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Abstract

We consider vectorial maps

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) : Fn
q 7→ Fn

q ,

which induce permutations of Fn
q . We show that the degrees of the com-

ponents f1, f2, . . . , fn ∈ Fq[x1, . . . , xn] are at least 2 when 2 ≤ deg(F ) =
d <

√
q and d|(q − 1). Our proof uses an absolutely irreducible curve

over Fq and the number of rational points on it that we relate to the
cardinality of the value set of a polynomial.

1 Introduction

Let q be a power of a prime p and Fq be the finite field with q elements. For an
integer n ≥ 2, the ring of polynomials in n indeterminates over Fq is denoted
by Fq[x1, . . . , xn]. It is well-kown that any map from Fn

q to Fq can be uniquely
represented as f ∈ Fq[x1, . . . , xn] such that degxj

(f) < q for all j = 1, . . . , n,
where degxj

(f) is the degree of f ∈ Fq[x1, . . . , xn], when it is considered as
a polynomial over Fq[x1, . . . , xj−1, xj+1 . . . , xn], see [3]. The degree of f =∑
ai1,...,inx

i1
1 · · ·xinn is defined as deg(f) = max{i1 + · · ·+ in , ai1,...,in 6= 0}.
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An element f ∈ Fq[x1, . . . , xn] is a permutation polynomial in n variables
if the equation f(x1, . . . , xn) = a has qn−1 solutions in Fn

q for each a ∈ Fq. A
classification of permutation polynomials in Fq[x1, . . . , xn] of degree at most
two is given in [6].

A polynomial f ∈ Fq[x1, . . . , xn] is called a local permutation polynomial if
for each i, 1 ≤ i ≤ n, the polynomial f(a1, . . . ai−1, xi, ai+1, . . . , an) is a per-
mutation polynomial in xi, for all choices of a1, . . . ai−1, ai+1, . . . , an ∈ Fq. The
author of [4] and [5] gives necessary and sufficient conditions for polynomials
in two or three variables to be local permutation polynomials over prime fields.
Relevence of local permutation polynomials for the study of Latin squares or
cubes are also described in [4] and [5]. Furthermore, it is shown in [1] that the
degree of a local permutation polynomial in Fq[x1, x2] is at most 2q − 4, and
that this bound is sharp.

Any map F : Fn
q 7→ Fn

q can be represented by

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)), (1.1)

where fi ∈ Fq[x1, . . . , xn] with degxj
(fi) < q for all i, j = 1, . . . , n, see [3,

Lemma 7.40]. The degree of F is defined as deg(F ) = max
1≤i≤n

{deg(fi)}. A map

F : Fn
q 7→ Fn

q is called a vectorial permutation if it induces a permutation on
Fn
q . In what follows, we consider the class F of vectorial permutations F as in

(1.1) with degxj
(fi) < q for all i, j = 1, . . . , n.

We consider a natural extension of the concept of local permutation poly-
nomials to maps F : Fn

q 7→ Fn
q . We define

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

to be a vectorial local permutation if all polynomials fi(x1, . . . , xn), 1 ≤ i ≤ n,
are local permutations. We denote this class of maps by FL.

Here we focus on the degrees of components of maps in F . It turns out
that the vectorial permutations, which are not vectorial local permutations
yield a subclass of maps F = (f1, . . . , fn) ∈ F (with additional properties),
that satisfy deg(fi) ≥ 2 for 1 ≤ i ≤ n. This note is organized as follows. In
Section 2, we give preliminary results on maps in F . The main results are
presented in Section 3. In particular, given a map F = (f1, . . . , fn) ∈ F \ FL,
the conditions are obtained for fi to be of degree ≥ 2 for 1 ≤ i ≤ n.

2 Preliminaries

We start by pointing out the well-known connection between vectorial permu-
tations and orthogonal systems of equations.
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Lemma 2.1. A map F = (f1, . . . , fn) : Fn
q 7→ Fn

q is in F if and only if for any
1 ≤ m ≤ n and a1, . . . , am ∈ Fq, the system of equations

fi1(x1, . . . , xn) = a1 , . . . , fim(x1, . . . , xn) = am (2.1)

has exactly qn−m solution with i1 < . . . < im.

Lemma 2.1 is a direct consequence of Theorem 2 in [7].

Lemma 2.2. Let F = (f1, . . . , fn) be as in (1.1), with deg(F ) ≥ 1. Then
there exist i, j ∈ {1, . . . , n} and α1, . . . , αj−1, αj+1, . . . , αn ∈ Fq such that the
polynomial fi(α1, . . . , αj−1, xj, αj+1, . . . , αn) is not constant in the variable xj.

Proof. For the proof we need to show the following. Suppose f(x1, . . . , xn) ∈
Fq[x1, . . . , xn] is of degree ≥ 0. Then there exists (α1, . . . , αn) ∈ Fn

q such that
f(α1, . . . , αn) 6= 0. We use induction on n. The argument holds for n = 1 since
f in this case is a polynomial of degree d < q. Suppose the argument holds for
all 1 ≤ k < n. We can assume without loss of generality that degx1

(f) = d > 0.
That is, we can write f as

f = xd1fd + · · ·+ x1f1 + f0

for some fi ∈ Fq[x2, . . . , xn] with fd 6= 0. By the induction hypothesis there ex-
ists (α2, . . . , αn) ∈ Fn−1

q such that fd(α2, . . . , αn) 6= 0. Hence, f(x, α2, . . . , αn)
is a polynomial of degree d < q and there exists α1 ∈ Fq with f(α1, α2, . . . , αn) 6=
0.

We recall that two vectorial maps F1(x1, . . . , xn) and F2(x1, . . . , xn) are
said to be equivalent if

F2(x1, . . . , xn) = L2 (F1 (L1(x1, . . . , xn) + (c1, . . . , cn))) + (d1, . . . , dn)

for nonsingular linear transformations L1, L2 : Fn
q 7→ Fn

q and (c1, . . . , cn),
(d1, . . . , dn) ∈ Fn

q . In other words, F1 and F2 are equivalent, if one can be
transformed to the other by non-singular transformations and shifts. Obvi-
ously equivalent maps have the same permutation behaviour.

In what follows we sometimes use equivalent maps in F interchangeably. In
particular, we assume without loss of generality that i = j = 1 in Lemma 2.2,
i.e., we deduce that if F = (f1, . . . , fn) ∈ F has positive degree, then g(x) :=
f1(x, α2, . . . , αn) is a polynomial of degree d > 0 for some α2, . . . , αn ∈ Fq.
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Lemma 2.3. Let F = (f1, . . . , fn) ∈ F and suppose that g(x) = f1(x, α2, . . . , αn)
has degree d > 0 for some (α2, . . . , αn) ∈ Fn−1

q . If g(x) is not a permutation of
Fq, then there exits j ∈ {2, . . . , n} such that fj(x, α2, . . . , αn) is not a constant
polynomial.

Proof. Suppose that fj(x, α2, . . . , αn) = aj for aj ∈ Fq, j = 2, . . . , n. The
system

f2(x1, . . . , xn) = a2 , . . . , fn(x1, . . . , xn) = an

has q solutions by Lemma 2.1, namely the solution set is S = {(x, α2, . . . , αn) |x ∈
Fq}. Then for any y ∈ Fq, the system

f1(x1, . . . , xn) = y , f2(x1, . . . , xn) = a2 , . . . , fn(x1, . . . , xn) = an

has a unique solution in the set S. This implies that f1(x, α2, . . . , αn) is a
permutation, which contradicts our assumption.

We also need the following lemma in Section 3.

Lemma 2.4. Let g be a separable polynomial over Fq of degree d < q. Then
there exists c ∈ Fq such that gcd(g(x) + c, g′(x)) = 1.

Proof. The fact that g is a separable polynomial implies that g′(x) 6= 0. Now
we prove that g(x) + c and g′(x) have no common root in the algebraic closure
F̄q of Fq for some c ∈ Fq. Note that g′(x) is a polynomial of degree t ≤
d − 1. Let β1, . . . , βt be the roots of g′(x) in F̄q. Let c1, . . . , ct be elements
of F̄q such that g(x) + ci has a zero at βi for i = 1, . . . , t. Then we have
Fq \ {c1, . . . , ct} 6= ∅, and hence g(x) + c and g′(x) have no common root for
any element c ∈ Fq \ {c1, . . . , ct}.

3 Main Results

In this section we investigate the component polynomials f1, . . . , fn of F =
(f1, . . . , fn) ∈ F with deg(F ) ≥ 2. As above, we take g(x) = f1(x, α2, . . . , αn)
of deg(g) > 0, and relate g to some fi(x, α2, . . . , αn), 2 ≤ i ≤ n, via an affine
equation, which defines an absolutely irreducible curve over Fq. By using the
cardinality of the value set of a polynomial, and the number of rational points
of the curve, we obtain sufficient conditions for f2, . . . , fn to be non-linear.
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Let F be a function field over Fq of genus g(F ). One calls Fq the full
constant field of F if Fq is algebraically closed in F . In this case, the well-
known Hasse–Weil bound states that the number N(F ) of rational places of
F satisfies

q + 1− 2g(F )
√
q ≤ N(F ) ≤ q + 1 + 2g(F )

√
q , (3.1)

see [9, Theorem 5.2.3]. When F is a rational function field, say F = Fq(z) for
some z ∈ F , we denote the places of Fq(z) corresponding to zero and the pole
of z − α by (z = α) and (z = ∞). Now we consider a function field F as a
compositum of rational function fields over a rational function field to obtain
a bound on its genus as follows.

Lemma 3.1. Let g, h be separable polynomials in Fq[T ] with positive degrees
d1 and d2. Let F = Fq(x, y) be the function field defined by the equation
g(x) = 1/h(y). If gcd(g(T ), g′(T )) = 1, then F is a function field with the full
constant field Fq of genus g(F ) ≤ (d1 − 1)(d2 − 1).

Proof. Let Fq(z) be a rational function field. We consider the rational function
field extensions Fq(x)/Fq(z) and Fq(y)/Fq(z) defined by the equations z = g(x)
and z = 1/h(y), respectively. Then F is the compositum of Fq(x) and Fq(y),
see Figure 1. Note that Fq(x)/Fq(z) is an extension of degree d1 and the place
(z = ∞) is totally ramified in Fq(x). Also, Fq(y)/Fq(z) is an extension of
degree d2 and (z = 0) is totally ramified in Fq(y). In other words, the place
(x = ∞) of Fq(x) (resp. (y = ∞) of Fq(y)) is the unique place lying over
(z =∞) (resp. (z = 0)). Since (z =∞) and (z = 0) are totally ramified, the
function fields Fq(x) and Fq(y) are defined over Fq. Moreover, the assumption
gcd(g(T ), g′(T )) = 1 implies that (z = 0) is unramified in Fq(x)/Fq(z). Hence,
by Abhyankar’s Lemma (see [9, Theorem 3.9.1]), any place of Fq(x) lying over
(z = 0) is totally ramified. This proves that the full constant field of F is Fq.
Moreover, by Castelnuovo’s Inequality (see [9, Theorem 3.11.3]), the genus
g(F ) of F satisfies

g(F ) ≤ (d1 − 1)(d2 − 1) .

Corollary 3.2. Let g, h be separable polynomials in Fq[T ] with positive de-
grees d1 and d2. If gcd(g(T ), g′(T )) = 1, then the polynomial p(X, Y ) =
g(X)h(Y ) − 1 ∈ Fq[X, Y ] is absolutely irreducible over Fq. Therefore, the
zero set of p(X, Y ) defines an absolutely irreducible curve over Fq.
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F = Fq(x, y)

Fq(x) Fq(y)

Fq(z)

z=g(x) z=1/h(y)

Figure 1: Compositum of rational function fields

Lemma 3.3. Let X be the projective curve over Fq defined by the affine equa-
tion p(X, Y ) = g(X)h(Y )− 1, where g, h are polynomials over Fq given as in
Lemma 3.1. Then the number N of affine rational points of X satisfies

q − (d1 + d2 − 1)− 2(d1 − 1)(d2 − 1)

(
√
q +

d1 + d2
2

)
≤ N .

Proof. By Lemma 3.1, we see that F = Fq(x, y) with g(x) = 1/h(y) is the
function field of X with the full constant field Fq. Then the fact that g(F ) ≤
(d1 − 1)(d2 − 1) together with Equation (3.1) implies that the number N(F )
of rational places of F satisfies

q + 1− 2(d1 − 1)(d2 − 1)
√
q ≤ N(F ) ≤ q + 1 + 2(d1 − 1)(d2 − 1)

√
q . (3.2)

It is a well-known fact that each non-singular rational point of X corresponds
to a unique rational place of F , see [2, 8]. Next we find the rational points at
infinity, and obtain an approximation to the number of singular rational points.
This enables us to approximate the number of rational places corresponding
to them.

We first consider the points of X at infinity, i.e., the ones (X : Y : 0) for
which P (X : Y : 0) = 0, where P (X : Y : Z) = Zd1+d2(g(X/Z)h(Y/Z) − 1).
Since P (X : Y : 0) = Xd1Y d2 , there are only two points at infinity, namely
Q1 = (1 : 0 : 0) and Q2 = (0 : 1 : 0), which are rational. The number
of places corresponding to Q1 and Q2 are determined by the factorization of
the homogeneous polynomials Zd2h(Y/Z) and Zd1g(X/Z), respectively. Hence
there exist at most d2 and d1 rational places corresponding to points Q1 and
Q2, respectively.

An affine point (X, Y ) ∈ F2

q is a singular point of X if and only if the
following equality holds.

g′(X)h(Y ) = h′(Y )g(X) = h(Y )g(X)− 1 = 0 .
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Note that we have P (X, Y ) = −1 for any X, Y ∈ Fq with g(X) = 0 or
h(Y ) = 0. This shows that if (X, Y ) is a singular point of X then g′(X) = 0
and h′(Y ) = 0. Therefore, there are at most d1 − 1 choices for X and d2 − 1
choices for Y . In particular, X can have at most (d1 − 1)(d2 − 1) singular
affine rational points. Since X is a degree d1 + d2 curve, there exist at most
(d1−1)(d2−1)(d1 +d2) rational places corresponding to these singular points.
Therefore, we conclude that there exist at least

N(F )− (d1 + d2)− (d1 − 1)(d2 − 1)(d1 + d2) (3.3)

rational places corresponding to the rational affine points. Then equations
(3.2) and (3.3) give the desired result.

Theorem 3.4. Let F = (f1, . . . , fn) ∈ F and deg(F ) ≥ 2. Suppose F is
not a vectorial local permutation, so that there exist α2, . . . , αn ∈ Fq where
g(x) = f1(x, α2, . . . , αn) is not a permutation. If we have 0 < deg(g) <

√
q,

then deg(fi) ≥ 2 for any i = 2, . . . , n unless fi(x, α2, . . . , αn) is constant.

Proof. We set d1 = deg(g). By Lemma 2.3, there exists i, 2 ≤ i ≤ n, such that
deg(fi(x, α2, . . . , αn)) = d2 > 0. Set h(x) = fi(x, α2, . . . , αn). We assume with-
out loss of generality that g, h are separable polynomials. Otherwise, we can
replace g, h by other separable polynomials g̃, h̃ over Fq, where g(x) = g̃(x)p

n

and h(x) = h̃(x)p
m

for some integers n,m ≥ 0. Note that since g(x) is not a
permutation polynomial, the degrees of g and g̃ are at least 2. We suppose that
g has no root in Fq. We also suppose by Lemma 2.4 that gcd(g(T ), g′(T )) = 1.

We denote the value set of g by Vg, i.e., Vg = {u = g(a) | a ∈ Fq}. In [10],
Wan gives bounds for the cardinality of Vg;

q − 1

d1
+ 1 ≤ #Vg ≤ q − q − 1

d1
. (3.4)

Let S ⊂ F2
q be the set consisting of elements (x, y) such that (g(x), h(y)) =

(t, 1/t) for t ∈ F∗q. Then by Equation (3.4) we conclude that

#S ≤
(
q − q − 1

d1

)
d2 . (3.5)

Hence any affine point (x, y) of X defined by the equation p(X, Y ) = g(X)h(Y )−
1 corresponds to a solution of the system

g(x) = t and h(y) = 1/t
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for some t ∈ Fq. Therefore by Lemma 3.3 and Equation (3.5) we conclude that

q − (d1 + d2 − 1)− 2(d1 − 1)(d2 − 1)

(
√
q +

d1 + d2
2

)
≤
(
q − q − 1

d1

)
d2 .

This shows that if d2 = 1, then we have d21 ≥ q− 1, which contradicts the fact
that d1 <

√
q.

Example 3.5. (i) Let F1 : F2
26 7→ F2

26 be the map defined by (x, y) 7→
(f1(x, y), f2(x, y)) where f1(x, y) = x2(y3+ζ)+ζy2 and f2(x, y) = x2(y3+
ζ) + y5 + ζy2, where ζ is a primitive element of F26 . It is straightforward
to show that F1(x, y) = L2 ◦F2 ◦L1(x, y), where F2 : F2

26 7→ F2
26 is defined

by F2(x, y) = (x5, (x3 + ζ)y2) and L1, L2 are linear permutations of F2
26 ,

defined by L1(x, y) = (y, x + y), L2(x, y) = (x + y, y). Note that F2 is
a vectorial permutation since the system x5 = a, (x3 + ζ)y2 = b has a
unique solution for all (a, b) ∈ F2

26 . This follows from gcd(5, 63) = 1 so
that x5 permutes F26 , and the polynomial T 3 + ζ not having a root in
F26 . By Hermite’s criterion, for α ∈ F∗26 the polynomial α2(T 3 + ζ)+ ζT 2

is not a permutation of F26 . Hence Theorem 3.4 applies, and indeed
deg f2(α, y) = 5.

(ii) Let F2 : F2
26 7→ F2

26 be the map defined by (x, y) 7→ (f1(x, y), f2(x, y))
where f1(x, y) = y5 + x2y3 and f2(x, y) = yx4 + x3. For α ∈ F∗26 , the
polynomial T 5 + α2T 3 has two distinct roots in F26 , namely T = 0 and
T = α. That is, f1(α, y) is not a permutation of F26 . Since deg f2(α, y) =
1, by Theorem 3.4 we conclude that F2 is not a vectorial permutation.

Theorem 3.6. Let F = (f1, . . . , fn) ∈ F . If 1 < deg(F ) = d <
√
q and

d|q − 1, then deg(fi) ≥ 2 for any i = 1, . . . , n.

Proof. We assume without loss of generality that deg(f1) = d. We first show
that f1 is equivalent to a polynomial of the form f = cxd1 + h, where h ∈
Fq[x1, . . . , xn] and c ∈ F∗q. Put

f1(x1, . . . , xn) = x
e11
1 · · · xe

1
n
n + · · ·+ x

ek1
1 · · ·xe

k
n
n + g(x1, . . . , xn) ,

where
∑n

i=1 e
j
i = d for all j = 1, . . . , k and g ∈ Fq[x1, . . . , xn] of degree at

most d − 1. Consider the change of variable xi 7→ xi + cix1 for some ci ∈ Fq,
i = 2, . . . , n. Then we obtain

f(x1, . . . , xn) = xd1(c
e12
2 · · · ce

1
n
n + · · ·+ c

ek2
2 · · · ce

k
n
n ) + h(x1, . . . , xn) (3.6)
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for some h ∈ Fq[x1, . . . , xn]. By the argument in the proof of Lemma 2.2, there

exist c2, . . . , cn ∈ Fq such that c
e12
2 · · · c

e1n
n + · · · + c

ek2
2 · · · c

ekn
n 6= 0, which proves

our claim. Note that degx1
(h) < d. As a result, for any α2, . . . , αn ∈ Fq, the

polynomial g(x) = f1(x, α2, . . . , αn) is of degree d, and hence by Hermite’s
criterion [3, Theorem 7.4], it is not a permutation polynomial. Then Theorem
3.4 shows that any other component fi has to be non-linear.

Remark 3.7. One can immediately obtain from the proof of Theorem 3.6 that
if F = (f1, . . . , fn) ∈ F , deg(F ) = d > 1 and d|q− 1, then F is not a vectorial
local permutation.

Remark 3.8. In fact, one can prove a more general result in a similar way.
Let F = (f1, . . . , fn) ∈ F and deg(F ) ≥ 2. Suppose that there exist j,
i1, . . . , ik ∈ {1, . . . , n} such that

degxi1
fj(x1, . . . , xn) + · · ·+ degxik

fj(x1, . . . , xn) = d

where q > d2 and d|q − 1. Then fi cannot be a linear polynomial for any
i = 1, . . . , n.
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