Curves over Finite Fields and Permutations of the Form $x^k - \gamma \text{Tr}(x)$

Nurdagül ANBAR

Sabancı University, MDBF, Orhanlı, Tuzla, 34956 İstanbul, Turkey email: nurdagulanbar2@gmail.com

Abstract

We consider the polynomials of the form $P(x) = x^k - \gamma \operatorname{Tr}(x)$ over \mathbb{F}_{q^n} for $n \geq 2$. We show that P(x) is not a permutation of \mathbb{F}_{q^n} in the case $\operatorname{gcd}(k, q^n - 1) > 1$. Our proof uses an absolutely irreducible curve over \mathbb{F}_{q^n} and the number of rational points on it.

Keywords: function fields, permutation polynomials, rational places. **Mathematics Subject Classification(2010):** 11T06, 14H05.

1 Introduction

Let q be a power of a prime p, and let \mathbb{F}_q be the finite field with q elements. A polynomial $P(x) \in \mathbb{F}_q[x]$ is called a *permutation* of \mathbb{F}_q if the associated map from \mathbb{F}_q to \mathbb{F}_q defined by $x \mapsto P(x)$ is a bijection, i.e., it permutes the elements of \mathbb{F}_q . Permutation polynomials over finite fields have been studied widely in the last decades, especially due to their applications in combinatorics, coding theory and symmetric cryptography, see [6, 8] and references therein.

One of the main approaches to show that P(x) is not a permutation uses the theory of curves and their number of rational points, for instance see [1, 2]. The approach can be summarized as follows. For a given polynomial P(x), one can consider the bivariate polynomial

$$\frac{P(X) - P(Y)}{X - Y} \tag{1.1}$$

over \mathbb{F}_q . Suppose that the polynomial in Equation (1.1) has an absolutely irreducible factor over \mathbb{F}_q . Then the corresponding curve \mathcal{X} has a point $(x, y) \in$ \mathbb{F}_q^2 with $x \neq y$ for all sufficiently large q. This proves that P(x) = P(y) for $x, y \in \mathbb{F}_q$ with $x \neq y$, i.e., P is not a permutation of \mathbb{F}_q for all sufficiently large q.

Let $n \geq 2$ be an integer and \mathbb{F}_{q^n} be the extension of \mathbb{F}_q of degree n. The topic of this paper is polynomials of the form $x^k - \gamma \operatorname{Tr}(x)$ over \mathbb{F}_{q^n} , where $\operatorname{Tr}: \mathbb{F}_{q^n} \mapsto \mathbb{F}_q$ is the Trace function defined by

$$Tr(x) = x + x^q + \dots + x^{q^{n-1}} .$$

This is an interesting class of permutation polynomials that has been investigated intensively as it combines the multiplicative and the additive structure of \mathbb{F}_{q^n} , see [3, 4, 5, 7].

In this paper we show that P(x) is not a permutation of \mathbb{F}_{q^n} in the case $gcd(k, q^n - 1) > 1$ for all q and integer $n \geq 2$. Our main approach also uses absolutely irreducible curves over \mathbb{F}_{q^n} , but in a different way. More precisely, we relate the multiplicative and the additive structure of \mathbb{F}_{q^n} via an absolutely irreducible curve. The paper is organized as follows. In Section 2 we investigate some rational function field extensions and their compositum, which we use in Section 3 to prove our main result.

2 Function Field Extensions

In this section we study some rational function field extensions and their compositum. For the notations and well-known facts about function fields, as a general reference, we refer to [10].

Let E be a function field over \mathbb{F}_q and F/E be a finite separable extension of function fields of degree [F : E] = r. We write Q|P for a place Q of Flying over a place P of E, and denote by e(Q|P) the ramification index of Q|P. Recall that when the ramification index e(Q|P) > 1, it is said that Q|Pis ramified. Moreover, if the characteristic p of \mathbb{F}_q does not divide e(Q|P), then Q|P is called tame; otherwise it is called wild. A place P of E splits completely in F if there are r distinct places Q_1, \ldots, Q_r of F lying over P. Then by the Fundamental Equality [10, Theorem 3.1.11], we have $e(Q_i|P) = 1$ and $\deg(Q_i) = \deg(P)$ for all $i = 1, \ldots, r$. In particular, if P is a rational place of E splitting completely in F, then there are r rational places of F lying over P.

Let t and s be positive integers such that t is a divisor of $q^n - 1$ and s is relatively prime to $q^n - 1$. We consider the rational function field extensions $\mathbb{F}_{q^n}(w)/\mathbb{F}_{q^n}(z), \mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w) \text{ and } \mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z) \text{ defined by the equations } z = (1/\gamma)w^s, w = x^t \text{ and } z = \operatorname{Tr}(y) + c$, respectively, and their compositum, where $\gamma, c \in \mathbb{F}_{q^n}$ with $\gamma \neq 0$, see Figure 1. For a rational function field $\mathbb{F}_{q^n}(z)$ and $\alpha \in \mathbb{F}_{q^n}$, we denote by $(z = \alpha)$ and $(z = \infty)$ the places corresponding the zero and the pole of $z - \alpha$, respectively.

Figure 1: Compositum over Rational Function Fields

- (i) The extension F_{qⁿ}(w)/F_{qⁿ}(z) defined by z = (1/γ)w^s: Note that (z = 0) and (z = ∞) are the only ramified places, which are totally ramified. In particular, (w = 0) and (w = ∞) are the unique places lying over (z = 0) and (z = ∞), respectively. Moreover, the fact that w^s permutes F_{qⁿ} implies that for any rational place of F_{qⁿ}(z) there exits a unique rational place of F_{qⁿ}(w) lying over it. In other words, (w = α) is the unique place of F_{qⁿ}(w) lying over (z = (1/γ)α^s).
- (ii) The extension $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ defined by $w = x^t$:

Note that $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ is a Kummer extension as t is a divisor of $q^n - 1$, see [10, Proposition 3.7.3]. The only ramified places are (w = 0) and $(w = \infty)$, which are totally ramified. In particular, (x = 0) and $(x = \infty)$ are the unique places lying over (w = 0) and $(w = \infty)$, respectively. The place $(w = \alpha)$ splits completely in $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ if and only if α is a *t*-th power in \mathbb{F}_{q^n} . This shows that for $\alpha \in \langle \zeta^t \rangle$, where ζ is a primitive element of \mathbb{F}_{q^n} , there are *t* rational places of $\mathbb{F}_{q^n}(x)$ lying over $(w = \alpha)$.

(iii) The extension $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ defined by $z = \operatorname{Tr}(y) + c$: Note that $(z = \infty)$ is totally ramified and $(y = \infty)$ of $\mathbb{F}_{q^n}(y)$ is the unique place lying over it. Also, the fact that

$$z = \text{Tr}(y) + c = y + y^{q} + \dots + y^{q^{n-1}} + c$$

is a separable polynomial implies that there is no other ramification. Furthermore, the place $(z = \alpha)$ splits completely in $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ if and only if $\alpha \in c + \mathbb{F}_q$.

To analyse the ramification structure of the compositum of function fields, we mainly use Abhyankar's Lemma [10, Theorem 3.9.1]. For convenience of the reader, we state the lemma as follows.

Lemma 2.1 (Abhyankar's Lemma). Let F/E be a finite separable extension. Suppose that $F = E_1 \cdot E_2$ is the compositum of the intermediate fields $E \subseteq E_1, E_2 \subseteq F$. Let $Q \in \mathbb{P}_F$ lying over $P \in \mathbb{P}_E$. We set $Q_i = Q \cap E_i$ for i = 1, 2. If at least one of $Q_1|P$ or $Q_2|P$ is tame, then

$$e(Q|P) = \operatorname{lcm} \{ e(Q_1|P), e(Q_2|P) \} ,$$

where lcm denotes the least common multiple.

Lemma 2.2. Let $E = \mathbb{F}_{q^n}(w, y)$ be the compositum of the rational function fields $\mathbb{F}_{q^n}(w)$ and $\mathbb{F}_{q^n}(y)$ over $\mathbb{F}_{q^n}(z)$ defined as above, see Figure 1. Then E is a function field over \mathbb{F}_{q^n} such that

- (i) $[E: \mathbb{F}_{q^n}(w)] = q^{n-1}, [E: \mathbb{F}_{q^n}(y)] = s, and$
- (ii) there are q^{n-1} rational places of E lying over $(z = \alpha)$ for $\alpha \in c + \mathbb{F}_q$.

Proof. As (z = 0) is totally ramified in $\mathbb{F}_{q^n}(w)/\mathbb{F}_{q^n}(z)$, and it is not ramified in $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$, by Abhyankar's Lemma, any place P of $\mathbb{F}_{q^n}(y)$ lying over (z = 0) is ramified in $E/\mathbb{F}_{q^n}(y)$ with ramification index e((w = 0)|(z = 0)) = s. This shows that

$$[E:\mathbb{F}_{q^n}(y)] = s, \quad [E:\mathbb{F}_{q^n}(w)] = q^{n-1}$$

and E is a function field over \mathbb{F}_{q^n} , i.e., \mathbb{F}_{q^n} is the full constant field of E.

A place $(z = \alpha)$ splits completely in $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ if and only if $\alpha \in c + \mathbb{F}_q$. Recall that there exists a unique rational place of $\mathbb{F}_{q^n}(w)$ lying over $(z = \alpha)$ for $\alpha \in \mathbb{F}_{q^n}$. Therefore, the place lying over $(z = \alpha)$ splits completely in $E/\mathbb{F}_{q^n}(w)$ for $\alpha \in \mathbb{F}_{q^n}$, see [10, Proposition 3.9.6].

Lemma 2.3. Let $F = \mathbb{F}_{q^n}(x, y)$ be the compositum of the rational function fields $\mathbb{F}_{q^n}(x)$ and $E = \mathbb{F}_{q^n}(w, y)$ over $\mathbb{F}_{q^n}(w)$ defined as above, see Figure 1. Let H be the subgroup of the multiplicative group of \mathbb{F}_{q^n} generated by ζ^t , where ζ is a primitive element of \mathbb{F}_{q^n} . Then F is a function field over \mathbb{F}_{q^n} such that

- (i) $[F : \mathbb{F}_{q^n}(x)] = q^{n-1}, [F : E] = t, and$
- (ii) there are tq^{n-1} rational places of F lying over $(w = \alpha)$ for all $(1/\gamma)\alpha^s \in (1/\gamma)H \cap c + \mathbb{F}_q$.

Proof. As $[E : \mathbb{F}_{q^n}(w)] = q^{n-1}$ and $[\mathbb{F}_{q^n}(x) : \mathbb{F}_{q^n}(w)] = t$ are relatively prime, we have $[F : \mathbb{F}_{q^n}(x)] = q^{n-1}$ and [F : E] = t. Note that (w = 0) is totally ramified in $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$, and by Lemma 2.2 it is not ramified in $E/\mathbb{F}_{q^n}(w)$. Therefore, a place P of E lying over (w = 0) is totally ramified in F/E. This shows that F is a function field with full constant field \mathbb{F}_{q^n} .

Note that $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ and $E/\mathbb{F}_{q^n}(w)$ are Galois extensions. For a nonzero $\alpha \in \mathbb{F}_{q^n}$, the place $(w = \alpha)$ is not ramified in both extensions, and hence a place P of F lying over $(w = \alpha)$ is rational if and only if $(w = \alpha)$ splits completely in both extensions. We have seen in Lemma 2.2 that $(w = \alpha)$ splits in $E/\mathbb{F}_{q^n}(w)$ if and only if $(1/\gamma)\alpha^s \in c + \mathbb{F}_q$. Furthermore, $(w = \alpha)$ splits in $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ if and only if $\alpha \in H$. Since $\gcd(s, q^n - 1) = 1$, this holds if and only if $\alpha^s \in H$, i.e. $(1/\gamma)\alpha^s \in (1/\gamma)H$. Therefore, P is a rational place lying over $(w = \alpha)$ splits completely in F, and there are tq^{n-1} rational places lying over $(w = \alpha)$.

Corollary 2.4. For a nonzero $\gamma \in \mathbb{F}_{q^n}$ and an integer $k \geq 1$, the polynomial $f(X,Y) = (1/\gamma)X^k - \operatorname{Tr}(Y) - c \in \mathbb{F}_{q^n}$ is an absolutely irreducible polynomial. Therefore, the zero set defines an absolutely irreducible curve over \mathbb{F}_{q^n} .

3 Main Result

In this section we investigate the permutation polynomials of the type $P(x) = x^k - \gamma \text{Tr}(x)$. A well-known fact is that a monomial x^k is a permutation if and

only if k is relatively prime to $q^n - 1$. Therefore, P(x) is not a permutation of \mathbb{F}_{q^n} if $gcd(k, q^n - 1) > 1$ in the case $\gamma = 0$. From now on, we assume that γ is a nonzero element of \mathbb{F}_{q^n} .

As mentioned in the introduction, we consider the multiplicative and the additive structure of \mathbb{F}_{q^n} to investigate the image of P(x) on \mathbb{F}_{q^n} . In particular, for some $c \in \mathbb{F}_{q^n}$ we consider the solution set of

$$\frac{1}{\gamma}x^k = \operatorname{Tr}(x) + c , \qquad (3.1)$$

and by Equation (3.1), we investigate the rational points of the curve \mathcal{X}_c over \mathbb{F}_{q^n} defined by

$$f_c(X,Y) = \frac{1}{\gamma} X^k - \text{Tr}(Y) - c = 0 .$$
 (3.2)

Theorem 3.1. Let $P(x) = x^k - \gamma \operatorname{Tr}(x)$ be polynomial, where γ is a nonzero element in \mathbb{F}_{q^n} and k is a positive integer. If $t = \operatorname{gcd}(k, q^n - 1) > 1$, then P(x) is not a permutation of \mathbb{F}_{q^n} .

Proof. We will show that there exist $x_1, x_2 \in \mathbb{F}_{q^n}$ with $x_1 \neq x_2$ such that $P(x_1) = P(x_2)$.

As in the previous section we denote by H the subgroup generated by ζ^t , where ζ is a primitive element of \mathbb{F}_{q^n} , i.e., H is a subgroup of order $(q^n - 1)/t$. Note that the image $\operatorname{Im}(\operatorname{Tr}(\mathbb{F}_{q^n})) = \mathbb{F}_q$ is an additive subgroup of \mathbb{F}_{q^n} , i.e., \mathbb{F}_{q^n} is the disjoint union of q^{n-1} cosets of \mathbb{F}_q . In particular, there exists $c \in \mathbb{F}_{q^n}$ such that we have

$$|(1/\gamma)H \cap (c + \mathbb{F}_q)| \ge \left\lceil \frac{q^n - 1}{tq^{n-1}} \right\rceil$$

where $\lceil x \rceil$ denotes the least integer greater than or equal to the real number x. Note that we have

$$\frac{q^n - 1}{t} = bq^{n-1} + i \quad \text{for some } 1 \le i < q^{n-1} - 1 .$$
(3.3)

Then we have $\lceil (q^n - 1)/tq^{n-1} \rceil = b + 1$, i.e., there exists c such that

$$|(1/\gamma)H \cap (c + \mathbb{F}_q)| \ge b + 1 .$$

For this value of c, we consider the curve \mathcal{X}_c defined by $f_c(X, Y) = 0$, where f_c is the bivariate polynomial defined as in Equation (3.2). By Corollary 2.4,

 \mathcal{X}_c is an absolutely irreducible curve defined over \mathbb{F}_{q^n} . Let $F = \mathbb{F}_{q^n}(x, y)$ be the function field of \mathcal{X}_c . By Lemma 2.3, for each $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$ there are tq^{n-1} distinct rational places of F. Note that these are the places lying over $(z = \alpha)$ for $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$, i.e., all of them correspond to affine points of \mathcal{X}_c .

It is a well-known fact that each non-singular rational point of \mathcal{X}_c corresponds to a unique rational place of F, see [9, 10]. Recall that an affine point (x_0, y_0) on \mathcal{X}_c is singular if and only if we have

$$f(x_0, y_0) = \frac{df(X, Y)}{dX}(x_0, y_0) = \frac{df(X, Y)}{dY}(x_0, y_0) = 0 ,$$

where df/dX and df/dY denotes the partial derivatives of f with respect to X and Y, respectively. Since df(X, Y)/dY = -1, we conclude that \mathcal{X} has no singular affine point. That is, each rational place of F lying over $(z = \alpha)$ for $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$ corresponds to a unique rational point of \mathcal{X}_c . Therefore, the number $N(\mathcal{X}_c)$ of affine rational points of \mathcal{X}_c satisfies

$$N(\mathcal{X}_c) \ge (b+1) tq^{n-1} = btq^{n-1} + tq^{n-1} .$$
(3.4)

By Equation (3.3), we have $btq^{n-1} = q^n - 1 - it \ge q^n - 1 - (q^{n-1} - 1)t$. Hence by Equation (3.4) we have

$$N(\mathcal{X}_c) \ge q^n + (t-1) > q^n$$

Let ℓ_d be the line defined by the equation Y = X + d for $d \in \mathbb{F}_{q^n}$. Then the set

$$\mathcal{L} = \{\ell_d \mid d \in \mathbb{F}_{q^n}\}$$

covers all affine points in the projective plane, and hence it covers all affine points on \mathcal{X}_c . Since $N(\mathcal{X}_c) > q^n$, there exists ℓ_d intersect \mathcal{X}_c at least two rational points. That is, there exist distinct elements $x_1, x_2 \in \mathbb{F}_{q^n}$ such that $(x_1, x_1 + d), (x_2, x_2 + d) \in \mathcal{X}_c \cap \ell_d$. Then the defining equation f_c , see Equation (3.2), implies that

$$x_1^k - \gamma \operatorname{Tr}(x_1) = x_2^k - \gamma \operatorname{Tr}(x_2) = \gamma(c + \operatorname{Tr}(d)) ,$$

which gives the desired result.

Corollary 3.2. Let \mathbb{F}_{q^n} be the finite field of characteristic p > 2 and $n \ge 2$. Then for any $\gamma \in \mathbb{F}_{q^n}$ the polynomial $P(x) = x^{2r} - \gamma \operatorname{Tr}(x)$ is not a permutation of \mathbb{F}_{q^n} .

Remark 3.3. Let $P(x) = x^k - \gamma \operatorname{Tr}(x^d)$ for some integers k, d such that d is relatively prime to $q^n - 1$. We recall that a polynomial P(x) is a permutation of \mathbb{F}_{q^n} if and only if $P(x^r)$ is a permutation of \mathbb{F}_{q^n} for any integer r relatively prime to $q^n - 1$. Let r be the integer with $rd \equiv 1 \mod (q^n - 1)$. We set

$$\tilde{P}(x) = P(x^r) = x^{rk} - \gamma \operatorname{Tr}(x^{rd}) = x^{rk} - \gamma \operatorname{Tr}(x) .$$
(3.5)

Then by Theorem 3.1, we conclude that P(x) is not a permutation of \mathbb{F}_{q^n} if $gcd(k, q^n - 1) > 1$.

Acknowledgement

The author would like to thank Prof. Gohar Kyureghyan for pointing out the problem and helpful discussions. The author is partially supported by the Austrian Science Fund (FWF): Project F5505–N26 and Project F5511–N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".

References

- Anbar N, Odžak A, Patel V, Quoos L, Somoza A, Topuzoğlu A. On the difference between permutation polynomials over finite fields. Finite Fields Appl. 49 (2018), 132–142.
- [2] Hou X. Applications of the Hasse–Weil bound to permutation polynomials. Finite Fields Appl. 54 (2018), 113–132.
- [3] Charpin P, Kyureghyan G. Monomial functions with linear structure and permutation polynomials. Finite fields: theory and applications, 99–111, Contemp. Math., 518, Amer. Math. Soc., Providence, RI, 2010.
- [4] Kyureghyan G. Constructing permutations of finite fields via linear translators. J. Combin. Theory Ser. A 118 (2011), no. 3, 1052–1061.
- [5] Kyureghyan G, Zieve M. Permutation polynomials of the form $X + \gamma \text{Tr}(X^k)$. Contemporary developments in finite fields and applications, 178–194, World Sci. Publ., Hackensack, NJ, 2016.
- [6] Lidl R, Niederreiter H. Finite fields. With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.

- [7] Ma J, Ge G. A note on permutation polynomials over finite fields. Finite Fields Appl. 48 (2017), 261–270.
- [8] Mullen GL, Panario D. Handbook of finite fields. Chapman and Hall, 2013.
- [9] Niederreiter H, Xing CP. Algebraic geometry in coding theory and cryptography. Princeton University Press, Princeton, NJ, 2009.
- [10] Stichtenoth H. Algebraic function fields and codes. Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.