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Abstract

We consider the polynomials of the form P (x) = xk − γTr(x) over
Fqn for n ≥ 2. We show that P (x) is not a permutation of Fqn in the
case gcd(k, qn − 1) > 1. Our proof uses an absolutely irreducible curve
over Fqn and the number of rational points on it.
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1 Introduction

Let q be a power of a prime p, and let Fq be the finite field with q elements.
A polynomial P (x) ∈ Fq[x] is called a permutation of Fq if the associated map
from Fq to Fq defined by x 7→ P (x) is a bijection, i.e., it permutes the elements
of Fq. Permutation polynomials over finite fields have been studied widely in
the last decades, especially due to their applications in combinatorics, coding
theory and symmetric cryptography, see [6, 8] and references therein.

One of the main approaches to show that P (x) is not a permutation uses
the theory of curves and their number of rational points, for instance see [1, 2].
The approach can be summarized as follows. For a given polynomial P (x),
one can consider the bivariate polynomial

P (X)− P (Y )

X − Y
(1.1)
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over Fq. Suppose that the polynomial in Equation (1.1) has an absolutely
irreducible factor over Fq. Then the corresponding curve X has a point (x, y) ∈
F2
q with x 6= y for all sufficiently large q. This proves that P (x) = P (y) for
x, y ∈ Fq with x 6= y, i.e., P is not a permutation of Fq for all sufficiently large
q.

Let n ≥ 2 be an integer and Fqn be the extension of Fq of degree n. The
topic of this paper is polynomials of the form xk − γTr(x) over Fqn , where
Tr : Fqn 7→ Fq is the Trace function defined by

Tr(x) = x+ xq + · · ·+ xq
n−1

.

This is an interesting class of permutation polynomials that has been investi-
gated intensively as it combines the multiplicative and the additive structure
of Fqn , see [3, 4, 5, 7].

In this paper we show that P (x) is not a permutation of Fqn in the case
gcd(k, qn − 1) > 1 for all q and integer n ≥ 2. Our main approach also uses
absolutely irreducible curves over Fqn , but in a different way. More precisely,
we relate the multiplicative and the additive structure of Fqn via an absolutely
irreducible curve. The paper is organized as follows. In Section 2 we investigate
some rational function field extensions and their compositum, which we use in
Section 3 to prove our main result.

2 Function Field Extensions

In this section we study some rational function field extensions and their com-
positum. For the notations and well-known facts about function fields, as a
general reference, we refer to [10].

Let E be a function field over Fq and F/E be a finite separable extension
of function fields of degree [F : E] = r. We write Q|P for a place Q of F
lying over a place P of E, and denote by e(Q|P ) the ramification index of
Q|P . Recall that when the ramification index e(Q|P ) > 1, it is said that Q|P
is ramified. Moreover, if the characteristic p of Fq does not divide e(Q|P ),
then Q|P is called tame; otherwise it is called wild. A place P of E splits
completely in F if there are r distinct places Q1, . . . , Qr of F lying over P .
Then by the Fundamental Equality [10, Theorem 3.1.11], we have e(Qi|P ) = 1
and deg(Qi) = deg(P ) for all i = 1, . . . , r. In particular, if P is a rational place
of E splitting completely in F , then there are r rational places of F lying over
P .

Let t and s be positive integers such that t is a divisor of qn − 1 and s is
relatively prime to qn − 1. We consider the rational function field extensions
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Fqn(w)/Fqn(z), Fqn(x)/Fqn(w) and Fqn(y)/Fqn(z) defined by the equations z =
(1/γ)ws, w = xt and z = Tr(y) + c, respectively, and their compositum, where
γ, c ∈ Fqn with γ 6= 0, see Figure 1. For a rational function field Fqn(z) and
α ∈ Fqn , we denote by (z = α) and (z =∞) the places corresponding the zero
and the pole of z − α, respectively.

F = Fqn(x, y)

Fqn(x) E = Fqn(w, y)

Fqn(w)

w=xt

Fqn(y)

Fqn(z)

z= 1
γ
ws

z=Tr(y)+c

Figure 1: Compositum over Rational Function Fields

(i) The extension Fqn(w)/Fqn(z) defined by z = (1/γ)ws:
Note that (z = 0) and (z = ∞) are the only ramified places, which are
totally ramified. In particular, (w = 0) and (w = ∞) are the unique
places lying over (z = 0) and (z = ∞), respectively. Moreover, the fact
that ws permutes Fqn implies that for any rational place of Fqn(z) there
exits a unique rational place of Fqn(w) lying over it. In other words,
(w = α) is the unique place of Fqn(w) lying over (z = (1/γ)αs).

(ii) The extension Fqn(x)/Fqn(w) defined by w = xt:
Note that Fqn(x)/Fqn(w) is a Kummer extension as t is a divisor of qn−1,
see [10, Proposition 3.7.3]. The only ramified places are (w = 0) and
(w =∞), which are totally ramified. In particular, (x = 0) and (x =∞)
are the unique places lying over (w = 0) and (w =∞), respectively. The
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place (w = α) splits completely in Fqn(x)/Fqn(w) if and only if α is a
t-th power in Fqn . This shows that for α ∈ 〈ζt〉, where ζ is a primitive
element of Fqn , there are t rational places of Fqn(x) lying over (w = α).

(iii) The extension Fqn(y)/Fqn(z) defined by z = Tr(y) + c:
Note that (z = ∞) is totally ramified and (y = ∞) of Fqn(y) is the
unique place lying over it. Also, the fact that

z = Tr(y) + c = y + yq + · · ·+ yq
n−1

+ c

is a separable polynomial implies that there is no other ramification.
Furthermore, the place (z = α) splits completely in Fqn(y)/Fqn(z) if and
only if α ∈ c+ Fq.

To analyse the ramification structure of the compositum of function fields,
we mainly use Abhyankar’s Lemma [10, Theorem 3.9.1]. For convenience of
the reader, we state the lemma as follows.

Lemma 2.1 (Abhyankar’s Lemma). Let F/E be a finite separable extension.
Suppose that F = E1 · E2 is the compositum of the intermediate fields E ⊆
E1, E2 ⊆ F . Let Q ∈ PF lying over P ∈ PE. We set Qi = Q ∩ Ei for i = 1, 2.
If at least one of Q1|P or Q2|P is tame, then

e(Q|P ) = lcm {e(Q1|P ), e(Q2|P )} ,

where lcm denotes the least common multiple.

Lemma 2.2. Let E = Fqn(w, y) be the compositum of the rational function
fields Fqn(w) and Fqn(y) over Fqn(z) defined as above, see Figure 1. Then E
is a function field over Fqn such that

(i) [E : Fqn(w)] = qn−1, [E : Fqn(y)] = s, and

(ii) there are qn−1 rational places of E lying over (z = α) for α ∈ c+ Fq.

Proof. As (z = 0) is totally ramified in Fqn(w)/Fqn(z), and it is not ramified
in Fqn(y)/Fqn(z), by Abhyankar’s Lemma, any place P of Fqn(y) lying over
(z = 0) is ramified in E/Fqn(y) with ramification index e((w = 0)|(z = 0)) = s.
This shows that

[E : Fqn(y)] = s, [E : Fqn(w)] = qn−1

and E is a function field over Fqn , i.e., Fqn is the full constant field of E.
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A place (z = α) splits completely in Fqn(y)/Fqn(z) if and only if α ∈ c+Fq.
Recall that there exists a unique rational place of Fqn(w) lying over (z = α) for
α ∈ Fqn . Therefore, the place lying over (z = α) splits completely in E/Fqn(w)
for α ∈ Fqn , see [10, Proposition 3.9.6].

Lemma 2.3. Let F = Fqn(x, y) be the compositum of the rational function
fields Fqn(x) and E = Fqn(w, y) over Fqn(w) defined as above, see Figure 1.
Let H be the subgroup of the multiplicative group of Fqn generated by ζt, where
ζ is a primitive element of Fqn. Then F is a function field over Fqn such that

(i) [F : Fqn(x)] = qn−1, [F : E] = t, and

(ii) there are tqn−1 rational places of F lying over (w = α) for all (1/γ)αs ∈
(1/γ)H ∩ c+ Fq.

Proof. As [E : Fqn(w)] = qn−1 and [Fqn(x) : Fqn(w)] = t are relatively prime,
we have [F : Fqn(x)] = qn−1 and [F : E] = t. Note that (w = 0) is totally
ramified in Fqn(x)/Fqn(w), and by Lemma 2.2 it is not ramified in E/Fqn(w).
Therefore, a place P of E lying over (w = 0) is totally ramified in F/E. This
shows that F is a function field with full constant field Fqn .

Note that Fqn(x)/Fqn(w) andE/Fqn(w) are Galois extensions. For a nonzero
α ∈ Fqn , the place (w = α) is not ramified in both extensions, and hence a
place P of F lying over (w = α) is rational if and only if (w = α) splits com-
pletely in both extensions. We have seen in Lemma 2.2 that (w = α) splits
in E/Fqn(w) if and only if (1/γ)αs ∈ c + Fq. Furthermore, (w = α) splits in
Fqn(x)/Fqn(w) if and only if α ∈ H. Since gcd(s, qn− 1) = 1, this holds if and
only if αs ∈ H, i.e. (1/γ)αs ∈ (1/γ)H. Therefore, P is a rational place lying
over (w = α) if and only if (1/γ)αs ∈ (1/γ)H ∩ (c + Fq). In this case, since
(w = α) splits completely in F , and there are tqn−1 rational places lying over
(w = α).

Corollary 2.4. For a nonzero γ ∈ Fqn and an integer k ≥ 1, the polynomial
f(X, Y ) = (1/γ)Xk −Tr(Y )− c ∈ Fqn is an absolutely irreducible polynomial.
Therefore, the zero set defines an absolutely irreducible curve over Fqn.

3 Main Result

In this section we investigate the permutation polynomials of the type P (x) =
xk − γTr(x). A well-known fact is that a monomial xk is a permutation if and
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only if k is relatively prime to qn− 1. Therefore, P (x) is not a permutation of
Fqn if gcd(k, qn − 1) > 1 in the case γ = 0. From now on, we assume that γ is
a nonzero element of Fqn .

As mentioned in the introduction, we consider the multiplicative and the
additive structure of Fqn to investigate the image of P (x) on Fqn . In particular,
for some c ∈ Fqn we consider the solution set of

1

γ
xk = Tr(x) + c , (3.1)

and by Equation (3.1), we investigate the rational points of the curve Xc over
Fqn defined by

fc(X, Y ) =
1

γ
Xk − Tr(Y )− c = 0 . (3.2)

Theorem 3.1. Let P (x) = xk − γTr(x) be polynomial, where γ is a nonzero
element in Fqn and k is a positive integer. If t = gcd(k, qn−1) > 1, then P (x)
is not a permutation of Fqn.

Proof. We will show that there exist x1, x2 ∈ Fqn with x1 6= x2 such that
P (x1) = P (x2).

As in the previous section we denote by H the subgroup generated by ζt,
where ζ is a primitive element of Fqn , i.e., H is a subgroup of order (qn− 1)/t.
Note that the image Im(Tr(Fqn)) = Fq is an additive subgroup of Fqn , i.e., Fqn

is the disjoint union of qn−1 cosets of Fq. In particular, there exists c ∈ Fqn

such that we have

|(1/γ)H ∩ (c+ Fq)| ≥
⌈
qn − 1

tqn−1

⌉
,

where dxe denotes the least integer greater than or equal to the real number
x. Note that we have

qn − 1

t
= bqn−1 + i for some 1 ≤ i < qn−1 − 1 . (3.3)

Then we have d(qn − 1)/tqn−1e = b+ 1, i.e., there exists c such that

|(1/γ)H ∩ (c+ Fq)| ≥ b+ 1 .

For this value of c, we consider the curve Xc defined by fc(X, Y ) = 0, where
fc is the bivariate polynomial defined as in Equation (3.2). By Corollary 2.4,
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Xc is an absolutely irreducible curve defined over Fqn . Let F = Fqn(x, y) be
the function field of Xc. By Lemma 2.3, for each α ∈ (1/γ)H ∩ (c+ Fq) there
are tqn−1 distinct rational places of F . Note that these are the places lying
over (z = α) for α ∈ (1/γ)H ∩ (c + Fq), i.e., all of them correspond to affine
points of Xc.

It is a well-known fact that each non-singular rational point of Xc corre-
sponds to a unique rational place of F , see [9, 10]. Recall that an affine point
(x0, y0) on Xc is singular if and only if we have

f(x0, y0) =
df(X, Y )

dX
(x0, y0) =

df(X, Y )

dY
(x0, y0) = 0 ,

where df/dX and df/dY denotes the partial derivatives of f with respect to
X and Y , respectively. Since df(X, Y )/dY = −1, we conclude that X has no
singular affine point. That is, each rational place of F lying over (z = α) for
α ∈ (1/γ)H ∩ (c+Fq) corresponds to a unique rational point of Xc. Therefore,
the number N(Xc) of affine rational points of Xc satisfies

N(Xc) ≥ (b+ 1) tqn−1 = btqn−1 + tqn−1 . (3.4)

By Equation (3.3), we have btqn−1 = qn− 1− it ≥ qn− 1− (qn−1− 1)t. Hence
by Equation (3.4) we have

N(Xc) ≥ qn + (t− 1) > qn .

Let `d be the line defined by the equation Y = X + d for d ∈ Fqn . Then the
set

L = {`d | d ∈ Fqn}

covers all affine points in the projective plane, and hence it covers all affine
points on Xc. Since N(Xc) > qn, there exists `d intersect Xc at least two
rational points. That is, there exist distinct elements x1, x2 ∈ Fqn such that
(x1, x1 +d), (x2, x2 +d) ∈ Xc∩ `d. Then the defining equation fc, see Equation
(3.2), implies that

xk1 − γTr(x1) = xk2 − γTr(x2) = γ(c+ Tr(d)) ,

which gives the desired result.

Corollary 3.2. Let Fqn be the finite field of characteristic p > 2 and n ≥ 2.
Then for any γ ∈ Fqn the polynomial P (x) = x2r−γTr(x) is not a permutation
of Fqn.
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Remark 3.3. Let P (x) = xk − γTr(xd) for some integers k, d such that d is
relatively prime to qn − 1. We recall that a polynomial P (x) is a permutation
of Fqn if and only if P (xr) is a permutation of Fqn for any integer r relatively
prime to qn − 1. Let r be the integer with rd ≡ 1 mod (qn − 1). We set

P̃ (x) = P (xr) = xrk − γTr(xrd) = xrk − γTr(x) . (3.5)

Then by Theorem 3.1, we conclude that P (x) is not a permutation of Fqn if
gcd(k, qn − 1) > 1.
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