ Vn : 〈c, a〉 = 0},

hence dim(Λc(f)) = dim(Λ(f + sc)) or dim(Λc(f)) = dim(Λ(f + sc))− 1.

Proof. We give a proof for the case Vn = F2n , the case Vn = Fn2 follows
similarly.
Let a ∈ Λc(f), i.e.,

f(x+ a) + f(x) + Trn(c2ax) = f(0) + f(a) (2.2)

for all x ∈ F2n . When x = a one has Trn(c2a2) = Trn(ca) = 0. Lemma 2.1(i)
implies for any a ∈ F2n that

D0
a(f + σc)(x) = f(x+ a) + f(x) + σc(x+ a) + σc(x) (2.3)

= f(x+ a) + f(x) + σc(a) + Trn(cx)Trn(ca) + Trn(c2ax).
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If a ∈ Λc(f), with Trn(ca) = 0 and Equation (2.2) we see that D0
a(f +σc)(x) =

σc(a)+f(0)+f(a), hence it is constant. Consequently, Λc(f) ⊂ Λ(f+σc)∩{a ∈
F2n : Trn(ca) = 0}.

Conversely suppose that Trn(ca) = 0 and D0
a(f + σc) is constant. Then by

Equation (2.2) we obtain D0
a(f+σc)(x) = f(x+a)+f(x)+σc(a)+Trn(c2ax) =

f(a) + f(0) + σc(a), which implies that a ∈ Λc(f).

Lemma 2.2, in particular, shows that the derivative D0
a(g) of the shifted

function g = f + sc is constant for every a for which Dca(f) is constant.
Regarding the transforms T cf , in Theorems 4.26, 4.28 in [16] and in [2,

Corollary 14], it is shown that for even integers n, a function f : Vn 7→ F2 is
c-bent4 if and only if f + sc is bent. Hence, in even dimension n, a c-bent4
function is a shifted bent function. When n is odd we have a similar one-to-one
correspondence between the set of c-bent4 functions and the set of semibent
functions with certain additional properties, see [2, 16] and also [7, 9, 13]. The
following theorem extends these results to arbitrary values of s ≥ 0.

Theorem 2.3. (i) Let n + s be even. A function f : Vn 7→ F2 is c-s-
plateaued if and only if f+sc is s-plateaued and |Wf+sc(u)| = |Wf+sc(u+
c)| for all u ∈ Vn.

(ii) Let n + s be odd. A function f : Vn 7→ F2 is c-s-plateaued if and only
if f + sc is (s + 1)-plateaued and Wf+sc(u + c) = 0 for any u ∈ Vn with
|Wf+sc(u)| 6= 0.

Proof. This theorem was essentially proved (s = 0) in [2, 16]. The proof
for this generalization uses the same arguments however we sketch it for the
convenience of the reader. Observe that for any a ∈ {0, 1} we have ia =
1+(−1)a

2
+ i1−(−1)

a

2
, and from Jacobi’s Two–Square Theorem, stating that for

a non-negative integer k, the integer solutions of the Diophantine equation
R2 + I2 = 2k are

(i) (R, I) = (0,±2k/2) or (±2k/2, 0) if k is even, and

(ii) (R, I) = (±2(k−1)/2,±2(k−1)/2) if k is odd.

Then

T cf (u) =
Wf+sc(u) +Wf+sc(u+ c)

2
+ i
Wf+sc(u)−Wf+sc(u+ c)

2
.

Consequently, a function f is c-s-plateaued if and only if for all u ∈ Vn

(Wf+sc(u) +Wf+sc(u+ c))2 + (Wf+sc(u)−Wf+sc(u+ c))2 ∈ {0, 2n+s+2} ,
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or equivalently

Wf+sc(u)2 +Wf+sc(u+ c)2 ∈ {0, 2n+s+1}. (2.4)

If n+ s is even, by Jacobi’s Two–Square Theorem, we have

|Wf+sc(u)| = |Wf+sc(u+ c)| ∈ {0, 2(n+s)/2} ,

for all u ∈ Vn. Hence f + sc is an s-plateaued function with the claimed
additional property. The converse also follows easily from Equation (2.4).
If n+ s is odd, then Jacobi’s Two–Square Theorem implies that for all u ∈ Vn
we have

(Wf+sc(u),Wf+sc(u+ c)) = (0, 0), (0,±2(n+s+1)/2) or (±2(n+s+1)/2, 0) .

Therefore f+sc is (s+1)-plateaued and |Wf+sc(u)| 6= 0 implies Wf+sc(u+c) =
0. Again the converse of the statement follows easily from Equation (2.4).

As mentioned earlier, partially bent functions are standard examples of
plateaued functions. Indeed a partially bent function g : Vn 7→ F2 is s-
plateaued, where s = dim Λ(g). Moreover, the support of the Walsh transform
Wg of g is a coset of Λ(g)⊥, the orthogonal complement of Λ(g), see [5].

Similarly, a partially c-bent4 function is c-s-plateaued where s is the di-
mension of Λc(f), see [3]. The support of the transform T cf of f is also a coset

of Λc(f)⊥, see the proof of [3, Proposition 2]. When we wish to emphasize the
value of s we also use the terms s-partially bent and s-partially c-bent4.

As pointed out in [1], given a 1-partially bent function g : Vn 7→ F2, the
shifted function g + sc is c-bent4 for 2n−1 different nonzero elements c ∈ Vn.
More generally, by Theorem 2.3 we have the following corollary.

Corollary 2.4. Let g : Vn 7→ F2 be a partially bent function with linear space
Λ(g) of dimension s. Then f = g + sc is s-partially c-bent4 for all nonzero
c ∈ Λ(g)⊥, and (s− 1)-partially c-bent4 for all c 6∈ Λ(g)⊥.

Proof. We prove the assertion for the case Vn = F2n . Since g is partially bent,
g is s-plateaued where s = dim(Λ(g)), and there exists a coset b+ Λ(g)⊥ such
that |Wg(u)| = 2(n+s)/2 if and only if u ∈ b + Λ(g)⊥. Let c ∈ Λ(g)⊥, then
u + c ∈ b + Λ(g)⊥ if and only if u ∈ b + Λ(g)⊥, hence |Wg(u)| = |Wg(u + c)|
for all u ∈ F2n . By Theorem 2.3, f = g+ σc is then c-s-plateaued. By Lemma
2.2 we have Λc(f) = Λ(g) since c ∈ Λ(g)⊥, hence Trn(ca) = 0 for all a ∈ Λ(g).
Therefore, dim(Λc(f)) = s, and f is s-partially c-bent4.
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If on the other hand c 6∈ Λ(g)⊥, then u + c 6∈ b + Λ(g)⊥ if u ∈ b + Λ(g)⊥.
Therefore |Wg(u)| = 2(n+s)/2 implies Wg(u + c) = 0, and by Theorem 2.3,
f = g+σc is c-(s−1)-plateaued. Moreover, by Lemma 2.2, dim(Λc(f)) = s−1,
hence f is also (s− 1)-partially c-bent4.

Although s-plateaued functions from Vn to F2 exist for all even n + s,
0 ≤ s ≤ n, c-s-plateaued functions exist only for 0 ≤ s ≤ n − 1, c 6= 0 while
n+ s may be odd or even.

Corollary 2.5. Let c be a nonzero element in Vn, and s with 0 ≤ s ≤ n − 1
be arbitrary. Then there exists a function f : Vn 7→ F2 which is c-s-plateaued.

Proof. From s-partially bent functions g, with 0 ≤ s ≤ n− 2 and even n + s,
we obtain functions which are s-plateaued or c-(s− 1)-plateaued by Corollary
2.4. Note that for g(x) and gv(x) = g(x) + v · x we have Wg(u) =Wgv(u+ v).
Hence we can always choose the coset of Λ(g)⊥ that forms the support ofWg by
adding a suitable linear function to g. It remains to show that n-partially bent
functions (i.e., affine and constant functions) only yield functions which are
c-(n− 1)-plateaued. For an affine or constant function g we have Λ(g) = Vn,
hence Λ(g)⊥ = {0}. Therefore we conclude by Corollary 2.4 that, g + sc is
c-(n− 1)-plateaued since any nonzero c is not in Λ(g)⊥.

Remark 2.6. The functions that are c-(n−1)-plateaued are exactly the shifted
functions sc + ` for an affine or constant function `.

3 Constructions of Some Special Functions

Given a semibent function g, which is not partially bent, the shift g + sc2 may
not be plateaued with respect to U cf , see [1]. This also holds for s-plateaued
functions for arbitrary s. On the contrary, it is possible that the shift of an s-
plateaued function g, which is not partially bent (even satisfying Λ(g) = {0})
may be c-s-plateaued or c-(s − 1)-plateaued for some c ∈ Fn2 . Theorem 3.6
below states all possible cases for the shifted function.

Remark 3.1. The constructions in this section are given in multivariate form,
however all statements apply to the univariate case also. 1-s-plateaued func-
tions in univariate and in multivariate cases form the same sets. It was pointed
out in [2] that if f : F2n 7→ F2 is a c-bent4 function, c 6= 0, then the function
f̃(x) = f(c−1x) is negabent. In fact, observing that σc(c−1x) = σ1(x), with
straightforward calculations we infer that Vcf (u) = V1

f̃
(c−1u). Hence the spec-

trum of f with respect to Vcf and the spectrum of f̃ with respect to V1
f̃

are
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the same. Consequently many questions on the transforms Vcf , c 6= 0, can

be reduced to questions on V1
f . In particular, if f is c-s-plateaued, then f̃ is

1-s-plateaued. It is straightforward to see that cΛc(f) = Λ1(f̃). By Theorem
2.3, the Walsh transforms of f +σc and f̃ +σ1 have the same properties. This
does not apply to the transforms U cf for multivariate functions.

In what follows we employ an adaptation of the Maiorana-McFarland con-
struction for plateaued functions, presented in [17]. For integers k, t with k < t,
let π : Fk2 7→ Ft2 be an injection, and let g : Fk2×Ft2 7→ F2 be the function defined
by g(x, y) = π(x) · y. Then for any (β, γ) ∈ Fk2 × Ft2 we have, see [17],

Wg(β, γ) =

{
±2t if γ ∈ Im(π) ,
0 if γ 6∈ Im(π) ,

(3.1)

where Im(π) is the image of π. Hence g is (t− k)-plateaued, and the support
of Wg is determined by the image of π.

We further recall and slightly extend Lemma 6 in [17].

Lemma 3.2. Let t ≥ 3.

i) There exists a set S = {v0, v1, . . . , vt} ⊂ Ft2 such that for any nonzero
v ∈ Ft2, we have

(v · v0, v · v1, . . . , v · vt) 6∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. (3.2)

ii) For any nonzero c ∈ Ft2, the set S can be chosen in such a way that
vi 6= vj + c, 0 ≤ i, j ≤ t.

Proof. Let {v1, . . . , vt} be a linearly independent subset of Ft2. Then the map
φ : Ft2 7→ Ft2 defined by φ(v) = (v · v1, . . . , v · vt) is a bijection. Hence we have
φ(v∗) = (1, . . . , 1) for a unique vector v∗ ∈ Ft2. Let v0 ∈ Ft2 be a nonzero vector
such that v∗ · v0 = 0. Then {v0, v1, . . . , vt} satisfies (3.2).

For {v0, v1, . . . , vt} to satisfy the additional property, we have 2t−1 choices
for v1, then 2t − 3 choices for v2 (we also have to exclude v1 + c). For v3 we
have at least 2t − 22 − 2 choices. Continuing with this argument, we finally
have at least 2t − 2t−1 − (t− 1) = 2t−1 − t+ 1 choices for vt. For v0 we choose
a vector other than vi + c, 1 ≤ i ≤ t, with v∗ · v0 = 0, which leaves us with
2t−1 − t choices.

Proposition 3.3. Let n ≥ 7. For any c ∈ Fn2 there exists a c-s-plateaued
function, which is not partially c-bent4.
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Proof. We will use the construction in [17] of an s-plateaued function g. Let
n = t + k, t > k, 2k ≥ 2(t + 1) and π : Fk2 7→ Ft2 be an injective function.
Consider g(x, y) = π(x) · y. By construction g is t − k plateaued. Now we
consider the vectors {v0, v1, . . . , vt} as in Lemma 3.2 and impose the condition
on π that {v0, v1, . . . , vt} ⊂ Im(π). This assumption guarantees that g has
trivial linear space Λ(g) = {0} since

Wg(x+α,y+β)+g(x,y)(0) =
∑

(x,y)∈Fk2×Ft2

(−1)g(x+α,y+β)+g(x,y)

=
∑

(x,y)∈Fk2×Ft2

(−1)π(x+α)·(y+β)+π(x)·y

=
∑
x∈Fk2

(−1)π(x+α)·β
∑
y∈Ft2

(−1)(π(x+α)+π(x))·y .

If α 6= 0, then π(x+ α) + π(x) 6= 0 and the inner sum vanishes for all x ∈ Fk2,
and hence |Wg(x+α,y+β)+g(x,y)(0)| = 0. If α = 0, then we have

Wg(x+α,y+β)+g(x,y)(0) = 2t
∑
x∈Fk2

(−1)π(x)·β 6= ±2k+t

as π(x) ·β 6∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. We may also assume that π has addi-
tional properties that enable us to use Theorem 2.3 (i) and obtain a function
f = g + sc2 which is c-s-plateaued. We now fix c = (c1, c2) ∈ Fk2 × Ft2 and as-
sume without loss of generality c2 6= 0, otherwise we permute the variables. In
order that g satisfies |Wg(β, γ)| = |Wg(β + c1, γ + c2)| either γ, γ+ c2 ∈ Im(π)
or γ, γ + c2 6∈ Im(π) for all γ ∈ Ft2. Note that such π exists since Ft2 can be
expressed as the disjoint union of the sets Ft2 =

⋃
ν∈Ft2
{ν, ν + c2}. Hence by

Theorem 2.3, f = g+ sc2 is c-s-plateaued. Alternatively, we can choose π such
that γ ∈ Im(π) implies γ + c2 6∈ Im(π), equivalently |Wg(β, γ)| 6= 0 implies
Wg(β + c1, γ + c2) = 0. In this case Theorem 2.3 (ii) gives f = g+ sc2 which is
c-(s−1)-plateaued. In both cases Lemma 2.2 implies that Λc(f) = Λ(g) = {0}.
We therefore have a plateaued function that is not partially c-bent4.

Remark 3.4. The proposition above answers the question about the existence
of c-s-plateaued functions that are not partially c-bent4, which was left open
in [3], see the explanation after Corollary 4 in [3].

Given a partially bent function g, the shifted function f = g+sc is partially
c-bent4 for every c ∈ Vn as Corollary 2.4. Standard examples are quadratic
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functions. Now we construct a partially c-bent4 function f such that f + sc2 is
plateaued but not partially bent, showing that there exists a plateaued function
g which is not partially bent but its shift is partially c-bent4.

We use the well known fact that for functions g1 : Vn 7→ F2, g2 : Vm 7→ F2,
for g(x, y) = g1(x) + g2(y) we have

Wg(α, β) =Wg1(α)Wg2(β). (3.3)

Note that Equation 3.3 also holds for the transforms T cf .

Proposition 3.5. Let n ≥ 10. For any c ∈ Fn2 , c 6= 0, there exists f : Fn2 7→ F2

such that f is s-partially c-bent4 and g = f + sc2 is (s + 1)-plateaued but not
partially bent.

Proof. Set n = 2k + 2t + s + 1, where k ≥ 3, t ≥ 1, s ≥ 1. Note that
Λc(f) ⊂ Λ(g), i.e., dim(Λ(g)) ≥ s. Hence we need to construct g : Fn2 7→ F2

satifying the following conditions:

i) g is (s+ 1)-plateaued,

ii) dim(Λ(g)) = s,

iii) Wg(u) 6= 0 implies Wg(u+ c) = 0 for all u ∈ Fn2 .

Consider g1 : Fk2 × Fk+1
2 7→ F2 satisfying g1(x, y) = π1(x) · y, where π1 : Fk2 7→

Fk+1
2 is the same injection as the one used in the proof of Proposition 3.3.

Similarly, we define g2 : Ft2×Ft+s2 7→ F2 by g2(z, w) = π2(z)·w, where π2 : Ft2 7→
Ft+s2 is injective and linear. Set c = (c1, c2, c3, c4) ∈ Fn2 = Fk2×Fk+1

2 ×Ft2×Ft+s2 .
We can assume without loss of generality that Im(π2) contains c4.
By [6, Section 3], g2 is s-partially bent with Λ(g2) = {(0, b) : b ∈ Im(π2)

⊥}. We
now define g : Fk2×Fk+1

2 ×Ft2×Ft+1
2 7→ F2 as g(x, y, z, w) = g1(x, y) + g2(z, w).

SinceWg(α, β, γ, δ) =Wg1(α, β)Wg2(γ, δ), g is (s+1)-plateaued. Furthermore,
Wg(α, β, γ, δ) 6= 0 implies Wg1(α, β) 6= 0. By the choice of g1, Wg1(α, β) 6= 0
implies Wg1(α + c1, β + c2) = 0, i.e., Wg(α + c1, β + c2, γ + c3, δ + c4) = 0.
Therefore, g+sc2 is c-s-plateaued by Theorem 2.3 (ii). An element (α, β, γ, δ) ∈
Fn2 lies in Λ(g) if and only if

Wg(x+α,y+β,z+γ,w+δ)+g(x,y,z,w)(0, 0, 0, 0) = ±22k+2t+s+1.

Observing that

D0
(α,β,γ,δ)(g)(x, y, z, w) = g(x+ α, y + β, z + γ, w + δ) + g(x, y, z, w)

= g1(x+ α, y + β) + g1(x, y) + g2(z + γ, w + δ) + g2(z, w)

= D0
(α,β)(g1)(x, y) +D0

(γ,δ)(g2)(z, w),
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we have

WD0
(α,β,γ,δ)

(g)(0, 0, 0, 0) =WD0
(α,β)

(g1)(0, 0)WD0
(γ,δ)

(g2)(0, 0).

This implies that Λ(g) = Λ(g1) × Λ(g2). Therefore Λ(g) = {(0, 0, 0, b) : b ∈
Im(π2)

⊥}. By Lemma 2.2, Λc(f) = {(0, 0, 0, b) ∈ Fn2 : b ∈ Im(π2)
⊥, c4 · b = 0}.

Recall that c4 ∈ Im(π2)
⊥, i.e., Λc(f) = Λ(g). Therefore f satisfies the required

properties.

Theorem 3.6. Let g : Fn2 7→ F2 be an s-plateaued function. Put f = g + sc2,
c ∈ Fn2 . Then the following are possible.

(i) g is s-partially bent and f is s-partially c-bent4;

(ii) g is s-partially bent and f is (s− 1)-partially c-bent4;

(iii) g is s-plateaued but not partially bent and f is c-s-plateaued, but not
partially c-bent4;

(iv) g is s-plateaued but not partially bent and f is c-(s − 1)-plateaued, but
not partially c-bent4;

(v) g is s-plateaued but not partially bent and f is (s− 1)-partially c-bent4;

(vi) g is s-plateaued but not partially bent and f is not plateaued with respect
to T cf .

Proof. Parts (i) and (ii) follow from Corollary 2.4. Part (iii) is a consequence of
Proposition 3.3. By using Equation 3.3, we observe that the sum g of functions
g1 and g2, satisfying the properties of (ii) and (iii), respectively, satisfies the
condition (iv). Part (v) can be obtained from Proposition 3.5, and (vi) follows
by [1, Proposition 6.3].

Remark 3.7. A characterization of plateaued functions via the Walsh trans-
form is given in [8]. Let f : Vn 7→ F2 be a function, k be a positive integer,

Sk(f) =
∑
u∈Vn

|Wf (u)|2k and Tk(f) = Sk+1(f)/Sk(f).

Then f is plateaued if and only if Tk+1(f) = Tk(f). In particular, f is plateaued
if and only if T2(f) = T1(f). Since the proof relies on Parseval’s identity,
an analog statement is true for every function H from Vn to C satisfying∑

u∈Vn |H|
2 = 22n, hence for the transforms T cf .
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4 Partially c-bent4 functions

In this section we give some characterizations of partially c-bent4 functions.

Definition 4.1. Let f : Vn 7→ F2 and c ∈ Vn. We define the sets D
(c)
f and

Z
(c)
f as

D
(c)
f = {a ∈ Vn | Dca(f) is balanced} ,

and

Z
(c)
f = {u ∈ Vn | T cf (u) = 0} .

We denote the cardinalities of the sets D
(c)
f and Z

(c)
f by N

D
(c)
f

and N
Z

(c)
f

, re-

spectively.

In [4], the author shows that for c = 0, and for any f : Vn 7→ F2 the
inequality (

2n −N
D

(0)
f

)(
2n −N

Z
(0)
f

)
≥ 2n (4.1)

holds. We now generalize this inequality for any nonzero c ∈ Vn, and show
that the equality holds if and only if f is partially c-bent4. Note that in [4],
partially bent functions have been defined as functions for which the equality
in (4.1) holds for c = 0.

Proposition 4.2. Let f : Vn 7→ F2, c ∈ Vn, and the integers N
D

(c)
f

and N
Z

(c)
f

be defined as above. Then we have(
2n −N

D
(c)
f

)(
2n −N

Z
(c)
f

)
≥ 2n .

The equality holds if and only if f is partially c-bent4.

Proof. For simplicity we give the proof in univariate case. First we show that

2n(2n −N
D

(c)
f

) ≥ supu∈F2n
|Vcf (u)|2 . (4.2)

For |Vcf (u)|2 we have

|Vcf (u)|2 =
∑

x,y∈F2n

(−1)f(x)+f(y)+σ
c(x)+σc(y)+Trn(u(x+y))iTrn(cx)−Trn(cy)

=
∑

x,z∈F2n

(−1)f(x)+f(x+z)+σ
c(x)+σc(x+z)+Trn(uz)iTrn(cx)−Trn(cx+cz).

13



Recalling that

Trn(x) + Trn(z) ≡ Trn(x+ z) + 2Trn(x)Trn(z) mod 4 ,

by the property of σc in Lemma 2.1 we obtain

|Vcf (u)|2 =
∑
z∈F2n

(−1)σ
c(z)+Trn(uz)i−Trn(cz)

∑
x∈F2n

(−1)f(x+z)+f(z)+Trn(c2xz) . (4.3)

For z ∈ D(c)
f the inner sum vanishes, and for z ∈ F2n \ D(c)

f the inner sum is
at most 2n. Hence we have 2n(2n − N

D
(c)
f

) ≥ |Vcf (u)|2 for any u ∈ F2n , which

proves (4.2).
As can be observed easily , (2n−N

Z
(c)
f

)supu∈F2n
|Vcf (u)|2 ≥

∑
u∈F2n

|Vcf (u)|2.
By Parseval’s identity (1.9), we obtain

2n −N
Z

(c)
f
≥ 22n

supu∈F2n
|Vcf (u)|2

. (4.4)

Combining equations (4.2) and (4.4) yields the claimed inequality.
It remains to show that the Equality in (4.1) holds if and only if f is

partially c-bent4. First observe that for a partially c-bent4 function f with
dim(Λc(f)) = s we have 2n − N

D
(c)
f

= |Λc(f)| = 2s, and |Vcf (u)|2 ∈ {0, 2n+s},
hence by Parseval’s identity, 2n −N

Z
(c)
f

= 2n−s. Consequently, Equation (4.1)

holds. Conversely suppose that the equality holds in (4.1), and hence the
equality in (4.4) holds, i.e.,

supu∈F2n
|Vcf (u)|2

(
2n −N

Z
(c)
f

)
= 22n =

∑
v 6∈Z(c)

f

|Vcf (v)|2 . (4.5)

Note that we used Parseval’s identity in the second equality. Equation (4.5)
holds if and only if

|Vcf (v)| = supu∈F2n
|Vcf (u)|

for all v ∈ F2n \ Z(c)
f . This implies that |Vcf (v)| ∈ {0, 2(n+s)/2} and hence by

Equation (4.5), we have 2n − N
Z

(c)
f

= 2n−s for some non-negative integer s.

Supposing equality in (4.1), this yields that 2n−N
D

(c)
f

= 2s. For an element v
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in the support of Vcf (v), Equation (4.3) can be written as

|Vcf (u)|2 =
∑
z∈F2n

(−1)σ
c(z)+Trn(uz)i−Trn(cz)

∑
x∈F2n

(−1)f(x+z)+f(z)+Trn(c2xz)

=
∑

z∈F2n\D
(c)
f

(−1)σ
c(z)+Trn(uz)i−Trn(cz)

∑
x∈F2n

(−1)f(x+z)+f(z)+Trn(c2xz) = 2n+s.

Note that in the second equality we used the fact that the inner sum is 0 if
and only if z ∈ D(c)

f . Since |F2n \D(c)
f | = 2n −N

D
(c)
f

= 2s we must have

|
∑
x∈F2n

(−1)f(x+z)+f(z)+Trn(c2xz)| = 2n

for all z ∈ F2n \D(c)
f . This applies if and only if f(x + z) + f(z) + Trn(c2xz)

is constant for all z ∈ F2n \ D(c)
f , hence Λc(f) = F2n \ D(c)

f , which gives the
desired result.

The following corollary generalizes characterization of partially bent func-
tions given in [4] to arbitrary partially c-bent4 functions.

Corollary 4.3. Let f : Vn 7→ F2 be a function and c ∈ Vn. Then the following
are equivalent.

(i) f is partially c-bent4.

(ii) f is c-s-plateaued for some integer s ≥ 0, where dim(Λc(f)) = s.

(iii) Using the notation in Proposition 4.2 we have(
2n −N

D
(c)
f

)(
2n −N

Z
(c)
f

)
= 2n .

(iv) For any complement Λcomp of Λc(f) in Vn the function f restricted to
Λcomp is c-bent4 (Corollary 3 in [3]).

5 Relative Difference Sets

Recall that a (µ, ν, k, λ)-relative difference set in a group G of order µν relative
to a subgroup B of G of order ν, is a k-elementary subset R of G such that
every element in G \ B can be written as r1 − r2, r1, r2 ∈ R, in exactly λ

15



ways, and there is no such representation for any nonzero element in B. The
subgroup B is then called the forbidden subgroup. If G = A × B, then R is
called a splitting relative difference set. As is well known, a Boolean function
f : Vn 7→ F2 is bent if and only if its graph is a splitting relative difference set
in Vn×F2, see for instance [14]. We have a similar combinatorial interpretation
of negabent functions and more generally of c-bent4 functions, c 6= 0. Consider
the operation ∗c on Vn × F2, c ∈ Vn \ {0}, given by

(x1, y1) ∗c (x2, y2) = (x1 + x2, y1 + y2 + 〈c2, x1x2〉) when Vn = F2n

and

(x1, y1) ?c (x2, y2) = (x1 + x2, y1 + y2 + 〈c, x1 � x2〉) when Vn = Fn2 .

Then Vn × F2 under ∗c forms a group isomorphic to Fn−12 × Z4. A function
f : Vn 7→ F2 is c-bent4 if and only if its graph {(x, f(x)) : x ∈ Vn} is a
relative difference set in (Vn × F2, ∗c) relative to {0} × F2. We refer to [2] for
the details, and remark that these relative difference sets are not splitting.

In [6] it has been observed that partially bent functions f : Vn 7→ F2 induce
a certain generalization of a relative difference set in Vn × F2, which is called
a partially bent relative difference set. More generally, partially bent functions
have been characterized as functions f from a group H into a group N for
which the graph R = {(x, f(x)) : x ∈ H} has the following properties, see [6,
Proposition 2.8]. The group G = H × N contains a subgroup B of the form
B = A×N such that

(1) g ∈ G \B can be represented as r1 − r2, for r1, r2 ∈ R in exactly λ ways
for some λ > 0;

(2) g ∈ B \ A has no representation of the form r1 − r2, for r1, r2 ∈ R;

(3) g ∈ A can be represented as r1 − r2, for r1, r2 ∈ R in exactly |R| = k
ways.

If A = {0} then R reduces to a conventional splitting relative difference set,
which corresponds to a bent function from H to N , see [11].

In the following, we point out that partially c-bent4 functions likewise in-
duce generalizations of such relative difference sets in Zn−12 ×Z4 that come from
c-bent4 functions. We define the generalization of (not necessarily splitting)
relative difference sets in a more general framework, and first discuss some of
its properties.
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Let G be an abelian group of order mnl and A ⊂ B be subgroups of G of
orders |A| = l, |B| = nl. We call a k-subset R of G a pre-relative difference
set relative to B \A with parameters (m,n, l, k, λ), if the conditions (1),(2),(3)
above hold.

Theorem 5.1. Let R be an (m,n, l, k, λ) pre-relative difference set in G rela-
tive to B \ A, and let Ḡ = G/A and B̄ = B/A. Then we have the following.

(i) R is the union of cosets of A, at most one of which lies in B. In partic-
ular, if |R| = k = vl, then (v2 − v)l = λ(mn− n).

(ii) Let R̄ be the subset of Ḡ consisting of the cosets of A that lie in R. Then
R̄ is an (m,n, v, λ/l)-relative difference set in Ḡ relative to B̄.

Proof. (i) Let r ∈ R. We need to show that r + a ∈ R for all a ∈ A. Since
any element a of A can be written as a difference r1 − r2, where r1, r2 ∈ R in
k ways, for any fixed r ∈ R, there exists a unique r̃ ∈ R such that a = r̃ − r.
Hence r + a = r̃ ∈ R. Suppose that the distinct cosets r1 + A, r2 + A are in
B ∩R. Then r1 − r2 = b ∈ B but b 6∈ A, which is a contradiction. If |R| = vl,
then |R|2 = λ|G \B|+ |R||A| implies the claimed equation.

(ii) First we show that any element b̄ ∈ B̄ can not be written as a difference
of elements in R̄. Suppose that b̄ = r̄1 − r̄2 ∈ B̄ \ {0} for some r̄1, r̄2 ∈ R̄.
Then b = r1 − r2 + a for some a ∈ A, b ∈ B \ A and r1, r2 ∈ R. Since a can
be written as a difference of elements of R in k ways, for r2 ∈ R, there exists
r ∈ R such that a = r2− r. Consequently, b = r1− r, which is a contradiction.

It remains to show that every element ḡ ∈ Ḡ \ B̄ can be written as a
difference of elements in R̄ in exactly λ/|A| = λ/l ways. (In particular, this
shows that λ is divisible by |A| = l.) The element ḡ can be represented as
g ∈ G \ B in exactly |A| = l ways. Also we know that each g ∈ G \ B can be
written as a difference of elements in R in exactly λ ways. Therefore, elements
in the coset g+A can be expressed as a difference r1− r2, r1, r2 ∈ R in exactly
λl ways. Since l2 differences r1 − r2 give the same ḡ ∈ Ḡ, we conclude that ḡ
can be represented in exactly λ/l ways, which gives the desired result.

Corollary 5.2. Let f : F2n 7→ F2 be an s-partially c-bent4 function. Then
the graph R = {(x, f(x)) | x ∈ F2n} is a (2n−s, 2, 2s, 2n, 2n−1)-pre-relative
difference set in G = (F2n × F2, ∗c).

Proof. We assume without loss of generality that f(0) = 0 and define

A := {(a, f(a)) | a ∈ Λc(f)} and B := {(a, y) | a ∈ Λc(f), y ∈ F2} .
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It is clear that B is a subgroup of G, so we first show that A is a subgroup of
G. For (a, f(a)), (b, f(b)) ∈ A, we have

(a, f(a)) ∗c (b, f(b)) = (a+ b, f(a) + f(b) + Trn(c2ab)) .

Since f(x + a) + f(x) + f(a) + Trn(c2ax) = 0 for all x ∈ F2n , we have f(a) +
f(b) + Trn(c2ab) = f(a+ b), which gives the desired result.

To investigate the difference properties of R we first observe that the inverse
of (x, f(x)) ∈ G is (x, f(x))−1 = (x, f(x) + Trn(cx)), hence for (x, f(x)), (x +
a, f(x+ a)) ∈ R we have

(x+ a, f(x+ a)) ∗c (x, f(x))−1 = (a, f(x+ a) + f(x) + Trn(c2xa)) .

Let g := (a, b) ∈ G. If a 6∈ Λc(f), i.e., (a, b) ∈ G \ B, then Dc
a(f) = f(x +

a) + f(x) + Trn(c2xa) is balanced. Consequently every element g ∈ G \ B
can be represented as difference in R in exactly 2n−1 ways. If a ∈ Λc(f), i.e.,
(a, b) ∈ B, then Dc

a(f) = f(x+a)+f(x)+Trn(c2xa) = f(a) is constant. Hence
if b = f(a), i.e., (a, b) ∈ A, then (a, b) has 2n representations as a difference
of elements in R, and all elements (a, f(a) + 1) of B \ A do not have such a
representation.

It can be verified easily that when f(0) = 1, then A and B \ A (which in
this case is a subgroup) switch roles.

Remark 5.3. Since we have Trn(ca) = 0 for a ∈ Λc(f), every element g ∈ B
has order 2, i.e., the subgroups A,B are elementary abelian 2-groups. In
particular, A ' Zs2 and B ' Zs+1

2 .
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teria for Boolean functions. IEEE Trans. Inform. Theory 59 (2013), no.
5, 3233–3236.

[8] S. Mesnager, Characterizations of plateaued and bent functions in char-
acteristic p. Sequences and their applications–SETA 2014, 72–82, Lecture
Notes in Comput. Sci., 8865, Springer, Cham, 2014.

[9] M.G. Parker, A. Pott, On Boolean functions which are bent and negabent.
Sequences, subsequences, and consequences, 9–23, Lecture Notes in Com-
put. Sci., 4893, Springer, Berlin, 2007.

[10] A. Pott, Almost perfect and planar functions. Des. Codes Cryptogr., vol.
78 (2016), 141–195.

[11] A. Pott, Nonlinear functions in abelian groups and relative difference sets.
Discrete Applied Mathematics 138 (2004), 177–193.

[12] K.U. Schmidt, Y. Zhou, Planar functions over fields of characteristic two.
J. Algebraic Combin. 40 (2014), no. 2, 503–526.

[13] W. Su, A. Pott, X. Tang, Characterization of negabent functions and
construction of bent-negabent functions with maximum algebraic degree.
IEEE Trans. Inform. Theory 59 (2013), 3387–3395.

19



[14] Y. Tan, A. Pott, T. Feng, Strongly regular graphs associated with ternary
bent functions. J. Combin. Theory Ser. A 117 (2010), no. 6, 668–682.

[15] Y. Zhou, (2n, 2n, 2n, 1)-relative difference sets and their representations.
J. Combin. Des. 21 (2013), no. 12, 563–584.

[16] Y. Zhou, Difference Sets from Projective Planes. PhD-Thesis, OvGU
Magdeburg (2013).

[17] Y. Zheng, X-M. Zhang, On plateaued functions, IEEE Trans. Inform.
Theory 47 (2001), no. 3, 1215–1223.

20


