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On the discrepancy of
two-dimensional perturbed Halton–Kronecker sequences

and lacunary trigonometric products

by

Roswitha Hofer and Florian Puchhammer (Linz)

1. Introduction and statement of the results. We investigate dis-
tribution properties of perturbed Halton–Kronecker sequences, i.e. two-di-
mensional hybrid sequences (zk(n))k≥0 of the form

zk(n) = (xk(n), {kα}),
where ({kα})k≥0 denotes the Kronecker sequence with (irrational) param-
eter α and where (xk(n))k≥0 is a perturbed Halton sequence in base 2. The
latter is a special instance of a digital sequence in the sense of Niederreiter
[21] and is constructed as follows.

For the construction of a more general sequence (xk)k≥0 we fix an infinite
matrix C over {0, 1}, called the generating matrix, as the identity whose first
row is perturbed by a sequence c = (c0, c1, c2, . . .) in {0, 1}. More precisely,

(1.1) C =


c0 c1 c2 · · ·
0 1 0 · · ·

0 0 1
. . .

...
...

. . .
. . .

 .

Furthermore, for each non-negative integer k we assemble the dyadic digits of
its binary expansion k0+k12+k22

2+ · · · into the vector (k0, k1, k2, . . .) =: k
and compute (y0, y1, y2, . . .) = C ·k> modulo 2. Subsequently, we define the
kth element of our digital sequence (xk)k≥0 as

xk =
y0
2

+
y1
22

+
y2
23

+ · · · .
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Taking the perturbing sequence in the special form

(1.2) c = (10 . . . 0︸ ︷︷ ︸
n

10 . . . 0︸ ︷︷ ︸
n

. . .)

with period length n yields the sought sequence (xk(n))k≥0.
We intend to use perturbed Halton–Kronecker sequences to approximate

uniform distribution on the unit square [0, 1)2. The star discrepancy serves
as a quality measure for how evenly such a sequence is distributed. For the
first N elements of a sequence S = (s0, s1, . . .) in [0, 1)2 it is defined as

D∗N (S) = sup
x=(x1,x2)∈(0,1]2

1

N
|AN (S, [0,x))−Nλ([0,x))|,

where λ([0,x)) denotes the two-dimensional Lebesgue measure of the box
[0,x) = [0, x1)× [0, x2) and where

AN (S, [0,x)) = #
(
{sn : 0 ≤ n < N} ∩ [0,x)

)
counts the number of elements of the initial segment of S of size N which
lie in [0,x). If it is clear from the context which sequence we consider, we
may omit the respective argument. Certainly, this notion can be extended
to unanchored boxes and higher dimensions as well. For an extensive survey
on D∗N and the sequences involved we refer to the books [4, 20,22].

Before we present the main results of this paper we require some no-
tation. In what follows we write A(N) �X B(N) if |A(N)| ≤ cX |B(N)|
for all N large enough, and A(N) �X B(N) if |A(N)| ≥ cX |B(N)| for
infinitely many N ∈ N; here cX > 0 is a constant exclusively depending on
the collection of parameters indicated by X.

First of all, we consider perturbed Halton–Kronecker sequences in the
case where α has bounded continued fraction coefficients.

Theorem 1.1. Let n ∈ N and let α ∈ (0, 1) have bounded continued
fraction coefficients. Then the star discrepancy of the first N elements of
the sequence (zk(n))k≥0 satisfies

ND∗N (zk(n))�n N
a(n)+ε

for all ε > 0, where

(1.3) a(n) = log2n cot

(
π

2(2n + 1)

)
.

On the other hand, we can show that this bound is essentially sharp by
utilizing a special β, as introduced by Shallit [30], which has both bounded
continued fraction coefficients and an explicitly known dyadic expansion.

Theorem 1.2. Let n ∈ N and let α = 2n

2(2n+1) + β with β =
∑

k≥0 4−2
k
.

Then
ND∗N (zk(n))� Na(n)−ε

for all ε > 0, where a(n) is given by (1.3).
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As a matter of fact, Theorem 1.1 holds for a larger class of α, i.e., for α
of some finite type σ ≥ 1. Details on σ can be found in Remark 4.1 after the
proof of the theorem. The primary interest, however, lies in α’s with bounded
continued fraction coefficients, since the Kronecker component satisfies an
optimal discrepancy bound in this case.

Remark 1.3. In the limit case n =∞, i.e. the case where C is the iden-
tity, (xk(n))k≥0 becomes the pure Halton sequence. The Halton–Kronecker
sequence (zk(∞))k≥0 was originally studied by Niederreiter [23], and recently
by the first author together with Larcher and Drmota [5], who obtained

ND∗N (zk(∞))�α N
1/2 logN �ε N

1/2+ε

for every α ∈ (0, 1) with bounded continued fraction coefficients and all

ε > 0 (see also [26]). Furthermore, for α =
∑

k≥0 4−2
k

we have

ND∗N (zk(∞))� N1/2.

The lower bound of Theorem 1.2 is in close connection to one-dimensional
subsequences of the pure Kronecker sequence, i.e., ({mkα})k≥0. It is easily
seen that evil Kronecker sequences, which were studied by the first author
together with Aistleitner and Larcher [1] and are denoted by ({ekα})k≥0,
are directly linked to (zk(1))k≥0. Several techniques of our proof reach back
to that paper. Here, the sequence of evil numbers (ek)k≥0 is the increasing
sequence of non-negative integers whose sum of dyadic digits is even. Sim-
ilarly, it turns out in the proof of Theorem 1.2 that the sequence (mk)k≥0
related to (zk(n))k≥0 is the increasing sequence of non-negative integers with
an even sum of digits in base 2n, i.e.,

(1.4) mk = µ0 + 2µ1 + 22µ2 + · · · ,
µi ∈ {0, 1}, with µ0 + µn + µ2n + · · · ≡ 0 (mod 2).

Concerning the sharp exponent a(n) in Theorems 1.1 and 1.2 above some
remarks are in order. Prior to this paper, two results for specific n are known
to the authors, namely n = 1 (see [1]) and n =∞ (see Remark 1.3). In the
first case an exponent of log4 3 ≈ 0.79 . . . is obtained. Apparently, this co-
incides with a(1). Hence, the current paper can be seen as an extension
of [1]. In the second case, i.e. n =∞, Remark 1.3 states an exponent of 1/2.
Hence, naturally one would expect a(n) to decrease from log4 3 to 1/2. Sur-
prisingly, the opposite is the case: a(n) increases with n. This means that if
the density of 1’s in the first row of our generating matrix C decreases, the
best possible bound for the star discrepancy of the hybrid sequence grows.
Figure 1 shows a plot of a(n) for 1 ≤ n ≤ 50.

It is not hard to check that

lim
n→∞

a(n) = 1.



368 R. Hofer and F. Puchhammer

10 20 30 40 50
n

0.80

0.85

0.90

0.95

1.00
a(n)

n

a(n)
1.00

0.95

0.90

0.85

0.80

10 20 30 40 50

Fig. 1. Plot of the exponent a(n) for 1 ≤ n ≤ 50

Hence, our discrepancy estimate in Theorem 1.1 approaches the trivial
bound D∗N ≤ 1 for huge n. However, here we can refer to the result men-
tioned in Remark 1.3 implying that the exponent of N experiences a sudden
drop by approximately 1/2 in the unperturbed case n =∞.

More generally, for the star discrepancy of two-dimensional sequences it
is known that

D∗N (S)� N−1(logN)1+η, η = 1/(32 + 4
√

41)− ε,
for all ε > 0 and all sequences S. The existence of η > 0 is due to a break-
through by Bilyk and Lacey [3] in 2008, and it was recently quantified by
the second author [28]. Furthermore, examples of sequences are known which
satisfy essentially the same upper bound, but with (logN)2.

Individually, the perturbed Halton sequence as well as the Kronecker
sequence are subject to the optimal bound in dimension one, i.e. D∗N �
N−1 logN , if c0 = 1 in the perturbing sequence (c0, c1, c2, . . .) and if, e.g.,
α has bounded continued fraction coefficients, respectively. Apparently, their
interplay reveals a more ambivalent behavior. For more details on the indi-
vidual sequences and further well established examples and their discrepancy
the reader is referred to the monographs [4, 6, 18].

From a metric point of view the situation concerning the distribution of
perturbed Halton–Kronecker sequences seems to change completely.

Theorem 1.4. Let n ∈ N. There exist real numbers λ1(n) and λ2(n)
with

(1.5)
0 ≤ 1 + log2n λ1(n) ≤ 1 + log2n λ2(n) and lim

n→∞
(1 + log2n λ2(n)) = 0,
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such that for Lebesgue almost all α ∈ (0, 1) and all ε > 0 we have

ND∗N (zk(n))�n,α,ε N
1+log2n λ2(n)+ε, ND∗N (zk(n))� N1+log2n λ1(n)−ε.

Furthermore, upper and lower bounds of the exponents in the estimates from
above and below, respectively, for small values of n are given in Table 1.

Table 1. Approximations of the exponents from Theorem 1.4

n 1 2 3 4 5

1 + log2n λ1(n) 0.40337 0.37489 0.34961 0.32651 0.30450

1 + log2n λ2(n) 0.40348 0.37516 0.34962 0.32672 0.30599

Remark 1.5. Numerical experiments lead us to the conjecture that the
exponents are decreasing in n. Moreover, in the limit case n =∞ we know
from [19] that for almost all α and all ε, δ > 0,

1� ND∗N (zk(∞))�α,δ (logN)2+δ �ε N
ε,

in accordance to the behavior of λ2(n). That is, in the case where the den-
sity of 1’s is extremely sparse, (1.5) implicitly shows the optimality of the
exponents.

The above theorems strongly rely on estimates of lacunary trigonometric
products of the form

(1.6) Πr,γ(α) =

r−1∏
j=0

∣∣∣∣cos

(
2jαπ +

γjπ

2

)∣∣∣∣,
where γ = (γ0, γ1, γ2, . . .) ∈ {0, 1}N0 , α ∈ (0, 1) and r ∈ N. Here, the term
lacunary refers to the exponential growth of the argument of the cosine
function. Since these are interesting subjects in their own right, we present
them in the separate Section 3. As a matter of fact, the quantities λ1(n)
and λ2(n) occurring in Theorem 1.4 stem from the following metric result.

Proposition 1.6. Let n ∈ N. Then

(1.7)

1�

0

ΠnL,c(α) dα ≤ (µ(n))L

for every L ∈ N, with

µ(n) =
1

4n

2n−1∑
k=0

∣∣∣∣cos

(
(1 + 2k)π

2n+1

)∣∣∣∣−1.
Furthermore, there are positive real numbers λ1(n) and λ2(n) such that for
every ε > 0,
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(1.8) (2L)log2 λ1(n)−ε ≤
1�

0

ΠnL,c(α) dα ≤ (2L)log2 λ2(n)+ε

for L > L0(n, ε).

The structure of the paper is as follows: In Section 2 we derive a more
general version of the upper bound for the star discrepancy of the sequence
(zk(n))k≥0 than the one stated in Theorem 1.1, which draws the aforemen-
tioned connection to the diophantine approximation type of α (i.e., the
number σ) and also to the product (1.6). Moreover, we provide some lower
discrepancy bounds for the sequence ({mkα})k≥0 and include further auxil-
iary results which are relevant for the final proofs of our theorems. Section 3
provides general bounds for the lacunary product (1.6) with γ = c as well
as a proof of Proposition 1.6. In a similar fashion, these already appeared
in [1, 7, 8]. Finally, we give the proofs of our main theorems in Section 4.

Remark 1.7. In principle, hybrid sequences are built by juxtaposing
pure sequences with higher-dimensional sequences, and are the subject of
various recent papers [10–14, 16, 17]. Prior to these, hybrid sequences that
are built by combining low-discrepancy sequences and (pseudo-)random se-
quences were suggested by Spanier [31] to overcome the curse of dimension-
ality in quasi-Monte Carlo methods. For results on such hybrid sequences
see for example [24,25,27].

Remark 1.8. A famous and well studied combination of two types of
pure low-discrepancy sequences are the Halton–Kronecker sequences (see,
for instance, [5, 15, 19, 23, 26]). Combinations of different low-discrepancy
sequences are interesting objects as they are candidates for new classes of
low-discrepancy sequences and since they often lead to intriguing number-
theoretical problems. The study of Halton–Kronecker sequences, for exam-
ple, gives rise to the question of a p-adic analog of the Thue–Siegel–Roth
theorem which was established by Ridout [29] and, for instance, to the need
of real numbers α that have bounded continued fraction coefficients on the
one hand, and an explicitly specifiable binary representation on the other
(examples of such numbers were discovered by Shallit [30]). Contrary to the
Halton–Kronecker sequences, Niederreiter–Kronecker sequences appear to
be objects which are particularly hard to study. Qualitative results on their
discrepancy can be found in [12]. The results obtained in the present paper
reveal quantitative information of such sequences.

2. General upper and lower discrepancy bounds for perturbed
Halton–Kronecker sequences and further auxiliary results. Let us
denote by ‖t‖, t ∈ R, the distance of t to the nearest integer, i.e. ‖t‖ :=
min{{t}, 1− {t}}. Furthermore, we abbreviate e(t) := e2πit.
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We begin this section with one of the core estimates for the star discrep-
ancy of (zk(n))k≥0 which essentially separates the influence of the sequence
c from diophantine properties of α via the product (1.6) and a term contain-
ing expressions of the form ‖2`hα‖. Higher-dimensional analogs over Z/pZ
with p prime of the proposition below are known to the authors and are
only a little more technical to derive. But as we do not want to divert the
reader’s attention from the core issues, we do not state this result in its full
generality.

Proposition 2.1. Let n ∈ N. For every irrational α ∈ (0, 1) and for c as
given in (1.2) the star discrepancy of the first N ≥ 2 elements of (zk(n))k≥0
satisfies

(2.1) ND∗N (zk(n))� N

K
+
N

H
logN + log2N

+

blog2Kc∑
`=1

bH/2`c∑
h=1

1

h

[
1

‖2`hα‖
+

blog2Nc−`∑
r=0

2rΠr,c(`)(2
`hα)

]
for all positive integers H,K ≤ N , where c(`) denotes the shifted sequence
(c`, c`+1, . . .) and where Πr,c(`) is defined in (1.6).

Proof. This will immediately follow from Lemmas 2.2 and 2.3 below.

In what follows we denote by sc(j)(k) the weighted sum of digits of k =
k0 + 2k1 + 2k2 + · · · in base 2 with weight sequence c shifted by j ≥ 1, i.e.

sc(j)(k) = k0cj + k1cj+1 + k2cj+2 + · · · .
Notice that this is in fact a finite sum, as the dyadic expansion of every
integer k is finite.

Lemma 2.2. Under the assumptions of Proposition 2.1 we have

(2.2) ND∗N (zk(n))� N

K
+
N

H
logN + log2N

+

blog2Kc∑
`=1

bH/2`c∑
h=1

1

h

[
1

‖2`hα‖
+

∣∣∣∣bN/2
`c−1∑

k=0

e

(
2`hαk +

sc(`)(k)

2

)∣∣∣∣].
Proof. Consider a fixed anchored rectangle J = [0, β)× [0, γ) with β 6= 1

in the unit square. Furthermore, consider the dyadic expansion of β,

β = 2−1β1 + 2−2β2 + · · ·
with βi 6= 1 infinitely often. Choose K ≤ N and abbreviate κ := blog2Kc.
Set Σk(β) :=

∑k
j=1 βj2

−j and define the intervals B and Jβ(`), 1 ≤ ` ≤ κ,
for β` = 1 by

Jβ(`) := [Σ`−1(β), Σ`(β)), B := [Σκ(β), Σκ(β) + 2−κ).
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In this notation we easily obtain

|AN (J)−Nλ(J)| ≤
κ∑
`=1
β`=1

|AN (Jβ(`)× [0, γ))−Nλ(Jβ(`)× [0, γ))|(2.3)

+ max{AN (B × [0, 1)), Nλ(B × [0, 1))}.
Note that B is a dyadic interval with volume 1/2κ; hence, since C is non-
singular, we have

AN (B × [0, 1)) ≤ N/2κ + 1 = Nλ(B × [0, 1)) + 1.

Consequently,

(2.4) max{AN (B × [0, 1)), Nλ(B × [0, 1))} ≤ N/2κ + 1� N/K.

To study the first sum on the right-hand side of (2.3), consider a fixed
` ≤ κ such that β` = 1. Let σ0 + 2σ1 + · · · be the dyadic expansion of a
non-negative integer σ. By the construction of our sequence it is easy to see
that x2σ+ρ ∈ Jβ(`), ρ ∈ {0, 1}, iff

sc(1)(σ) = σ0c1 + σ1c2 + σ2c3 + · · · ≡ β1 − ρ (mod 2),

σi = βi+2 for all 0 ≤ i ≤ `− 3,

σ`−2 = 0,

while the digits σ`−1, σ`, σ`+1, . . . remain arbitrary.
The above set of conditions is equivalent to

sc(1)(σ) ≡ β1 − ρ (mod 2), σ ≡ Rβ,` (mod 2`−1),

where 0 ≤ Rβ,` < 2`−1 denotes a certain integer. This, in turn, holds iff

σ ≡ Rβ,` (mod 2`−1), sc(`)(bσ/2
`−1c) ≡ β1 − ρ− sc(1)(Rβ,`) (mod 2).

It is evident that for any integer v we have sc(`)(v) ≡ a (mod 2) iff

(2.5) Σ`,a(v) :=
1

2

∑
z∈{0,1}

e

(
z

2
(sc(`)(v)− a)

)
= 1,

and Σ`,a(v) = 0 otherwise. Therefore, we may rewrite the above as

(2.6) x2σ+ρ ∈ Jβ(`) ⇔

{
σ ≡ Rβ,` (mod 2`−1),

Σ`,β1−ρ−sc(1) (Rβ,`)
(bσ/2`−1c) = 1.

For ` and ρ as above we introduce the increasing sequence (σ
(`,ρ)
k )k≥0 com-

posed of all the integers solving (2.6). This is an infinite sequence, since
infinitely many elements of the sequence c are different from 0. Further-

more, we define S(`,ρ)(N) = k0 + 1, where 2σ
(`,ρ)
k0

+ ρ < N ≤ 2σ
(`,ρ)
k0+1 + ρ.

Since C is non-singular, we have

(2.7) bN/2`c ≤ S(`,0)(N) + S(`,1)(N) ≤ bN/2`c+ 1.
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Let us now continue (2.3). Due to the above discussion we obtain

|AN (Jβ(`)× [0, γ))−Nλ(Jβ(`)× [0, γ))|

≤ 1 +
∑

ρ∈{0,1}

S(`,ρ)(N)D∗
S(`,ρ)(N)

({(2σ(`,ρ)k + ρ)α}).

Together with (2.4) this yields

(2.8) |AN (J)−Nλ(J)|

� N

K
+ logK +

κ∑
`=1
β`=1

∑
ρ∈{0,1}

S(`,ρ)(N)D∗
S(`,ρ)(N)

({(2σ(`,ρ)k + ρ)α}).

For each positive integer ` ≤ κ with β` = 1, applying the Erdős–Turán
inequality with H ≤ N , we deduce for ρ ∈ {0, 1} that

(2.9) S(`,ρ)(N)D∗
S(`,ρ)(N)

({(2σ(`,ρ)k + ρ)α})

� S(`,ρ)(N)

bH/2`c
+

bH/2`c∑
h=1

1

h

∣∣∣S(`,ρ)(N)−1∑
k=0

e(2σ
(`,ρ)
k hα)

∣∣∣.
In view of (2.7), we clearly have

(2.10)
κ∑
`=1
β`=1

∑
ρ∈{0,1}

S(`,ρ)(N)

bH/2`c
� N

H
logK.

On the other hand, bearing in mind that

#{k : 0 ≤ k < N, k ≡ ρ+ 2Rβ,` (mod 2`)} = bN/2`c − θβ,`,ρ
for some θβ,`,ρ ∈ {0, 1}, we further obtain

∣∣∣ S(`,ρ)(N)−1∑
k=0

e(2σ
(`,ρ)
k hα)

∣∣∣
(2.11)

�
∣∣∣bN/2`c−θβ,`,ρ∑

k=0

Σ`,β1−ρ−sc(1) (Rβ,`)
(k)e

(
(2`k + 2Rβ,` + ρ)hα

)∣∣∣
=
∣∣∣bN/2`c−θβ,`,ρ∑

k=0

Σ`,β1−ρ−sc(1) (Rβ,`)
(k)e(2`khα)

∣∣∣,
where we have used (2.6) with k taking the role of bσ/2`−1c and with
Σ`,β1−ρ−sc(1) (Rβ,`)

(k) eliminating the undesired instances. Next, we dispose

of the dependence on ρ by observing that
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(2.12)
∣∣∣ bN/2`c−θβ,`,ρ∑

k=0

Σ`,β1−ρ−sc(1) (Rβ,`)
(k)e(2`khα)

∣∣∣
≤ 1 +

∣∣∣bN/2`c−1∑
k=0

Σ`,β1−ρ−sc(1) (Rβ,`)
(k)e(2`khα)

∣∣∣
≤ 1 +

1

2

∑
z∈{0,1}

∣∣∣∣bN/2
`c−1∑

k=0

e

(
2`khα+ sc(`)(k)

z

2

)∣∣∣∣
using (2.5) and noting that β1 − ρ− sc(1)(Rβ,`) is an integer. For z = 0 the
inner sum is a geometric sum bounded by ‖2`hα‖−1. The inequality (2.2)
now follows by combining this last observation with (2.8)–(2.12).

Lemma 2.3. Under the assumptions of Proposition 2.1 we have

(2.13)
∣∣∣ bN/2`c−1∑

k=0

e
(
2`khα+ sc(`)(k)/2

)∣∣∣ ≤ blog2Nc−`∑
r=0

2rΠr,c(`)(2
`hα).

Proof. We shall prove that if f : N0 → R is a 2-additive function, i.e.

f(v0 + 2v1 + 22v2 + · · · ) = f(v0) + f(2v1) + f(22v2) + · · · , vi ∈ {0, 1},
then ∣∣∣ V−1∑

v=0

e(f(v))
∣∣∣ ≤ blog2 V c∑

r=0

r−1∏
j=0

|1 + e(f(2j))|(2.14)

=

blog2 V c∑
r=0

2r
r−1∏
j=0

|cos(πf(2j))|

for all V ∈ N. It is then easy to check that the function

f(v) = 2`vhα+ sc(`)(v)/2

is 2-additive, and (2.13) follows immediately from (2.14).

To prove (2.14), expand V = V0+2V1+ · · ·+2blog2 V cVblog2 V c, Vr ∈ {0, 1}
for all 0 ≤ r ≤ blog2 V c. Since f is 2-additive, we can estimate the sum on
the left-hand side as follows:∣∣∣ V−1∑

v=0

e(f(v))
∣∣∣ ≤ blog2 V c∑

r=0
Vr=1

∣∣∣ 2r−1∑
k=0

e
(
f(k) +

blog2 V c∑
j=r

f(2jVj)
)∣∣∣

≤
blog2 V c∑
r=0

∣∣∣ 2r−1∑
k=0

e(f(k))
∣∣∣ =

blog2 V c∑
r=0

∣∣∣ r−1∏
j=0

(
1 + e(f(2j))

)∣∣∣.
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For the actual proofs of our theorems we require results on the term
involving h‖2`αh‖ relying on diophantine properties of α.

Lemma 2.4. Let K,H,N be positive integers satisfying K,H ≤ N , and
let α ∈ R have bounded continued fraction coefficients. Then

blog2Kc∑
`=1

bH/2`c∑
h=1

1

h‖2`αh‖
�α H logK.

Moreover, for Lebesgue almost all α ∈ (0, 1),

blog2Kc∑
`=1

bH/2`c∑
h=1

1

h‖2`αh‖
�α,ε N

ε for all ε > 0.

Proof. The first claim can be found in [5, proof of Theorem 2]. The
second one is a consequence of [19, Lemma 3].

Proposition 2.5. Let n ∈ N and let N = 2nL with L ∈ N. Then

ND∗N (zk(n)) ≥ 2nL−3ΠnL,c(α)− |sin(2nLπα)|
8 sin(πα)

.

Proof. We use the trivial lower bound that is obtained by specifying the
interval under consideration for the first coordinate:

ND∗N (zk(n)) = sup
0≤β,γ≤1

|AN (zk(n), [0, β)× [0, γ))−Nλ2([0, β)× [0, γ))|

≥ sup
0≤γ≤1

∣∣∣∣AN(zk(n), [0, 1/2)× [0, γ)
)
− N

2
λ1([0, γ))

∣∣∣∣.
We now define (mk)k≥0 as the increasing sequence of non-negative num-
bers satisfying sc(mk) ≡ 0 (mod 2); or, in other words, let (mk)k≥0 be the
sequence of indices corresponding to those elements of the perturbed Hal-
ton component (xk(n))k≥0 that lie in [0, 1/2). Then the above inequality
together with the definition M = N/2 = 2nL−1 implies

(2.15) ND∗N (zk(n)) ≥MD∗M ({mkα}) ≥
1

4

∣∣∣M−1∑
k=0

e(mkα)
∣∣∣,

where we have used the Koksma–Hlawka inequality in the last step. In what
follows we focus on the exponential sum. We have

M−1∑
k=0

e(mkα) =

2nL−1∑
m=0

m=µ0+2µ1+···

e(mα) · 1

2

∑
z∈{0,1}

e

(
z

2

nL−1∑
j=0

µjcj

)

=
1

2

2nL−1∑
m=0

m=µ0+2µ1+···

e(mα) · e
(

1

2

nL−1∑
j=0

µjcj

)
+

1

2

2nL−1∑
m=0

e(mα).
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The absolute value of the second sum can easily be bounded by |sin(2
nLπα)|

2 sin(πα) ,

and the one of the first sum may be rewritten to yield∣∣∣M−1∑
k=0

e(mkα)
∣∣∣ ≥ 2nL−1ΠnL,c(α)− |sin(2nLπα)|

2 sin(πα)
.(2.16)

Remark 2.6. Observe that we have directly linked the discrepancy of
(zk(n))k≥0 to the subsequence ({mkα})k≥0 of the pure Kronecker sequence
via (2.15). If n = 1, then (mk)k≥0 translates to the increasing sequence
of non-negative integers with an even sum of digits in base 2 which are
better known as evil numbers. The star discrepancy of the associated evil
Kronecker sequence with α having bounded continued fraction coefficients
has been thoroughly studied in [1] and yields the exponents log4 3±ε, which
coincide with our values a(1)± ε.

In a recent paper Aistleitner and Larcher focused on metric discrepancy
bounds for sequences of the form ({akα})k≥1 with ak growing at most poly-
nomially in k. Naturally, this perfectly fits into our setting and we will make
use of their result below (see [2, Theorem 3]) for establishing the subsequent
Lemma 2.8, which, in turn, is essential for the proof of Theorem 1.4.

Lemma 2.7. Let (ak)k≥1 be a sequence of integers such that for some
t ∈ N we have ak ≤ kt for all k large enough. Assume there exists a number
τ ∈ (0, 1) and a strictly increasing sequence (BL)L≥1 of positive integers
with (B′)L ≤ BL ≤ BL for some reals B′, B with 1 < B′ < B, such that for
all ε > 0 and all L > L0(ε) we have

1�

0

∣∣∣ BL∑
k=1

e(akα)
∣∣∣ dα > Bτ−ε

L .

Then for almost all α ∈ [0, 1) and all ε > 0, for the star discrepancy D∗N of
the sequence ({akα})k≥1 we have

ND∗N � N τ−ε.

Lemma 2.8. Let n ∈ N. If there exists a number τ = τ(n) such that for
every ε > 0 the inequality

�

[0,1]

(
2nLΠnL,c(α)− |sin(2nLπα)|

sin(πα)

)
dα > 2nL(τ−ε)

holds for L large enough, then

ND∗N � N τ−ε.

Proof. This immediately follows from Lemma 2.7 together with (2.15)
and (2.16).
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3. Sharp general and metric estimates for certain lacunary
trigonometric products. To prove Theorems 1.1 and 1.2, we need to
establish a good upper bound for the trigonometric products Πr,c(α) for a
wide class of numbers α and also exhibit a specific example to underline
the sharpness of our estimate. These are given in Theorem 3.1 below. We
then focus on metric results for these trigonometric products and estab-
lish Proposition 1.6, which is essential for our study of metric discrepancy
bounds.

Theorem 3.1. For our periodic perturbing sequence cwith period lengthn,
as given in (1.2), for all α ∈ [0, 1], all r ∈ N, and all ` ∈ N0 we have

Πr,c(`)(α)�n 2−r
(

cot

(
π

2(2n + 1)

))r/n
.

Moreover, this bound is asymptotically optimal in r, since for ` = 0,

ΠnL,c

(
2n−1

2n + 1

)
= 2−nL

(
cot

(
π

2(2n + 1)

))L
.

The case n = 1 has already appeared in [8]. In this case, two viable
strategies are known to treat such products: one by Fouvry and Mauduit
[8] and one by Gel′fond [9]. For our purposes, i.e. c being of the particular
form (1.2), numerical experience suggested to pursue the latter.

To this end, we require some notation and initial remarks. We define a
system of functions {fν : ν ≥ 0} with fν : [0, 1]→ [0, 1], where

f0(x) = x, f1(x) = 2x
√

1− x2, fν = f1 ◦ fν−1(x), ν ≥ 2.

Furthermore, we abbreviate g(x) =
√

1− x2. We are interested in upper
bounds of the function

(3.1)

Gn = f0

n−1∏
ν=1

g ◦ fν = f0

n−1∏
ν=1

√
1− f2ν = f0

n−1∏
ν=1

fν+1

2fν
=

f0fn
2n−1f1

=
fn

2n
√

1− f20
.

The role of the functions g and fν is revealed by taking x = |sin y|. Observe
that g now corresponds to a transition to |cos y|, and f1 corresponds to
doubling the angle y, i.e. f1(x) = |sin(2y)|. It thus immediately follows that

(3.2) ξn = sin

(
2nπ

2(2n + 1)

)
is a fixed point of fn, i.e. ξn = fn(ξn). This together with (3.1) implies

Gn(ξn) =
1

2n
tan

(
2nπ

2(2n + 1)

)
=

1

2n
cot

(
π

2(2n + 1)

)
.

Moreover, it is evident thatGn and ξn are closely related to the trigonometric
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product and the bad α from Theorem 3.1, respectively. The lemma below
generalizes Gel′fond’s approach.

Lemma 3.2. Let n ∈ N and ξn be as given in (3.2). For all x ∈ [0, 1],
either

Gn(x) ≤ Gn(ξn) or Gn(x)(Gn ◦ fn)(x) ≤ (Gn(ξn))2.

Proof. Note that for n = 1 the result was already obtained by Gel′fond [9].
In the following we concentrate on n > 1. More precisely, we verify the first
inequality whenever x ≤ ξn, and the second in the case where x > ξn. We
set x(y) = |sin(yπ/2)|, y ∈ [0, 1], as well as

G̃n(y) = Gn(x(y)) =
|sin(2nyπ/2)|
2n cos(yπ/2)

.

We therefore need to show

(3.3) G̃n(y) ≤ G̃n
(

2n

2n + 1

)
= Gn(ξn) for all 0 ≤ y ≤ 2n

2n + 1

and

(3.4) G̃n(y)G̃n(2ny) ≤ (Gn(ξn))2 for all
2n

2n + 1
< y ≤ 1.

Let us first of all focus on (3.3). This inequality is established by distin-
guishing between two cases with respect to y.

Case 1: y ∈ [0, (2n − 1)/2n]. We use the trivial estimate

|sin(2nyπ/2)|
2n cos(yπ/2)

≤ 1

2n cos((2n − 1)π/2n+1)

and subsequently show

cos((2n − 1)π/2n+1) ≥ cot
(
2nπ/(2(2n + 1))

)
,

or equivalently

sin(π/2n+1) ≥ tan
(
π/(2(2n + 1))

)
.

To this end we define z := 1/2n and observe that z ∈ [0, 1/4]. We may now
rewrite the above inequality as

h1(z) := sin

(
zπ

2

)
≥ tan

(
zπ

2(z + 1)

)
=: h2(z).

For z = 0 we have equality, and for z ∈ [0, 1/4] we observe that h1(z) ≥ 0
and h2(z) ≥ 0. Moreover, h′1(z) ≥ h′2(z), or equivalently

1 ≤ cos

(
zπ

2

)
(z + 1) · cos2

(
zπ

2(z + 1)

)
(z + 1).

Indeed, in what follows we show that each of the two factors above (separated
by the dot) is greater than or equal to 1. Let us begin with cos(zπ/2)(z+ 1)
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≥ 1. Equality holds for z = 0, and the derivative of the left-hand side satisfies

− sin(zπ/2)(z + 1)π/2 + cos(zπ/2) ≥ cos(π/8)− sin(π/8)5π/8 > 0

whenever z ∈ [0, 1/4].

Similarly, we have cos2
(

zπ
2(z+1)

)
(z + 1) ≥ 1 for the second factor, since

equality holds for z = 0 and since the derivative of the left-hand side, i.e.

−2 cos

(
zπ

2(z + 1)

)
sin

(
zπ

2(z + 1)

)
π

2(z + 1)
+ cos2

(
zπ

2(z + 1)

)
,

is positive for z ∈ [0, 1/4]. This can be derived in the same spirit as above
after splitting [0, 1/4] into [0, 1/5] and [1/5, 1/4].

Case 2: y ∈ [(2n − 1)/2n, 2n/(2n + 1)]. We write y = 2n

2n+1 −
z

2n(2n+1)

with z ∈ [0, 1], and observe that∣∣∣∣sin(2nyπ

2

)∣∣∣∣ = sin

(
2nπ

2(2n + 1)
+

zπ

2(2n + 1)

)
.

In the following we aim for the inequality

sin

(
2nπ

2(2n + 1)
+

zπ

2(2n + 1)

)
/ cos

(
2nπ

2(2n + 1)
− zπ

2n+1(2n + 1)

)
≤ tan

(
2nπ

2(2n + 1)

)
.

We immediately notice that equality holds for z = 0. Furthermore, we
can show that the derivative is negative for z ∈ [0, 1]. This is an easy conse-
quence once we have established the inequality

(3.5) cos

(
(2n + z)π

2n+1(2n + 1)

)
sin

(
(2n + z)π

2(2n + 1)

)
≥ 2n cos

(
(2n + z)π

2(2n + 1)

)
sin

(
(2n + z)π

2n+1(2n + 1)

)
for all z ∈ [0, 1], since trivially

cos

(
2nπ

2(2n + 1)
− zπ

2n+1(2n + 1)

)
= sin

(
(2n + z)π

2n+1(2n + 1)

)
.

First of all we show that (3.5) is satisfied for z = 0. Note that

cos2
(

π

2(2n + 1)

)
≥ 2n sin2

(
π

2(2n + 1)

)
if and only if 1 ≥ (2n + 1) sin2

(
π

2(2n+1)

)
. This in turn is the case iff

η

η + 1
≥ sin2

(
ηπ

2(η + 1)

)
,
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where η = 1/2n and η ∈ (0, 1/4]. The last inequality holds as we have
equality for η = 0 and as the derivative of the left-hand side is greater than
that of the right-hand side, since 2/π ≥ sin(π/5) ≥ sin(ηπ/(η + 1)).

To finally verify (3.5) for all z ∈ [0, 1] we compute the derivatives of both
sides and observe that the one of the left-hand side outweighs the other, since
obviously

sin

(
(2n + z)π

2n+1(2n + 1)

)
sin

(
(2n + z)π

2(2n + 1)

)
(4n − 1) ≥ 0.

This concludes the proof of (3.3).

To verify (3.4) we consider an arbitrary but fixed y ∈ [2n/(2n+1), 1]. This
interval, in turn, can be parametrized by z 7→ 2n/(2n + 1) + z/(4n(2n + 1)),
z ∈ [0, 4n]. We may now rewrite∣∣∣∣sin(2nyπ

2

)∣∣∣∣ = sin

(
(2n − z/2n)π

2(2n + 1)

)
,∣∣∣∣cos

(
2nyπ

2

)∣∣∣∣ = cos

(
(2n − z/2n)π

2(2n + 1)

)
,

cos

(
yπ

2

)
= cos

(
(2n + z/4n)π

2(2n + 1)

)
.

In order to be able to handle |sin(4nyπ/2)| we require one further case
distinction.

Case 1: z ∈ [0, 1]. Here |sin(4nyπ/2)| = sin((2n + z)π/(2(2n + 1))). We
need to derive the inequality

(3.6) h3(z)h4(z) ≤ tan2
(
2nπ/(2(2n + 1))

)
,

with h3(z)= sin((2n+z)π/(2(2n+1)))
cos((2n−z/2n)π/(2(2n+1))) and h4(z)= sin((2n−z/2n)π/(2(2n+1)))

cos((2n+z/4n)π/(2(2n+1))) . Ob-

viously, h3(z), h4(z) ≥ 0 and for z = 0 we even have equality in (3.6). In the
following we show that the derivative of the left-hand side is negative for all
z ∈ [0, 1]. This is a consequence of

(h3(z)h4(z))
′

h3(z)h4(z)
=
h′3(z)

h3(z)
+
h′4(z)

h4(z)
≤ 0,

which in turn can be rewritten as

2 · 4n(2n + 1)

π

(h3(z)h4(z))
′

h3(z)h4(z)

= 4n cot

(
(2n + z)π

2(2n + 1)

)
− 2n tan

(
(2n − z/2n)π

2(2n + 1)

)
− 2n cot

(
(2n − z/2n)π

2(2n + 1)

)
+ tan

(
(2n + z/4n)π

2(2n + 1)

)
≤ 0.
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Here, we have used the identities

h′3(z) =
π

2n+1(2n + 1) cos2
( (2n−z/2n)π

2(2n+1)

)
×
(

2n cos

(
(2n − z/2n)π

2(2n + 1)

)
cos

(
(2n + z)π

2(2n + 1)

)
− sin

(
(2n − z/2n)π

2(2n + 1)

)
sin

(
(2n + z)π

2(2n + 1)

))
,

h′4(z) = − h′3(−z/2n)/2n.

For z = 0 we have (h3(z)h4(z))′

h3(z)h4(z)
≤ 0 due to the proof of (3.5). For arbitrary

z ∈ (0, 1) we have

2n cot

(
(2n + z)π

2(2n + 1)

)(
2n −

cot
( (2n−z/2n)π

2(2n+1)

)
cot
( (2n+z)π
2(2n+1)

) )

≤ tan

(
(2n − z/2n)π

2(2n + 1)

)(
2n −

tan
( (2n+z/4n)π

2(2n+1)

)
tan
( (2n−z/2n)π

2(2n+1)

)).
Indeed, as a consequence of (3.5) we obtain

0 ≤ 2n cot

(
(2n + z)π

2(2n + 1)

)
≤ tan

(
(2n − z/2n)π

2(2n + 1)

)
.

Furthermore,

2n −
cot
( (2n−z/2n)π

2(2n+1)

)
cot
( (2n+z)π
2(2n+1)

) ≤ 2n −
tan
( (2n+z/4n)π

2(2n+1)

)
tan
( (2n−z/2n)π

2(2n+1)

) ,
since the equivalent version

tan

(
(2n + z)π

2(2n + 1)

)
≥ tan

(
(2n + z/4n)π

2(2n + 1)

)
is obviously satisfied.

It remains to show

2n −
tan
( (2n+z/4n)π

2(2n+1)

)
tan
( (2n−z/2n)π

2(2n+1)

) ≥ 2n −
tan
( (2n+1/4n)π

2(2n+1)

)
tan
( (2n−1/2n)π

2(2n+1)

) ≥ 0.

The first inequality is evident, and for the second one we consider the equiv-
alent formulation which is obtained by setting η := 1/2n. That is,

1− η
η

cos

(
ηπ

2

)
sin

(
η(1− η)π

2

)
≥ sin

(
η2π

2

)
.
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This is satisfied for η = 0 as well as for η = 1/4. The right-hand side
is increasing on [0, 1/4], while the left-hand side is decreasing, as both
(1− η)2 cos(ηπ/2) and sin(η(1− η)π/2)/(η(1− η)) are decreasing.

Case 2: z ∈ [1, 4n]. We exploit the trivial fact that |sin(4nyπ/2)| ≤ 1;
hence, it remains to show

tan

(
(2n − z/2n)π

2(2n + 1)

)
1

cos
( (2n+z/4n)π

2(2n+1)

) ≤ tan2

(
2nπ

2(2n + 1)

)
.

For z = 1 the inequality is true due to the previous case. Moreover, for
z → 4n the left-hand side tends to 2n. Since 2n cos2

(
2nπ

2(2n+1)

)
≤ sin2

(
2nπ

2(2n+1)

)
(cf. (3.5)), the sought inequality is satisfied for z = 4n too. Once again, we
need to check whether the left-hand side is decreasing, or equivalently

2n+1 cot

(
(2n + z/4n)π

2(2n + 1)

)
≥ sin

(
(2n − z/2n)π

2n + 1

)
, z ∈ (1, 4n).

This is true since we have equality at the right end point z = 4n and since
the derivative of the left-hand side is dominated by that of the right-hand
side, as clearly

− 1

sin2
( (2n+z/4n)π

2(2n+1)

) ≤ − cos

(
(2n − z/2n)π

2n + 1

)
.

Proof of Theorem 3.1. First of all, we notice that the implied constant
in the sought inequality may depend on n. Hence, we can confine ourselves
to the case r ≥ 2n, as the claim is trivially fulfilled otherwise. Let j0, 0 ≤
j0 < n, be the smallest non-negative integer such that j0 + ` is divisible
by n. Then

Πr,c(`)(α) ≤
r−1∏
j=j0

∣∣∣∣cos

(
2jαπ +

cj+`π

2

)∣∣∣∣ =

r−j0−1∏
j=0

∣∣∣∣cos

(
2j+j0απ +

cjπ

2

)∣∣∣∣.
Assuming r − j0 = dn+ ρ with d ∈ N and 0 ≤ ρ < n, we further obtain

Πr,c(`)(α) ≤
dn−1∏
j=0

∣∣∣∣cos

(
2j+j0απ +

cjπ

2

)∣∣∣∣
=

d−1∏
δ=0

| sin(2δn+j0απ)| | cos(2δn+1+j0απ)| · · · | cos(2n(δ+1)+j0−1απ)|

=

d−1∏
δ=0

Gn(|sin(2δn+j0απ)|) ≤ (Gn(ξn))d−1,

where we have used the fact that c has period n in the second step, and
Lemma 3.2 in the last step. The claim now follows as j0 ≤ j0 + ρ < 2n and
r/n = d+ (j0 + ρ)/n.
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As was already mentioned at the beginning of this section, we verify the
metric estimates for our trigonometric product.

Proof of Proposition 1.6. Following the approaches of [8] and [1] the
proof is subdivided into four main steps. First of all, we establish the recur-
rence relation

(3.7)

1�

0

ΠnL,c(α) dα =

1�

0

Φn,j(α)Πn(L−j),c(α) dα

with some function Φn,j : [0, 1] → R, j ≤ L, which admits the recursive
representation

Φn,j+1(x) =
1

2n

2n−1∑
k=0

|sin(πx)|
2n|cos((x+ k)π/2n)|

Φn,j

(
x+ k

2n

)
(3.8)

=:
1

2n

2n−1∑
k=0

gn(x, j, k)

for j ≥ 0 with initial value Φn,0 ≡ 1. Secondly, we prove that

(3.9) Φn,j(x) = Φn,j(1− x),

i.e. Φn,j(x) is symmetric about x = 1/2. As a third step we define

qn,j(x) =
Φn,j+1(x)

Φn,j(x)
, Mn,j = max

0≤x≤1
qn,j(x), mn,j = min

0≤x≤1
qn,j(x),

and deduce in complete analogy to [1] that

(3.10) Mn,j+1 ≤Mn,j as well as mn,j ≤ mn,j+1.

Finally, we make use of the techniques developed by E. Fouvry and C. Mau-
duit [7] to show that the function Φn,1 is concave.

Considering (3.7)–(3.10) we can define λ1(n) = limj→∞mn,j and λ2(n) =
limj→∞Mn,j , and easily establish the inequality

λ1(n)L−k
1�

0

k−1∏
j=0

qn,j(α) dα ≤
1�

0

ΠnL,c(α) dα ≤ λ2(n)L−k
1�

0

k−1∏
j=0

qn,j(α) dα

for each k. This immediately implies (1.8), and (1.7) follows similarly from
(3.10) and the concavity of Φn,1 by setting µ(n) = Mn,0 = Φn,1(1/2).

Let us now derive the recurrence (3.7). We do so by demonstrating the
first step, i.e. for j = 1, and the general version follows from iteratively
applying the arguments below. Similarly to [8, (4.1)], we may rewrite the
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left-hand side as follows:
1�

0

ΠnL,c(α) dα =

1�

0

Πn,c(α)Πn(L−1),c(2
nα) dα

=

2n−1∑
k=0

(k+1)/2n�

k/2n

Πn,c(α)Πn(L−1),c(2
nα) dα

=

2n−1∑
k=0

1

2n

1�

0

Πn,c

(
α̃+ k

2n

)
Πn(L−1),c(α̃+ k) dα̃

=

1�

0

Φn,1(α̃)Πn(L−1),c(α̃+ k) dα̃,

where we have used the transformation α̃ = 2nα − k in the third step and
the periodicity of Πn(L−1),c in the last step, and where we abbreviated

1

2n

2n−1∑
k=0

Πn,c

(
α+ k

2n

)
=: Φn,1(α).

This verifies (3.7). Observe that by repeated applications of the identity
sin(2x) = 2 sin(x) cos(x) we further obtain

|sin(απ)|∣∣cos
( (α+k)π

2n

)∣∣ =
|sin((α+ k)π)|∣∣cos

( (α+k)π
2n

)∣∣ =
2
∣∣sin( (α+k)π2

)∣∣∣∣cos
( (α+k)π

2n

)∣∣ = · · · = 2nΠn,c

(
α+ k

2n

)
,

which is (3.8).
For (3.9) we notice that the relation gn(x, j, k) = gn(1− x, j, 2n − 1− k)

can be proven by induction on j and (3.8) without much effort. It is then
easy to see that Φn,j(x) is symmetric about x = 1/2.

To approach (3.10) we closely follow the corresponding lines of [1, proof
of Lemma 7] to see that for each α ∈ [0, 1] we have

qn,j(α) =
Φn,j+1(α)

Φn,j(α)
=

∑2n−1
k=0

|sin(απ)|
|cos((α+k)π/2n)|Φn,j

(
α+k
2n

)
∑2n−1

k=0
|sin(απ)|

|cos((α+k)π/2n)|Φn,j−1
(
α+k
2n

)
≤
∑2n−1

k=0
|sin(απ)|

|cos((α+k)π/2n)|Φn,j−1
(
α+k
2n

)
Mn,j−1∑2n−1

k=0
|sin(απ)|

|cos((α+k)π/2n)|Φn,j−1
(
α+k
2n

) = Mn,j−1,

where we have used (3.7) in the second step. Hence, Mn,j ≤Mn,j−1. In the
same spirit it is possible to derive mn,j ≥ mn,j−1.

Let us now focus on the concavity of Φn,1 using techniques from [7]. For
n = 1 this was shown in [8], and hence we assume n ≥ 2. Furthermore,
observe that
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22nΦn,1(x) =

2n−1∑
k=0

sin(πx)∣∣cos
(
x+k
2n π

)∣∣
=

2n−1−1∑
k=0

sin(πx)

(
1

cos
(
x+k
2n π

) +
1

cos
(
k+1−x

2n π
)).

For 0 ≤ u ≤ 2−n and 0 ≤ k < 2n−1 we introduce the functions

Ψ
(1)
k (u) =

sin(2nπu)

cosπ
(
u+ k

2n

) and Ψ
(2)
k (u) =

sin(2nπu)

cosπ
(
k+1
2n − u

) .
After setting x = 2nu it remains to show that

∑2n−1−1
k=0 (Ψ

(1)
k (u) + Ψ

(2)
k (u))

is concave. It is immediate that

Ψ
(1)
k (u) =

(−1)k sin
(
2nπ

(
u+ k

2n

))
cos
(
π
(
u+ k

2n

)) , Ψ
(2)
k (u) =

(−1)k sin
(
2nπ

(
k+1
2n − u

))
cos
(
π
(
k+1
2n − u

)) .

Using the well known trigonometric identities sin(2x) = 2 sin(x) cos(x) and
sin(x) cos(y) = 1

2(sin(x− y) + sin(x+ y)) we can inductively prove that

(3.11)
sin(2nx)

cos(x)
= 2

2n−1∑
l=1

(−1)l sin((2l − 1)x).

Let us focus on Ψ
(1)
k first. As a consequence of (3.11) we may rewrite

2n−1−1∑
k=0

Ψ
(1)
k (u) = 2

2n−1∑
l=1

(−1)l
2n−1−1∑
k=0

(−1)k sin

(
(2l − 1)πu+ k

2l − 1

2n
π

)

=
2n−1∑
l=1

(−1)l
2n−1−1∑
k=0

(−1)k cos

(
(2l − 1)πu− π/2 + k

2l − 1

2n
π

)
.

We invoke from [7, p. 345] the formula

m−1∑
k=0

(−1)k cos(a+ hk) =
cos
(
a+ m−1

2 h+ m−1
2 π

)
sin
(
mh
2 + mπ

2

)
cos(h/2)

with m = 2n−1, a = (2l − 1)πu− π/2, h = 2−n(2l − 1)π to find that

2n−1−1∑
k=0

Ψ
(1)
k (u) = 2

2n−1∑
l=1

(−1)l
sin
(
(2l − 1)πu+ (2n−1−1)(2l−1)

2n+1 π + 2n−1−1
2 π

)
cos
(
2l−1
2n+1π

)
× sin

(
(2l − 1)

4
π +

2n−1

2
π

)

= 2
2n−1∑
l=1

(−1)l+1 cos
(
(2l − 1)π

(
u+ 2n−1−1

2n+1

))
sin
(
2l−1
4 π

)
cos
(
2l−1
2n+1π

) .



386 R. Hofer and F. Puchhammer

Observe that the simplification of the numerator in the last line follows a
different line of reasoning for n = 2 than for n ≥ 3, yet the result remains

the same. Using Ψ
(2)
k (u) = Ψ

(1)
k (1/2n − u) we rewrite

2n−1−1∑
k=0

Ψ
(2)
k (u) = 2

2n−1∑
l=1

(−1)l+1 cos
(
(2l − 1)π

(
2n−1+1
2n+1 − u

))
sin
(
2l−1
4 π

)
cos
(
2l−1
2n+1π

) .

Considering again the known identity 2 cos(x) cos(y) = cos(x + y) +
cos(x − y) with x = (2l − 1)π/4 and y = (2l − 1)π(u − 2−n−1), and sub-
sequently sin((2l − 1)π/4) cos((2l − 1)π/4) = (−1)l+1/2, we can simplify as
follows:

2n−1−1∑
k=0

(Ψ
(1)
k (u) + Ψ

(2)
k (u)) = 2

2n−1∑
l=1

cos
(
(2l − 1)π

(
u− 1

2n+1

))
cos
(
2l−1
2n+1π

) .

Note that (2l−1)π(u−1/2n+1) ∈ (−π/2, π/2) and 2l−1
2n+1π ∈ (0, π/2). There-

fore, each summand is a concave function, and hence so is Φn,1.

We want to point out that, since (Mn,j)j≥0 is a decreasing and (mn,j)j≥0
is an increasing sequence, we are in a position to numerically compute lower
and upper bounds for both λ1(n) and λ2(n) for small values of n on the basis
of the recurrence relation (3.8). Some approximative values of 1+log2n λi(n),
i ∈ {1, 2}, are provided in Table 1. It needs to be mentioned that Fouvry
and Mauduit [8] proved that λ1(1) = λ2(1). As our main interest lies in the
exponent of the star discrepancy, we settle for our approximations at the
moment and leave a generalization of the result of Fouvry and Mauduit for
larger n ∈ N for future research.

4. Proofs of the main theorems

Proof of Theorem 1.1. We begin with the inequality (2.1) from Propo-
sition 2.1. Considering Lemma 2.4 as well as Theorem 3.1 we obtain

ND∗N (zk(n))

�n,α
N

K
+
N

H

1+ε

+N ε+H logK +

(
cot

(
π

2(2n + 1)

))(log2N)/n

logK logH

� N

K
+
N

H

1+ε

+N ε +H logK +Na(n)+ε.

Taking H = b
√
Nc and K = N and considering a(n) ≥ log4 3 ≥ 1/2 finishes

the proof.

Remark 4.1. The result of Theorem 1.1 may be sharpened by replacing
N ε by a proper power of logN . Moreover, we need to add that it is valid for
an even wider class of numbers α. Indeed, suppose α is of finite type σ, i.e.
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‖qα‖ ≥ cα,εq−σ+ε for all q ∈ Z\{0} (see, e.g., [23]). For such α the following
discrepancy bound can be derived (cf. [26, proof of Theorem 1]):

ND∗N (zk(n))�n,α,ε N
1−1/(σ+1)+ε +Na(n)+ε.

Balancing both terms yields a bound on σ depending on n. Note that almost
all α are of finite type 1, hence Theorem 1.1 holds for almost all α ∈ (0, 1) in
the sense of the Lebesgue measure as well. Nevertheless, this metric bound
is far from being optimal, considering Theorem 1.4.

Proof of Theorem 1.2. We choose N to be of the form N = 2nL, L ∈ N.
Subsequently, we refer to Proposition 2.5 to find that ND∗N (zk(n)) ≥
2nL−1ΠnL,c(α) − 1/(4‖α‖). In what follows we abbreviate α0 := α − β as
well as δ` := {2`β}. Due to several well known trigonometric identities we
may rewrite

|sin(2nλαπ)|= |sin(2nλα0π) cos(δnλπ)± cos(2nλα0π) sin(δnλπ)|,
|cos(2nλ+ναπ)|= |cos(2nλ+να0π) cos(δnλ+νπ)± sin(2nλ+να0π) sin(δnλ+νπ)|.
Using these as well as

|sin(2nλα0π)| = |cos(π/(2n+1 + 2))|, |cos(2nλα0π)| = |sin(π/(2n+1 + 2))|
we further obtain

(4.1)

2nLΠnL,c(α) = Na(n)ΠnL,c(α)(ΠnL,c(α0))
−1 = Na(n)

L−1∏
λ=0

(
Sλ

n−1∏
ν=1

Cλ,ν

)
,

where

Sλ =

∣∣∣∣cos(δnλπ)± sin(δnλπ) tan

(
π

2(2n + 1)

)∣∣∣∣,
Cλ,ν =

∣∣∣∣cos(δnλ+νπ)± sin(δnλ+νπ) tan

(
2νπ

2(2n + 1)

)∣∣∣∣.
Since trivially 1− cos(x) ≤

√
6x and sin(x) ≤ x for all x ≥ 0, we have

Sλ ≥ 1− δnλ
(√

6 + π tan

(
π

2(2n + 1)

))
=: 1− δnλc0(n).

A similar argument gives, for 1 ≤ ν < n,

Cλ,ν ≥ 1− δnλ+ν
(√

6 + π tan

(
2νπ

2(2n + 1)

))
=: 1− δnλ+νcν(n).

On the other hand, for fixed n we can define numbers Λ0, Λ1, . . . , ΛL by

Λ0 = inf
λ≥0
|sin(2nλαπ)/sin(2nλα0π)|,

Λν = inf
λ≥0
|cos(2nλ+ναπ)/cos(2nλ+να0π)|, 1 ≤ ν < n.
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Due to the special structure of β =
∑

k≥0 4−2
k

we know that these numbers
are bounded from below by positive constants, as

inf
{
|{2`α} − κ| : κ ∈ {0, 1, 1/2}, ` ∈ N0

}
> 0.

We may thus continue with (4.1) and find a constant c(n) > 0 such that
max{1− cν(n)x,Λν} ≥ e−c(n)x for all x ≥ 0 and every ν ∈ {0, 1, . . . , n− 1}.
Hence,

2nLΠnL,c(α)� Na(n)
L−1∏
λ=0

n−1∏
ν=0

max{(1− δnλ+νcν(n)), Λν}

≥ Na(n)
nL−1∏
`=0

e−c(n)δ` ≥ Na(n)e−c
∗(n) lognL � Na(n)−ε with c∗(n) > 0,

where we have used
∑K

`=0 δ` ≤ c̃ logK for an absolute constant c̃ > 0 and
for K large enough.

In the proof of Theorem 1.4, we heavily depend on the ideas and strate-
gies developed in [1], which were refined and extended in [2].

Proof of Theorem 1.4. The lower bound can easily be derived by setting
N = 2nL, invoking Lemma 2.8 and applying (1.8) together with

�

[0,1]

|sin(2kπα)|
sin(πα)

dα� k, k ≥ 1.

For the upper bound we set K = H = N in Proposition 2.1. In view of
the second part of Lemma 2.4 it remains to show that

blog2Nc∑
`=1

bN/2`c∑
h=1

1

h

blog2Nc−`∑
r=0

2rΠr,c(`)(2
`hα)�α,ε,n N

log2n λ2(n)+1+ε

for all ε > 0 and almost all α ∈ (0, 1) in the sense of the Lebesgue measure.
As a first step we dispose of the superscript (`) in c(`) by setting κ(`) =

n− ` (mod n) and splitting the sum over r, which gives

blog2Nc−`∑
r=0

2rΠr,c(`)(2
`hα)� 2κ(`)+

blog2Nc−`∑
r=κ(`)

2r−κ(`)2κ(`)Πr−κ(`),c(0)(2
`+κ(`)hα)

�n 1 +

blog2Nc−`−κ(`)∑
r=0

2r2κ(`)Πr,c(2
`+κ(`)hα)

�n 1 +

b(log2N)/nc∑
j=0

2nj
n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα).

Hence,



Perturbed Halton–Kronecker sequences 389

(4.2)

blog2Nc∑
`=1

bN/2`c∑
h=1

1

h

blog2Nc−`∑
r=0

2rΠr,c(`)(2
`hα)

�n (logN)2 +

b(log2N)/nc∑
j=0

2nj
blog2Nc∑
`=1

N∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα).

Fix ε > 0 and set µn := d(1 + log2n λ2(n))−1e. Proposition 1.6 implies

(4.3)
�

[0,1]

(jnµn∑
`=1

2jnµn∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα)

)
dα ≤ γn(2nj)log2n (λ2(n))+ε/2

for all j > j0(n, ε), where γn > 0 is an absolute constant only depending
on n. For all positive integers j and for ε > 0 we define the events

Gj =
{
α ∈ (0, 1) :

jnµn∑
`=1

2jnµn∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα) > γn(2nj)log2n λ2(n)+ε

}
.

In (4.3) we have already seen that

P(Gj) ≤ γn(2nj)−ε/2, j > j0(n, ε).

Thus, the Borel–Cantelli lemma implies that, for almost all α ∈ (0, 1),

jnµn∑
`=1

2jnµn∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα) ≤ γn(2nj)log2n λ2(n)+ε, j ≥ j1(n, ε).

Now let ε > 0, N > 2nµnj1(n,ε) and α ∈ (0, 1) be such that the above
inequality holds. We split the entire sum over j in (4.2) at M = dlog2n N/µne
≥ j1(n, ε), and may thus finish the proof of the metric upper bound by the
estimates

M−1∑
j=0

2nj
blog2Nc∑
`=1

N∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα)

�n 2nMN ε �n N
1+log2n λ2(n)+ε

and

b(log2N)/nc∑
j=M

2nj
blog2Nc∑
`=1

N∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα)
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≤
b(log2N)/nc∑

j=M

2nj
jnµn∑
`=1

2jnµn∑
h=1

1

h

n−1∑
k=0

2k+κ(`)Πnj,c(2
`+κ(`)hα)

�n

b(log2N)/nc∑
j=M

(2nj)1+log2n λ2(n)+ε �n N
1+log2n λ2(n)+ε.

We still need to verify the limit statement in (1.5). Evidently, λ2(n) ≤
maxx∈[0,1] Φn,1(x) = µ(n) = 4−n

∑2n−1
k=0 |cos((1 + 2k)π/2n+1)|−1 (cf. proof of

Proposition 1.6). Therefore, it suffices to show that

lim
n→∞

log2n µ(n) = −1.

To this end we rewrite

log2n Φn,1(1/2) = −1 + log2n

(
1

2n

2n−1∑
k=0

1

|cos(π(1/2 + k)/2n)|

)

= −1 + log2n

(
1

2n−1

2n−1−1∑
k=0

1

cos(π(1/2 + k)/2n)

)

= −1 +
1

log 2
log

((
1

2n−1

2n−1−1∑
k=0

1

cos(π(1/2 + k)/2n)

)1/n)
.

Now, obviously(
1

2n−1

2n−1−1∑
k=0

1

cos(π(1/2 + k)/2n)

)1/n

≥ 1.

On the other hand, we can make use of the trivial estimate sin(πx/2) ≥ x
for x ∈ [0, 1] to obtain further

2n−1−1∑
k=0

1

cos(π(1/2 + k)/2n)
=

2n−1−1∑
k=0

1

sin(π(1/2 + k)/2n)

≤
2n−1−1∑
k=0

1

(1/2 + k)/2n−1
= 2n−1

2n−1−1∑
k=0

1

1/2 + k
≤ 2n−1(2 + n log 2).

Substituting this in the original expression we thus obtain(
1

2n−1

2n−1−1∑
k=0

1

cos(π(1/2 + k)/2n)

)1/n

≤ n1/n21/n log1/n 2 −−−→
n→∞

1.
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