
On Belyi’s Theorems in positive characteristic

Nurdagül ANBAR
Johannes Kepler University, Altenberger St. 69, 4040, Linz, Austria

nurdagulanbar2@gmail.com

Seher TUTDERE
Department of Mathematics, Gebze Technical University, Gebze, Kocaeli, Turkey

stutdere@gmail.com

Abstract
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1 Introduction

Let X be a connected, smooth, projective curve defined over the field of algebraic numbers
Q̄. The main theorem of Belyi states that there exists a morphism f from X to the
projective line P1 such that the branch points of f lie in the set {0, 1,∞}. The morphism
f satisfying this property is called a Belyi map for X . Belyi gave two elementary proofs
for his theorem, see [1, 2]. In fact, the converse of the statement also holds, and was
known before Belyi’s result [13]. In other words, X is a curve defined over Q̄ if and only
if there exists a morphism f : X 7→ P1 whose branch points of f lie in the set {0, 1,∞}.
However, the connection with different areas of mathematics, such as the arithmetic and
modularity of elliptic curves, ABC conjecture and moduli spaces of pointed curves, makes
Belyi’s statement more interesting, for details see the excellent paper [5] and references
therein.

In this paper we investigate Belyi’s Theorem in positive characteristic p. We denote by
Fq the finite field with q elements, where q is a power of a prime p, and by F̄p the algebraic
closure of Fq. The dichotomy of wild and tame ramification in positive characteristic leads
to two types of Belyi’s Theorem as follows:

Theorem 1 (Wild p-Belyi Theorem). Let X be a connected, smooth, projective curve
defined over Fq. Then there exists a morphism φ : X → P1 admitting at most one branch
point.

Theorem 2 (Tame p-Belyi Theorem). Let X be a connected, smooth, projective curve
defined over F̄p. Then there exists a tamely ramified morphism φ : X → P1 admitting at
most three branch points.
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To the best of our knowledge, a first proof of Theorem 2 for odd characteristic is given in
[12]. Moreover, in [5], the proofs of Theorem 1 for any positive characteristic and Theorem
2 for odd characteristic are given by using the results of [9,14] and [4], respectively. The
conjecture of the Tame p-Belyi Theorem for even characteristic has been recently proved
in [8].

It is a well-known fact that the theory of algebraic curves and the theory of algebraic
function fields are equivalent [6,10]. As a consequence of this equivalence, we here discuss
Belyi’s theorems in positive characteristic in the language of function fields. In fact, this
significantly simplifies the proof of the Tame 2-Belyi Theorem given in [8].

The paper is organized as follows. In Section 2 we fix notations and give some basic
facts regarding function fields. In Section 3 we give a self-contained proof for the Wild
p-Belyi Theorem. In Section 4 we discuss the Tame p-Belyi Theorem. In particular, for
p > 2 we give the Tame p-Belyi Theorem by using the result [4] and give a self contained
proof of the Tame 2-Belyi Theorem.

2 Preliminaries

For the notations and well-known facts, as a general reference, we refer to [7, 11]. Let F
be a function field over F, where F = Fq or F = F̄p, and let F ′/F be a finite separable
extension of function fields. We write P ′|P for a place P ′ of F ′ lying over a place P of F ,
and denote by e(P ′|P ) the ramification index of P ′|P . Recall that when the ramification
index e(P ′|P ) > 1, it is said that P ′|P is ramified. Moreover, if the characteristic p does
not divide e(P ′|P ) it is called tamely ramified; otherwise it is called wildly ramified. We
call F ′/F a tame extension if there is no wild ramification. For a rational function field
F(y) and α ∈ F, we denote by (y = α) and (y =∞) the places corresponding to the zero
and the pole of y − α, respectively.

We can state Belyi’s theorems given in Theorems 1 and 2 in the language of function
fields as follows:

Theorem 3 (Wild p-Belyi Theorem). Let F be a function field over Fq. Then there
exists a rational subfield Fq(y) of F such that there exists at most one ramified place of
Fq(y), namely (y =∞), in F/Fq(y).

Theorem 4 (Tame p-Belyi Theorem). Let F be a function field over F̄p. Then there exists
a rational subfield F̄p(y) of F such that F/F̄p(y) is a tame extension, and there exist at
most three ramified places of F̄p(y) in F/F̄p(y) lying in the set {(y = 0), (y = 1), (y =∞)}.

For the convenience of reader, we now fix some notations. We denote by

PF the set of all places of F/F,

[F ′ : F ] the extension degree of F ′/F ,

f(P ′|P ) the relative degree of P ′|P ,

d(P ′|P ) the different exponent of P ′|P ,

vP the valuation of F associated to the place P ,
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(z)∞ (resp. (z)0) the pole divisor (resp. the zero divisor) of a nonzero element
z ∈ F ,

L(A) the Riemann-Roch space associated to a divisor A,

`(A) the F-dimension of L(A),

supp(A) the support of A, i.e., the set of places P ∈ PF for which vP (A) 6=
0.

Dedekind’s Different Theorem [11, Theorem 3.5.1] states that d(P ′|P ) ≥ e(P ′|P )− 1,
and the equality holds if and only if P ′|P is tame. Furthermore, P ′|P is ramified if
and only if d(P ′|P ) > 0. By the Fundamental Equality [11, Theorem 3.1.11], we have∑
e(P ′|P )f(P ′|P ) = [F ′ : F ], where P ′ ranges over the places of F ′ lying over P .
The Strong Approximation Theorem [11, Theorem 1.6.5] is one of the main tool for

the Tame 2-Belyi Theorem, and hence we state it for the sake of the reader.

Lemma 1. Let S ⊂ PF be a proper subset, and P1, . . . Pr ∈ S. For given x1, . . . xr ∈ F
and n1, . . . , nr ∈ Z, there exists x ∈ F such that

vPi
(x− xi) = ni for i = 1, . . . r, and vP (x) ≥ 0 for all P ∈ S \ {P1, . . . Pr} .

Corollary 1. Let D =
∑
niPi, ni ≥ 0, be a positive divisor. Then the Strong Approxi-

mation Theorem implies the existence of x ∈ F with D ≤ (x)0 and (x)∞ = nP for some
place P 6∈ supp(D) and n ∈ N.

In fact, we obtain a stronger conclusion by using the Riemann-Roch Theorem [11,
Theorem 1.5.15].

Lemma 2. Let D =
∑
niPi, ni ≥ 0, a divisor of degree d. Then for any n ≥ 2g + d

there exists x ∈ F with D ≤ (x)0 and (x)∞ = nP for some place P 6∈ supp(D).

Proof. Consider the Riemann-Roch spaces L(nP − D) and L((n − 1)P − D). Since
n ≥ 2g + d, by the Riemann-Roch Theorem we have `(nP − D) > `((n − 1)P − D).
Therefore, there exists x ∈ L(nP − D) \ L((n − 1)P − D), which is an element with
desired properties.

2.1 Ramification in the rational function field extensions

Let Fq(x)/Fq(t) be the rational function field extension given by the equation t = g(x)
h(x)

for

some relatively prime polynomials g(T ), h(T ) ∈ Fq[T ] such that not both g, h lie in Fq[T p].
Without loss of generality, we assume that deg(g) > deg(h); otherwise we consider the
extension Fq(x)/Fq(1/(t+α)) for some proper α ∈ Fq. Let P be a place of Fq(x) of degree
r, which is not the pole of x or a zero of h(x). Consider the constant field extensions
Fq(t)Fqr ⊆ Fq(x)Fqr , see Figure 1. We have [Fq(x)Fqr : Fq(x)] = [Fq(t)Fqr : Fq(t)] = r

and the extension Fq(x)Fqr/Fq(t)Fqr is defined by the same equation t = g(x)
h(x)

. Note

that any place P ′ ∈ PFq(x)Fqr
lying over P is of degree one, i.e., P ′ = (x = α) for some

α ∈ Fqr . We set Q′ := P ′ ∩ Fq(t)Fqr and Q := P ′ ∩ Fq(t). Then Q′ = (t = β), where
β = g(α)/h(α). Since there is no ramification in a constant field extension [11, Theorem
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3.6.3], by the transitivity of ramification indices, we have e(P |Q) = e(P ′|Q′). Write
g(T ) − βh(T ) = (T − α)mr(T ) for some positive integer m and r ∈ F[T ] such that
r(α) 6= 0. We then have

e(P ′|Q′) = vP ′(t− β) = vP ′(g(x)− βh(x)) = m . (2.1)

In particular, Equation (2.1) implies that P |Q is ramified if and only if g(T ) − βh(T )
has multiple roots. Note that any zero of h(x) is a pole of t. Let h(T ) =

∏
pi(T )epi be

the factorization of h(T ) in Fq[T ], where pi(T )’s are distinct irreducible polynomials and
epi ≥ 1. We denote by Pi the place of Fq(x) corresponding to pi(x). Then the conorm of
(t =∞) with respect to Fq(x)/Fq(t) is given by

ConFq(x)/Fq(t) ((t =∞)) = e((x =∞)|(t =∞))(x =∞) +
∑

e(Pi|(t =∞))Pi .

with

e((x =∞)|(t =∞)) = deg(g(T ))− deg(h(T )) and e(Pi|(t =∞)) = epi .

Fq(x)Fqr P ′

Fq(t)Fqr Fq(x) Q′ P

e(P ′|P )=1

Fq(t) Q

e(Q′|Q)=1

Figure 1: Constant field extensions of rational function fields

We finish this section with the following lemma, which is required for the proofs of
both p-Belyi theorems in the subsequent sections.

Lemma 3. Let Fq(x) be a rational function field, and let S = {P1, · · · , Pn} be a finite set
of places of Fq(x) with Pi 6∈ {(x = 0), (x =∞)} for all i = 1, · · · , n. Then there exists a
subfield Fq(t) of Fq(x) with the following properties:

(i) The extension Fq(x)/Fq(t) is tame,

(ii) Pi lies over (t = 0) for all i = 1, · · · , n, and

(iii) (t = 1) and (t =∞) are the only ramified places of Fq(t) in Fq(x)/Fq(t).

Proof. We denote by ri the degree of Pi for i = 1, · · · , n, and set r := lcm(r1, · · · , rn),
where lcm is the least common multiple. Consider the subfield Fq(t) of Fq(x) given by
the equation t = 1− xqr−1. Then Fq(x)/Fq(t) is an extension of degree qr − 1. Since r is
divisible by the degree of Pi, by above discussion on ramification in the rational function
fields extension, all the places Pi’s lie over (t = 0). Furthermore, (x = ∞) and (x = 0)
are the only places lying over (t =∞) and (t = 1), respectively, with ramification indices
e((x = ∞)|(t = ∞)) = e((x = 0)|(t = 1)) = qr − 1 (see Figure 2). As the polynomial
T q

r−1 + β has no multiple roots for any nonzero β ∈ F̄p, these is no other ramification.
In particular, Fq(x)/Fq(t) is a tame extension.
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Fq(x) P1 . . . . . . Pn (x =∞) (x = 0)

Fq(t) (t = 0)

e=1

e=1

(t =∞)

e=qr−1

(t = 1)

e=qr−1

Figure 2: Ramification structure in Fq(x)/Fq(t)

3 The Wild p-Belyi Theorem

In this section, we give a self-contained proof for the Wild p-Belyi Theorem for any
positive characteristic p.
Proof of Theorem 3. Let x ∈ F be a separating element. Then there exist finitely
many ramified places of Fq(x) in F/Fq(x). Assume that the ramified places lie in the set
S = {(x = 0), (x = ∞), P1, · · · , Pn} ⊂ PFq(x) for some n ≥ 1. By Lemma 3, we can find
an element t ∈ Fq(x) ⊆ F such that all the ramified places of F in F/Fq(t) lie over the
set {(t = 0), (t = 1), (t =∞)}.

We first consider the extension Fq(t)/Fq(u) given by the equation u = tp+1+1
t

. The
places (t = 0) and (t = ∞) lie over (u = ∞) with ramification indices e((t = 0)|(u =
∞)) = 1 and e((t = ∞)|(u = ∞)) = p (see Figure 3). Hence, by the Fundamental
Equality (t = 0) and (t = ∞) are the only places lying over (u = ∞). We have seen in
Subsection 2.1 that there is no other ramification in Fq(t)/Fq(u) if fβ(T ) = T p+1−βT +1
is a polynomial without multiple root for all β ∈ F̄p. Suppose that α is a multiple root
of fβ(T ) for some β ∈ F̄p. Then α is also a root of f ′β(T ) = T p− β, and hence α is a p-th
root of β. However, this means that fβ(α) = 1, which gives a contradiction. Moreover,
the place (t = 1) lies over (u = 2). (Note that this is (u = 0) in characteristic 2.)

Next, we consider the extension Fq(u)/Fq(y) given by the equation y = (u−2)p+1+1
u−2

.
Similarly, we can show that the places (u = ∞) and (u = 2) are all places lying over
(y = ∞), and the ramification occurs only at (y = ∞). Consequently, (y = ∞) is the
only ramified place in the extension F/Fq(y).

Fq(t)

u= tp+1+1
t

(t = 0) (t =∞) (t = 1)

Fq(u)

y=
(u−2)p+1+1

u−2

(u =∞)

e=1 e=p

(u = 2)

e=1

Fq(y) (y =∞)

e=1e=p

Figure 3: The Wild p-Belyi Theorem

2

Remark 1. We note that in the proof of Theorem 3 the ramified places in Fq(t)/Fq(u) and
Fq(u)/Fq(y) have ramification indices p, i.e., they are wild, see Figure 3. It follows from
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the Hurwitz Genus Formula [11, Theorem 3.4.13] that both ramification have different
exponents 2p.

4 The Tame p-Belyi Theorem

As mentioned in [5], a proof of Theorem 4 for p > 2 can be given as an application of the
following technical result of Fulton.

Proposition 1. [4, Proposition 8.1] If F is a function field with constant field F̄p with
p > 2, then there exists a rational subfield F̄p(x) of F such that e(Q|P ) = 2 or 1 for any
Q ∈ PF and P ∈ PF̄p(x) with Q|P .

Therefore, we first prove the existence of a tame rational subfield of a function field
F over F̄p for p = 2. We will then give a proof of Theorem 4.

4.1 The Tame 2-Belyi Theorem

Throughout this subsection, we assume that F is a function field over F = F̄2. An element
x ∈ F is called pseudo-tame at P ∈ PF if there exists z ∈ F such that x+ z4 is tame at
P . Moreover, we say x is a pseudo-tame element if x is pseudo-tame at P for all P ∈ PF .

Lemma 4. (i) x is pseudo-tame at P if and only if, for any non-vanishing term in the
Laurent series expansion of x with degree smaller than vP (dx) + 1, the degree is a
multiple of four.

(ii) x is pseudo-tame at P if and only if γ(x) is pseudo-tame at P for any γ ∈ Γ, where
Γ is the projective general linear group over F 4.

Proof. (i) The proof is straightforward by the definition of being pseudo-tame.

(ii) It is enough to observe that if x is pseudo-tame at P , then a4x + b4 and 1/x are
also pseudo-tame at P by (i).

For x, y ∈ H = F \F 2, we write x = x4
0 +x4

1y+x4
2y

2 +x4
3y

3 for some x0, x1, x2, x3 ∈ F
and define

a(x, y) =
(x2

1x
2
3 + x4

2)y

x4
3y

2 + x4
1

. (4.1)

The notion a(x, y) is introduced in [8]. We can summarize the required properties of
a(x, y) as follows.

Lemma 5. (i) For any x, y, t ∈ H

a(x, y) + a(y, t) + a(t, x) ≡ 0 mod F 2 . (4.2)

(ii) Let a(x, y) ≡ a mod F 2 and y be pseudo-tame at P . Then x is pseudo-tame at P
if and only if a is regular at P , i.e., there exits ã ∈ F with ã ≡ a mod F 2 and
vP (ã) ≥ 0.
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One of the main tools to show the existence of a pesudo-tame element is Tsen’s Theorem
stated as follows:
A function field F over F̄p is quasi-algebraically closed, i.e, any homogeneous polynomial
over F of n variables whose degree is less than n has a non-trivial solution.

Proposition 2. For any x, a ∈ H, there exists y ∈ H such that a(x, y) ≡ a mod F 2.

Proof. Since F = F 2⊕xF 2, there exists unique b ∈ F such that a ≡ b2x mod F 2. Write
y = y4

0 + y4
1x+ y4

2x
2 + y4

3x
3. Note that by Equation (4.2), a(x, y) ≡ a(y, x) mod F 2, and

hence

a(x, y) ≡ (y2
1y

2
3 + y4

2)x

y4
3x

2 + y4
1

≡ b2x mod F 2 . (4.3)

This holds if and only if b ≡ (y1y3 + y2
2)/(y2

3x+ y2
1) mod F 2. By Tsen’s Theorem, there

exists an element y ∈ F satisfying Equation (4.3).

We need the following two lemmata, which will be used in the proof of the existence
of a pseudo-tame element.

Lemma 6. Let x ∈ F and P,Q ∈ PF \ supp(x)∞. Then there exists z ∈ F such that z
has simple poles, vQ(x) ≥ k for some positive integer k, and x+ z2 is tame at P .

Proof. Let u ∈ F be a prime element at P , and x = a0 + a1u+ a2u
2 + · · · be the Laurent

series expansion of x. Let j be the integer such that aj is the first non-vanishing term in
the expansion. If j is odd, then it is enough to choose z has zero at P sufficiently large.
Otherwise, say j = 2n. Then for a divisor R = R1 + · · ·+Rt, where t is sufficiently large
and Ri’s are pairwise distinct and P,Q 6∈ supp(R), by the Riemann Roch Theorem there
exists z ∈ F such that

z ∈ L(R− kQ− nP ) \ L(R− kQ− (n− 1)P ) .

Then z has simple poles, sufficiently large zero at Q, and vP (z) = n. There exists α ∈ F
with vP (x + αz2) > 2n. Then inductively we obtain an element satisfying the desired
properties.

Lemma 7. Let R = R1+· · ·+Rt, and P1, . . . , Pn, Q ∈ PF \supp(R), where t is sufficiently
large and Ri’s are pairwise distinct. Then there exists y ∈ F such that (y)∞ = R,
Pi 6∈ supp(y)0, and vQ(y) ≥ k for some positive integer k.

Proof. By the Riemann Roch Theorem, there exist zj, xi such that

zj ∈ L(R− kQ) \ L(R− kQ−Rj) and xi ∈ L(R− kQ) \ L(R− kQ− Pi)

for all i = 1, . . . , t and j = 1, . . . n. Note that zj, xi have simple poles in the supp(R) with
vPi

(xi) = 0 and vRj
(zj) = −1. As F is algebraically closed, there exist αj, βi ∈ F such

that

y =
t∑

j=1

αjzj +
n∑
j=1

βixi

has the desired properties.

7



Proposition 3. Let F be a function field over F = F̄2. Then there exists a pseudo-tame
element x ∈ F .

Proof. We first show the existence of xi, ai ∈ F for i = 1, 2 such that xi is pseudo-tame,
ai is regular at P for all P ∈ Ui with PF = U1 ∪ U2 and a(x1, x2) ≡ a1 + a2 mod F 2.

Let x1 ∈ F such that (x1)∞ = (2n+1)Q for sufficiently large n and Q ∈ PF . Moreover,
we can suppose that x1 has simple zeros. Suppose P1, . . . , Pt are ramified places of F in
F/F(x1). Let z ∈ F such that

• vQ(z) ≥ 0,

• z has simple poles such that supp((x1)0) ∩ supp((z)∞) = ∅, and

• x2 = x1 + z2 is tame at P1, . . . , Pt.

Such an element exists by Lemma 6. We set U1 := PF \ {P1, . . . , Pt} and U2 :=
{P1, . . . , Pt}. Observe that

a = a(x1, x2) =

(
dz

dx1

)2

x1 .

As vQ(z) ≥ 0, we have vQ(a) ≥ 0. Also, it is easy to observe that vP (a) ≥ 0 for any
P ∈ PF \ {P1, . . . , Pt} ∪ supp((z)∞) since dx has zeros only at Pi for i = 1, . . . , t and dz
has only poles in supp((z)∞). Say supp((z)∞) = R1 + · · · + Rk, where Ri’s are pairwise
distinct places of F . As k is sufficiently large, by Lemma 7 there exits y ∈ L(R1+· · ·+Rk)
such that

• y has sufficiently large zero at Q,

• vRi
(y) = −1 for all i = 1, . . . , k,

• y has no zero at P1, . . . , Pt

Set u := 1
y
, then we can write

dz

dx
= α−2

1

u2
+ α−1

1

u
+ α0 + · · ·

Note that the Laurent series expansion of dx
du

and dz
du

with respect to u has only even
powers of u, and hence we have α−1 = 0. Then

vRi

(
dz

dx
+ α−2

1

u2

)
≥ 0 for all i = 1, . . . , k

and dz
dx

+ α−2
1
u2

has sufficiently large zero at Q. Set

a1 :=

(
dx

dz
+ α−2

1

u2

)2

x and a2 :=
α2
−2x

u4

so that a = a1 + a2. Then a1 is regular for all P ∈ PF \ {P1, . . . , Pt}. Furthermore, since
u has no pole at Pi, a2 is regular at Pi for all i = 1, . . . , k.
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The rest of the proof is similar to the one given in [8, Theorem 3.6], but we give it
here for the completeness. By Proposition 2, for any ai there exists yi ∈ F such that
a(xi, yi) ≡ ai mod F 2 for i = 1, 2. Then Equation (4.2) implies that a(y1, y2) ≡ 0
mod F 2. In particular, a(y1, y2) is regular at P for all P ∈ Uj. By Lemma 5/(ii), this
shows that yi is pseudo-tame at P for all P ∈ Uj and j = 1, 2. In other words, yi is
pseudo-tame at P for all P ∈ PF .

We fix a place Q ∈ PF , and set R =
⋃
n∈N
L(nQ), i.e., R is the set of all elements which

have poles only at Q.

Lemma 8. Let x ∈ R. If x is pseudo-tame at Q with −vQ(dx) ≥ 8g, then there exists
z ∈ R such that −vQ(x+ z4) = −vQ(dx)− 1.

Proof. We set 2e = −vQ(dx). Note that −vQ(x) ≥ −vQ(dx)− 1 and equality holds only
if x is tame at Q. Suppose that −vQ(x) > −vQ(dx)− 1 ≥ 8g− 1. Since x is pseudo-tame
at Q, vQ(x) = −4k for some integer k ≥ 2g. By Lemma 2, there exists z0 ∈ F with
(z0)∞ = kQ. Since F is algebraically closed, there exists α such that for x̃ = x+ αz4

0 we
have −vQ(x̃) < 4k = −vQ(x). Then the existence of z follows after finitely many steps.

Lemma 9. Let D =
∑
niPi, ni ≥ 0, be a divisor of degree d. Suppose that Q 6∈ supp(D)

and d > 2g. Then for a ∈ R there exists x ∈ R such that D ≤ (x + a)0 and (x)∞ = nQ
for some n < d+ 2g.

Proof. By the Strong Approximation Theorem, there exits x ∈ R such that D ≤ (x+a)0,
see Corollary 1. If n ≥ d+2g, then there exists z ∈ F such that D ≤ (z)0 and (z)∞ = nQ
by Lemma 2. There exists α ∈ F such that (x + αz)∞ = kQ with k < n. Note that for
x̃ = x+ αz ∈ R we have D ≤ (x̃+ a)0. Then the argument follows by induction.

Proposition 4. Let F be a function field over F = F̄2. Then there exists x ∈ F such
that F/F(x) is tame.

Proof. Let x0 be a pseudo-tame element. As F is the quotient field of R, we can write
x0 = z0/z1 for some z0, z1 ∈ R. Set y = x0z

4
1 = z3

1z0. Note that y ∈ R is pseudo-tame
by Lemma 4/(ii). We can assume that −vQ(dy) ≥ 8g; otherwise we can replace y by z4y
for some proper z ∈ R. By Lemma 8, we can assume that −vQ(dy) = −vQ(y)− 1 = 2e.
Moreover, we can suppose that y has simple zeros; otherwise replace y by y+α for some
proper α ∈ F. In other words, there exists a pseudo-tame element y ∈ R, which is tame
at Q and having simple zeros.

Let Z be the set of zeros of dy. Observe that y is pseudo-tame implies that y3 is
pseudo-tame. As dy has finitely many zeros, there exits z ∈ F such that y3 + z4 is tame
at P for all P ∈ Z. Moreover, by the Strong Approximation Theorem, we can assume
that z ∈ R, i.e., we can assume that y3 + z4 is a pseudo-tame element in R which is tame
at P for all P ∈ Z. Next, we set vP (dy) := 2mP , and define

D :=
∑
P∈Z

⌊
mP

2

⌋
Q.
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As deg(dy) = 2g − 2, we have∑
P∈Z

mP = e+ g − 1, i.e., deg(D) ≤ e+ g − 1

2
.

By Lemma 9, we can also assume that z ∈ R such that

(z)0 ≥ D and deg(z)0 = deg(z)∞ ≤ 2g +
e+ g − 1

2
.

We set x := y3 + h4. Note that by construction x ∈ R is pseudo-tame and tame at P for
all P ∈ Z. Moreover, the Strict Triangle Inequality implies that

vQ(x) = 3vP (Q) = −3(2e− 1), i.e., x is tame at Q.

For P ∈ PF \Z ∪{Q}, we see that vP (dx) = 2vQ(y) = 0 or 2 (as y has only simple zeros).
Note that x is unramified at P if and only if vP (dx) = 0. Since x is a pseudo-tame rational
function, any term in the Laurent series expansion smaller than vP (dx) is multiple of 4
by Lemma 4/(i). However, this implies that vP (dx) = 0, i.e., x is tame at P .

Proof of Theorem 4. We consider the subfield F̄p(x) of F given as in Propositions 1
and 4, i.e., F/F̄p(x) is tame. Since F/F̄p(x) is a finite separable extension, there exist
finitely many ramified places of F̄p(x) in F/F̄p(x). Suppose that all the ramified places
of F̄p(x) are contained in the set {(x = 0), (x = ∞), P1, · · · , Pn} for some n ≥ 1. Note
that any place of F̄p(x) is rational, i.e., Pi is a place corresponding to x − αi for some
nonzero αi ∈ F̄p. Let r be a positive integer such that αq

r−1
i − 1 = 0 for all i = 1, . . . , n.

Then Lemma 3 also holds for the extension F̄p(x)/F̄p(t) defined by t = 1−xqr−1. In other
words, all places P1, . . . , Pn lie over (t = 0). Moreover, (x = 0), (x = ∞) are the only
ramified places in F̄p(x)/F̄p(t), which are totally ramified lying over (t = 1), (t = ∞),
respectively. Then the proof follows from the fact that F̄p(x)/F̄p(t) is tame. 2

We note that the statement of the Tame p-Belyi Theorem strictly holds if the genus
of F is positive. More precisely, we see in Remark 2 that in Theorem 4 there must be at
least three (resp., two) ramified places if g(F ) > 0 (resp., g(F ) = 0). That is, the places
(y = 0), (y = 1), and (y = ∞) are all ramified in the Tame p-Belyi Theorem when g(F )
is positive.

Remark 2. Let F be a function field over F̄p. Suppose that there exists a rational
subfield F̄p(y) of F such that F/F̄p(y) is tame of degree n. Let Q1, . . . , Qk be all ramified
places of F̄p(y) in F/F̄p(y). We denote by NQi

the number of places of F lying over Qi

for i = 1, . . . , k. Then by Dedekind’s Different Theorem the degree of the ramification
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divisor of F/F̄p(y) is given as follows.

deg
(
Diff(F/F̄p(y))

)
=

k∑
i=1

∑
P∈PF ,P |Qi

(e(P |Qi)− 1)

=
k∑
i=1

∑
P∈PF ,P |Qi

e(P |Qi)−
k∑
i=1

NQi

= kn−
k∑
i=1

NQi
(4.4)

Note that we use the Fundamental Equality in the last equality. By the Hurwitz genus
formula, we also have

deg
(
Diff(F/F̄p(y))

)
= 2n+ 2g(F )− 2 . (4.5)

Equation (4.4) and (4.5) implies that k ≥ 2. The case k = 2 holds only if g(F ) = 0 and
the places Q1, Q2 are totally ramified.

Remark 3. Since ramification does not change under the constant field extension, we
conclude from Remark 2 that there must be a wild ramification in Theorem 3 as noticed
in Remark 1. Hence, it is called the Wild p-Belyi Theorem.
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